
Vol.:(0123456789)1 3

Journal of Soil Science and Plant Nutrition (2023) 23:3329–3342 
https://doi.org/10.1007/s42729-023-01248-w

ORIGINAL PAPER

Effects of Microbial Inoculants and Organic Amendments on Wheat 
Nutrition and Development in a Variety of Soils

Aurora Moreno‑Lora1  · Ángel Velasco‑Sánchez1  · Antonio Delgado1 

Received: 24 October 2022 / Accepted: 3 April 2023 / Published online: 24 April 2023 
© The Author(s) 2023

Abstract
Manipulation of soil microbial communities through inoculants or amendments can improve crop nutrition. However, to what 
extent these benefits vary depending on soil properties is not yet understood. Thus, here we studied the effects of microbial 
inoculants and the application of labile organic C on the yield and uptake of micronutrients and P in wheat (Triticum durum) 
in different soils. The application of Bacillus subtilis QST713, Trichoderma asperellum strain T34, and cellulose was tested in 
ten soils varying greatly in properties in a pot experiment. Microbial inoculants and cellulose increased dry matter (between 
5 and 10%) and grain yield (between 15 and 20%), regardless of the soil. Some treatments triggered nutrient mobilization 
mechanisms such as phosphatase and oxalate production. However, total Zn and P in plants did not increase with treatments, 
and their effect on Fe and Mn varied depending on soils. The effect of B. subtilis and T. asperellum improving Fe uptake by 
plants decreased with increasing pH and also with decreased microbial activity in soil. Inoculants and cellulose increased 
the Zn harvest index and decreased the P-to-Zn ratio in grains independently of the soil. This was probably ascribable to 
changes in the distribution of phytohormones in plants. Microorganisms and cellulose improved wheat yield, the portion of 
absorbed Zn accumulated in grains, and grain quality. These effects did not depend on the soil. However, the effect on Fe 
and Mn nutrition was affected by soil pH and microbial activity.
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1 Introduction

Micronutrient deficiency is a relevant agronomic problem 
that restricts crop yields and quality in soils with basic pH 
(Alloway 2009; Mousavi 2011; Ryan et al. 2013; Rengel 
2015; Moreno-Lora et al. 2020). Furthermore, low Fe and 
Zn concentration in cereals can cause nutritional problems 
for humans in regions with cereal-based diets (Cakmak 
et al. 2010; Borrill et al. 2014; Wang et al. 2014; Zhao et al. 
2014; Cakmak and Kutman 2018). Overcoming micronu-
trient deficiency and biofortification of crops to increase 
their concentration in edible parts requires the application 
of fertilizers (McBeath and McLaughlin 2014; Moreno-Lora 
et al. 2019). However, these fertilizers are expensive and 
not always efficient due to their reactions in the soil (Allo-
way 2009; White and Broadley 2009; Zhang et al. 2012). 

Phosphorus deficiency can also be frequent in soils prone to 
micronutrient deficiency. On the other hand, this nutrient can 
promote nutritional antagonisms with Fe and Zn, decreasing 
its availability to plants (Moreno-Lora et al. 2022; Recena 
et al. 2021). Therefore, more cost-effective and sustainable 
practices are required to supply micronutrients to crops 
(Moreno-Lora et al. 2019). Regarding this, some microbial 
inoculants have been shown to be effective in increasing the 
availability of micronutrients to plants (de Santiago et al. 
2009; 2011; 2013; Khande et al. 2017).

The soil microbiota plays a key role in the soil nutrient 
cycle, solubilizing insoluble compounds that lead to an 
increase in exchangeable micronutrient concentration with 
increase in availability to plants (Ramesh et  al. 2014). 
Soil microorganisms trigger mobilization mechanisms in 
response to nutrient deficiency (Marschner et al. 2011). This 
may enhance the availability of nutrients to plants (García-
López et al. 2021). These mechanisms involve acidification, 
the release of low molecular weight organic acids, chelating 
agents (e.g., siderophores), and hydrolytic enzymes (Zhao 
et al. 2011; Rengel 2015). As a particular case, the efficiency 
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in mobilizing Zn by the Bacillus genera has been mainly 
ascribed to the production of organic acids and decreased 
rhizosphere pH (Ramesh et al. 2014; Mumtaz et al. 2019). 
However, the microbial mechanisms that contribute to 
the improvement of micronutrient uptake by crops and 
the functioning of these mechanisms under different soil 
conditions are not fully elucidated.

Many soil microorganisms influence plant nutrition and 
development by producing phytohormones or affecting 
their transport and signaling pathways (Spaepen 2015; 
Kudoyarova et  al. 2019). Indole-3-acetic acid (IAA) 
produced by rizhospheric microorganisms promotes plant 
growth and morphological root changes. This leads to an 
increased root surface that allows for an enhanced uptake 
of nutrients (Sukumar et al. 2013; Owen et al. 2015; Gouda 
et al. 2018). Gibberellins (GA3), cytokinins, and abscisic 
acid (ABA) produced by microorganisms such as B. subtilis 
may also affect root and plant development (Arkhipova 
et  al. 2005; Singh et  al. 2017). Therefore, the benefits 
of microorganisms are attributed not only to improved 
nutrient mobilization from the soil, but also to the effects 
on plant physiology that lead to an increased capacity to 
absorb nutrients (Qiu et al. 2019; de los Santos-Villalobos 
and Parra-Cota 2020). Consequently, it is necessary to 
take into account the possible effects on phytohormone 
homeostasis as a relevant mechanism that explains the effect 
of microorganisms on plant growth and nutrition.

The activity of rhizospheric microorganisms is strongly 
affected by soil properties (Shi et al. 2013; Owen et al. 2015; 
Ma et al. 2017; Nguyen et al. 2019a, b). In particular, the 
composition, size, and activity of microbial communities 
in the rhizosphere can be modulated by the quantity and 
quality of carbon (C) sources in soil (Hobbie and Hobbie 
2013). Therefore, applying a labile C source to the soil 
can stimulate the activity of native soil microorganisms 
(Demoling et al. 2007). This may promote the mobilization 
of nutrients that induce benefits on plant nutrition (Kuzyakov 
2002; de Santiago et al. 2013; Moreno-Lora et al. 2019).

