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Abstract 

This paper presents simulations of the growth of stationary and rising vapour bubbles in an extend 

pool of liquid using an Interface Capturing Computational Fluid Dynamics (CFD) methodology 

coupled with a method for simulating interfacial mass transfer at the vapour–liquid interface. 

The model enables mechanistic prediction of the local rate of phase change at the vapour–liquid 

interface and is applicable to realistic cases involving two-phase mixtures with large density 

ratios. The simulation methodology is based on the Volume of Fluid (VOF) representation of the 

flow, whereby an interfacial region in which mass transfer occurs is implicitly identified by a 

phase indicator, in this case the volume fraction of liquid, which varies from the value pertaining 

to the “bulk” liquid to the value of the bulk vapour. The novel methodology proposed here has 

been implemented using the Finite Volume framework and solution methods typical of “industrial” 

CFD practice embedded in the OpenFOAM CFD toolbox. Simulations are validated via comparison 

against experimental observations of spherical bubble growth in zero gravity and of the growth 

of a rising bubble in normal gravity. The validation cases represent a severe test for Interface 

Capturing methodologies due to large density ratios, the presence of strong interfacial evaporation 

and upward bubble rise motion. Agreement of simulation results with measurements available 

in the literature demonstrates that the methodology detailed herein is applicable to modelling 

bubble growth driven by phase-change in real fluids.  
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1 Introduction 

Advances in the simulation of two-phase flows with 
interface-resolving techniques, enabled by increasing computer 
power, have created the possibility to model two-phase 
processes such as boiling at the scale of the single bubbles 
directly via predicting from first-principles the basic interfacial 
phenomena that give rise to mass transfer. One crucial aspect 
is the requirement to develop mechanistic modelling of 
interfacial mass transfer due to phase change that is general 
enough to be coupled with popular Interface Capturing 
methodologies such as the Volume of Fluid (VOF) or Level 
Set methods (Tryggvason et al., 2011) and incorporated 
into broadly applicable Computational Fluid Dynamics 
(CFD) “toolboxes” such as the OpenFOAM code. 

Whereas the vast majority of simulation methodologies 

for flows with mass transfer have been implemented   
in application-specific computational codes of limited 
applicability, development of such modelling capabilities  
in general calculation procedures (e.g., established general 
purpose CFD codes such as OpenFOAM) is still a real 
challenge. One possible modelling approach was demonstrated 
in Giustini and Issa (2021), where the authors use the 
standard Finite Volume discretization framework to 
demonstrate the applicability of interface capturing simulation 
with mass transfer to modelling boiling flows on arbitrary 
mesh configurations, via implementation of a general flow 
solver into the OpenFOAM code version 20.06.  

In this paper, Giustini and Issa’s (2021) methodology is 
used as a vehicle to further demonstrate the capabilities 
of interface capturing CFD and it is applied to model 
bubble growth due to phase change in conditions of a set of 
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laboratory experiments (Florschuetz et al., 1969). Interface- 
resolving CFD, and other approaches such the Lattice 
Boltzmann method (Li et al., 2020), are promising tools for 
simulating two-phase flows of real fluids with large density 
ratios and interfacial evaporation. The perspectives of the 
work are applications to modelling of boiling phenomena, 
which are integral part of power generation, e.g., water-cooled 
nuclear reactors (Giustini, 2020), and thermal management 
technologies (Karayiannis and Mahmoud, 2017).  

Welch and Wilson (2000) appear to be the first to 
introduce mechanistic phase change in Interface Capturing 
(VOF) two-phase flow simulation. The method assumes 
thermodynamic equilibrium at the vapour–liquid interface, 
which is taken at the saturation temperature at the prevailing 
pressure, and models phase change via explicit reconstruction 
of temperature gradients at the moving phase boundary, 
a method which has been adopted by other workers for 
similar applications (Gibou et al., 2007; Sato and Ničeno, 
2013). Such methods often require unwieldy procedures 
to reconstruct the exact location of the phase boundary 
and compute the local temperature gradients, which can be 
challenging to implement into general calculation procedures 
on “unstructured” mesh configurations (Sahut et al., 2021) 
(e.g., tetrahedral, polyhedral, or hybrid meshes). A different 
approach relies on a so-called “continuum representation” 
of the interface, whereby interfacial phenomena such as 
phase change are accounted for as volumetric source terms 
located at an implicitly defined phase boundary e.g., a 
narrow transition region between the bulk phases. The 
template of such methods, described in Hardt and Wondra 
(2008), was found to require elaborate measures in order to 
tackle simulation of flows with large density differences and 
strong interfacial phase change (Kunkelmann and Stephan, 
2009), a shortcoming that was eliminated by Giustini and 
Issa (2021).  

