Skip to main content

Advertisement

Log in

The roles of TRAF3 mutation in the oncogenic progression and drug response of multiple myeloma

  • Review Article
  • Published:
Genome Instability & Disease Aims and scope Submit manuscript

Abstract

Multiple myeloma (MM) is a malignant plasma cell proliferating in the bone marrow. Oncogenesis of MM is a multi-stage cytogenetic event. Among these, aberrant activation of the non-canonical nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway is critical for the oncogenic progression of MM. Tumor necrosis factor receptor‐associated factor 3 (TRAF3) mutation is among the most common tumor suppressor mutations in MM that allows constitutive activation of the non-canonical NF-кB pathway, thereby enhancing de novo survival of MM cells. Although there are some promising developments on current therapeutic regimens for MM patients that target such NF-кB signature, drug resistance perhaps remains a major concern. So far, TRAF3 mutation has been reported to modulate proteasome inhibitor response of MM. Mechanistically, concomitant to TRAF3 mutation-associated NIK stability that leads to the pathway activation, it has been reported that bortezomib treatment also causes a drastic increase in the level of NIK that causes pathway cross talk activating the canonical pathway, thereby triggering an acquired proteasome inhibitor resistance (PIR) pathway. Concomitantly targeting such NIK-driven acquired PIR or else targeting NIK than TRAF3 mutation and associated phenotype is likely to be the better option and thus remains to be elucidated. Hence, this review explains the roles of TRAF3-mutation-associated NF-кB pathway activation in the oncogenic progression and drug response of MM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdi, J., Chen, G., & Chang, H. (2013). Drug resistance in multiple myeloma: Latest findings and new concepts on molecular mechanisms. Oncotarget, 4, 2186–2207.

    PubMed  PubMed Central  Google Scholar 

  • Acosta-Alvear, D., Cho, M. Y., Wild, T., Buchholz, T. J., Lerner, A. G., Simakova, O., et al. (2015). Paradoxical resistance of multiple myeloma to proteasome inhibitors by decreased levels of 19S proteasomal subunits. Elife, 4, e08153.

    PubMed  PubMed Central  Google Scholar 

  • Anderson, K. C., & Carrasco, R. D. (2011). Pathogenesis of myeloma. Annual Review of Pathology, 6, 249–274.

    PubMed  CAS  Google Scholar 

  • Annunziata, C. M., Davis, R. E., Demchenko, Y., Bellamy, W., Gabrea, A., Zhan, F., et al. (2007). Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell, 12, 115–130.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Basseres, D. S., & Baldwin, A. S. (2006). Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene, 25, 6817–6830.

    PubMed  CAS  Google Scholar 

  • Bergsagel, P. L., & Chesi, M. (2013). V. Molecular classification and risk stratification of myeloma. Hematological Oncology, 31(Suppl 1), 38–41.

    PubMed  PubMed Central  Google Scholar 

  • Chapman, M. A., Lawrence, M. S., Keats, J. J., Cibulskis, K., Sougnez, C., Schinzel, A. C., et al. (2011). Initial genome sequencing and analysis of multiple myeloma. Nature, 471, 467–472.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chng, W. J., Glebov, O., Bergsagel, P. L., & Kuehl, W. M. (2007a). Genetic events in the pathogenesis of multiple myeloma. Best Practice & Research Clinical Haematology, 20, 571–596.

    CAS  Google Scholar 

  • Chng, W. J., Kumar, S., Vanwier, S., Ahmann, G., Price-Troska, T., Henderson, K., et al. (2007b). Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling. Cancer Research, 67, 2982–2989.

    PubMed  CAS  Google Scholar 

  • Cildir, G., Akincilar, S. C., & Tergaonkar, V. (2013). Chronic adipose tissue inflammation: all immune cells on the stage. Trends in Molecular Medicine, 19, 487–500.

    PubMed  CAS  Google Scholar 

  • Cildir, G., Low, K. C., & Tergaonkar, V. (2016). Noncanonical NF-kappaB signaling in health and disease. Trends in Molecular Medicine, 22, 414–429.

    PubMed  CAS  Google Scholar 

  • Demchenko, Y. N., Brents, L. A., Li, Z., Bergsagel, L. P., McGee, L. R., & Kuehl, M. W. (2014). Novel inhibitors are cytotoxic for myeloma cells with NFkB inducing kinase-dependent activation of NFkB. Oncotarget, 5, 4554–4566.