In addition to organic carbon, other soil properties affect 
the establishment, activity, and potential benefits of microbial 
inoculants (García-López et al. 2018). Different authors have 
reported the effects of microbial inoculants on micronutrient 
nutrition and biofortification (Singh et al. 2017; Moreno-
Lora et al. 2019; Nguyen et al. 2019a, b). However, most of 
these studies have been conducted with a reduced number of 
soils. Therefore, the influence of soil factors on the benefits 
of microbial inoculants has been poorly evaluated. This 
is a relevant aspect for fully understanding how microbial 
mechanisms may enhance the nutrition of plants.

The benefits of microbial inoculants and the supply 
of organic C in plant nutrition and biofortification must 
be confirmed in a wide range of soils to provide solid 
recommendations in their use. We hypothesized that the 

application of organic amendments or microbial inoculations 
will have three positive effects on crops: (i) improve the 
growth and yield, (ii) improve the uptake of micronutrients 
and P, and (iii) increase the portion of micronutrients 
accumulated in the edible part of the crop, that is, the 
harvest index of nutrients. This work aims to assess the 
effects of the application of a readily available source of 
C and two microbial inoculants, Trichoderma asperellum 
T34 and Bacillus subtilis QST713, on the nutrition of 
micronutrients and P and the growth of plants in different 
soils. Both microbial inoculants were selected because they 
have a capacity to mobilize nutrients (de Santiago et al. 
2013; Garca-López et al. 2018). To explain possible effects, 
we will study the effect of these treatments on organic acids 
and hydrolytic enzymes release in the rhizosphere and on the 
concentration of phytohormones in plant roots. The study 
has been conducted in a set of soils with a wide range of 
properties to better understand the microbial mechanisms 
involved in the supply of nutrients to plants and to assess the 
consistency of the results in different edaphic environments.

2  Material and Methods

2.1  Experimental Design

A randomized block experiment with four replications 
was performed using durum wheat plants (Triticum durum 
cv Amilcar). It was carried out in pots under controlled 
environmental conditions in a growing chamber, involving two 
factors: (i) soil type and (ii) treatments that affect microbial 
activity in the rhizosphere. The treatments were two microbial 
inoculants (Bacillus subtilis QST713 and Trichoderma 
asperellum strain T34), source of labile C, ß-cellulose (CF11, 
Whatman), and a control without treatment.

2.2  Soils

Ten soils were selected for the study in different locations 
in Spain (Figure S1, Supplementary material). Soil samples 
were taken from 0 to 20 cm depth, defining an area of 
around 1000  m2 in each sampling site from which at least 
12 soil cores were taken. The sampling sites were selected 
to achieve a wide range of soil properties, such as clay, Fe 
oxides, and carbonate content, that can affect the availability 
of P and micronutrients to plants. This selection was made 
on the basis of color and a proxy estimate of textural classes 
in the upper soil horizon. The soil samples were air dried 
and sieved to < 4 mm for the pot experiment and to < 2 mm 
for soil characterization (Table 1).

For soil characterization, the following properties were 
analyzed: particle size distribution by pipette method 
(Gee and Bauder 1986), soil organic carbon (SOC) by the 
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Walkley and Black oxidation method (1934), total equiva-
lent  CaCO3 (CCE) using a calcimeter, active Ca carbonate 
content (ACCE; Drouineau 1942), soil pH, and electrical 
conductivity (EC) in a 1:2.5 soil/water extract and cation 
exchange capacity (CEC) by the  NH4OAc method (Sumner 
and Miller 1996).

The availability of micronutrients and phosphorus in 
soils was assessed by DTPA extraction (Lindsay and Norvell 
1978) and as Olsen P (Olsen et al. 1954), respectively. For 
DTPA extraction, soil samples were mixed with extractant 
(0.005 M diethylenetriaminepentaacetic acid, 0.1 M trietha-
nolamine, and 0.01 M  CaCl2 at pH 7.3) at a rate of 1:4 (w:v). 
The suspension was shaken in a falcon tube at a frequency 
of 2.7  s−1 for 120 min. Subsequently, suspensions were cen-
trifuged at 1260 g for 15 min, and micronutrient concen-
tration in supernatants was determined by atomic absorp-
tion spectrometry in a Soolar M device (Thermo, Madrid, 
Spain). The Olsen P (Olsen et al. 1954) was determined by 
extraction with 0.5 M  NaHCO3 at pH 8.5 in a soil extract-
ant ratio of 1:20 (w:v) shaking at 2.7  s−1 during 30 min. 
After extraction, suspensions were centrifuged at 1260 g for 
10 min, and the concentration of P in the extract was deter-
mined colorimetrically by the molybdate blue method (Mur-
phy and Riley 1962) in a Unicam UV2 spectrophotometer 
(Thermo, Madrid, Spain). Zinc bound to the organic matter 
fraction weakly associated to mineral matrix (Lopez-Sangil 
and Rovira 2013), which can be indicative of available Zn 
for plants (Moreno-Lora et al. 2020), was determined. This 
was done by extraction with sodium pyrophosphate  (Znpyr) 
following Reed and Martens (1996). To do this, 0.25 g of 
soil were mixed in a ratio of 1:100 (w:v) with 0.1 M Na-
pyrophosphate and shaken at 4  s−1 for 16 h. The suspension 
was then centrifuged (1260 g, 15 min), and the collected 

supernatant was centrifuged again at 17,900 g for 15 min 
to decant colloids. The concentration of Zn in the extract 
was determined by atomic absorption spectrometry using 
the same device mentioned above.

2.3  Plant Growing Conditions

The seeds of durum wheat were disinfected by immer-
sion in 5% NaClO according to de Santiago et al. (2011) 
and pre-germinated at 8 °C under darkness in Petri dishes 
before transplanting to a perlite seedbed. Later, at stage 
Z1.3 of Zadoks scale (Zadoks et al. 1974), individual plants 
were relocated into 350-ml polystyrene cylinders (15 cm 
high × 5.5  cm diameter) containing 300  g of soil. The 
cultivation was carried out in a growing chamber with a 
photoperiod of 16 h (300 µmol  m−2  s−2 of light intensity), 
at 25/18 °C of temperature and 40/60% relative humidity 
day/night. The plants were daily irrigated using a modified 
Hoagland nutrient solution without P and Zn and with a 
limited supply of other micronutrients. This solution con-
tained (mmol  l−1): Ca(NO3)2 (5),  KNO3 (5),  MgSO4 (2), KCl 
(0.05),  H3BO3 (0.024),  MnCl2 (0.0023), Fe-EDDHA (0.02), 
 CuSO4 (0.0005), and  H2MoO4 (0.0005). A total volume of 
800 ml per pot was applied during cultivation that ended 
when the plants reached the Z9 stage of the Zadoks scale.