The simulation framework established in Giustini  
and Issa (2021) is here adopted to conduct simulations of 
the growth of vapour bubbles in isolation, i.e., away from 
solid surfaces, in both zero-gravity and normal (Earth) 
gravity conditions.   

Simulations are validated via comparison against 
experimental observations (Florschuetz et al., 1969). The 
validation cases represent a severe test for Interface Capturing 
methodologies due to large density ratios, the presence of 
strong interfacial evaporation, and bubble rise motion. 

2 Methodology 

Simulations presented in this paper build on Giustini and 
Issa’s (2021) methodology, which comprises a two-phase 
fluid flow solver (Section 2.1.1) coupled to a method   
for tracking the evolution of the liquid–vapour interface 

(Section 2.1.2) and to a heat transport model (Section 2.1.3) 
augmented by a calculation of the rate of phase change 
(Section 2.1.2.1) at the liquid–vapour interface.  

2.1 Model formulation 

The current methodology is based on the single-fluid 
formulation (Tryggvason et al., 2011) of two-phase fluid 
dynamics whereby one single set of momentum balance 
equations with variable fluid properties is used to describe 
the instantaneous behaviour of a two-phase flow. An indicator 
function, in this case the volume fraction of the liquid 
phase (equal to 1 in the liquid phase and to 0 in the vapour 
phase), is used to track the phase distribution and to assign 
the relevant fluid properties to each phase. Interfacial 
phenomena, such as surface tension forces and mass transfer, 
are captured in an interfacial region, where the indicator 
function varies sharply but continuously from the value 
pertaining to the bulk liquid to the value of the bulk vapour, 
over a thickness of a few computational cells. Surface tension 
(Brackbill et al., 1992) and mass transfer (Kunkelmann and 
Stephan, 2009) are calculated in the interfacial region using 
suitable implementations of established models and are 
incorporated into the solution of the numerical model as 
volumetric source terms. As such, they do not require special 
treatment, which would otherwise be needed with other 
approaches (Gibou et al., 2007; Rajkotwala et al., 2019) 
such as “immersed boundary” techniques. As outlined in 
Section 2.2, straightforward representation of interfacial 
terms as volumetric sources enables implementing the current 
calculation procedure using standard solution methods 
(Ferziger et al., 2002), typical of single-phase CFD, and the 
Finite Volume discretization approach, embodied in the 
OpenFOAM CFD code (Greenshields, 2017).   

2.1.1 Fluid flow model 

The incompressible Navier–Stokes equations read 

( )
( )

ρ ρ p
t

¶
=- Ä + - +

¶
u u u T f      (1) 

where ρ  is the density, u is the fluid velocity, =T   

( )( )T1
2

μ  + u u  ( μ  being the fluid viscosity), p is the  

pressure, and the body force g σ= +f f f  includes a 
gravitational term g ρ=f g  and the surface tension force σf  
(the latter to be discussed in Section 2.2.1). 

The velocity divergence ⋅u  is linked to the volumetric 
rate of interfacial phase change 3(kg / (m s))m ⋅  by a 
continuity constraint (Tryggvason et al., 2011): 

v l

1 1m
ρ ρ

æ ö÷ç⋅ = - ÷ç ÷çè ø
u             (2) 
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where the subscripts l and v indicate, respectively, the 
liquid and vapour phases, both being considered to be 
incompressible.  

With the current Interface Capturing methodology 
(Giustini and Issa, 2021), broadly based on the VOF method 
(Welch and Wilson, 2000), the phases are distinguished with 
an indicator function here taken as the volume fraction  
of liquid α , which is used to compute “mixture” fluid 
properties, denoted by ρ , as (fluid viscosity μ , specific heat 
capacity c, and thermal conductivity k are treated in the 
same way): 

( )l v1ρ αρ α ρ= + -               (3) 

2.1.2 Interface capturing method 

The Interface Capturing method of Giustini and Issa (2021), 
uses an advection equation for the indicator function α  
originally introduced in Olsson and Kreiss (2005) and 
augmented by terms arising from interfacial phase change: 

( ) ( )[ ]