    PubMed  PubMed Central  Google Scholar 

  • Demchenko, Y. N., Glebov, O. K., Zingone, A., Keats, J. J., Bergsagel, P. L., & Kuehl, W. M. (2010). Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood, 115, 3541–3552.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fonseca, R., Bergsagel, P. L., Drach, J., Shaughnessy, J., Gutierrez, N., Stewart, A. K., et al. (2009). International Myeloma Working Group molecular classification of multiple myeloma: Spotlight review. Leukemia, 23, 2210–2221.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Franke, N. E., Niewerth, D., Assaraf, Y. G., van Meerloo, J., Vojtekova, K., van Zantwijk, C. H., et al. (2012). Impaired bortezomib binding to mutant beta5 subunit of the proteasome is the underlying basis for bortezomib resistance in leukemia cells. Leukemia, 26, 757–768.

    PubMed  CAS  Google Scholar 

  • Hacker, H., Redecke, V., Blagoev, B., Kratchmarova, I., Hsu, L. C., Wang, G. G., et al. (2006). Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature, 439, 204–207.

    PubMed  Google Scholar 

  • Haertle, L., Barrio, S. C., Simicek, M., Munawar, U., Sánchez, R., Bittrich, M., et al. (2019). Mechanisms of proteasome inhibitor resistance selected by clonal evolution in multiple myeloma. Blood, 134, 4349–4349.

    Google Scholar 

  • Hayden, M. S., & Ghosh, S. (2008). Shared principles in NF-kappaB signaling. Cell, 132, 344–362.

    CAS  PubMed  Google Scholar 

  • He, J. Q., Zarnegar, B., Oganesyan, G., Saha, S. K., Yamazaki, S., Doyle, S. E., et al. (2006). Rescue of TRAF3-null mice by p100 NF-kappa B deficiency. The Journal of Experimental Medicine, 203, 2413–2418.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hideshima, T., Ikeda, H., Chauhan, D., Okawa, Y., Raje, N., Podar, K., et al. (2009). Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood, 114, 1046–1052.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jakubowiak, A. J., Griffith, K. A., Reece, D. E., Hofmeister, C. C., Lonial, S., Zimmerman, T. M., et al. (2011). Lenalidomide, bortezomib, pegylated liposomal doxorubicin, and dexamethasone in newly diagnosed multiple myeloma: a phase 1/2 Multiple Myeloma Research Consortium trial. Blood, 118, 535–543.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Karin, M., & Delhase, M. (1998). JNK or IKK, AP-1 or NF-kappaB, which are the targets for MEK kinase 1 action? Proceedings of the National Academy of Sciences of the United States of America, 95, 9067–9069.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Keats, J. J., Fonseca, R., Chesi, M., Schop, R., Baker, A., Chng, W. J., et al. (2007). Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell, 12, 131–144.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Korde, N., Kristinsson, S. Y., & Landgren, O. (2011). Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM): Novel biological insights and development of early treatment strategies. Blood, 117, 5573–5581.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar, S., Fonseca, R., Ketterling, R. P., Dispenzieri, A., Lacy, M. Q., Gertz, M. A., et al. (2012). Trisomies in multiple myeloma: Impact on survival in patients with high-risk cytogenetics. Blood, 119, 2100–2105.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kyle, R. A., Remstein, E. D., Therneau, T. M., Dispenzieri, A., Kurtin, P. J., Hodnefield, J. M., et al. (2007). Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. The New England Journal of Medicine, 356, 2582–2590.

    PubMed  CAS  Google Scholar 

  • Lalani, A. I., Luo, C., Han, Y., & Xie, P. (2015). TRAF3: a novel tumor suppressor gene in macrophages. Macrophage, 2, e1009.

    PubMed  PubMed Central  Google Scholar 

  • Liao, G., Zhang, M., Harhaj, E. W., & Sun, S. C. (2004). Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. The Journal of Biological Chemistry, 279, 26243–26250.

    PubMed  CAS  Google Scholar 

  • Lim, A. S., Lim, T. H., See, K. H., Ng, Y. J., Tan, Y. M., Choo, N. S., et al. (2013). Cytogenetic and molecular aberrations of multiple myeloma patients: A single-center study in Singapore. Chinese Medical Journal, 126, 1872–1877.