2.4  Application of Treatments

Commercial microbial inoculants were applied as described 
by García-López et al. (2016). Bacillus subtilis (Serenade 
Max, Bayer CrospScience, with an inoculum concentration 
of 5·1013 CFU  kg–1) was inoculated at a rate of 2·104 colony-
forming units (CFU) per gram of soil. To this end, 20 ml of 

Table 1  Soil taxonomy (soil orders according to Soil Survey Staff, 2014) and main properties and P and Zn availability indices of studied soils

SOC soil organic carbon, ACCE active calcium carbonate equivalent, CCE calcium carbonate equivalent, EC electrical conductivity in the 
saturated extract, CEC cation exchange capacity, Znpyr pyrophosphate-extractable Zn

Soil and taxonomy Sand Silt Clay SOC ACCE CCE pH EC CEC DTPA extractable Znpyr Olsen P

Fe Cu Mn Zn

––––––––––––––––––– g  kg−1––––––––––––––––––– µS  cm−1 cmoclc  kg−1 ––––––––––––––– mg  kg−1 ––––––––––––––
BLGZ2 Inceptisol 450 220 108 4.9 72 231 8 397 14.4 3.6 3 5.3 0.41 1 26
BLGZ3 Inceptisol 475 253 116 5.1 56 153 8.3 132 14.8 3.1 1.2 4.4 0.27 1 7.5
LCVZ1 Alfisol 484 102 385 7.4 28 32 8.2 163 24.5 6.6 5.4 13.1 0.28 0.8 9.3
LCVZ4 Alfisol 426 135 387 7.4 16 44 8.1 178 24.6 6.6 2.4 11.5 0.40 1 16.7
OTRZ1 Inceptisol 264 184 383 3.2 71 174 8.2 116 20.0 5.9 0.3 7.8 0.1 0.4 4.7
OTRZ2 Inceptisol 311 191 355 10.8 54 150 8.2 197 18.1 6 0.5 12.7 0.24 1 7.5
RCNZ1 Inceptisol 767 43 162 5.5 0 0 7.4 55 12.1 13.7 12.8 10 0.31 1.1 9.4
RCNZ2 Inceptisol 794 41 170 5.5 0 0 7.2 132 13.9 10.9 15.7 14.7 0.25 1.5 21.7
VGTZ1 Inceptisol 787 89 127 5.8 0 0 8 102 8.0 10.7 0.7 15.4 0.38 1.1 22.8
VGTZ2 Inceptisol 810 100 92 5.8 0 0 8 119 7.7 10 0.6 15.9 0.49 0.5 23.1
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an aqueous suspension contain 3·105 CFU  ml−1 over the soil 
surface in each pot at four different points around the plants. 
The product was tested before inoculation in a nutrient agar 
medium following the procedure of Tuitert et al. (1998). 
Trichoderma asperellum (Biocontrol Technologies, Barce-
lona, Spain, with an inoculum density of  1012 CFU  kg−1) 
was inoculated at a rate of  104 conidia per gram of soil, as 
described by de Santiago et al. (2009). To do this, before 
transplantation, plants were immersed in a water suspen-
sion with  103 conidia  ml−1, and later 20 ml of an aqueous 
suspension (1.5·105 conidia  mL−1) were applied over the 
soil surface in each pot at four different points around the 
plants. ß-cellulose treatment was applied at a rate of 200 mg 
C per kg of soil split in two applications: at the beginning 
(Z1.3) and in the middle (Z5.1) of the crop cycle, following 
the same procedure as in inoculation: applying a volume of 
20 ml of water suspension (3.4 g of ß-cellulose per l) on the 
soil surface in each pot at four different points around the 
plants. The application of cellulose was split to avoid losses 
due to irrigation and to maintain a more constant effect 
throughout the crop cycle. The C content was 0.44 g per g 
of ß-cellulose. The pots without treatments (controls) were 
irrigated with 20 ml of water to balance the water content 
in all the pots. For both inoculants, the concentration of C, 
N, and P was in the range 7–8%, 1–1.1%, and 0.12–0.13%, 
respectively; in both cases, micronutrient concentration was 
not detectable. This implies that the supply of C or nutrients 
at the dilutions at which inoculants were used is negligible.

2.5  Harvest and Analysis of Plants

Immediately after harvest, roots, shoots, and grains were 
separated and dried (65 °C, 48 h) in a forced air oven to 
determine the dry matter (DM) in each organ. Roots were 
cleaned by immersion in distilled water and by ultrasonic 
treatment for 1 min. Subsequently, fresh weight was deter-
mined, and a portion of fresh material was kept for hormone 
determination. The other portion was dried as described 
above and weighed to determine DM. The harvest index 
(HI) was calculated as the ratio of grain DM to total in all 
aerial parts.

The portion of fresh roots for hormone analysis was 
immediately weighed and frozen in liquid nitrogen (− 70 °C) 
after sampling. The samples were then ground (< 1 mm) 
using liquid nitrogen and extracted overnight in the dark 
with 10 ml of 80% cold aqueous methanol (< 0 °C). The 
extract was centrifuged (2470 g, 15 min at 4 °C) in a 15-ml 
falcon tube, and the supernatant was collected. The rem-
nant was extracted following the same procedure 3 addi-
tional times. The total volume of the supernatant was dried 
in a rotary evaporator and dissolved in 2.5 ml of methanol. 
Indoleacetic acid (IAA), abscisic acid (ABA), and gib-
berellins 3 (GA3) in roots were determined by injection 

of the extract into a reverse phase HPLC Varian ProStar 
410 instrument furnished with a column C18 (Varian, 
250 mm × 34.6 mm, 8-µm particle size) using as mobile 
phase methanol-0.6% ethanoic acid, with gradient elution, 
column temperature 35 °C, injection volume of 10 µl, and a 
flow rate of 1 ml  min−1. Detection was performed at 254 nm 
according to Tang et al. (2011).

