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bacteria help plants to grow through direct and/or indirect 
processes such as biological nitrogen fixation, 1-aminocy-
clopropane-1-carboxylic acid (ACC) deaminase activity, 
and phosphate solubilization (Jeon et al. 2003; Marques et 
al. 2010; Mendes et al. 2018; Pereira et al. 2019; Santos 
et al. 2021). Moreover, strains of Plant Growth-Promoting 
Bacteria (PGPB) have been isolated from several environ-
ments and exert effects on a range of crop species (Katsenios 
et al. 2022). Studies have revealed that endophytes from the 
same plant species may have developed specific adaptations 
to the environmental conditions of the host plant, such as 
soil type, climate, and disease pressures., and can be more 
efficient and competitive compared to the non-indigenous 
strains (Verma et al. 2013). In a recent study, Nascimento et 
al. 2021 quantified the effect of inoculation of native diazo-
trophic bacteria on seedlings of Eucalyptus uruphylla.

PGPB have been used as biostimulants (Lopes et al. 
2021), biofertilizers (Cortivo et al. 2017), and for biocontrol 

1 Introduction

Endophytic bacteria able to promote plant growth are a 
promising source for the development of products for sus-
tainable agriculture (Chouhan et al. 2021). Despite the old 
and extensive studies and the long list of commercialized 
bacterial inoculants (Glick 2012), the use of biofertilizers 
in the Amazon region is scarce (Oliveira et al. 2020). These 
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Abstract
Purpose: In the Amazon, farmers use chemical fertilizers on a large scale to meet the nutritional requirements of some 
crops. Plant-growth promoting bacteria (PGPB) offer a sustainable alternative to enhance crop productivity. This study 
aimed to prospect novel PGPB from Amazonian black pepper (Piper nigrum L.) roots. Methods: Bacterial isolates were 
obtained from plant roots, evaluated for their biofertilizing potential, and the most promising strain was selected for 
genome sequencing. Taxonomic classification was based on 16 S rRNA gene sequencing. ACC deaminase activity, phos-
phate solubilization, and nitrogen fixation were assessed. Genome sequencing was performed using the Ion GeneStudio 
S5 platform. Results: The 20 isolates were affiliated to Enterobacter (7 isolates), Klebsiella (4 isolates), Kosakonia (5 
isolates), Bacillus (2 isolates), and two unclassified bacteria. Seven isolates were positive for ACC deaminase activity, 
while four were positive for the presence of the nifH gene. Nitrogenase gene was found only in Kosakonia isolates. 
Ninety isolates were able to solubilize phosphate. The isolate Pn16 was the most promising and presented a genome of 
6,432,985 bp, GC content of 55%, 6,465 Coding Sequences, 10 Symbiotic Islands, 28 biosynthetic gene clusters, and 
several genes involved in plant-growth promotion such as phoU-pstSCAB-phoBR, oqxAB, ipdC, speADEGF, nifHDK. 
Conclusions: We were able to isolate a bacterium with potential for biofertilization. Based on phylogeny and Average 
Nucleotide Identity, we propose the classification of the Pn16 isolate as Kosakonia pseudosacchari Pn16.
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(Nascimento et al. 2015; Toh et al. 2016). Kodithuwakku 
and colleagues (2016) evaluated different combinations of 
inoculants for black pepper growth and demonstrated that 
plants inoculated with Trichoderma sp. and/or Pseudomo-
nas fluorescens exhibited higher leaf area, shoot height, 
root volume, and shoot and root dry mass compared to the 
control group. PGPBs have been isolated from black pep-
per (Oliveira et al. 2020), brachiaria (Hungria et al. 2021), 
and lettuce (Cardoso et al. 2019), among other plants. Some 
microbial species that have shown potential for the promo-
tion of black pepper growth were the rhizobacterium Bacil-
lus velezensis RB.DS29 (Trinh et al. 2019), the endophytic 
bacteria Klebsiella sp. and Enterobacter sp. (Jasim et al. 
2013), and the fungus Piriformospora indica (Anith et al. 
2018). Black pepper (Piper nigrum L.) belongs to Pipera-
ceae family, and it consists of one of the most important 
agricultural crops in the world. The Singapore cultivar 
started to be commercially exploited around 1933 in Tomé-
Açu, Pará, Brazilian Amazon (Lemos, 2011). The state of 
Pará produces around 36,156 tons of black pepper, repre-
senting 32% of Brazilian production (IBGE, 2020). Thus, 
due to its socioeconomic importance it becomes a promis-
ing source for prospecting biotechnological products such 
as PGPB.

