
https://doi.org/10.1007/s42729-022-00966-x

ORIGINAL PAPER

Attenuating Effect of an Extract of Cd‑Hyperaccumulator Solanum 
nigrum on the Growth and Physio‑chemical Changes of Datura innoxia 
Under Cd Stress

Amany H. A. Abeed1 · Fawzy M. Salama1

Received: 1 March 2022 / Accepted: 3 August 2022 
© The Author(s) 2022

Abstract
Purpose  The use of plant extracts obtained from plants that are highly tolerant to heavy metal toxicity has been beneficial 
in improving the growth of plants grown under metal toxicity conditions. A lab experiment was performed to elucidate the 
alleviating role of foliar applied cadmium (Cd)-hyperaccumulator Solanum nigrum (S. nigrum) extract on Datura innoxia 
(D. innoxia) plants grown under Cd stress (0, 50, and 100 mg Cd kg-1 soil).
Methods  Growth parameters, photosynthetic pigment content, osmo-metabolic compounds, reduced glutathione and phy-
tochelatins content, oxidative damage, and lignin content and its related enzyme (cell wall-bound peroxidase, POX) were 
determined.
Results  Apart from the foliar application response of S. nigrum leaf extract (SNE) in either Cd exposed or non-Cd exposed 
plants, growth parameters of D. innoxia plant grown under both Cd concentrations (50 and 100 mg Cd kg-1 soil) in terms 
of root and shoot fresh, dry weight, length, and leaf area were noticeably diminished by 29 and 51%, 29 and 54%, 35 and 
70%, 40 and 53%, 30 and 69%, 40 and 60%, and 11 and 23%, respectively, compared with untreated control plants. Foliar 
delivered SNE secured the photosynthetic pigment, free amino acids, soluble proteins, and soluble sugar content. Addition-
ally, it lessened the adverse effects of Cd stress on D. innoxia plants by curtailing the content of hydrogen peroxide (H2O2) 
and malondialdehyde (MDA) by 28 and 27%, and 21 and 23%, respectively, compared with the plants subjected to 50 and 
100 mg Cd kg-1 only. The findings herein indicated that the plant water extract and their interactions in the investigated Cd 
rates significantly augmented phenolics, alkaloids, reduced glutathione and phytochelatins content. Cell wall stiffening in D. 
innoxia indicated that lignin content and POX were significantly higher in plants exposed to 100 mg Cd kg-1 soil displaying 
increase values of 275 and 300%, respectively, against non-Cd treated control. The magnitude of increment imposed by Cd 
stress was lessened by using SNE that reflects on adequate cell growth advocated by limited lignification, in terms of lignin 
content, and downregulated POX activity. Owing to SNE application, root and leaves Cd contents were efficiently reduced 
reflecting apparent plant liveliness compared with the SNE non-treated Cd-stressed plants.
Conclusions  The outcomes of this study designate that foliar application of the Cd-hyperaccumulator S. nigrum leaf extract 
can be counted as an unconventional and innovative approach in the alleviation of Cd stress and can be employed as integrated 
practice when Cd-contaminated regions were exploited for sustainable agriculture of the multipurpose plants.
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1  Introduction

Toxic metals have been added to agricultural soils due to 
an increased reliance on sewage wastewater irrigation and 
chemical fertilizers, as well as quick industrialization, pro-
ducing harmful impacts on plant and human health. Cd is 
one of the metal contaminants; it ranks seventh on a list of 
the most harmful toxins to crops in Egypt and around the 
world, and its long residence time in soil makes it a common 
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environmental distress for the agricultural system (Ibrahim 
et al. 2022). Nowadays, plants may encounter more Cd due 
to the use of phosphorites and phosphatic fertilizers which 
contain threshold levels of Cd (4.77 mg kg-1). In plants, Cd 
exposure affects a wide range of physiological and biochem-
ical processes, resulting in stunted growth, chlorosis, and 
oxidative stress initiated by the generated of reactive oxy-
gen species (ROS) (Gutsch et al. 2018). The photosynthetic 
apparatus and water balance are also affected by stomatal 
closure in plants (Perfus-Barbeoch et al. 2002). Cd stress can 
be mitigated in living cell by minimizing the toxic effects, 
such as detoxification through compartmentation, chelation, 
and sequestration in extra cytoplasmatic compartments such 
as the cell wall (Jha and Bohra 2016).

Toxic metal tolerance comprises several adaptive sce-
narios at the organelle, cellular, and plant levels to cope 
up with metal toxicity including overproduction of soluble 
sugars, free amino acids, soluble proteins and medicinally 
active alkaloids (Saad-Allah and Elhaak 2017), osmoprotect-
ants and antioxidant molecules (proline, betaine, glycine, 
phenolic compounds, flavonoids) (Khalid et al. 2019) in all 
plant tissues. Accordingly, it is very imperative to explore 
the mechanisms of Cd tolerance to ascertain which plants 
have ability to elicit physiological and biochemical mecha-
nisms in response to Cd exposure. Furthermore, the practice 
of sustainable agricultural approaches to recuperate plant 
growth and productivity even under environmental stress 
can maintain the gaining of plants’ yield under predicted 
climatic fluctuations (Li et al. 2021).

Cd-hyperaccumulators are the only species that can 
survive and reproduce in soil solutions containing Cd con-
centrations above 35 μM (Dobrikova et al. 2021). The Cd 
tolerance in hyperaccumulators plants mostly relays on the 
complexation of metalloids in vacuoles and osmotic adjust-
ment (Xu et al. 2009). Moreover, the mechanism of toler-
ance of hyperaccumulators plants is accomplished through 
the manufacturing of low molecular weight components 
viz. vitamins E and C, glutathione, and phytochelatins, 
as well as phenolic compounds that quash ROS (Xu et al. 
2009). Cd-hyperaccumulators are focused owing to their 
photosynthesis, physiological properties, and Cd resistance 
along with their responding to oxidative stress (ur Rehman 
et al. 2019). It can also be used in sustainable agriculture 
under conditions of heavy metal stress and integral ultras-
tructure and anatomy (Tao et al. 2020). Some Cd-accumu-
lator plants have various potentials benefits viz. potential 
source of a Cd-resistant gene (Kumar et al. 2021) as well 
as being an perfect source of generating several medicinal 
components (Pandey et al. 2019). Recently, utilizing plant 
extracts derived from plants that are highly tolerant to heavy 
metal toxicity has been beneficial in improving the growth 
of plants grown under metal toxicity conditions (Yang et al. 
2021). Several studies has declared that hyperaccumulator 