( )
v l v

1

1 12

α α α α
t

mε α m α
ρ ρ ρ

¶
+⋅ +⋅ -

¶
æ ö÷ç= ⋅  + - -÷ç ÷çè ø



nu

        (4) 

where ( )[ ]1α α⋅ - n  is a compressive term required to 
maintain the sharp interfaces, ( )ε α⋅   is a numerical 
diffusion term to control the interface thickness and n is 
the unit vector normal to the vapour–liquid interface. The 
parameter ε , which can be varied to adjust the thickness 
of the interfacial region, is a user specified parameter 
linked to the local grid size Δx . In this work ε  is set equal 
to Δ / 2x , which is the recommended value (Olsson and 
Kreiss, 2005) for vapour–liquid flow simulations. The terms 

v l v

1 12 mm α
ρ ρ ρ

æ ö÷ç - -÷ç ÷çè ø
 , which represent mass transfer due to 

phase change (Badillo, 2012), are functions of the volumetric 
rate of phase change m , which is computed as follows. 

2.1.2.1 Modelling of phase change 

Carey’s (2020) formula, originally introduced in Schrage 
(1953), is used to compute the volumetric rate of interfacial 
phase change: 

 ( )SATm φ T T α= -    (5) 

with  

 
1/2

v lv
3/2

g SAT

ˆ2
ˆ2 2π

ρ hσ Mφ
σ R T
æ ö÷ç ÷= ç ÷ç ÷ç- è ø

        (6) 

where T denotes the temperature and SATT  is the value of 
the saturation temperature at the prevailing system pressure. 

Here the value of the “accommodation” coefficient σ̂  is set 
equal to one for all simulations presented, as recommended 
in Carey (2020). In the above expression for the evaporation 
coefficient φ , lvh  is the latent heat of vaporization, M is 
the molar mass, and gR  is the universal gas constant. The 
rate of phase change, which is zero in the bulk phases and 
non-zero in the interface cells where 0α ¹ , is positive 
for evaporation ( SAT 0T T- > ) and negative for condensation 
( SAT 0T T- < ).  

2.1.3 Thermal model 

Heat transfer is modelled via a transport equation for the 
fluid specific enthalpy h (with d ( ) dh T c T= , c being the 
“mixture” specific heat capacity), here defined as 

 
( )[ ]( )

( )
l l v v REF

l v

1
1

αρ c α ρ c T T
h

αρ α ρ
+ - -

=
+ -

        (7) 

which takes the value of the liquid specific enthalpy 
l l REF( )h c T T= -  for 1α =  and the value of the vapour 

enthalpy v v REF( )h c T T= -  for 0α = . Here the reference 
temperature REFT  is taken as the saturation temperature at 
the prevailing system pressure SAT .T  The thermal transport 
model equation (Giustini and Issa, 2021) here adopted 
reads 

 ( ) ( ) h
ρh ρ h ρD h S
t

¶
+⋅ -⋅  =

¶
u  (8) 

where kD ρc=  is the “mixture” thermal diffusivity.  

The right-hand side of Eq. (8) represents a sink term 
due to phase change and is modelled as 

 ( )lv l l v v
v v

1 1
2h

εS m h ρ c ρ c T
ρ ρ

é æ ö ù÷ç=- + - - ⋅ê ú÷ç ÷çè øê úë û
 n  (9) 

where n is the unit vector normal to the vapour–liquid 
interface. The first term in square brackets in Eq. (9) 
represents latent heat transfer, and the second term accounts 
for sensible heat transfer to due phase change, e.g., the 
formation of vapour and removal of liquid in evaporation. 
The ε  parameter takes the same value of Δ / 2x  adopted 
in the interface advection equation (4).  

2.2 Model solution 

The current flow solver incorporates a standard segregated 
(Ferziger et al., 2002) solution procedure based on the PISO 
algorithm (Issa, 1986). 

For each control volume (cell) O, the semi-discrete form 
of the momentum balance equation (1) can be written in 
compact notation as  
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( )( )

( )

O O o
O O O z O

O O o
O O z O

ρV ρVA p
δt δt

ρV ρVA p
δt δt

= - - + +

æ ö÷ç + = - + +÷ç ÷çè ø

u H u u f u

u H u f u  (10) 

where ( ( ) )O OA-H u u  is calculated from a numerical  
approximation of the integral [ ( ) ]d

OV
ρ V-⋅ Ä +ò u u T   

and o
Ou  denotes the velocity at the previous time step. The 

Euler scheme is adopted for temporal discretization (as is the 
case for all simulations presented in this paper), δt  being the 
time step. Here the hydrostatic pressure is lumped together 
with the static pressure to give the piezometric pressure  

zp p ρ= - ⋅g x  and the corresponding body force is  
computed as g ( ) ρ=- ⋅ f g x , where x is the position  

vector. Defining O
O

ρVA A
δt

= + , in the adopted solution  

algorithm the velocity component (flux) normal to a control 
volume face f is estimated first as  

 
( )( )

( )
f

f fA A
⋅æ ö÷ç= ⋅ +÷ç ÷çè ø

f SH u S





 (11) 

where ( )  denotes linear interpolation from cell centroid 
O to face centroid f and fS  is the surface area vector 
normal to face f.  