    PubMed  Google Scholar 

  • Lohr, J. G., Stojanov, P., Carter, S. L., Cruz-Gordillo, P., Lawrence, M. S., Auclair, D., et al. (2014). Widespread genetic heterogeneity in multiple myeloma: Implications for targeted therapy. Cancer Cell, 25, 91–101.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lu, S., & Wang, J. (2013). The resistance mechanisms of proteasome inhibitor bortezomib. Biomarker Research, 1, 13.

    PubMed  PubMed Central  Google Scholar 

  • Luo, J. L., Kamata, H., & Karin, M. (2005). IKK/NF-kappaB signaling: balancing life and death—a new approach to cancer therapy. The Journal of Clinical Investigation, 115, 2625–2632.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Markovina, S., Callander, N. S., O'Connor, S. L., Kim, J., Werndli, J. E., Raschko, M., et al. (2008). Bortezomib-resistant nuclear factor-kappaB activity in multiple myeloma cells. Molecular cancer research: MCR, 6, 1356–1364.

    PubMed  CAS  Google Scholar 

  • Matsushima, A., Kaisho, T., Rennert, P. D., Nakano, H., Kurosawa, K., Uchida, D., et al. (2001). Essential role of nuclear factor (NF)-kappaB-inducing kinase and inhibitor of kappaB (IkappaB) kinase alpha in NF-kappaB activation through lymphotoxin beta receptor, but not through tumor necrosis factor receptor I. The Journal of Experimental Medicine, 193, 631–636.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature, 454, 428–435.

    PubMed  CAS  Google Scholar 

  • O'Connor, S., Markovina, S., & Miyamoto, S. (2005). Evidence for a phosphorylation-independent role for Ser 32 and 36 in proteasome inhibitor-resistant (PIR) IkappaBalpha degradation in B cells. Experimental Cell Research, 307, 15–25.

    PubMed  CAS  Google Scholar 

  • Oerlemans, R., Franke, N. E., Assaraf, Y. G., Cloos, J., van Zantwijk, I., Berkers, C. R., et al. (2008). Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood, 112, 2489–2499.

    PubMed  CAS  Google Scholar 

  • Oganesyan, G., Saha, S. K., Guo, B., He, J. Q., Shahangian, A., Zarnegar, B., et al. (2006). Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature, 439, 208–211.

    PubMed  CAS  Google Scholar 

  • Pandey, M. K., Amin, S. G., Zangari, M., & Talamo, G. (2015). Drug resistance in multiple myeloma: how to cross the border. Annals of Hematology & Oncology, 2, 1025.

    Google Scholar 

  • Papa, S., Zazzeroni, F., Pham, C. G., Bubici, C., & Franzoso, G. (2004). Linking JNK signaling to NF-kappaB: A key to survival. Journal of Cell Science, 117, 5197–5208.

    PubMed  CAS  Google Scholar 

  • Raab, M. S., Cavo, M., Delforge, M., Driessen, C., Fink, L., Flinois, A., et al. (2016). Multiple myeloma: Practice patterns across Europe. British Journal of Haematology, 175, 66–76.

    PubMed  Google Scholar 

  • Rapino, F., Abhari, B. A., Jung, M., & Fulda, S. (2015). NIK is required for NF-kappaB-mediated induction of BAG3 upon inhibition of constitutive protein degradation pathways. Cell Death & Disease, 6, e1692.

    CAS  Google Scholar 

  • Saad, A., Mahindra, A., Zhang, M. J., Zhong, X., Costa, L. J., Dispenzieri, A., et al. (2014). Hematopoietic cell transplant comorbidity index is predictive of survival after autologous hematopoietic cell transplantation in multiple myeloma. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation, 20(402–408), e401.

    Google Scholar 

  • Saltarella, I., Lamanuzzi, A., Reale, A., Vacca, A., & Ria, R. (2015). Identify multiple myeloma stem cells: Utopia? World J Stem Cells, 7, 84–95.

    PubMed  PubMed Central  Google Scholar 

  • San Miguel, J. F., Schlag, R., Khuageva, N. K., Dimopoulos, M. A., Shpilberg, O., Kropff, M., et al. (2008). Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. The New England Journal of Medicine, 359, 906–917.

    PubMed  CAS  Google Scholar 

  • Shin, E. M., Neja, S. A., Fidan, K., Chua, J. Y. H., Chung, T.-H., Bertin, N., et al. (2020). Lymphocyte cytosolic protein 1 (LCP1) is a novel TRAF3 dysregulation biomarker with potential prognostic value in multiple myeloma. Genome Instability & Disease,. https://doi.org/10.1007/s42764-020-00014-x.