intercropping (Lin et al. 2018) or applying hyperaccumula-
tor straw or extracts to soil significantly enhance growth and 
Cd tolerance capacity of the target plants (Han et al. 2020). 
Also, foliar application of hyperaccumulator extracts can be 
more feasible and efficient as absorption of extract's nutri-
ents by leaves is vastly diverse from absorption of the same 
nutrients by roots. Roots are bathed in a soil solution that 
is usually relatively dilute. The concentration of the nutri-
ents is controlled to some extent by the surrounding soil. In 
foliar applications, the aqueous state evaporates rapidly after 
application and absorption must happen from concentrated 
solution (Gray and Akin 1984).

Solanum nigrum L. named as black nightshade was for 
the first time recognized as a Cd hyperaccumulator by Wei 
et al. (2005). Further investigations verified S. nigrum to 
be a Cd hyperaccumulator with Cd concentrations of above 
100 mg kg-1 leaf DW (> 0.01%) and bio-concentration fac-
tor (BF) for its roots higher than 1 (Wang et al. 2015). The 
ability to uptake and accumulate bulky amounts of Cd in its 
leaves (124.6 mg kg-1 DW) assigns this plant an effective 
phytoremediator (Wei et al. 2005) as well. The tolerance 
mechanisms of Cd-mediated stress in S. nigrum are ascribed 
to the following: (1) release of organic acids that involved 
in coordinated and complexed with metal in vacuole away 
from active cellular components; heavy metal complexation 
by organic acids may play an important role in metal detoxi-
fication, transportation, and storage (Sun et al. 2006). (2) 
Activation of natural resistance-associated macrophage pro-
teins (NRAMPs) (Song et al. 2014). (3) Antioxidants; phy-
tochemical analysis of SNE revealed the presence of various 
bioactive compounds such as tannins, flavonoids, phenol, 
glycosides, steroids, coumarins, and quinones which shoul-
der an important role in Cd-binding (Kumar et al. 2020).

Datura innoxia belongs to solanaceae family has received 
high awareness all over the world (Jamshidi-Kia et al. 2018). 
It is cultivated for the production of secondary metabolites 
with commercial importance due to their extensive use in 
medicine, which comprise torpane alkaloids such as atro-
pine, scopolamine, and hyoscyamine. They are exploited as 
parasympathicolitics for their ability to suppress parasympa-
thetic nerve activity (Maheshwari et al. 2013). On the other 
hand, after alkaloid extraction, the remaining biomass can be 
also used for industrial applications such as bioethanol pro-
duction. The less digestible stems counted more than 50% 
of its biomass, with high-yielded cell wall material (Wiart 
2006).

To cope up with global growing demands of the multi-
purpose plants including D. innoxia, farmers and breeders 
in arid and semi-arid regions are prompted to often engage 
with the cultivation in low-grade soils such of those are 
heavy metal-contaminated ones. Consequently, plant will 
instantly combat the heavy metal stress. Since the plant 
chemical composition and the structure and composition of 
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cell wall are likely affected by modified environmental con-
ditions, this may influence plant potential value and quality 
as well. Thus studying the changes in lignin content and its 
mediated enzyme (cell wall-bound peroxidase, POX) under 
HMs stress may stipulate information on the effect of on cell 
wall structure as a mechanical barrier against Cd experience 
and a valuable criterion that imparts the plant quality.

To the best of the authors’ knowledge, this is the first 
study figuring the impact of foliar spraying with SNE on 
Cd-stressed D. innoxia. Therefore, the purpose herein is to 
examine the attenuating effect of foliar applied extract of Cd-
hyperaccumulator S. nigrum on Cd-stressed D. innoxia per-
formances that might be evaluated through some physio-bio-
chemical indices viz. growth traits, photosynthetic pigment 
content, osmo-metabolic compounds, phenolics, alkaloids, 
phytochelatins and reduced glutathione content, oxidative 
damage, and lignin content and its mediated enzyme, POX, 
in Cd-stressed D. innoxia plant.

2 � Materials and Methods

2.1 � S. nigrum Collection and Extract Preparation

The current species were gathered from its natural habitat at 
Wadi Al-Assiuty (31°18′ and 31°48′ E and 27°10′ and 27°45′ 
N), Assiut Governate, Egypt. The Flora of Egypt (Hepper 
and Boulos 2001) was used for authentication of the plant. 
Samples were air-dried and ground to a grainy powder. The 
powder was then mixed with bidistilled water in ratio of a 
weight: volume (W/V) of 1:10 and put in a water bath at 
80 °C for 25 min. The fresh extract was filtered through a 
Watman filter paper and left to cool at room temperature 
(Abeed et al. 2021). The resultant filterate was handled as 
100% S. nigrum water leaves extracts and diluted to 50% for 
the usage as foliar spraying. The fresh prepared water extract 
was immediately used for foliar spraying. This concentra-
tion was chosen based on a previous preliminary experiment 
including five concentrations, i.e., 10, 20, 30, 40, 50%. The 
plants received 50% S. nigrum water leaves extract recorded 
a significant positive response based on biomass weight and 
chlorophyll concentration. S. nigrum leaf extract was ana-
lyzed and its biochemical constituents were as illustrated 
in Table 1.