Among the PGPB described so far, Kosakonia spp. have 
demonstrated excellent results for use as biofertilizer (Quin-
tas-Nunes et al. 2022). Genomic data have provided valuable 
insights into the genetic diversity, evolutionary adaptation 
and biotechnological applications of this taxon. Recombi-
nation mechanisms and gene acquisition were identified as 
significant drivers of genome evolution in Kosakonia (Jan-
Roblero et al. 2020; Quintas-Nunes et al. 2022). They have 
been described in several ecological niches, from human 
tissues to plants (Mertschnigg et al. 2020; Yang, 2018). The 
genome of Kosakonia radicincitans strain MUSA4, a diaz-
otrophic bacterium isolated from banana leaves, presented 
several characteristics to promote plant growth including 
phosphate solubilization, nitrogen fixation, and the produc-
tion of indole acetic acid, siderophores, acetone, and poly-
amine (Quintas-Nunes et al. 2022). In contrast, Zhang and 
colleagues (2022) described a phytopathogenic strain Kosa-
konia sp. Pa82 infecting Patchouli plants in Guangdong, 
China. Genes involved in virulence, adhesion, biofilm for-
mation, and endotoxin were predicted on its genome. These 
findings highlight the metabolic and ecological diversity of 
the genus and the importance of additional studies.

The use of PGPBs contributes to sustainable agriculture 
by reducing the application of chemical fertilizers in the 
soil. Thus, the aim of this study was to isolate endophytic 
bacteria from a P. nigrum crop at the Brazilian Amazonia 
and evaluate their capacity to promote plant growth through 
molecular e microbiological methods. Additionally, the 

genome of the isolate with the highest potential for biologi-
cal fertilization was sequenced on the Ion GeneStudio S5 
platform.

2 Materials and Methods

2.1 Bacterial Isolation

Root samples of black pepper (P. nigrum L. cultivar Bragan-
tina) were collected at the Baião city, state of Pará, Brazil, in 
April 2019 (02º47’26’’ S and 49º40’18’’ W). Samples were 
stored in ~ 10ºC and processed within 4 h after collection. 
Endophytic bacteria were isolated, according to Fidalgo 
and colleagues (2016). Roots (2 to 5 g) were cleaned with 
Phosphate-Buffered Saline (PBS) 1X to remove the soil. 
Samples were immersed in ethanol 96% for 1 min, sodium 
hypochlorite 5% for 30 min, ethanol 96% for 1 min, and 
washed with sterile distilled water three times. Tissues were 
macerated with a mortar and pestle for endophytic bacteria 
isolation. A serial dilution in saline solution (NaCl 0.95%) 
was performed, and aliquots of 100 µL from dilutions 10− 4 
to 10− 8 were plated on TSA supplemented with cyclohexi-
mide 100 µg mL-1. Plates were incubated for up to 72 h at 
28 ± 2 °C. Bacterial colonies with different morphologies 
were selected, and axenic cultures were obtained by the 
streak plate method. All colonies that presented different 
characteristics were isolated (colony shape and color). The 
technical and financial capacity of the project was also taken 
into consideration to define the number of total isolates. Iso-
lates were Gram stained, and their morphology was visual-
ized in the optic microscope Eclipse 80i (Nikon) coupled to 
a Ds-Ri1 camera (Nikon).

2.2 DNA Extraction and Taxonomic Classification

DNA extraction was performed using the phenol/chloro-
form/isoamyl alcohol method (Sambrook, 1989), and the 
DNA was quantified in nano spectrophotometer Nano-
Drop (Thermo Fisher Scientific). The 16S rRNA gene was 
amplified using primers 8F (5’- A G A G T T T G A T C C T G G C 
T C A G-3’) and 1492R (5’- G G T T A C C T T G T T A C G A C T 
T-3’). The reaction was made in a final volume of 25 µL, 
containing 0.5 to 10 ng of template DNA, 1 µM of each 
primer; dNTPs 0.2 mM; MgCl2 2.5 mM, and 2.5 U of Taq 
DNA polymerase (Invitrogen). Cycling was performed in 
the GeneAmp 9700 (Thermo Fisher Scientific) with an ini-
tial step of denaturation of 94 °C for 5 min, followed by 30 
cycles of 94 °C for 1 min, 55 °C for 1 min, and 72 °C for 
1 min, and a final step of 72 °C for 10 min. The amplicons 
were sequenced in the ABI 3500 platform (Thermo Fisher 
Scientific). Forward and reverse sequences were compared 
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to the 16 S rRNA database from GenBank using BLASTn. 
Isolates Pn6, Pn11, Pn13, and Pn17 were sequenced only 
once (forward or reverse).

2.3 ACC Deaminase Activity Assay

Isolates were evaluated for 1-aminocyclopropane-1-carbox-
ylate (ACC) deaminase activity according to Penrose and 
Glick (2003) using DF minimum medium. Briefly, isolates 
were grown overnight in Tryptic Soy Broth (TSB), subse-
quently centrifuged at 10,000 g for 5 min and washed with 
PBS 1X three times to eliminate TSB. Isolates were inocu-
lated in DF minimum medium supplemented with 3 mM 
of ACC (test group) as the sole source of nitrogen, with-
out ACC (negative control), or with 2 g L-1 of (NH4)2SO4 
(positive control). Plates were incubated for up to 72 h at 
28 ± 2 °C, and bacterial growth was checked daily.