For mineral nutrient analysis, 0.25 g of dried and milled 
(< 1 mm) plant material was mineralized in a muffle furnace 
at 550 °C for 8 h. After calcination, the ashes were dissolved 
in 10 ml of 1 M HCl. This solution was heated (100 °C, 
15 min) to ensure full recovery of nutrients. Micronutri-
ent concentrations (Zn, Fe, Mn, and Cu) in the digest were 
determined by atomic absorption spectrometry and P con-
centration colorimetrically (Murphy and Riley 1962). The 
total P and micronutrients in the plants were calculated as 
the sum of product of the DM in each organ and its nutrient 
concentration. Nutrient harvest indices (HI) were calculated 
as the ratio of the total nutrient accumulated in the grain to 
that accumulated in all aerial parts of the plant. The P-to-Zn 
and P-to-Fe molar ratios were calculated as the quotients 
of P and Zn or Fe concentrations in grains. The phosphate 
in grains is present mainly as phytate, which inhibits the 
absorption of Zn and Fe during digestion, thus decreasing 
the grain value for the supply of Zn and Fe in diets. There-
fore, these molar ratios are commonly used as an index of 
potential nutritional quality for humans (Miller et al. 2007; 
Gómez-Coronado et al. 2019).

2.6  Chemical, Microbiological, and Biochemical 
Analysis of the Soil

Soil samples for analysis were collected at harvest from 
rhizospheric soil by shaking it off from the roots in air as 
described by Wang et al. (2009). Thus, only the soil adherent 
to the roots was considered (Nazih et al. 2001). Immediately 
after sampling, the wet soil samples were sieved to < 2 mm 
and homogenized for chemical, biochemical, and micro-
bial analysis. A portion of them was air-dried and used to 
determine pH and EC (1:2.5 in water) and further chemical 
analyses.

The population density of B. subtilis and T. asperel-
lum in rhizospheric soil was measured by dilution plating 
according to Tuitert et al. (1998). To this end, a suspension 
with 5 g of soil and 90 ml of 0.1% Na-pyrophosphate was 
shaken (2.5  s−1, 30 min) to promote the disruption of soil 
aggregates. Then, five-fold dilution series were prepared 
from an original dilution of 1 ml of vortexed suspension 
in 9 ml of 0.1% water agar. From each dilution, 0.1 ml 
were pipetted into 3 replicate plates, containing a modified 
semiselective culture media for T. asperellum (Chung and 
Hoitink 1990) prepared according to Borrero et al. (2012). 
The colony-forming units (CFU) were counted 4 days after 



3333Journal of Soil Science and Plant Nutrition (2023) 23:3329–3342 

1 3

plating and expressed as CFU per gram of soil. Similarly, 
B. subtilis was isolated in a semiselective culture medium 
(400 ml of filtered V-8 juice®, 40 g of NaCl, 1 g of dex-
trose, 20 g of agar, and 600 ml of Millipore water, adjusted 
to pH 5.2 before autoclaving) as described by Turner and 
Backman (1991). The suspensions were heated (80 °C, 
10 min) in a water bath before preparing the dilution series 
(Tuitert et al. 1998). The CFU were counted twice, 48 h 
after plating to determine Bacillus spp. and a week after 
plating to determine and confirm the presence of B. subtilis 
based on colony morphogenesis as described by Aguilar 
et al. (2007).

The concentrations of low molecular weight organic 
anions in the rhizosphere were determined by high-per-
formance liquid chromatography (HPLC) according to 
Gao et al. (2012). Soil extractions with 0.1 M NaOH 
were carried out in a 1:1 ratio (w:v) by shaking the 
mix (4  s−`1, 90 min) (Radersma and Grierson 2004) as 
described by García-López and Delgado (2016). The sus-
pensions were centrifuged at 1260 g for 10 min, and the 
collected supernatants were centrifuged again at 17,900 g 
for 10 min. The extracts were then acidified to pH 2–3 
with 0.1 M  H2SO4 and filtered through a 0.20-μm mem-
brane filter before being separated on an HPLC Varian 
ProStar 410 instrument. To this end, the HPLC was fur-
nished with a column C18 (Varian, 250 mm × 34.6 mm, 
particle size of 8-µm particle size). The elution method 
was isocratic with 98% 5 mM  H2SO4 at pH 2 plus 2% 
methanol at 0.8 ml  min−1 as carrier solution and 20 μl 
injection volume. Detection of organic anions was per-
formed at 215 nm, using a Varian 486 photodiode array 
detector. Individual standard solutions of acetic, oxalic, 
citric, malic, fumaric, and succinic acid, all from Sigma 
(Barcelona, Spain), were used for the identification of 
organic anions. Only oxalate was detected in the extracts.

The siderophores in the rhizosphere were determined 
by measuring the amount of  Fe3+ complexed by them. 
The colorimetric method (Schwyn and Neilands 1987) 
uses the affinity of siderophores for  Fe3+ and a ternary 
complex (chrome azurol S/iron (III)/hexadecyltrimeth-
ylammonium bromide –CAS–) as an indicator, with an 
extinction coefficient of 100,000  M−1  cm−1 at 630 nm. 
The siderophore moves Fe from the indicator which 
changes from blue to orange at pH 5.6. To extract sidero-
phores from the rhizosphere, the same soil extraction 
procedure was used for organic anions, and 0.5 ml of this 
extract was mixed with 0.5 mL of CAS assay solution 
(Schwyn and Neilands 1987). After reaching equilibrium 
(6 h), the absorbance was measured at 630 nm and com-
pared with a reference without soil extract.

Enzyme activities in the rhizospheric soil were deter-
mined at harvest. Dehydrogenase activity was determined 
after soil incubation (37 °C in darkness, 24 h) in falcon 

tubes containing 1 g of soil, 0.01 g of  CaCO3, 0.25 ml 
of 3% 2,3,5-triphenyl-tetrazolium chloride (TTC), and 
0.875 ml of water. The triphenyl formazan (TPF) pro-
duced was sequentially extracted (three times) by add-
ing ethanol (up to 15 ml of total volume) and centrifug-
ing (1260 g, 10 min) to separate it from the soil. The 
concentration of TPF in the supernatant was determined 
colorimetrically at 485 nm as described by Casida et al. 
(1964), using a Lambda 35 spectrophotometer (Perkin 
Elmer, USA). The ß-glucosidase activity was determined 
according to Eivazi and Tabatabai (1988) by determining 
the p-nitrophenol produced from soil incubation (37 °C, 
1  h) with 0.05 M 4-nitrophenyl-ß-D-glucopyranoside 
(PNG) as an enzymatic substrate buffered with the modi-
fied universal buffer (MUB) at pH 6. A similar procedure 
was used to determine alkaline phosphatase, using 0.05 M 
4-nitrophenyl phosphate as substrate buffered with MUD 
at pH 11 and measuring the amount of p-nitrophenol 
(PNP) produced (Tabatabai and Bremner 1969; Eivazi 
and Tabatabai 1977).