2.2 � Plant Materials, Growth Conditions, 
and Treatments

Two-week-old uniform D. innoxia plantlets were collected 
on summer 2021 from botanical garden of faculty of agricul-
ture, Assiut University, and were transplanted in plastic pots 
(35 cm diameter) filled with 5 kg of sandy-clay soil in rate 
of 4 plantlets/pot. The pots were arranged in a completely 

random arrangement with four replicates. Seven days after 
transferring, three Cd concentrations (0, 50, and 100 mg Cd 
kg-1 soil) were delivered to the soil in a form of water solu-
tion. Cd application was introduced as cadmium dichloride 
(CdCl2). The developed plants of both control (0 mg Cd 
kg-1 soil ) and Cd (50 and 100 mg Cd kg-1 soil) treated pots 
were sprayed with SNE after one week of treatment with Cd, 
while the untreated control plants were sprayed with distilled 
water only. Two foliar spray treatments (water, SNE) were 
applied using hand pump trigger sprayers. Each replicate 
was sprayed by 250 ml of sprays per pot and the soil surface 
was covered by polyethylene bag to avoid foliar treatment 
reached soil. Plants were received sprays for two consecutive 
days. The addition of cadmium was based on our previous 
studies (Eissa and Abeed 2019); also, a preliminary experi-
ment has revealed a high threshold of D. innoxia against 
Cd stress. Plant samples were harvested after 14 days of Cd 
exposure for analyzing the following parameters.

2.3 � Analysis of Plant Growth Parameters

Plants were randomly selected from each treatment to esti-
mate shoot and root length, fresh and dry weight of shoot 
and root, and leaf area at the end of the experiment. The 
length of shoot and root of D. innoxia plants were manu-
ally determined using a measuring tape. Fresh weight of 
the harvested plants was measured immediately then oven 
dried at 60 °C for 48 h to a constant weight to assess dry 
weight. Leaf area (cm2) was estimated via the product of the 
maximum length and maximum width of the leaf. The length 
and the width in cm were measured using a measuring tape.

2.4 � Analysis of Photosynthetic Pigment Content

The photosynthetic pigments (chlorophyll a, chlorophyll 
b and carotenoids) in dry leaves were determined by sus-
pending 0.25 g leaf sample in 10 ml ethyl alcohol (95%) 
in water bath at 60–70 °C. The absorbance of the extract 
was measured using a Unico UV-2100 spectrophotometer 

Table 1   Some biochemical constituents of Solanum nigrum leaf 
extract (SNE)

Constituents Values

Citric acid (μmol g-1) 40.0
Ascorbic acid (mg 100 g-1) 16.3
Proline (μg g -1DW) 24.0
Ca (mg 100 g-1) 60.0
Mg (mg 100 g-1) 260.0
Fe (mg 100 g-1) 21.8
Zn (mg 100 g-1) 8.7
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at wavelengths 663 and 644. Lichtenthaler (1987) equations 
were used for chlorophyll determinations as mg g-1 DW.

2.5 � Analysis of Osmo‑metabolic Compounds

Proline content was quantified in the fresh leaves according 
to Bates et al. (1973). Total free amino acids content was 
measured in the fresh leaves by the method of Moore and 
Stein 1948). The method of Lowry et al. (1951) was used 
to estimate soluble proteins content of fresh leaves. Soluble 
sugar content of the fresh leaves was determined by adopted 
the method of Fales (1951).

2.6 � Quantification of Phenolics, Alkaloids, Reduced 
Glutathione, and Phytochelatins Content

Phenolic content was estimated according to Kofalvi and 
Nassuth (1995) using the Folin-Ciocalteu’s phenol rea-
gent. A routine quantification method for analysis of the 
total alkaloidal content spectrophotometrically based on 
Dragendorff’s reagent (DR) as described by Sreevidya and 
Mehrotra (2003) was carried out. Non-enzymatic antioxidant 
as reduced glutathione (GSH): the supernatant of grinding 
fresh leaves in trichloroacetic acid was utilized for the quan-
tification of reduced glutathione (GSH) by protocols of Ell-
man (1959). Phytochelatins (PCs) evaluated by subtracting 
the amount of GSH from non-protein thiols as mentioned by 
Nahar et al. (2016) which attained by mixing supernatant of 
leaves grounded in sulfosalicylic acid with Ellman’s reaction 
mixture (Ellman 1959).

2.7 � Analysis of Oxidative Stress Markers; Hydrogen 
Peroxide, and Malondialdehyde Content

Hydrogen peroxide (H2O2) content of fresh leaves was spec-
trophotometrically estimated as described by Mukherjee and 
Choudhuri (1983). Malondialdehyde (MDA) content in the 
fresh leaves of D. innoxia plant was measured following to 
Zhang and Qu (2004).

2.8 � Analysis of Lignin Content and Its Mediated 
Enzyme (Cell Wall‑Bound Peroxidase, POX)

Lignin content was quantified via the thioglycolic acid reac-
tion adopted by Kováčik and Klejdus (2008). The activity 
of peroxidases (POX, μmol mg-1 protein g-1 FW min-1) was 
measured after the extraction of the enzymes from leaves 
according to cited by Ghanati et al. (2002). The activity per-
oxidases (PO) was evaluated based on the increase in the 
absorbance at 470 nm using 168 mM guaiacol in 100 Mm 
phosphate buffer and 30 mM H2O2. The change in absorb-
ance was modified to units (U) utilizing an extinction coef-
ficient of 26.6 mM−1 cm−1.

2.9 � Analysis of Cadmium Content of Root and Leaf 
of D. innoxia Plants

Cadmium (Cd) content was determined by following the 
method adopted by Eissa and Abeed (2019) in which dried 
leaf and root samples (0.5g) were ground and exposed to 
the acid-digestion using HNO3:HClO4 mixture (2,1). Cd 
concentrations were detected by atomic absorption spec-
trophotometer (PerkinElmer A Analyst 200) which has a 
detection limit of 0.001 mg L-1 for cadmium. The trans-
location factor (TF) of Cd was estimated by applying the 
following equation: TF = Cd leaves content/Cd root con-
tent (Li et al. 2021)

2.10 � Statistical Analysis

A randomized complete design (RCD) with four replicates 
was applied in the present experiment. Duncan’s multiple 
range tests and one -ANOVA were proceed by SPSS 17.0 
package (SPSS, Chicago, IL, USA) at probability level 
of 5%.

