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Abstract
Increasing rates of nitrogen (N) conventional fertilizer have led to increasing risks of N losses to the atmosphere, mainly as 
ammonia (NH3) and nitrous oxide (N2O). The aim of this study was to evaluate the effect of foliar N-based nanoformulations 
on the dynamics of N2O and NH3 emissions from grasslands. Six N treatments (50 kg N ha−1) plus a control (n = 4) were 
tested on a completely randomized design: granular urea (Urea-g), dissolved urea (Urea-d), dissolved ammonium nitrate 
(NH4NO3), and nitrate-, urea-, and ammonium-based nanoformulations (NO3-F, Urea-F, NH4-F) applied as foliar spray to 
intact soil cores maintained under controlled conditions. In addition, a control N = 0 was included. Cumulative emissions 
of N2O and NH3 (mg N m−2) were measured using dynamic/static chambers. Effects on yield and soil available N were also 
quantified. Volatilization of NH3 was the main N loss pathway (ranged from 2 to 51% of the N applied). Higher emissions 
were observed with NH4-F and low emissions in the nitrate-based fertilizers. Direct N2O losses were low compared to NH3 
losses, varying between 0.07 and 0.25% of the N applied. Due to high NH3 losses, indirect N2O losses were 0.3 to 2.8 times 
greater than direct N2O losses. There was no effect of N treatments on soil available N or pasture yield. The application of a 
NO3-foliar formulation emerges as a potential alternative for the mitigation of integrated N gaseous emissions. Ammonium-
based nanoformulations require improvements in order to reduce losses. Further studies should include yield evaluations 
under field conditions, cost–benefit analysis, and potential impacts in the agri-food chain.
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1  Introduction

Urea is the most used synthetic nitrogen (N) fertilizer among 
farmers, accounting for more than 70% of worldwide ferti-
lizer usage due to its high N concentration and low cost per 
unit of nutrient (Driver et al. 2019). Increasing amounts of 
N-based fertilizers, such as urea, have been used to sustain 
forage yields for cattle production based on direct grazing 
of permanent grasslands (de Klein et al. 2017; Oenema et al. 
2014). Cropping and grasslands systems of southern Chile 
are commonly fertilized with granular urea with a N supply 

ranging from 45 to 300 kg N ha−1 (Alfaro et al. 2018; Alfaro 
and Salazar 2005; MMA 2020; Mora et al. 2007).

Intensification of N fertilization has raised general con-
cern regarding large N losses to the atmosphere (Sun et al. 
2008). Gaseous losses due to N fertilizer application occur 
mainly as ammonia (NH3) volatilization and nitrous oxide 
(N2O) emissions, both of which are important pollutant 
products of local agronomic activity (Alfaro et al. 2018). 
Ammonia has been associated with soil acidification, acid 
particulate matter and rainfall, and odors (Aneja et al. 2009) 
and has indirectly been linked to N2O and global warming 
(IPCC 2014a; Tian et al. 2020). Nitrous oxide is a potent 
greenhouse gas (GHG) which contributes to the depletion of 
the ozone layer (Matheyarasu et al. 2016). Worldwide, 12% 
of N2O losses are attributed to synthetic fertilizers applied 
to agricultural soils (IPCC 2014b).

Worldwide, optimum fertilizer rate is largely depend-
ent on soil N status and crops or grasslands requirements. 
Nitrogen applied as urea directly to soil surface is usually 
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followed by significant losses via NH3 volatilization (Pan 
et al. 2016; Salazar et al. 2012; Silva et al. 2017), denitrifi-
cation (Alfaro et al. 2018; IPCC 2014a), and leaching (Leip 
et al. 2015). These losses are associated to the several trans-
formations of the N fertilizer occurring in the soil providing 
ammonium (ammonification) and/or nitrate (nitrification), 
for N plant uptake (Cameron et al. 2013), which in turn, 
potentially leads to low nitrogen use efficiency (NUE).