The pressure field is calculated via solution of an 
equation for zp : 

 
( )


v l

1 1Σ Δ Σf
f f z f f

S
p m

ρ ρA
æ ö÷ç= - - ÷ç ÷çè ø



 (12) 

where Δ f zp  is the piezometric pressure difference across 
face f and the second term on the right-hand side is a 
source term due to mass transfer.  

The flux is then corrected using the pressure field 
calculated from iterative solution of Eq. (12) and the velocity 
at the cell centroid is updated using the corrected flux 
(Perot, 2000). The updated velocity field is then used to 
recalculate ( )H u  and repeat the pressure–velocity correction 
sequence for a desired number of times.  

2.2.1 Calculation of the surface tension force 

The Continuum Surface Force (CSF) method (Brackbill et al., 
1992) is here adopted to compute the surface tension force 
at the vapour–liquid interface. The CSF method expresses 
the surface tension force σf  in terms of the local curvature 
of the interface κ =-⋅n: 

 σ σκ α= f  (14) 

where σ  is the surface tension coefficient, here taken as a 
constant.  

In standard implementations of the CSF method, normal 

n and curvature κ =-⋅n  are computed from the indicator 
function gradient α  via the relationship (Tryggvason et al., 
2011): 

 α
α


=


n  (15) 

With the approach, it is often the case that numerical errors, 
implicit in evaluating the interface unit normal from a 
steeply varying indicator function distribution, introduce 
considerable distortion of the calculated curvature field. 
Such a numerical imperfection is the likely root cause of 
inaccurate estimates of the surface tension force commonly 
reported in the literature (Popinet, 2018) which usually 
manifest themselves as “spurious velocities” (sometimes called 
“parasitic currents”), i.e., unphysical velocity oscillations 
near the vapour–liquid interface. In order to alleviate the 
issue, a smoothed gradient α  of the indicator function is 
here used in the surface tension calculation. The smoothed 
gradient α  is calculated recursively from the “raw” gradient 

α  computed from the indicator function distribution 
resulting from solution of Eq. (4). The recursive formula can 
be expressed as 

 


1

( )Σ
( )

Σ
f

f

i ff
i

f

α S
α

S+

é ùê úë û =


 (16) 

with  0( )α α = and [ ] f⋅  denotes linear interpolation 
from cell centroid O to face centroid f. 

With gradients of the indicator function so computed, 
no significant velocity oscillations were observed at the 
vapour–liquid interface, as demonstrated by simulation 
results presented in Section 3.2. 

2.2.2 Sequence of solution steps and OpenFOAM numerical 
solution settings 

For every time step, the following sequence is used to solve 
the model equations presented in the preceding text: 

(1) Advance the interface via solving Eq. (4) using a 
known rate of phase change from the previous time step. 

(2) Update the single fluid properties (Eq. (3)).  
(3) Compute the surface tension force with the CSF 

method. 
(4) Compute the rate of phase change with Eq. (5). 
(5) Solve the heat transport equation (8). 
(6) Update the rate of phase change. 
(7) Compute the velocity and pressure fields via the 

desired number of PISO steps (as outlined in Section 2.2). 
The interface advection equation (4) is solved with the 

standard MULES solver (Damiàn, 2013) embedded in the 
OpenFOAM code.  

For all simulations presented in this work, the time step 
was dynamically updated based on the CFL condition,  
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CFL
Δxδt S£
u

, where Δx  is the smallest cell characteristic  

dimension, u  is the maximum value of the velocity 
magnitude in the domain, and CFLS  is a safety factor here set 
equal to 0.1. Typical observed flow velocities are of the order 
0.1 m/s, which correspond, for cell sizes as small as 0.78 μm 
here employed, to time step values around 10–6 s.  

Linear interpolation was used for the divergence 
terms and for the diffusive terms in the model equations, 
via selection of the relevant discretization schemes in the 
OpenFOAM input specifications. Further details on 
OpenFOAM discretization schemes are available online 
(Damiàn, 2013; Greenshields, 2017). 