3 � Results

3.1 � S. nigrum Leaf Extract Improved D. innoxia 
Growth Under Cd Stress

To investigate how SNE application aided D. innoxia to 
combat Cd-induced adverse effect on the growth of D. 
innoxia plants, several growth-conjugated attributes were 
analyzed, including root and shoot fresh, dry weight, 
length, and leaf area, under both unstressed and stressed 
conditions with and without SNE foliar application 
(Fig. 1). In comparison with the control (0 mg Cd kg-1 
soil), 50 and 100 mg Cd kg-1 soil decreased root FW (by 
29 and 51%) and root DW (by 35 and 70%), shoot FW (by 
29 and 54%), shoot DW (by 40 and 53%), root length (by 
30 and 69%), shoot length (by 40 and 60%), area of leaves 
(by 11 and 23%) , respectively (Fig. 1). Foliar spray of D. 
innoxia plants with SNE improved root FW (by 25 and 
26%) and root DW (by 23 and 100%), shoot FW (by 20 
and 38), shoot DW (by 22 and 29%), root length (by 45 and 
54%), shoot length (by 33 and 31%), area of leaves (by 6 
and 7%), at 50 and 100 mg Cd kg-1 soil levels, respectively, 
versus plants subjected to Cd alone (Fig. 1). Furthermore, 
D. innoxia plants sprayed with SNE only exhibited incre-
ment in root FW, root DW, shoot FW, shoot DW, root 
length, shoot length, and leaf area by 3, 20, 6, 7, 11, 12, 
and 1%, respectively, over the control plants (Fig. 1).
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3.2 � S. nigrum Leaf Extract Protected Photosynthetic 
Pigments in D. innoxia Leaves Under Cd Stress

To assess the protective impact of exogenous SNE on the 
photosynthetic pigments under Cd toxicity, the levels of 
photosynthetic pigments (chlorophyll a, b and carotenoids) 
in Cd-delivered D. innoxia leaves were evaluated (Fig. 2). 
In comparison to the untreated control plants, there was a 
drastic decrement in the content of chlorophyll a by 46 and 
69%, chlorophyll b by 63 and 88%, and carotenoids by 56 
and 78% in the plants subjected to 50 and 100 mg Cd kg-1 

stress, respectively (Fig. 2). Contrary, spraying the extract 
of S. nigrum protected photosynthetic pigments from Cd-
mediated injurious effects, as witnessed by the considerable 
increased contents of chlorophyll a (57 and 100%), chlo-
rophyll b (67 and 200%), and carotenoids (200 and 50%) 
as response to 50 and 100 mg Cd kg-1 rates, respectively, 
in comparison with only Cd-treated plants (Fig. 2). Non-
stressed D. innoxia plants delivered SNE also exhibited 
enhanced contents of chlorophyll a (by 15%), chlorophyll 
b (by 13%), and carotenoids (by 11%), in comparison with 
water-sprayed non-Cd treated control (Fig. 2).

Fig. 1   Impact of Cd stress, 
foliar application with Solanum 
nigrum extract and their interac-
tions on Fresh weight of shoots 
(g/plant) (a), dry weight of 
shoot (g/plant) (b), fresh weight 
of root (g/plant) (c), dry weight 
of root (g/plant) (d), shoot 
length (cm) (e), root length (cm) 
(f), and area of leaves (cm2) 
(g) in Datura innoxia plants. 
Water and Solanum nigrum 
leaf extract (SNE) indicate the 
plants sprayed with distilled 
water, Solanum nigrum extract, 
respectively. Bars donate aver-
ages and standard errors of four 
independent replicates (n = 4). 
Different alphabetical letters 
designate significant differences 
among the treatments at P < 
0.05, based on LSD test.
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3.3 � S. nigrum Leaf Extract Modulated 
Osmo‑metabolic Compound Accumulation 
in Cd‑Exposed D. innoxia Plants

The imposition of 50 and 100 mg Cd kg-1 Cd led to an aug-
mentation in proline content by 147 and 293% and total free 
amino acids by 26 and 23%, whilst it resulted in a decrement 

in soluble proteins content by 20 and 35% and soluble sugar 
content by 11 and 18%, respectively, compared with that of 
non-Cd treated control plants (Table 2). On the other hand, 
application of SNE to the plants exposed to 50 and 100 mg 
Cd kg-1 resulted in an exacerbation of proline accumulation 
by 29 and 56%, and total free amino acids by 4 and 4%, and 
an increase in soluble proteins by 9 and 15%, and soluble 

Fig. 2   Impact of Cd stress, 
foliar application with Solanum 
nigrum extract and their interac-
tions on chlorophyll a (mg g-1 
DW) (a), chlorophyll b (mg g-1 
DW) (b), and carotenoids (mg 
g-1 DW) (c) in Datura innoxia 
plants. Water and Solanum 
nigrum leaf extract (SNE) 
designate the plants sprayed 
with distilled water, Solanum 
nigrum extract, respectively. 
Bars donate averages and stand-
ard errors of four independent 
replicates (n = 4). Different 
alphabetical letters designate 
significant differences among 
the treatments at P < 0.05, 
based on LSD test. FW: fresh 
weight
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sugars by 11 and 12%, respectively, when compared with 
the plants subjected to the same levels of Cd stress without 
SNE spraying (Table 2). SNE spraying treatment to non-Cd 
treated plants increased the contents of proline, total free 
amino acids, soluble proteins, and soluble sugars by 10, 18, 
40, and 2%, respectively, versus control plants (Table 2).

3.4 � S. nigrum Leaf Extract Enhanced Phenolics, 
Alkaloids, Reduced Glutathione, 
and Phytochelatins Content Under Cd Stress 
Conditions

D. innoxia plants that are grown in 50 mg Cd kg-1 level 
exhibited a considerable increment in phenolics and alkaloid 
content (by 88 and 48%), respectively (Fig. 3a, b) versus 
the untreated control sample. Whereas plants grown in 100 
mg Cd kg-1 level displayed drastic depletion in phenolics 
and alkaloid content (by 36 and 37%), respectively (Fig. 3a) 

Table 2   Impact of cadmium 
stress, foliar application with 
Solanum nigrum (S. nigrum) 
extract and their interactions on 
proline, total free amino acids, 
soluble proteins, and soluble 
sugar contents in Datura 
innoxia (D. innoxia) plants.