    Article  Google Scholar 

  • Shinkura, R., Kitada, K., Matsuda, F., Tashiro, K., Ikuta, K., Suzuki, M., et al. (1999). Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf-kappa b-inducing kinase. Nature Genetics, 22, 74–77.

    PubMed  CAS  Google Scholar 

  • Shumway, S. D., & Miyamoto, S. (2004). A mechanistic insight into a proteasome-independent constitutive inhibitor kappaBalpha (IkappaBalpha) degradation and nuclear factor kappaB (NF-kappaB) activation pathway in WEHI-231 B-cells. The Biochemical Journal, 380, 173–180.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Stuhmer, T., Chatterjee, M., Hildebrandt, M., Herrmann, P., Gollasch, H., Gerecke, C., et al. (2005). Nongenotoxic activation of the p53 pathway as a therapeutic strategy for multiple myeloma. Blood, 106, 3609–3617.

    PubMed  Google Scholar 

  • Sun, S. C. (2011). Non-canonical NF-kappaB signaling pathway. Cell Research, 21, 71–85.

    PubMed  CAS  Google Scholar 

  • Sun, S. C. (2012). The noncanonical NF-kappaB pathway. Immunological Reviews, 246, 125–140.

    PubMed  PubMed Central  Google Scholar 

  • Takeuchi, O., & Akira, S. (2010). Pattern recognition receptors and inflammation. Cell, 140, 805–820.

    CAS  PubMed  Google Scholar 

  • Vallabhapurapu, S., & Karin, M. (2009). Regulation and function of NF-kappaB transcription factors in the immune system. Annual Review of Immunology, 27, 693–733.

    PubMed  CAS  Google Scholar 

  • Wong, A. H., Shin, E. M., Tergaonkar, V., & Chng, W. J. (2020). Targeting NF-kappaB signaling for multiple myeloma. Cancers (Basel), 12, 2202.

    Google Scholar 

  • Xie, P., Stunz, L. L., Larison, K. D., Yang, B., & Bishop, G. A. (2007). Tumor necrosis factor receptor-associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs. Immunity, 27, 253–267.

    PubMed  PubMed Central  Google Scholar 

  • Xu, Y., Cheng, G., & Baltimore, D. (1996). Targeted disruption of TRAF3 leads to postnatal lethality and defective T-dependent immune responses. Immunity, 5, 407–415.

    PubMed  CAS  Google Scholar 

  • Yin, L., Wu, L., Wesche, H., Arthur, C. D., White, J. M., Goeddel, D. V., et al. (2001). Defective lymphotoxin-beta receptor-induced NF-kappaB transcriptional activity in NIK-deficient mice. Science, 291, 2162–2165.

    PubMed  CAS  Google Scholar 

  • Yuregir, O. O., Sahin, F. I., Yilmaz, Z., Kizilkilic, E., Karakus, S., & Ozdogu, H. (2009). Fluorescent in situ hybridization studies in multiple myeloma. Hematology, 14, 90–94.

    PubMed  Google Scholar 

  • Zapata, J. M., Krajewska, M., Krajewski, S., Kitada, S., Welsh, K., Monks, A., et al. (2000). TNFR-associated factor family protein expression in normal tissues and lymphoid malignancies. Journal of Immunology, 165, 5084–5096.

    CAS  Google Scholar 

  • Zarnegar, B. J., Wang, Y., Mahoney, D. J., Dempsey, P. W., Cheung, H. H., He, J., et al. (2008). Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nature Immunology, 9, 1371–1378.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, B., Calado, D. P., Wang, Z., Frohler, S., Kochert, K., Qian, Y., et al. (2015). An oncogenic role for alternative NF-kappaB signaling in DLBCL revealed upon deregulated BCL6 expression. Cell Report, 11, 715–726.

    CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges Hawassa University for providing Internet facility and reading materials used to prepare this manuscript.

Funding

Nil.

Author information

Authors and Affiliations

Authors

Contributions

This manuscript was written entirely by the author.

Corresponding author

Correspondence to Sultan Abda Neja.

Ethics declarations

Conflict of interest

The author declares that he has no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neja, S.A. The roles of TRAF3 mutation in the oncogenic progression and drug response of multiple myeloma. GENOME INSTAB. DIS. 1, 278–285 (2020). https://doi.org/10.1007/s42764-020-00022-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42764-020-00022-x

Keywords

Navigation