2.7  Statistical Analysis

The effect of soil type and treatments affecting microbial 
activity in the rhizosphere was evaluated using a two-way 
analysis of variance. Previously, normality according to 
the Shapiro-Wilks test and homoscedasticity according 
to the Levene test were checked. Power transformations 
were performed if necessary to fully meet both criteria. 
Analysis of variance was performed with the General Lin-
ear Model procedure in Statgraphics Plus 5.1 (StatPoint 
2000). The means for each factor level were compared 
using the LSD test (P < 0.05), except when the interac-
tion between factors was significant. In the case of sig-
nificant interactions, the effect of main factors cannot 
be assessed, and only the interaction can be discussed, 
since the effect of one factor depends on the level of the 
other. In this case, this means that the effect of treatments 
depends on soils, and it was not possible to conduct a 
mean comparison between treatments for each main fac-
tor (de Santiago et al. 2013). Then, two analyses were 
performed; first, the combined effect of both factors was 
evaluated with a one-way analysis of variance and mean 
comparison for the combination of both factors in order 
to see differences between particular soils; second, a 
general linear model (GLM) involving two factors, one 
categorical (treatment) and another quantitative (specific 
soil property), was performed in order to identify the soil 
property with particular interaction with treatments. This 
was done for the main physicochemical and biochemi-
cal properties of soils. Pearson’s correlation coefficients 
and regressions were calculated using the same software 
mentioned above.
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3  Results

3.1  Effect of Soil on Plant Development 
and Nutrition

The soils studied encompassed a wide range of properties, 
in particular, textural classes and nutrient availability indi-
ces (Table 1). The initial DTPA extractable Zn  (ZnDTPA) 
was below the threshold value for nutrient deficiency 
(0.5 mg  kg−1) in all the soils. The pyrophosphate extract-
able Zn  (Znpyr) ranged from 0.4 to 1.5 mg  kg−1 (Table 1). 
In the case of P, the soils showed a wide range of avail-
ability status, Olsen P ranging from 4.7 to 26 mg  kg−1. The 
pH of the soils varied between 7.2 and 8.3.

The yield and nutritional status of the crop differed 
widely between soils (Table S1, Supplementary material). 
Initial Olsen P explained 72% of the variation in total dry 
matter (DM) production (DM = 0.72 + 0.025 Olsen P; 
P = 0.002; n = 10). The total P in the plant was not related 
to the initial Olsen P in the soil (not shown). The total 
Zn in the plant or the Zn concentration in the grain was 
not related to  ZnDTPA or  Znpyr. However, the ratio of  Znpyr 
to Olsen P explained 54% of the variation in total Zn in 
the plant (Total Zn = 6.7 + 211  Znpyr/Olsen P; P = 0.0152; 
n = 10) and 80% of the variation in Zn concentration in 
grains ([Zn] in grain = 9.4 + 308  Znpyr/Olsen P; P < 0.001; 
n = 10). In general, the concentration of Zn in grains was 
low relative to the standards of good nutritional quality. 
In this sense, this concentration was below 32 mg  kg−1 in 
5 of the soils (Table S1; Supplementary material). The 
dry matter yield was not related to the extractable Fe or 

Mn. These extractions did not relate to the total nutrient 
content of the plants. A wide range of enzyme activities 
were also observed in the rhizospheric soil after crop har-
vest (Table S2, Supplementary material). The phosphatase 
activity of the soil was not related to the initial Olsen P nor 
other soil properties (not shown). In general, soils with the 
highest DM yield of the crop were those that showed the 
lowest indolacetic acid (IAA) and abscisic acid (ABA) in 
roots (Table S1, Supplementary material).

3.2  Effect of Microbial Inoculants and Cellulose 
on Crop

After cropping, both inoculants were detected in 
rhizopheric soil, without significant differences 
between soils. Colony-forming units (CFU) were in 
the range 5.4·103–2.2·105   g−1 soil for B. subtilis and 
1.5·104–3.9·104  g−1 soil for T. asperellum. The two micro-
bial inoculants and the cellulose amendment (treatments) 
increased the total root DM and grain yield compared to 
the control (Table 2). When the aboveground biomass was 
considered, only cellulose improved it significantly rela-
tive to the control (Table 2). Dry matter in non-reproduc-
tive organs in above-ground biomass was not significantly 
affected by inoculants or cellulose (not shown). In general, 
B. subtilis and cellulose promoted lower levels of indola-
cetic acid (IAA), abscisic acid (ABA), and gibberellins 
3 (GA3) than the control. No significant differences in 
IAA and ABA were observed between B. subtilis and T. 
asperellum (Table 2). The effect of treatments on GA3 
varied depending on the soil, as revealed by the significant 

Table 2  Effect of the different factors on the dry matter (DM) yield, harvest index (HI), and plant hormones

Mean ± standard deviation; means followed by the same letter are not significantly different according to the LSD test (P < 0.05)
HI harvest index, IAA indole-acetic acid, ABA abscisic acid, GA3 gibberellic acid
Shoot DM includes grain DM
Hormones were not detected in soil OTRZ1 and OTRZ2
In the case of potential transformation to meet ANOVA requirements, back transformed results are shown
Mean comparison for soils and interaction effects shown in supplemental material