Each value donates average ± standard error of four independent replicates (n = 4). a, b, c different letters 
within the same row designate significant divergent at P < 0.05 among the treatments, based on LSD test. 
SNE, Solanum nigrum leaf extract; FW, fresh weight; mg, milligram; kg, kilogram; Cd, cadmium

Treatments Proline Total free amino acids Soluble proteins Soluble sugars
(mg g-1 FW) (mg g-1 FW) (mg g-1 FW) (mg g-1 FW)

Control 2.9±0.21 d 39.00±0.018 d 83.91±0.58 a 28.07±1.47 b
SNE 3.2±0.11 d 46.20±0.014 c 85.70±0.68 a 39.35±1.32 a
50 mg Cd kg-1 soil 7.2±0.32 c 49.20±0.010 ab 66.78±0.66 b 25.43±0.23 c
50 mg Cd kg-1 soil + SNE 9.3±0.31 c 51.60±0.015 a 72.82±0.55 ab 28.12±0.38 b
100 mg Cd kg-1 soil 11.4±0.51 b 48.10±0.019 b 54.57±0.65 c 23.58±0.36 d
100 mg Cd kg-1 soil + SNE 17.8±0.33 a 50.60±0.017 a 64.43±0.71 b 26.41±0.13 c

Fig. 3   Impact of Cd stress, 
foliar application with Solanum 
nigrum extract and their interac-
tions on phenolics content (mg 
g-1 DW) (a), alkaloid content 
(mg g-1 DW) (b), reduced 
glutathione content (GSH; 
μmol g-1FW) (c), and phyto-
chelatins (PCs; μmol g -1FW) 
(d) in Datura innoxia plants. 
Water and Solanum nigrum 
leaf extract (SNE) indicate the 
plants sprayed with distilled 
water, Solanum nigrum extract, 
respectively. Bars donate aver-
ages and standard errors of four 
independent replicates (n = 4). 
Different alphabetical letters 
designate significant differences 
among the treatments at P < 
0.05, based on LSD test. DW: 
dry weight
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versus the unstressed control sample. Obviously, supplemen-
tation of SNE to Cd-treated plants remarkably augmented 
phenolics (by 26 and 175%) and alkaloid content (by 25 
and 68%), respectively, in comparison with the plants sub-
jected to the same levels of Cd stress without SNE spraying 
(Fig. 3). In addition, SNE foliar spraying to non-stressed 
plants insignificantly enriched the phenolics content (by 
12%) and alkaloid content (by 6%) when compared with that 
of water-sprayed non-stressed control (Fig. 3). D. innoxia 
plants that were grown under 50 and 100 mg Cd kg-1 levels 
displayed an augmented content of GSH (by 67 and 133%), 
and PCs (by 80 and 200%), respectively, in correspondence 
with non-stressed control (Fig. 3c, d). Supplement of SNE 
to Cd-stressed plants displayed a vital role in further exac-
erbation of GSH content (by 32 and 29%) and PCs (by 50 
and 33%), respectively, compared with the plants subjected 
to 50 and 100 mg Cd kg-1 only (Fig. 3c, d). SNE spray-
ing treatment to unstressed plants insignificantly decreased 
the contents of GSH and PCs by 20 and 10%, respectively, 
against control plants (Fig. 3).

3.5 � S. nigrum Leaf Extract Reduced Cd 
Stress‑Induced Oxidative Injury in D. innoxia 
Plants

D. innoxia plants grown under 50 and 100 mg Cd kg-1 
levels exhibited an increased level of H2O2 by 66 and 98%, 
and MDA by 85 and 131%, respectively, when compared 
with non-stressed control (Fig. 4a). Application of SNE 
to Cd-stressed plants had a pivotal role in curtailing H2O2 
level (by 28 and 27%, respectively) and MDA (by 21 and 
23%, respectively) compared with the plants subjected to 
50 and 100 mg Cd kg-1 only (Fig. 4a, b). Under normal 
conditions D. innoxia plants sprayed with SNE displayed 
decreasing in the level of MDA and H2O2 by 13 and 15%, 
respectively, compared with that of untreated control 
(Fig. 4).

Fig. 4   Impact of Cd stress, 
foliar application with Solanum 
nigrum extract and their interac-
tions on MDA (μmol g-1 FW) 
(a) and H2O2 (μmol g-1 FW) 
(b) in Datura innoxia plants. 
Water and Solanum nigrum 
leaf extract (SNE) indicate the 
plants sprayed with distilled 
water, Solanum nigrum extract, 
respectively. Bars donate aver-
ages and standard errors of four 
independent replicates (n = 4). 
Different alphabetical letters 
designate significant differences 
among the treatments at P < 
0.05, based on LSD test. FW: 
fresh weight
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3.6 � S. nigrum Leaf Extract Altered Lignin Content 
and Its Mediated Enzyme (Peroxidase, POX) 
Activity of Cd‑Exposed D. innoxia Plants

D. innoxia plants that were grown under 50 and 100 mg 
Cd kg-1 levels displayed an augmented content of lignin 
by 100 and 257%, respectively, in correspondence with 
non-Cd treated control (Fig. 5a). Application of SNE to 
Cd-stressed plants shouldered a pivotal role in minimizing 
the level of lignin (by 36 and 40%, respectively) compared 
with the plants subjected to 50 and 100 mg Cd kg-1 only 
(Fig. 5a). Besides, D. innoxia plants exposed to 50 and 
100 mg Cd kg-1 levels elevated the activity of POX by 
250 and 300%, respectively, against non-Cd treated control 
(Fig. 4b). However, SNE application downregulated the 
activity of POX by 29 and 31% in Cd-exposed plants (50 
and 100 mg Cd kg-1, respectively) versus stressed plants 
only (Fig. 5b). Under normal conditions, D. innoxia plants 
delivered SNE decreased lignin content insignificantly and 

POX activity significantly by 6 and 35%, respectively, in 
comparison with that of untreated control (Fig. 5).