3 Validation: Simulations of free bubble growth 

Predictions of the current method are validated via 
comparison with experimental observations of bubble 
growth in ethanol from Florschuetz et al.’s (1969) dataset. 
Firstly, spherical bubble growth in an extended pool of 
liquid ethanol in zero-gravity conditions is simulated. More 
challenging normal (Earth) gravity conditions, whereby   
a bubble grows while rising through stationary liquid, are 
considered next. The new simulations presented in this paper 
extend the set of test cases beyond conditions considered in 
Giustini and Issa (2021). For all the simulations presented in 
this work, uniform meshes in axisymmetric configuration 
have been used.  

3.1 Simulation of spherical bubble growth in zero-gravity 
conditions 

The test case considers bubble growth in a pool of stationary 
liquid at a uniform temperature T¥ . The initial condition 
of the simulation has been calculated with the theory of 
Scriven (1959), which is applicable to modelling bubble 
growth due to heat transport from surrounding uniformly 
superheated liquid in zero gravity. The theory assumes that 
the vapour in the interior of a spherical growing bubble is 
at the saturation temperature SATT  at the prevailing system 
pressure and that heat is transported from the liquid 
towards the curved surface of the bubble through a thermal 
boundary layer where the temperature varies from the 
remote value T¥  (at some distance into the liquid) to the 
saturation value SATT  (prevailing in the interior of the 
bubble). Under these assumptions, Scriven (1959) provides 
closed-form expressions for the bubble radius as a function 
of time, and for the temporal variation of the spatial 
distribution of the temperature around the bubble as a 
function of the radial distance r, reproduced below: 

( ) l2R t β D t=   (bubble radius)   (17) 

( )
( )( )( )

( )

l l SAT

v lv l v SAT

2 v2 2

0 l

1
2 exp 1 2 1 1 d

ρ c T T
ρ h c c T T

ρβ β ξ ξ ξ
ρ

¥

¥

-

-
+ - -

æ æ ö ö÷ ÷ç ç= - - - - -÷ ÷ç ç ÷ ÷ç çè è ø ø
é ù
ê ú
ê úë ûò

 

(growth constant β  equation)          (18) 
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( )( )[ ]
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1 2 v2

1 l

, 2

exp 1 2 1 1 dR t
r

ρ h c c T T
T r t T β

ρ c
ρβ ξ ξ ξ
ρ

¥
¥

-

-

+ - -
= - ⋅

æ æ ö ö÷ ÷ç ç- - - - -÷ ÷ç ç

ì üï ïï ïí ýï ïï ïî þ
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ê ÷ ÷ç çè è

ú
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(temperature distribution in the liquid) (19) 

The above expressions are used to initialize a small bubble 
in the axisymmetric simulation domain as in Fig. 1, where 
the initial bubble radius 0R  and the indicative temperature 
distribution are imposed as initial condition of the simulation 
calculated with Scriven’s (1959) theory at a short time 0t  
from bubble inception. The subsequent growth of the bubble 
is captured by the current method, and the time history 
of the bubble radius is extracted from the simulation and 
compared with experimental data.  

Thermophysical properties of saturated ethanol in 
atmospheric pressure conditions here used are listed in 
Table 1. The remote liquid superheat SATΔT T T¥= -  is  

 
Fig. 1 (a) Initial distribution of liquid volume fraction α, equal 
to 0 inside the spherical bubble and to 1 in the liquid. (b) Close-up 
of the initial temperature distribution. 

Table 1 Physical properties of saturated ethanol at 1 bar 

Property Vapour Liquid 

Dynamic viscosity (Pa s)μ ⋅  610.4 10-´ 6429.0 10-´

Density 3(kg / m )ρ  1.435 757.0 

Specific heat capacity ( )J / (kg K)c ⋅  1830.0 3000.0 

Thermal conductivity (W / (m K))k ⋅  320.0 10-´ 3154.0 10-´

Surface tension coefficient (N / m)σ  0.018 

Latent heat of vaporization lv (J / kg)h  3963.0 10´  

Gas constant ( )g / J / (kg K)R R M= ⋅  180.5 

Saturation temperature SAT (K)T  351.45 
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equal to 2.7 K, which corresponds to a Jakob number Ja =  
l l

v lv

Δ 4.4ρ c T
ρ h

= ; the initial bubble radius is equal to 109 μm. 