Source of variation Dry matter yield HI Hormones

Total Grain Root Shoot IAA ABA GA3

Treatment ––––––––––––––––––– g  pot−1 ––––––––––––––––––––– –––––––––––––––– µg  kg−1–––––––––––––––
B. subtilis 1.09 ± 0.28a 0.40 ± 0.11a 0.121 ± 0.08a 0.97 ± 0.23ab 0.41 ± 0.07 0.35 ± 0.15b 0.10 ± 0.04b 3.0 ± 1.6b
Cellulose 1.13 ± 0.23a 0.42 ± 0.11a 0.127 ± 0.05a 1.00 ± 0.2a 0.42 ± 0.07 0.31 ± 0.1b 0.09 ± 0.03b 3.2 ± 0.92b
T. asperellum 1.08 ± 0.25a 0.39 ± 0.12a 0.116 ± 0.08ab 0.96 ± 0.2ab 0.41 ± 0.09 0.40 ± 0.2b 0.12 ± 0.05b 4.5 ± 2.17a
Control 1.03 ± 0.25b 0.35 ± 0.15b 0.101 ± 0.05b 0.93 ± 0.22b 0.37 ± 0.11 0.42 ± 0.16a 0.13 ± 0.04a 3.9 ± 1.39a
ANOVA P value
Soil 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000 0.0004 0.0008
Treatment 0.0030 0.0134 0.0031 0.0164 0.0949 0.0006 0.0021 0.0007
Soil*treatment 0.1630 0.8707 0.0514 0.0640 0.1043 0.0564 0.2000 0.0001
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interaction between both factors (Table 2). Although T. 
asperellum increased GA3 content compared to other 
treatments (Table 2), this effect was more marked with 
increasing soil pH (Fig. 1).

The microbial inoculants and the cellulose had no effect 
on the total content of P and Zn in the plants, the concen-
tration of P in the different organs, or the concentration of 
Zn in the grains compared to the control. However, a trend 
of decreasing Zn concentration with these treatments was 
observed in roots and above-ground biomass (Table 3). 
All treatments increased the Zn harvest index (Zn HI) and 
decreased the molar ratio of P to Zn in grains relative to 
the control (Table 3). The effect of treatments on total Fe 
and Mn in plants differed between soils, as revealed by 
the significant interaction between factors (P = 0.04 and 
P = 0.001, respectively; Table S3). In three of the soils, 
microbial inoculants or cellulose increased total Fe or Mn 
in plants relative to the control (Fig. 2; Table S3). In one, 
these concentrations were decreased (VGTZ2, Fig. 2). 
According to GLM, the effect of B. subtilis and T. asperel-
lum increasing total Fe in plants decreased with increased 
soil pH (Fig. 3a). On the other hand, the effect of these 
microorganisms on the improvement of total Fe in plants 
was more marked with increased soil microbial activity 
estimated as the β-glucosidase activity in controls with-
out treatment after harvest (Fig. 3b). The total Cu in the 
plants; the concentration of Fe, Cu, and Mn in the differ-
ent organs; and their harvest indices were affected only by 
soil (not shown). The molar ratio of Fe to P in the grain 
was not affected by treatments, only by soils (not shown).

3.3  Effect of Microbial Inoculants and Cellulose 
on Rhizospheric Soil

Bacillus subtilis tended to increase the concentration of 
oxalate relative to T. asperellum. In general terms, T. 
asperellum and cellulose increased phosphatase activity, 
and both inoculants and cellulose increased β-glucosidase 
activity (Table 4). Actually, the effect of inoculants or 
cellulose on enzyme activities in the rhizospheric soil 
varied depending on the soil, as revealed by the signifi-
cant interactions in the ANOVA between both factors 
(treatments and soil, Table  4). Overall, T. asperellum 
was the most effective treatment increasing dehydroge-
nase and phosphatase activities (Table S3). This inocu-
lant promoted higher dehydrogenase activity than control 
in BLGZ2, BLGZ3, and OTRZ2 soils and phosphatase 
activity in LCVZ4 and VTGZ1 (Table S3). Bacillus sub-
tilis increased the activity of dehydrogenase compared 
to the control in LCVZ1 and the activity of phosphatase 
in RCNZ2 (Table S3). Cellulose was the most effective 
improving β-glucosidase activity, with a significant effect 
in three soils (LCVZ4, RCNZ1, and RCNZ2; Table S3). 
The concentration of siderophores was only increased by 
T. asperellum in the soil LCVZ4 (Table S3). Only in the 
soil RCNZ1, inoculants and cellulose promoted a signifi-
cant decrease in pH (Table S3).

3.4  Relationships Between the Variables Studied

In the controls without treatments, the concentration of 
abscisic acid in the roots decreased with increased total Fe 
(Fig. 4a), total Mn (Fig. 4b), and total P in plants (ABA = 1/
[0.003 + 0.009 Total P];  R2 = 0.19; P < 0.001, n = 30). In the 
whole dataset, phosphatase and β-glucosidase were posi-
tively correlated between them (r = 0.62; P < 0.001; n = 160) 
and both activities with total plant DM (r = 0.21; P < 0.01 
and r = 0.41; P < 0.001, respectively; n = 160) and total P in 
plants (r = 0.44 and 0.47, P < 0.001, respectively; n = 160). 
The concentration of siderophores in the rhizosphere was 
correlated with dehydrogenase activity (r = 0.37; P < 0.001; 
n = 160).

4  Discussion

The results validate our first hypothesis, that is, the two 
microbial inoculants and the cellulose amendment enhanced 
plant development and grain yield (Table 1). These effects 
did not depend on the soil, since the interaction between 
the treatments that affect microbial activity and the soil was 
not significant. These benefits cannot always be ascribed to 

Fig. 1  Effect of the different treatments (microorganisms and organic 
amendment) on gibberellins concentration (µg kg.−1) as affected by 
soil pH according to the general linear model (GLM); the lines rep-
resent the trend in the effect of each treatment as a function of soil 
pH; there are significant differences in the regression slopes between 
treatments at P = 0.0011. The effect of the interaction between soil 
and treatment was significant at P = 0.0015