3.7 � S. nigrum Leaf Extract Altered Cadmium Content 
and Its Translocation Factor of Cd‑Exposed D. 
innoxia Plants

Data presented in Table 3 showed that the increase in the 
soil cadmium level caused an increase in cadmium content 
of root and leaves tissues. Lower amount of cadmium was 
recorded in leaves than root. Application of SNE signifi-
cantly decreased cadmium content of root and leaves tissues 
in plants exposed to 50 and 100 mg Cd kg-1 by 34.5 and 
56.9%, and 11.5 and 67.9%, respectively, when compared 
with the plants subjected to the same levels of Cd stress 
without SNE spraying. The translocation of Cd from roots to 
leaves D. innoxia plants was expressed by the translocation 
factor (TF) (Table 3). In plants subjected to 50 and 100 mg 
Cd kg-1, translocation factor increased from 0.651 to 0.795. 
Surprisingly, plants received SNE exhibited the lowest TF.

Fig. 5   Impact of Cd stress, 
foliar application with Sola-
num nigrum extract and their 
interactions on Lignin content 
(mg g-1 DW) (a) and Activ-
ity of peroxidase (POX; μmol 
mg-1 protein g-1 FW min-1) 
(b) in Datura innoxia plants. 
Water and Solanum nigrum 
leaf extract (SNE) indicate the 
plants sprayed with distilled 
water, Solanum nigrum extract, 
respectively. Bars donate aver-
ages and standard errors of four 
independent replicates (n = 4). 
Different alphabetical letters 
designate significant differences 
among the treatments at P < 
0.05, based on LSD test.
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4 � Discussion

Heavy metal tolerance is established as a complicated pro-
cess, so looking for another approach encompassing the 
exploiting of metal-hyperaccumulators extracts as natu-
rally pervasive to metalliferous soils species (Hagemeyer 
2004) may provide some promising perceptions to a higher 
potential of detoxification capacity of plants (Shanmugaraj 
et al. 2019). The detrimental influence of high Cd level in D. 
innoxia performance can be cleared to decrease the area of 
leaves, fresh, dry weight, and length of shoot and root of D. 
innoxia plants grown under Cd stress. The growth reduction 
influence of Cd on D. innoxia plants may be due to differ-
ent factors; among them are oxidative burst, nutrients defi-
ciency, and water balance disturbance (Sarwar et al. 2010). 
Moreover, cell elongation, cell division, and an amplification 
may be repressed by Cd stress as demonstrated by El Rasafi 
et al. (2020).

Utilizing natural plant extracts has been registered in the 
literature to underpin the growth of various plants such as 
wheat (Tomar et al. 2015), and venca (Abeed et al. 2021). 
Stimulating impacts of SNE were noticeable owing to the 
existence of citric acid (CA), ascorbic acid (AsA) and pro-
line (as antioxidants) and some micro and macronutrients 
(Fe, iron; Zn, zinc; Mg, magnesium) in the plant extract 
(Table 1). Study of Zeng et al. (2021) on castor bean proved 
that foliar sprayed citric acid alleviated lead (Pb) stress via 
improving growth, as well as fresh and dry biomass. Also, 
a study of Zhang et al. (2019) on Cd-stressed maize plants 
revealed that AsA application induced growth improvement 
via stimulation in photosynthetic pigments, amino acids, and 
protein, which might have enhanced cell enlargement and 
growth of plant (Aziz et al. 2018). Study of Zouari et al. 

(2016) indicated that proline enhanced growth rate of date 
palm (Phoenix dactylifera L.) under Cd stress. In addition to 
Mahdieh et al. (2018) who pointed that Zn as a micronutri-
ent caused an increment in the growth parameters (root and 
shoot lengths, dry and fresh weights, and number of leaves) 
of Phaseolus vulgaris plants. Wu et al. (2020) stated that Zn 
foliar sprayed enhanced the photosynthesis, tissue biomass 
of wheat under Cd stress.

Photosynthetic pigments and carotenoids are fundamental 
for photosynthesis in the plant (Abeed et al. 2020; Ding et al. 
2021). The drop in photosynthetic pigments may be ascribed 
to reduction in leaf area which shoulders light capturing and 
photosynthesis achieving (Xu et al. 2009). Moreover, dimi-
nutions in photosynthetic pigments resulted from chloro-
phyll destruction by triggering activity of chlorophyllase and 
chlorophyll degrading enzymes under environmental stress 
circumstances (Vernon and Selly 1966; Sayyari et al. 2013). 
The protective effect SNE on photosynthetic pigment and 
carotenoids could be owing to SNE with a high incidence 
of AsA, Mg, Ca (calcium), Zn and Fe ions (Table 1), which 
directly influence photosynthetic pigments since Fe and Ca 
activate the chlorophyll biosynthesis, whereas ascorbic acid 
acts as an antioxidant. It was also established to be conju-
gated with several biological activities in the plant as an 
enzyme catalyst and as a donor/receptor in electron transport 
(Abdel-Hafeez et al. 2019). Zhang et al. (2019) also contin-
ued the results of AsA-mediated protection of chlorophyll 
versus environmental stresses. Hence, it is shown that foliar 
spraying with AsA withstand the negative effects of Cd 
on photosynthesis and retained pigments biosynthesis and 
related components.

Among the diverse plant responses to Cd stress is gen-
eration of compatible osmoprotectants. This aids cells to 
decline oxidative injury produced by ROS in response to 
high Cd stress level via protecting sub-cellular cells and also 
displaying osmotic adjustment (Abeed and Dawood 2020). 
Documented drops in soluble sugars are linked to a decrease 
in leaves photosynthetic pigments that resulted in suppres-
sion of photosynthetic activity and employment of carbohy-
drates into another sink.

In this concern, Yaghoubian et al. (2016) who docu-
mented that Cd stress declines photosynthetic pigment and 
total carbohydrates due to photosystem II higher sensitiv-
ity. The decrease of soluble proteins in D. innoxia plants 
was demonstrated by Dawood and Abeed (2020) which 
was inhibited by the buildup of proline and total amino–N. 
Moreover, Hussain et al. (2020) deduced this reduction as 
a result of the disturbance in nitrogen metabolism or nitrate 
absorption inhibition. On the other hand, spraying with SNE 
enhances the ability of Cd-stressed D. innoxia plants to 
intensify levels of soluble sugars and soluble proteins. These 
findings designated that SNE may have participated in osmo-
tolerance of Cd-exposed D. innoxia plants by stimulation of 

Table 3   Impact of cadmium stress, foliar application with Solanum 
nigrum (S. nigrum) extract and their interactions on cadmium root 
and leaves content and translocation factor (TF) in Datura innoxia (D. 
innoxia) plants.