2.4 Molecular Detection of nifH Gene by PCR

The ability to fix nitrogen was evaluated by the partial 
amplification of the nifH gene. PCR was performed using 
primers IGK3 (5’-GCIWTHTAYGGIAARGGIGGIATHG-
GIAA-3’) and DVV (5’-ATIGCRAAICCICCRCAIA-
CIACRTC-3’). These primers were identified by Gaby 
and Buckley (2012) as those with the best performance 
for the amplification of nifH in a wide range of taxa. Reac-
tions were made in a final volume of 25 µL, containing 1 
µL of resuspended bacterial colonies, 1 µM of each primer, 
dNTPs 0.2 mM, MgCl2 2.5 mM and 2.5 U of Taq DNA 
polymerase (Invitrogen). All reactions were made in trip-
licate and a negative control was added. Thermal cycling 
was performed on GeneAmp 9700 system (Thermo Fisher 
Scientific) with an initial step of denaturation of 94 °C for 
10 min, followed by 25 cycles of 94 °C for 1 min, 55 °C for 
1 min, 72 °C for 1 min, and a final step of 72 °C for 10 min. 
Amplicons were visualized in 1% agarose gel stained with 
ethidium bromide. Isolates were positive when 383 bp frag-
ments were visualized in all triplicates.

2.5 Phosphate Solubilization Assay

Phosphate solubilization was determined by growing the 
isolates in the NBRIP medium as described by Nautiyal 
(1999). Briefly, isolates were grown overnight in TSB, sub-
sequently centrifuged at 10,000 g for 5 min and washed with 
PBS 1X three times to eliminate TSB medium. Cell density 
was adjusted to 0.5 McFarland. Isolates were inoculated in 
NBRIP medium by dropping 10 µL of the washed cultures 
in the solid medium in triplicate. Plates were incubated at 
30 ± 2ºC for up to 7 days. The diameter of the transparent 
halo formed around the bacterial colony was measured and 

the result was expressed as solubilization efficiency (E) 
using the following formula proposed by Nguyen and col-
leagues (1992):

E =
Solubilizationdiameter

Growthdiameter
× 100

Replicates were compared by Analysis of Variance 
(ANOVA) and the averages were compared using the Tukey 
test (p < 0,05).

2.6 Whole Genome Sequencing

The most promising isolate for plant growth promotion was 
selected for whole genome sequencing. DNA was extracted 
using the DNeasy Blood and Tissue kit (Qiagen) according 
to the manufacturer’s protocol. Nucleic acid was quanti-
fied in nano spectrophotometer NanoDrop (Thermo Fisher 
Scientific). Sequencing was performed in the Ion GeneStu-
dio S5 platform (Thermo Fisher Scientific) using a frag-
ment library that was prepared by the Ion Chef instrument 
(Thermo Fisher Scientific). The reads of up to 200 bp were 
trimmed and filtered using a cut-off Phred > 20 and a mini-
mum size of 100 bp using Trimmommatic v.0.35 (Bolger et 
al. 2014). Assembly was performed using Velvet v.1.2.10 
(Zerbino and Birney 2008) and a sequence scaffold was 
obtained using Kosakonia pseudosacchari BDA-62-3 as a 
reference genome in the software Contiguator v.2 (Galardini 
et al. 2011).

2.7 Comparative Genomics

Open Reading Frames (ORFs) were automatically pre-
dicted with Prokka v.1.14.15 (Seemann 2014). To confirm 
and improve the automatic annotation, BlastKOALA and 
KEGG were used (Kanehisa et al. 2016). Symbiotic Islands 
(SIs) were predicted using GIPSy v.1.1.2 (Soares et al. 2016) 
with default parameters. Biosynthetic gene clusters (BGCs) 
were predicted using AntiSMASH v.4.0 (Blin et al. 2017). 
Resistance genes were predicted using ResFinder v.4.0 
(Bortolaia et al. 2020) and plasmids were predicted using 
PlasmidFinder v.2.0.1 (Carattoli and Hasman 2020). Fif-
teen Kosakonia complete genomes were downloaded from 
GenBank and used to calculate the pangenome of the genus 
with the Roary pipeline v.3.11.2 (Page et al. 2015). The 
genome sequence data was uploaded to the Type (Strain) 
Genome Server (TYGS), for phylogenomic analysis using 
standard parameters (Meier-Kolthoff and Göker 2019). 
Circular genome image was generated with BRIG v.0.95 
(Alikhan et al. 2011). For gene content comparisons, refer-
ence genomes downloaded from GenBank were annotated 
with Prokka to normalize the predicted coding sequences. 
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Pn17, and Pn19). They were affiliated to the Kosakonia 
genus (Table 1). Finally, only one isolate was not capable 
of solubilizing inorganic phosphate. The isolates Pn17 and 
Pn10 presented the highest solubilization efficiency: 166% 
and 155%, respectively (Table 1). The isolate Pn13 pre-
sented the lowest solubilization efficiency, 19% (Table 1). 
Isolates with solubilization efficiency higher than 100% 
were detected in all genera: Klebsiella, Bacillus, Enterobac-
ter, and Kosakonia.