3336 Journal of Soil Science and Plant Nutrition (2023) 23:3329–3342

1 3

Ta
bl

e 
3 

 E
ffe

ct
 o

f t
he

 d
iff

er
en

t f
ac

to
rs

 o
n 

pl
an

t n
ut

rit
io

na
l v

ar
ia

bl
es

M
ea

n ±
 st

an
da

rd
 d

ev
ia

tio
n;

 m
ea

ns
 fo

llo
w

ed
 b

y 
th

e 
sa

m
e 

le
tte

r a
re

 n
ot

 si
gn

ifi
ca

nt
ly

 d
iff

er
en

t a
cc

or
di

ng
 to

 th
e 

LS
D

 te
st 

(P
 <

 0.
05

)
Zn

 H
I a

nd
 P

 H
I, 

pr
op

or
tio

n 
of

 to
ta

l n
ut

rie
nt

 in
 p

la
nt

s t
ha

t i
s a

cc
um

ul
at

ed
 in

 g
ra

in
In

 th
e 

ca
se

 o
f p

ot
en

tia
l t

ra
ns

fo
rm

at
io

n 
to

 m
ee

t A
N

O
VA

 re
qu

ire
m

en
ts

, b
ac

k 
tra

ns
fo

rm
ed

 re
su

lts
 a

re
 sh

ow
n

M
ea

n 
co

m
pa

ris
on

 fo
r s

oi
ls

 a
nd

 in
te

ra
ct

io
n 

eff
ec

ts
 sh

ow
n 

in
 su

pp
le

m
en

ta
l m

at
er

ia
l

So
ur

ce
 o

f v
ar

ia
tio

n
To

ta
l n

ut
rie

nt
 in

 p
la

nt
s

P 
co

nc
en

tra
tio

n
Zn

 c
on

ce
nt

ra
tio

n
H

ar
ve

st 
in

de
x

M
ol

ar
 ra

tio
P/

Zn
P

Zn
Fe

M
n

C
u

G
ra

in
Sh

oo
t

Ro
ot

G
ra

in
Sh

oo
t

Ro
ot

P
Zn

Tr
ea

tm
en

t
––

––
––

––
––

––
––

––
– 

µg
  p

la
nt

−
1 ––

––
––

––
––

––
––

––
––

––
––

––
––

––
––

––
––

––
––

––
––

––
 m

g 
 kg

−
1  –

––
––

––
––

––
––

––
––

––
––

––
––

––
––

––
––

––
––

––
––

––
–

B.
 su

bt
ili

s
88

3 ±
 25

4
23

 ±
 12

47
7 ±

 22
9

17
 ±

 5.
6

10
 ±

 8.
2

20
50

 ±
 91

1
45

4 ±
 39

8
62

8 ±
 28

3
33

.1
 ±

 14
.3

8.
5 ±

 5.
78

22
.8

 ±
 8.

16
b

0.
85

 ±
 0.

07
0.

57
 ±

 0.
08

a
72

.6
 ±

 39
b

C
el

lu
lo

se
87

2 ±
 20

6
24

 ±
 12

41
5 ±

 16
4

17
 ±

 3.
8

8 ±
 5.

4
19

60
 ±

 83
2

36
4 ±

 22
7

59
6 ±

 17
6

33
.5

 ±
 16

7.
9 ±

 5.
26

23
.8

 ±
 8.

51
b

0.
86

 ±
 0.

04
0.

57
 ±

 0.
07

a
71

.3
 ±

 41
b

T.
 a

sp
er

el
lu

m
86

0 ±
 24

4
23

 ±
 12

47
0 ±

 33
0

17
 ±

 5
8 ±

 5.
2

19
82

 ±
 74

2
39

6 ±
 30

8
59

6 ±
 22

9
33

.0
 ±

 14
.3

8.
1 ±

 5.
84

22
.4

 ±
 8b

0.
85

 ±
 0.

07
0.

57
 ±

 0.
09

a
72

.4
 ±

 37
b

C
on

tro
l

90
6 ±

 27
4

23
 ±

 11
37

1 ±
 16

7
16

 ±
 4.

5
7 ±

 5.
3

25
23

 ±
 13

60
52

5 ±
 38

9
65

4 ±
 28

0
34

.9
 ±

 15
.4

9.
0 ±

 6.
36

25
.9

 ±
 8.

05
a

0.
82

 ±
 0.

09
0.

52
 ±

 0.
11

b
82

.9
 ±

 42
a

AN
O

VA
P 

va
lu

e
So

il
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
Tr

ea
tm

en
t

0.
99

50
0.

66
15

0.
44

45
0.

18
46

0.
17

94
0.

09
64

0.
15

81
0.

66
85

0.
52

59
0.

05
68

0.
02

32
0.

08
92

0.
02

63
0.

01
12

So
il*

tre
at

m
en

t
0.

42
73

0.
86

79
0.

02
89

0.
00

46
0.

51
41

0.
81

04
0.

57
94

0.
07

20
0.

25
74

0.
34

72
0.

00
41

0.
32

02
0.

06
24

0.
66

00



3337Journal of Soil Science and Plant Nutrition (2023) 23:3329–3342 

1 3

an improved plant nutrition. In this sense, increased uptake 
was observed only for Fe or Mn in three of the soils studied.

The accumulation of ABA in roots is known to be a 
response to abiotic stresses, particularly nutrient deficiency 
in durum wheat (Trapeznikov et al. 2003; Vysotskaya et al. 
2008). Furthermore, ABA concentration has been proven 
to increase with Fe deficiency in plants (Lei et al. 2014). 
This agrees with our observation of a decreased ABA con-
centration in roots with an increase in total Fe, Mn, and 
P in plants (Fig. 4). Therefore, reduced bioavailability of 
these nutrients, attributed in part to soil properties such as 
carbonates, basic pH, or high adsorption capacity (Ryan 
et al. 2013), seems to promote accumulation of ABA in 
roots. High levels of this hormone in roots are one of the 
reasons for restricted plant development under nutrient defi-
ciency conditions (Vysotskaya et al. 2008). It appears that 

the promotion of plant growth by B. subtilis, T. asperellum, 
and cellulose was attributed to a reduction in the concentra-
tion of ABA in the roots. This decrease in ABA concen-
tration by microorganisms may alter, and in some cases 
stimulate, plant growth (Belimov et al. 2014). This effect of 
rhizospheric microorganisms that reduce ABA concentra-
tion has previously been described in cereals (Dodd et al. 
2010). However, increased Fe or Mn uptake by treatments 
can contribute to the improved plant growth and decreased 
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Fig. 2  a Effect of the different treatments (microorganisms and 
organic amendment) on total Fe in plants (µg  plant−1) in the soils 
where this effect was significant. (b) Effect of the different treatments 
(microorganisms and organic amendment) on total Mn in plants (µg 
plant.−1) in the soils where this effect was significant. Differences sig-
nificant according to LSD (P < 0.05)
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Fig. 3  a  Effect of the different treatments (microorganisms and 
organic amendment) on total Fe in plants (µg  plant−1) as affected by 
soil pH according to the general linear model (GLM); the lines rep-
resent the trend in the effect of each treatment as a function of the 
soil pH. There are significant differences in the slope of the regres-
sions between treatments at P = 0.0000. The interaction between soil 
and treatment was significant at P = 0.0026. b Effect of the different 
treatments (microorganisms and organic amendment) on total Fe 
in plants (µg  plant−1) as related to β-glucosidase activity in control 
(without treatment) at the end of the experiment for each soil (in mg 
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lines represent the trend in the effect of each treatment as a function 
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in the slope of the regressions between treatments at P = 0.0000. The 
interaction between soil and treatment was significant at P = 0.0135
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ABA concentration in the roots of plants grown in some 
soils when stress signals are diminished (Sah et al. 2016). 
However, the effect of T. asperellum appears to be related to 
an increased concentration of GA3 in roots, which is known 
to stimulate plant growth (Hedden 2016). This augmented 
GA3 concentration with T. asperellum was more evident 
with increasing pH, which are conditions more restrictive for 
plant nutrition and consequently where plant development 
should be more restricted.