In an effort to mitigate N loss pathways and increase 
NUE, sustainable agricultural practices have been proposed, 
including urease and nitrification inhibitors and controlled-
release fertilizers (Krol et al. 2020). Application of these 
compounds when used together with granular urea in soils 
have resulted in up to 44% reduction of N2O emissions 
(Alfaro et al. 2018). However, limited effects have been 
found on pasture (Blennerhassett et al. 2006; Vistoso et al. 
2012) and crops yield and N uptake (Cayuela et al. 2016; 
Hube et al. 2017). Foliar fertilization using mainly urea as a 
source of N has been suggested as an option to reduce total 
fertilizer input and minimize N runoff in turfgrass (Liu et al. 
2008; Quin et al. 2015); however, the ubiquitous condition of 
urease enzyme in plant leaves and also environmental factors 
may exacerbate NH3 losses after urea hydrolysis (Blenner-
hassett et al. 2006). Foliar N application, using conventional 
or enhanced fertilizers dissolved in water, has been evaluated 
in order to increase NUE due to immediate N availability 
(Dimkpa et al. 2020); nevertheless, the rapid availability 
may result in high N-NH3 losses to the atmosphere associ-
ated to urease activity, as previously explained.

The use of materials with dimensions up to 100 nm has 
been proposed as innovative nutrient carriers known as 
nanofertilizers (Adisa et al. 2019; Dhir 2021; Shang et al. 
2019). These nanomaterials have unique properties such as 
a high surface-to-volume ratio, targeted sites and sorption 
capacity, and penetration capability into plant leaves, favor-
ing the release of accurate amounts of nutrients in order 
to match plant’s demand (Agrahari and Dubey 2020; Hong 
et al. 2021; Sidorowicz et al. 2019; Zulfiqar et al. 2019). In 
particular, N nanofertilizers have been developed for soil 
application in crops (Benício et al. 2016; Chhowalla 2017; 
Kottegoda et al. 2017; Preetha and Balakrishnan 2017); 
however, there is limited information regarding application 
and the potential environmental implications of N nanofer-
tilizers in grasslands (Mejías et al. 2021). Thus, research on 
the dynamics of N gaseous losses from grassland systems 
after nanoformulation application is needed.

Andisols have been described to have strong N sorp-
tion—mainly as ammonium (NH4

+)—that would potentially 
reduce available N in soil solution for N uptake in crops and 
grasslands (Cardenas et al. 2013; Huygens et al. 2007; Sala-
zar et al. 2012). In addition, soil nutrient retention together 
with high inputs of synthetic fertilizers have contributed to 
forage N surplus, increasing the risk of nitrate toxicity for 

animal consumption (Anrique 2014; Pacheco and Waghorn 
2008). We suggest that foliar application of an enhanced 
N nanoformulation could affect N cycling in pastures by 
overcoming the inherent NH4

+ soil sorption, increasing plant 
availability through foliar application, and reducing poten-
tial losses to the wider environment from pasture systems. 
Accordingly, the aim of this study was to evaluate under 
controlled conditions the N2O and NH3 losses from a per-
manent grassland system, following the application of foliar 
nanoformulations compared to conventional N fertilizers.

2 � Materials and Methods

2.1 � Site Characterization and Soil Used 
in Lysimeters

The experiment was carried out under controlled condi-
tions, using an Andisol (Typic Hapludands; CIREN 2003), 
from a grassland site with a 2-year-old perennial ryegrass 
(Lolium perenne L.), with no recent N fertilization or live-
stock grazing (2 years). The site was located at the Instituto 
de Investigaciones Agropecuarias, INIA Remehue (40′31° 
S, 73′03° W, 65 m above sea level). This soil was chemi-
cally and physically characterized (n = 4, 0–15-cm depth, 
Table S1), following the methods compiled by Sadzawka 
et al. (2006) and outlined by Rowell (1997), respectively.