3.2 Genomics of Kosakonia Pseudosacchari Pn16

Kosakonia pseudosacchari Pn16 presented a genome of 
6,432,985 bp in size, GC content of 55%, 6,465 Coding 
Sequences (CDSs), and no plasmids were found (Fig. 1). 
The final scaffold was composed of 129 contigs with a N50 
of 10,935 bp. Functional annotation identified 532 CDSs 
related to carbohydrates metabolism, 515 related to amino 
acid metabolism, 248 related to protein metabolism, and 246 
related to cofactors, vitamins, and prosthetic groups. Ten 
Symbiotic Islands were detected by GIPSy and 28 poten-
tial Biosynthetic Gene Clusters (BGCs) were predicted by 

Pairwise genome comparisons were performed using Aver-
age Nucleotide Identity (ANI) analysis in the online tool 
JSpeciesWS (Richter et al. 2015).

3 Results

3.1 Bacterial Isolation and Assessment of Plant-
growth Promotion Characteristics

Twenty endophytic isolates were obtained from the black 
pepper roots. Eighteen strains were Gram-negative and 
two were Gram-positive. According to 16 S rRNA gene 
sequencing, they were affiliated to four genera: Enterobac-
ter (7 isolates), Kosakonia (5 isolates), Klebsiella (4 iso-
lates), Bacillus (2 isolates), and two unclassified bacteria. 
Identity values ranged from 98.80 to 100% (Table 1).

Seven isolates were positive for the ACC deaminase 
activity (Table 1) (Pn2, Pn3, Pn12, Pn13, Pn16, Pn17, and 
Pn20) and were affiliated to genera Enterobacter, Klebsi-
ella, Kosakonia, and one unclassified bacterium (Table 1). 
Four isolates were positive for the nifH gene (Pn12, Pn16, 

Table 1 Taxonomic affiliation, BLAST identity and coverage, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, nifH detection, 
and phosphate solubilization percentage of plant growth-promoting bacteria isolated from black pepper root. Each isolate was sequenced twice 
using forward and reverse primers for the 16 S rRNA gene, except for isolates Pn6, Pn11, Pn13, and Pn17. In case of conflicting results between 
the forward and reverse sequences, the highest identity value was taken into consideration, followed by the E-value, BLAST coverage, and subject 
length. Isolates were divided by family
Isolate Taxonomic affiliation BLAST 

maxi-
mum 
identity

BLAST 
coverage

Subject 
Accession 
number

ACC 
deaminase 
activity

nifH Phosphate 
solubilization 
percentage

Accession number

Enterobacteriaceae
 Pn1 Klebsiella pneumoniae 100% 100% CP054063.1 − − 116.67% OR842270 OR842271
 Pn2 Klebsiella quasipneumoniae 100% 100% CP140611.1 + − 140.00% OR842272 OR842273
 Pn3 Klebsiella quasipneumoniae 99.88% 100% MT604862.1 + − 77.33% OR842274 OR842275
 Pn4 Klebsiella quasipneumoniae 100% 100% CP140611.1 − − 46.33% OR842276 OR842277
 Pn6 Enterobacter sp. 100% 100% MK418858.1 − − 74.67% OR842280
 Pn8 Enterobacter cloacae 100% 100% MT613381.1 − − 00.00% OR842283 OR842284
 Pn9 Enterobacter cloacae 100% 100% MT613381.1 − − 85.33% OR842285 OR842286
 Pn10 Enterobacter bugandensis 100% 100% CP110983.1 − − 155.00% OR842287 OR842288
 Pn11 Enterobacter asburiae 100% 100% KU878089.1 − − 107.33% OR842289
 Pn15 Enterobacter cloacae 99.86% 100% CP056117.1 − − 111.33% OR842293 OR842294
 Pn20 Enterobacter roggenkampii 100% 100% CP133578.1 + - 63.67% OR842302 OR842303
 Pn7 Kosakonia sacchari 100% 100% MT557011.1 − − 68.33% OR842281 OR842282
 Pn12 Kosakonia pseudosacchari 99.83% 100% CP063425.1 + + 102.00% OR842290 OR842291
 Pn16 Kosakonia pseudosacchari 99.87% 100% MN607213.1 + + 70.67% OR842295 OR842296
 Pn17 Kosakonia sacchari 98.80% 100% CP040677.1 + + 166.67% OR842297
 Pn19 Kosakonia pseudosacchari 100% 100% CP063425.1 − + 112.00% OR842300 OR842301
Bacillaceae
 Pn18 Bacillus cereus 100% 100% CP138336.1 − - 130.00% OR842298 OR842299
 Pn21 Bacillus paramycoides 100% 100% OR394251.1 − - 57.67% OR842304 OR842305
Unclassified
 Pn5 unclassified Bacteria 100% 100% MK825031.1 − − 59.33% OR842278 OR842279
 Pn13 unclassified Bacteria 100% 100% MK825161.1 + − 19.03% OR842292
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Fig. 1 Genomic ring designed in the Blast Ring Image Genera-
tor (BRIG) v.0.95. (a) The ring compares the genome sequences of 
Kosakonia cowanii 888 − 76 (yellow ring), Kosakonia pseudosacchari 
BDA623 (pink ring), and Kosakonia radicincitans MUSA4 (purple 
ring) against the genome of Kosakonia pseudosacchari Pn16 (red 
ring), using BLASTn. Gaps indicate regions of low similarity. (b) The 
regions of the genes ipdC, arsBC, and speDE are presented in detail. 
These regions were analyzed after mapping the contigs using CON-