Each value donates average ± standard error of four independent rep-
licates (n = 4). a, b, c different letters within the same row designate 
significant divergent at P < 0.05 among the treatments, based on LSD 
test. SNE, Solanum nigrum leaf extract; DW, dry weight; μg, micro-
gram; kg, kilogram; Cd, cadmium; nd, not detected

Treatments Cd content (μg plant−1 DW) TF

Root Leaves

Control 0.123±0.010e 0.014±0.001d 0.114±0.010e
SNE 0.044±0.001f nd ---
50 mg Cd kg-1 soil 20.32±0.23c 13.230±0.24b 0.651±0.032b
50 mg Cd kg-1 soil 

+ SNE
13.43±0.44d 5.810±0.32c 0.433±0.021c

100 mg Cd kg-1 soil 60.09±2.02a 47.760±0.65a 0.795±0.014a
100 mg Cd kg-1 soil 

+ SNE
53.110±1.01b 15.360±0.55b 0.289±0.012d
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carbohydrates production in response to Zn, which has an 
important role in activation of the enzymes that are respon-
sible for carbohydrates biosynthesis and transformation 
(Gheshlaghi et al. 2019). The existence of Ca in the Cd-
hyperaccumulator extract may increases protein synthesis or 
decrease protein degradation in Cd-treated plants.

There is a close relationship between the accumulation of 
amino acids, proline and potency of plants to survive against 
Cd stress. Proline acts for osmotic adjustment and donates 
the stability of the subcellular structures to scavenge ROS 
and to neutralize cellular redox potential in addition to its 
role as a signaling molecule and source of energy (Szabados 
and Savouré 2010). Results of this study witnessed highly 
significant increases in total free amino acids and proline 
contents in Cd-exposed plants. Comparable results were 
detected by Yılmaz and Parlak (2011). The rehabilitation 
from the noxious effect of Cd stress has manifested as a 
result of the existence of enriched content of ascorbic acid 
and proline in the extract of S. nigrum plant and this increase 
in amino acids could be ascribed to ascorbic acid suppressed 
the rise of the ROS (Shalata and Neumann 2001). Ascorbic 
acid plays as a detoxification agent to destructive damage 
induced by free radicals (Asada 1999). Perveen et al. (2016) 
documented that alfalfa leaf extract conferred Cd resistance 
of wheat plant by increasing leaf free proline and total free 
amino acids thus increased growth and yield of plants under 
Cd stress.

Alkaloids and Phenolics act as non- enzymatic antioxi-
dants that enhance the antioxidant capacity of a cell to scav-
enge ROS liberated under Cd stress (Gill and Tuteja 2010). 
Alkaloids metabolites are not essential for the completion 
of life cycle of the plant; rather frequently function as signal 
molecules, or chemical defenses against stress conditions 
(Vernay et al. 2008). Also, phenols serve as a substrate for 
many antioxidants enzymes, so, it mitigates Cd stress inju-
ries. Evaluation the content of alkaloids and total phenolic 
compounds in this investigation denotes the non-enzymatic 
level of ROS scavenging, and we noticed that the levels of 
both alkaloids and phenolic compounds were increased in 
the shoots of D. innoxia plants supplied with moderate Cd 
level (50 mg kg-1) confirming the hypothesis of the external 
constraints (e.g. HMs) which restrict the rate of dry matter 
accumulation may elicit the alkaloids manufacture (Vernay 
et al. 2008). It has also been postulated that secondary metab-
olism may be an integral part of the plant capacity to adjust 
metabolic processes to survive and reproduce in abiotic stress 
involving HMs existence. Our findings are parallel with the 
finding in Narcissus tazetta (Soleimani et al. 2020), Papaver 
somniferum (Lachman et al. 2006) and Brassica juncea (Kaur 
et al. 2018). Furthermore, Manquián-Cerda et al. (2016) who 
reported that the content of phenolic compounds significantly 
increased in 100 μM Cd-stressed blueberry (Vaccinium cor-
ymbosum L.) leaves. While under high Cd level (100 mg 

kg-1), D. innoxia plant showed considerable depletion in the 
content of alkaloids and phenolics indicating that Cd con-
tamination can alter the chemical composition of D. innoxia 
leaves, thus, affecting the quality, efficacy, and safety of nat-
ural plant derivatives produced by medicinal species. The 
lack of capacity to produce these molecules (alkaloids and 
phenolics) in leaves under high Cd level suggests the loss 
of biosynthetic components that may be due to an inactiva-
tion of enzymes or a redirection of metabolic functions to 
maintain growth (Vernay et al. 2008). Supplementation of 
SNE exacerbated content of alkaloids and phenolics signifi-
cantly in moderate Cd-stressed plants and re-nourished alka-
loids and phenolics content of leaves in highly Cd-stressed 
plants, thereby participating adjustment of osmotic status 
or an increase in plant hormone activities. Thus, the over-
accumulation of plant secondary metabolite acts as a plant 
adaptive mechanism in response to Cd stress (Ashraf et al. 
2018). These results are in harmony with that of Howladar 
(2014) and Khalofah et al. (2020) who indicated that foliar 
application with moringa leaf extract significantly augmented 
the content of total phenols and the antioxidant potential in 
shoots of Phaseolus vulgaris and Lepidium sativum plants 
when compared to plants grown under Cd stress.

One of mechanisms to metal detoxification is by conjuga-
tion or chelation and compartmentalizes them in the vacuole 
away from the cytosolic environment. In plant cell, GSH and 
PCs shoulder the coordinate of Cd by binding it with the 
thiol group. In the current study, GSH and PCs display simi-
lar responses to Cd treatments (both increased), probably 
due to their co-regulation. High glutathione levels facilitate 
phytochelatins synthesis by the activation of the enzyme 
phytochelatin synthase thereby sequestration of heavy metal 
phytochelatin conjugates in the vacuole. Several investiga-
tions indicated that exacerbated GSH content is associated 
with capability of plants to counter Cd-induced oxidative 
stress (Hossain et al. 2010). SNE enhanced their content for 
efficient Cd-detoxification, and the subsequent tolerance of 
Cd toxicity. These results may be ascribed to biochemical 
components denoted in the extract such as proline and citric 
acid. Similar results of Xu et al. (2009) proved that proline 
application serves in attenuating Cd toxicity by detoxify-
ing ROS, boosting the glutathione level and protecting the 
activity of antioxidative enzymes in Cd-stressed plants. Al 
Mahmud et al. (2018) showed that citric acid confer Cd 
stress tolerance via enhancing the pool of ascorbate (AsA) 
and glutathione (GSH) and increasing the phytochelatins 
(PCs) content. Furthermore, GSH can play a key role in ROS 
detoxification and altering cellular redox status of protein via 
the AsA-GSH pathway in plants this pathway was activated 
by natural amended ascorbic in SNE (Table 1).