The simulated time history of the bubble radius is 
compared with experiment in Fig. 2, showing results for 
increasingly fine uniform grids. Very similar results obtained 
with the two finest grids corresponding to uniform cell 
sizes with Δ 1.56 μmx =  and Δ 0.78 μmx =  indicate mesh 
convergence of the current method if sufficiently fine grids 
are used. The simulation using a grid with Δ 1.56 μmx =  
has been repeated on a larger domain to accommodate the 
growing bubble at later time into the simulation and enable 
comparison with experimental data up to approximately 
180 ms into bubble growth, corresponding to the final point 
in the experimental time series, as shown in Fig. 3. Very 
good agreement with experimental data is observed. 

3.2 Growth of a rising bubble in normal gravity 

The test case considers the growth of an ethanol bubble rising 
in a uniformly superheated pool of liquid in conditions of 
Florschuetz et al.’s (1969) experiments.  

 
Fig. 2 Time histories of bubble radius from numerical simulation 
with increasingly refined uniform meshes are compared with 
values of the bubble radius from the experiments of Florschuetz  
et al. (1969). 

 
Fig. 3 Comparison between modelled and measured spherical 
bubble growth extended to the whole interval of time where 
experimental values of the bubble radius are available.  

Normally in CFD simulations of rising bubbles, the 
continuous liquid phase is kept stationary and the bubble 
rises through it. The approach may imply the necessity to 
use a very tall computational domain in the vertical direction 
to simulate the entire bubble travel time. In order to eliminate 
the issue, here the computational frame of reference is 
attached to the bubble, which is kept stationary while the 
surrounding liquid is moved instead. The corresponding 
simulation setup is illustrated in Fig. 4①. The velocity 
imposed as a uniform inlet boundary condition at the top end 
of the domain, directed downwards along the gravitational 
acceleration vector, is recalculated at every time step to 
keep the center of gravity of the bubble stationary, in the 
same position occupied by it at the beginning of the 
simulation.  

The remote liquid superheat is equal to 3.1 K and the 
initial conditions of the simulation have been determined as 
outlined in the preceding text, using the analytical solution 
for spherical bubble growth, which has been used to initialize 
a small bubble and the surrounding temperature distribution 
at the center of the computational domain. In the region of 
the computational domain where the bubble develops, a 
uniform mesh with Δ 3.12 μmx =  is used. The initial bubble 
radius is equal to 208 μm. Figure 5 shows the temperature 
distribution around the growing bubble at different times 
into the simulation. Details of the temperature and velocity 
distribution at 85 ms into the simulation are shown in Fig. 6, 
showing a wake of cold liquid downstream of the bubble 
and a thin thermal boundary layer around the portion of the 
bubble-curved surface exposed to the incoming liquid. 
Figure 7 compares the equivalent bubble radius extracted  

 
Fig. 4 Simulation setup used to model the growth of a bubble 
rising under normal gravity in an extended pool of liquid.  

                                                        
① The computational domain is wedge-shaped in order to mimic rotationally 

symmetric conditions and Fig. 4 shows a vertical cross section of the domain. 
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Fig. 5 Modelled temperature field around a rising bubble growing 
in an extended pool of liquid at different times into the simulation: 
(a) t = 0 ms, (b) t = 15 ms, (c) t = 30 ms, (d) t = 50 ms, (e) t = 70 ms, 
and (f) t = 85 ms.  

 
Fig. 6 Details of the modelled temperature (right) and velocity 
magnitude (left) fields during the growth of a rising bubble at 85 
ms into the simulation. 

 
Fig. 7 Comparison between modelled and measured (Florschuetz 
et al., 1969) time histories of the rising bubble radius. 

from simulation with two experimental runs from Florschuetz 
et al.’s (1969) experimental dataset, indicating good agreement 
between modelling and measurement.  

4 Conclusions 

This paper presented a numerical methodology for simulating 
mass transfer at phasic interfaces and its application to 
modelling of bubble growth in conditions of an experimental 
dataset available in the literature. The method, which is 
applicable to arbitrary fluids, was implemented into the 
general purpose CFD code OpenFOAM and validated via 
simulations of vapour bubbles growing in a stationary pool 
of liquid away from solid boundaries. The chosen validation 
cases represent a challenge for CFD modelling of boiling 
flows due to large density ratios and strong interfacial 
evaporation. Comparison with experimental data indicated 
good agreement between modelled and measured bubble 
growth in zero-gravity and normal (Earth) gravity 
conditions. 
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