TIGuator v.2. The top gray bar represents the K. pseudosacchari Pn16 
genome, followed by the white and grey bars representing K. cowanii 
888 − 76, K. pseudosacchari BDA623, and K. radicincitans MUSA4 
genomes. Coding sequences (CDSs) are represented by colored graphs 
within the bars. Conserved CDSs are connected by colored lines. It is 
worth noting that ipdC and speDE genes are present only in the genome 
of K. pseudosacchari Pn16 while the arsenic resistance operon arsBC 
is conserved in all species
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formed by the species K. arachidis, K. oryzae, K. oryziphila, 
K. oryzendophytica, and K. radicincitans (Fig. 2). K. cowanii 
was the most distant taxon within the genus. All Kosakonia 
sp. grouped together and were separated from the Entero-
bacter sp. genomes (Fig. 2). The pangenome was composed 
of 21,594 genes, divided into a reduced core genome of 789 
genes and an accessory genome of 12,230 genes (Fig. 3). 
K. pseudosacchari Pn16 presented 523 unique genes (Table 
S1). Most of these genes were hypothetical proteins and 
transporter proteins. The Heap’s Law alpha value of 0,4779 
demonstrated that the genus has an open pangenome.

Several genes involved in plant-growth promotion were 
detected including: speA, speD, speE, speG, speF, tam, and 
ipdC (production of indole-3-acetic-acid and spermidine); 
arsC, arsB, cutC, sbnD, corC, fepD, and fepG (siderophore 
production and metal tolerance); phoU, phoB, phoR, pstS, 
pstB, pstA, and pstC (phosphate solubilization regulon); 
oqxA, oqxB, mdtA, and mdtB (antibiotic and biocide resis-
tance); nifH, nifD, and nifK (nitrogen fixation). K. pseudo-
sacchari Pn16 also has the entire operons for dissimilatory 
nitrate reduction (narG, narH, narI, and narK), nitrite reduc-
tion (nirB, nirD, nirC, and CysG), and nitric oxide reduction 
(norV and norW). Finally, genes involved in nitrous oxide 
reduction were not found.

AntiSMASH. The phylogenomic analysis showed that K. 
pseudosacchari Pn16 clustered in a clade with the species 
K. sacchari, K. pseudosacchari, and K. quasisacchari sup-
ported by a bootstrap value of 100 (Fig. 2), being K. pseu-
dosacchari JM-387 the closest species. A second clade was 

Fig. 3 Pangenome analysis performed in Roary pipeline v.3.11.2. Pan 
genome (21,594 gene families), core genome (789 gene families), and 
accessory genome (12,230 gene families) were calculated using 15 
genomes of Kosakonia sp. deposited in GenBank. Kosakonia pseudo-
sacchari Pn16 presented 523 unique genes

 