In the current study, D. innoxia plants grown under differ-
ent Cd levels displayed higher content of hydrogen peroxide 
and malonaldehyde. Production of malonaldehyde in plant 
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amplified under elevated Cd stress levels as a result of the 
plant losing its ability to hamper ROS whilst hydrogen per-
oxide posed membrane injury by the generation of hydroxyl 
radical (OH-) and lipid peroxidation (Das and Roychoudhury 
2014). Addition of SNE to Cd-stressed D. innoxia plant reg-
istered the ability to counteract the noxious impacts medi-
ated by Cd stress through lessening MDA and H2O2 hyperac-
cumulation. These results may be ascribed to biochemical 
components denoted in the extract such as ascorbic acid, 
proline and organic acids viz. citric acid (Table 1) that shoul-
ders an important role in declining ROS levels in the Cd 
stressed plants via activation of antioxidant enzymes (Eissa 
and Abeed 2019). These findings are in line with Weijie 
et al. (2021). AsA was linked to ROS metabolism protecting 
plant tissues from detrimental oxidative injury by serving as 
reductant thus decreased free radicals level in cell (Zhang 
et al. 2019). Citric acid has been reported in iron-generated 
stress, aluminum detoxification, and tolerance towards heavy 
metal (Gao et al. 2010; Faraz et al. 2020).

We found lignin content was highly abundant and its bio-
synthetic peroxidase activity was triggered in Cd-exposed 
plants. Cd is recognized to motivate oxidative stress as a 
signaling molecule; H2O2 elicits secondary reactions, such 
as an induced peroxidase activity, which contributes to 
boosted lignification (Finger-Teixeira et al. 2010). Lignifica-
tion results in decrement of the cell wall extensibility which 
might limit cell enlargement as evidenced by reduced growth 
and stunted D. innoxia plants grown under Cd stress.

Lignin is cell wall material that highly deposited as a 
mechanical barrier against external stressor, e.g. HMs, 
preventing metal entrance (stress lignin) (Bruce and West 
1989). Addition of SNE to Cd-stressed D. innoxia plants 
showed the ability to reduce POX activity and subsequent 
adequate lignification regulated from high inducible rate 
(restricting cell growth) to relatively low or moderate level 
to the extent that permits cell elongation and growth. Normal 
lignin deposition accompanied with reduced POX activity 
under SNE application may be mostly attributed to the rep-
resented ascorbic acid in the extract (Table 1). Peroxidase 
has been proposed to play an vital role in the lignification of 
cell walls which can oxidize phenolics to phenoxy radicals, 
whereas AsA has a regulatory role in the oxidation of phe-
nolics. The oxidation is completely suppressed by a low AsA 
concentration. AsA compete phenolics as a substrate result 
in oxidation of AsA into dehydroascorbic acid rather than 
production of phenoxy radicals (Takahama 1993). These 
radicals, formed via phenolics oxidation, can bind to cell 
wall leading to lignification or formation of cross-links in 
walls, but this would be impossible as long as any AsA was 
present in cell walls (Takahama 1993).

The lower content of Cd in leaves than roots jointed with 
absence of toxicity symptoms in SNE treated Cd-stressed 
plants could rationalize the importance of Cd root-retention 

mechanism established by D. innoxia plants in order to 
protect aerial parts versus the toxic influence of Cd. Simi-
larly, Guo et al. (2015) reported that Cd ions were mainly 
retained in the roots of Thuya plants (Platycladus orientalis) 
and juniper (Juniperus chinensis) submitted to Cd stress, 
and therefore, small amounts of Cd were transported to the 
leaves.

Also, the current study revealed that SNE application 
reduced the Cd content in roots and leaves of Cd-stressed 
D. innoxia plants that witnessed by the apparent plant liveli-
ness compared with the SNE non-treated Cd-stressed plants. 
These results may be maily ascribed to proline denoted in 
the extract. Hence, similar results of Zouari et al. (2016) 
proved that proline application not only serves in reduced Cd 
uptake by date palm roots but also reinforced its exclusion, 
and therefore, exogenous proline could constitute a barrier 
against Cd absorption the matter that emphasized herein by 
the decrease of Cd translocation recorded in SNE-treated 
plants.

5 � Conclusions

Using plant extracts derived from plants that are highly tol-
erant to heavy metal toxicity can be accounted as a satis-
factory approach for a healthy future. Solanum nigrum leaf 
extract herein accomplished beneficial role in enhancing 
the performance of plants grown under cadmium toxicity 
via improving morphological attributes, photosynthetic 
pigments, osmo-metabolic compounds, cell extensibility 
accomplished by adequate lignification in terms of low 
lignin content and downregulated pexoidase activity, and 
non-enzymatic antioxidants that imparted its medicinal 
properties/quality as well as curtailed oxidative stress and 
reduced foliar cadmium content. Accordingly, it could be 
employed in the agricultural sector under cadmium stress 
conditions and as an opportune way in cadmium stress green 
mitigation in plants. To the best of the authors’ knowledge, 
this is the first investigation clarifying the impact of Solanum 
nigrum leaf extract on physio-biochemical performance of 
Datura innoxia under Cd stress and additional proteomic 
reports can provide information on the influence of Sola-
num nigrum leaf extract on plant metabolism under cad-
mium stress to ensure the safety and sustainability; thus, it 
can be utilized Solanum nigrum leaf extract as integrated 
practice when metal-contaminated regions were exploited 
for the agriculture of the multipurpose plants.
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