We found evidence of the triggering of nutrient mobilization 
mechanisms by treatments, such as enhanced phosphatase 
activity (Table  4), or the trend of B. subtilis to increase 
oxalate in the rhizosphere. Total P in plants was related to 
phosphatase activity in the rhizosphere. However, microbial 
inoculants and cellulose had no effect on total P, Zn, and Cu. 
This is explained because the properties of the soil also affect 
nutrient uptake, such as the ratio of  Znpyr to Olsen P in the 
case of Zn (Recena et al. 2021). The effect of cellulose and 
microbial inoculants on total Fe and Mn in plants depended 
on the soil. The effect of B. subtilis and T. asperellum on the 
improvement of Fe uptake by plants was more evident at lower 
soil pH (Fig. 3). This probably reveals that these microbial 
inoculants are more effective at improving Fe nutrition in 
soil conditions that are not so restrictive for Fe availability to 
plants. Furthermore, these benefits were also more relevant 
with increasing microbial activity in soils (as estimated by 
the average β-glucosidase activity in nontreated soils). This 
reveals that more suitable conditions for microorganisms likely 
enhance inoculant development and consequently their effects.

Microbial inoculants and cellulose improved microbial 
activity in the rhizosphere as revealed by the increased 

β-glucosidase activity (Table 4). This enzyme is retained 
in the soil and reflects long-term fluctuations in microbial 
activity, likely along the crop cycle (Stott et al. 2010; Moreno 
et al. 2015). Phosphatase is ascribed in part to microbial 
activity as revealed by its correlation with β-glucosidase. The 
correlation between β-glucosidase and phosphatase activity 
and DM of plants may suggest that enhanced plant growth may 
promote improved colonization and microbial activity in the 
rhizosphere, perhaps through increased root exudation (Zhao 
et al. 2020; Vora et al. 2021). The production of siderophores 
was related to microbial activity at harvest, as revealed by the 
positive correlation with the dehydrogenase activity. Therefore, 
the activity of rhizospheric microorganisms may contribute to 
the potential for nutrient mobilization from the soil.

Zinc uptake by plants was not affected by microbial 
inoculation or cellulose amendment. However, these treat-
ments increased the proportion of Zn accumulated in grains 
(Zn HI) independently of soil, in agreement with Moreno-
Lora et al. (2019). This may be explained by the decrease in 
the Zn concentration in roots and shoots without a signifi-
cant effect on grains promoted by inoculants and cellulose. 
Thus, this confirms our hypothesis of an alteration of the 
Zn partitioning in plants leading to a higher accumulation 
in grains relative to other organs. This may be attributed to 
the observed changes in auxin or ABA concentration, since 
these hormones can regulate transporters involved in metal 
homeostasis in plants (David-Assael et al. 2006; Barickman 
et al. 2019). Increased Zn HI with inoculants and cellulose 
compared to control led to a decreased molar P-to-Zn ratio 
in the grain with these treatments and consequently to an 
improved grain quality, as Zn digestibility is enhanced.

Table 4  Effect of the different 
factors on rhizospheric soil 
variables

Mean ± standard deviation; means followed by the same letter are not significantly different according to 
the LSD test (P < 0.05)
DHA dehydrogenase activity measured as the amount of triphenyl-formazan produced, β-GLU β-glucosidase 
activity measured as the amount of p-nitrophenol released from M 4-nitrophenyl-ß-D-glucopyranoside, Phosp 
alkaline phosphatase activity measured as the amount of p-nitrophenol released from p-nitrophenol phosphate
In the case of potential transformation to meet ANOVA requirements, back transformed results are shown
Mean comparison for soils and interaction effects shown in supplemental material

Source of variation Oxalate Siderophores Enzymatic activities pH

DHA Phos β-GLU

Treatment mmol  kg−1 mg  Fe3+  kg−1 ––––––––––– mg  kg−1  h−1––––––––––––
B. subtilis 73 ± 29 13.4 ± 4.2a 2.3 ± 2.3 187 ± 59b 122 ± 58a 7.78 ± 0.38
Cellulose 65 ± 22 11.8 ± 4.9b 2 ± 1.9 199 ± 76a 125 ± 55a 7.83 ± 0.37
T. asperellum 63 ± 27 13.4 ± 4a 2.3 ± 2.2 200 ± 63a 128 ± 52a 7.79 ± 0.43
Control 69 ± 26 13.4 ± 4.2a 1.9 ± 1.7 186 ± 68b 117 ± 55b 7.80 ± 0.34
ANOVA P values
Soil 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Treatment 0.0660 0.0095 0.2263 0.0090 0.0000 0.0169
Soil*treatment 0.4165 0.0071 0.0000 0.0000 0.0002 0.0000
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5  Conclusions

Microorganisms and cellulose improved DM and grain yield 
in wheat, and this effect was independent of soil. In general, 
neither microorganisms nor cellulose increased total P and 
Zn in plants. However, the Zn HI and the P to Zn molar ratio 
were enhanced independently of the soil. Therefore, our results 
provide evidence of the benefits of using microorganisms and 
organic amendments as a tool to improve the yield, the portion 
of absorbed Zn accumulated in grains, and the grain quality in 
wheat grown in a set of soils that vary widely in their properties. 
The effect on Fe nutrition and gibberellins varied depending 
on the soil. These effects were affected by soil pH, while the 
microbial activity of the soils seemed relevant to explain the 
effect of the inoculants on total Fe in the plant.
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