Fig. 2 Phylogenomic analysis of 
the Kosakonia genus. Analysis 
was performed on the Type 
(Strain) Genome Server (TYGS) 
using 11 reference genomes plus 
six Enterobacter genomes as an 
outgroup. K. sacchari, K. pseu-
dosacchari, and K. quasisacchari 
grouped into a clade supported by 
a bootstrap value of 100, being K. 
pseudosacchari JM-387 the clos-
est species to our isolate
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protein (nifH) and a MoFe protein (nifD and nifK) (Gaby 
and Buckley 2012). The ability to fix nitrogen can enhance 
plant growth by providing a source of nitrogen to the plant 
(Santoyo et al. 2019). The primers IGK3 and DVV were 
identified by Gaby and Buckley (2012) as those with the 
best performance for the amplification of the gene in a wide 
range of taxa. The nifH gene has been widely used in cul-
ture-independent studies on nitrogen-fixing bacteria (Liao 
and Inglett 2014; Moseman-Valtierra et al. 2016) and is con-
sidered one of the best genetic markers to identify diazo-
trophs (Meng et al. 2019). The ability to fix nitrogen was 
previously reported in free-living Kosakonia sp. (Chen et al. 
2020; Bar-Shmuel et al. 2020). Meng and colleagues (2015) 
identified six isolates of root associated Kosakonia that 
were positive for the nifH gene. It is worth noting that PCR 
method may fail to detect nifH, mainly due to the presence 
of phylogenetically distant nitrogen-fixing enzymes (Islam 
et al. 2007). K. pseudosacchari Pn16 also presented genes 
involved in other processes of the nitrogen cycling (Fig. 4). 
Dissimilatory nitrate reduction, catalyzed by the periplasmic 
enzyme Nap or the membrane-bound cytosolic enzyme Nar, 
is a crucial step that controls the bioavailability of nitrate 
in several ecosystems (Asamoto et al. 2021). K. pseudo-
sacchari Pn16 carries Nar-mediated dissimilatory-nitrate 
reduction genes (Fig. 4), which emphasizes its importance 
not only for biological fixation of N but in maintaining the 
bioavailability levels of nitrate in the soil. Nitrate can be 
reduced to ammonium or denitrified to N2. K. pseudosac-
chari Pn16 does not have the genes for dissimilatory nitrate 
reduction to ammonium. However, it has an almost com-
plete denitrification pathway starting at the nitrite reduction 
(nir operon) followed by nitric oxide reduction (nor operon) 
but does not have genes for reduction of nitrous oxide to N2 
(Fig. 4).

Compared to other Kosakonia species, K. pseudosacchari 
Pn16 presented key genes for promotion of plant growth. 
For example, K. pseudosacchari Pn16 and K. radicincitans 
DSM 16,656 shared genes related to phosphate solubiliza-
tion such as the pho and pst genes, as well as enzymes with 
ACC deaminase activity, such as the spe gene. Regarding 
the production of siderophores, the only set of genes shared 
between the species was the Ferric Enterobactin Transporter 
(Fep) (Berger et al. 2017). Additionally, K. pseudosacchari 
Pn16 carries genes for flagellum formation and three types 
of secretion systems: type I (TISS), type II (TIISS), and type 
III (TIIISS). TIIISS is crucial for the establishment of sym-
biosis in bacteria of the genus Rhizobium and for coloniza-
tion of the plant rhizosphere by saprophytic Pseudomonas 
(Viprey et al. 2002; Rainey et al. 2002).

The best phosphate solubilizing species were the same 
found by Silva and colleagues (2018) in sorghum including 
Klebsiella sp., Pantoea sp., Enterobacter sp., and Kosakonia 

4 Discussion

Species from the Enterobacteriaceae family such as Entero-
bacter sp., Kosankonia sp., and Klebsiella sp. have been 
described associated to roots of several plant crops such 
as sorghum (Silva et al. 2018) and peach palm (Silva et al. 
2022). Jasim and colleagues (2013) isolated and identified 
twelve endophytic bacteria from P. nigrum L. where two 
of them presented 99% identity with Enterobacter cloacae 
and Enterobacter sp. Other PGPB isolated from black pep-
per include Bacillus sp., Pseudomonas sp., Enterobacter 
sp., Pantoea sp., Klebisiella sp., Kosakonia sp., Micrococ-
cus sp., Curtobacterium sp., Serratia sp., Acinetobacter sp., 
Brevibacillus sp., Proteus sp., and Staphylococcus sp. (Ara-
vind et al. 2009; Zakry et al. 2010; Toh et al. 2016; Wiratno 
et al. 2019; Dang and Thanh 2021). Additionally, Klebsiella 
sp., Kosakonia sp., and Pantoea sp. were also reported as 
potential PGPB in several other plant crops (Nascimento 
et al. 2015; Duarte et al. 2020). Kosakonia spp. were com-
monly found in environmental samples and have recently 
been recognized to interact and exert beneficial effects on 
plant growth (Quintas-Nunes et al. 2022).

ACC deaminase activity, nitrogen fixation, and phos-
phate solubilization are common characteristics of PGPB 
(Olenska et al. 2020) that were evaluated in our study. Sev-
eral methods to analyze plant-growth promotion character-
istics are used, some more analytical than others (Santoyo 
et al. 2019). The ACC deaminase activity and the ability to 
solubilize phosphate were determined using microbiologi-
cal methods (Penrose and Glick 2003; Nautiyal 1999). The 
ability to fix nitrogen was predicted by the partial amplifica-
tion of the nifH gene using PCR (Gaby and Buckley 2012). 
The ability to use ACC as the sole nitrogen source is a con-
sequence of the ACC deaminase activity (Penrose and Glick 
2003). Positive isolates for the ACC deaminase activity 
were affiliated to the genera Enterobacter, Klebsiella, and 
Kosakonia (Table 1). These taxa were also reported as posi-
tive for ACC deaminase activity in other studies (Nonaka et 
al. 2008; Jasim et al. 2013; Lau et al. 2020). Choudhury and 
colleagues (2021) demonstrated that enzyme activity was 
improved in co-cultivation with two or more PGPB. This 
result indicates that these isolates have potential to cleave 
ACC into α-ketobutyrate and ammonia, thereby reducing 
the amount of ACC available for ethylene biosynthesis. By 
doing so, ACC deaminase-producing bacteria can alleviate 
the negative effects of ethylene on plant growth and enhance 
plant tolerance to various stressors, such as drought, salin-
ity, and heavy metals (Moon and Ali 2022).

The nifH gene was only detected in isolates affiliated to 
the Kosakonia sp. K. pseudosacchari Pn16 has two clus-
ters of nitrogen fixation genes. They are the most efficient 
and widespread variant of nitrogenase, composed of a Fe 

1 3



Journal of Soil Science and Plant Nutrition

other metals, making them available for transport through 
biological membranes (Rajkumar et al. 2010). Iron has 
a low bioavailability in the environment. For example, in 
basic or neutral pH, Fe is found in its insoluble and oxidized 
form of Fe3+ (Kramer et al. 2020). Therefore, the biologi-
cal solubilization of Fe through siderophores is an indirect 
mechanism for plant growth promotion. Additionally, pro-
teins from the Resistance-Nodulation-Division (RND) fam-
ily transporters such as mdtB and mdtC were also found in 
the Symbiotic Islands. These transporter proteins pump out 
a wide range of inhibitors including antibiotics and biocides 
(Kim et al. 2010), contributing to the bacterial growth and 
survival in the soil.

AntiSMASH predicted 28 regions of potential BGCs 
(Table S2). Nineteen of these 28 BGCs were related to sac-
charide production. Among these, we highlight the exopoly-
saccharides (EPS) which are commonly involved in biofilm 
formation. Additionally, EPS forms aggregates with soil 
particles, binds to ions and consequently reduces soil salin-
ity, resulting in an increased bioavailability of water and 
nutrients in the rhizosphere (Nunkaew et al. 2015). This is 
an extremely interesting characteristic for combating water 
stress (Upadhyay et al. 2011). The BGC 20 showed 91% 
identity with colonic acid-producing genes, a loosely asso-
ciated EPS mesh that is commonly found in enterobacteria. 
Genes for surfactin production were detected in region 17. 
Surfactin is a cyclic lipopeptide that acts as a biosurfactant 
which has demonstrated inhibitory activity against several 
plant pathogens (Bais et al. 2004). The amphiphilic molecule 
binds to the cell membrane causing disruption and cell death 
(Blake et al. 2021). This finding demonstrates the potential 
use of K. pseudosacchari Pn16 as a possible biocontrol 
agent. The other clusters were related to fatty acid produc-
tion (4 BGCs), nonribosomal peptide synthetase (NRPS) (2 
BGCs), ribosomally synthesized and post-translationally 

sp. Dang and Thanh (2021) found isolates from black pepper 
affiliated to the genus Bacillus with high capacity of solu-
bilization, ranging from 2.75 up to 61.88 mg of phosphorus 
pentoxide by 1 L of medium after five days of incubation. 
Recent works have highlighted the plant-growth promotion 
potential of the genus Kosakonia. Several members of this 
genus are endophytes of different agricultural plants and 
demonstrated important features such as IAA production, 
phosphate solubilization, and antimicrobial activity against 
plant pathogens such as Botrytis spp. and Phytophthora spp. 
(Olanrewaju et al. 2017; Romano et al. 2020). However, 
the genus Kosakonia still remains largely unexplored, espe-
cially its genetic characteristics (Romano et al. 2020).

The phylogenetically closest species to our isolate was 
K. pseudosacchari JM-387, a beige pigmented strain, iso-
lated from field-grown corn root tissue in Tallassee, Ala-
bama (Kämpfer et al. 2016). The ANI analysis showed 
98.75% identity between K. pseudosacchari Pn16 and other 
K. pseudosacchari genomes. Our isolate has a genome 
larger than the other four K. pseudosacchari deposited 
in GenBank (GCA_015167415.1, GCA_027912575.1, 
GCA_900184035.1, GCA_002510255.1). Ten Symbi-
otic Islands were detected by GIPSy with an average size 
of 12,445 bp. Several important genes were detected in 
these islands such as the formate dehydrogenase (fhdS) 
enzyme gene that catalyzes the oxidation of formate to car-
bon dioxide coupled to the reduction of NAD+ to NADH 
(Hatrongjit and Packdibamrung 2010). This enzyme plays 
an important role in cell energy supply and was found in 
several organisms from bacteria to plants (David et al. 
2010). Genes related to the production of siderophores such 
as sbnD, fepD, and fepG were also detected. Production of 
siderophores is a very important characteristic for PGPB 
(Chouhan et al. 2021). They are organic molecules with low 
molecular weight able to chelate and solubilize Fe ions and 

Fig. 4 Schematic representation 
of the nitrogen cycle pathways 
found in the K. pseudosac-
chariPn16 genome. Genes that 
encode enzymes are shown next 
to the arrows that connect the 
reaction’s substrate and product. 
Dotted arrows represent reac-
tions catalyzed by enzymes that 
were not found in the bacterial 
genome. K. pseudosacchari Pn16 
has two nitrogenase clusters (nif-
HDK). In addition, the bacterium 
contains genes involved in the 
dissimilatory nitrate reduction 
pathway and an almost complete 
denitrification pathway
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were annotated as hypothetical proteins. This exemplifies 
the lack of knowledge about the genomic content of the 
species. Regarding the genes involved in plant-growth pro-
motion, speD, phoR, phoB, narG, and norR were among 
the unique genes of K. pseudosacchari Pn16 (Table S1), 
which reinforces its potential for promoting plant growth. 
By comparing unique genes to the KEGG dataset using 
blastKOALA, the top three functions found were: genetic 
information processing, carbohydrate metabolism, and sig-
naling and cellular processes. Another 15 functions were 
also detected in this dataset (Figure S1).

5 Conclusions

In this study, 20 endophytic bacterial strains were isolated 
from black pepper roots and subsequently evaluated for 
1-aminocyclopropane-1-carboxylate deaminase activity, 
nitrogen fixation, and phosphate solubilization. Three iso-
lates affiliated to the Kosakonia genus exhibited positive 
results in all assays. The genomic analysis of K. pseudo-
sacchari Pn16 revealed key genes related to the production 
of indole acetic acid, spermidine, exopolysaccharides, bio-
surfactants, and siderophores. According to the genetic con-
tent, K. pseudosacchari Pn16 can fix nitrogen and plays an 
important role in maintaining nitrate bioavailability in the 
soil. These findings highlight the potential of K. pseudosac-
chari Pn16 for the development of biofertilizers, offering a 
sustainable alternative to chemical fertilizers and mitigating 
environmental risks.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s42729-
024-01707-y.
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modified peptides (RiPPs) (1 BGC), arylpolyene (1 BGC), 
and thiopeptide (1 BGC) (Table S2). Fifteen of the 28 BGCs 
presented 0% similarity with known clusters. The strains 
BDA62-3 and RX.G5M8 have complete genomes deposited 
in GenBank. Both have 20 BGCs predicted by antiSMASH. 
So far, K. pseudosacchari Pn16 is the strain of the species 
with the highest number of BGCs.

Additionally, an important operon of the Pho regulon was 
found, composed by the genes pstSCAB-phoU and the regu-
latory genes phoRB. These genes are involved in the process 
of solubilization and transport of organic or inorganic phos-
phate (Timofeeva et al. 2022). The Pho regulon is mainly 
activated at low concentrations of phosphate (Santos-Beneit 
et al. 2015). It has a crucial role in promote plant growth 
since it is capable of enhance phosphate availability to the 
plant. This in silico prediction corroborates the results of the 
phosphate solubilization assay. We also found genes related 
to the production of indole acetic acid (IAA), spermidine 
and polyamine. IAA is an important plant hormone that 
regulates several aspects of plant growth and development, 
including resistance to environmental stressors (Bianco et 
al. 2009). IAA is produced by microorganisms through tryp-
tophan-dependent or -independent pathways (Tang et al. 
2023). K. pseudosacchari Pn16 has two genes of the indole-
3-pyruvic acid (IPA) pathway: tam and ipdC. This is one of 
the major pathways for microbial IAA biosynthesis (Tang et 
al. 2023). Bacillus thuringiensis RZ2MS9 mutants lacking 
the ability to produce IAA have significantly reduced ability 
to promote maize growth compared to the wild-type strain 
(Figueredo et al. 2023). Additionally, IAA-producing bacte-
ria can promote plant growth indirectly by improving plant-
resistance to abiotic stresses. For example, soybean shows a 
significantly improvement in growth under salt stress when 
inoculated with the indole acetic acid-producing Acineto-
bacter pittii YNA40 (Kang et al. 2023).

The oqxAB multidrug efflux pump genes were detected 
by ResFinder. This efflux pump usually confers resistance 
to multiple drugs such as trimethoprim, ciprofloxacin, nali-
dixic acid, benzalkonium chloride, chloramphenicol, and 
cetylpyridinium chloride (Kim et al. 2010). This system is 
found either on the chromosome or on large plasmids (Li 
et al. 2019). Therefore, several characteristics present in 
bacterial species known to promote plant growth such as 
K. radicincitans (Berger et al. 2017)d velezensis (Zaid et al. 
2022) were found in K. pseudosacchari Pn16.

Since the genomic information for the genus is relatively 
scarce, we calculated the pangenome using 15 genomes of 
Kosakonia available in the GenBank database. The results 
indicated an open pan genome with a small number of gene 
families in the core genome (Fig. 3). An expected result 
given the low number of available genomes and the genetic 
diversity of the taxon. Ninety-six (18%) of the unique genes 
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