2.2 � Experimental Design

An experiment was performed using intact soil cores 
collected from a L. perenne pasture (n = 28, 0–15-cm 
depth) and assembled into PVC lysimeters of 9.7  cm 
inner diameter and 20.0 cm height. Plants contained in 
the soil cores were trimmed at 7 cm over soil surface the 
day before N application. Six N treatments were applied 
(Table S2), each one at an equivalent rate of 50 kg N ha−1 
(5,000 mg N m−2): granular urea (Urea-g, 46% N), dis-
solved urea (Urea-d, 46% N), ammonium nitrate (NH4NO3, 
33% N), and three novel-based nanoformulations includ-
ing nitrate (NO3-F, 4.3% N), urea (Urea-F, 0.8% N), and 
ammonium (NH4-F, 6.0% N). Granular urea was applied 
directly to the soil to mimic the conventional practice 
of farmers, while remaining treatments were dissolved 
in ultrapure water (1:2) and applied as a foliar spray 
(Fig. S1a). A treatment without N was included as con-
trol (Table S2). Nanoformulations were analyzed through 
several techniques for characterization (Figures S2-S4), 
including X-ray diffractometer (XRD, Bruker New D8 
Advance ECO), Fourier-transform infrared spectroscopy 
in attenuated total reflectance mode (FTIR-ATR, Perki-
nElmer Frontier universal ATR), thermogravimetric 
analysis (TGA, Q500, TA Instruments), dynamic light 

1759Journal of Soil Science and Plant Nutrition  (2022) 22:1758–1767

1 3



scattering (DLS, Brookhaven 90 plus), and scanning elec-
tron microscopy (SEM, EDX mics F + Hitachi Deben). 
Total N in all fertilizers was measured using an elemental 
analyzer (LECO CN-828, LECO Corporation, MI, US) 
according to the Dumas dry combustion method (Wright 
and Bailey 2001). After synthesis, nanoformulations were 
sonicated (VWR ultrasonic cleaner 97043–938) for 30 min 
at room temperature and then applied directly to leaves 
using a hand sprayer. All treatments were distributed in 
a completely randomized design (n = 4) under controlled 
temperature conditions, set at 20 °C and verified using 
a data logger device (HT-HR TruTrack Data Logger for 
Humidity and Temperature, Intech Instruments). The pho-
toperiod was adjusted to 16/8 day-night hours using LED 
lamps (LED T8 Glass tube 18w, 6500 k daylight, FSLT812 
18 W). Both temperature and photoperiod were set in order 
to simulate spring–summer season conditions. Soil mois-
ture was adjusted twice a week through gravimetric water 
balance, directly adding distilled water to the soil when 
required, to a target of 75% WFPS.

2.3 � Ammonia Volatilization Measurements

Ammonia volatilization quantification was carried out 
using dynamic PVC chambers (Figure S1b), as previously 
described by Alfaro et al. (2018). Briefly, 28 chambers of 
11 cm internal diameter and 10 cm height were used and 
placed on top of each lysimeter after N application. Each 
chamber had a transparent lid on top to allow the passage of 
light assuring plant photosynthesis. Using a vacuum pump, 
continuous airflow was circulated at 4 L min−1 as a carrier 
of volatilized NH3. Airflow was drawn to the system through 
two inlets and two outlets placed in each of the chambers, and 
flux was daily controlled with a rotameter (2–20 SCFH/1–10 
LPM, LZT-08A01M-V, No. 1306 1803). Two flasks contain-
ing 100 mL of orthophosphoric acid (H3PO4) 0.02 M each 
were placed before airflow inlets as an acid trap and follow-
ing airflow outlets to collect samples of volatilized NH3. A 
moisture trap between sample flasks and vacuum pump was 
also included to avoid condensation into the system. Acid 
traps and sample solutions were changed at 2 h, 6 h, and then 
every 24 h during the first week and then every 2–3 days until 
day 21, with continuous NH3 accumulation in solution up 
to the respective sampling day. Samples were weighed and 
stored frozen (− 20 °C) in 125-mL plastic bottles until analy-
sis for N-NH4 using automated colorimetry (SKALAR, SA 
4000, Breda, the Netherlands), through reaction with sodium 
dichloroisocyanurate, sodium salicylate, and sodium nitro-
prusside to form indophenol dye (Searle 1984).

Ammonia emission rates (mg of N-NH3 m−2  h−1) for 
each sampling period were calculated following Eq. 1 (Mis-
selbrook et al. 2005):

where C is N-NH4 concentration of the acid trap solution 
(mg L−1), V is the volume of acid trap solution (L), A is 
the exposed surface area of the chamber (m−2), and t is the 
duration of the sampling period (h). The total emission cor-
responds to the sum of daily emissions collected during the 
experimental time period (21 days).

2.4 � Nitrous Oxide Emission Measurements

Nitrous oxide emissions were quantified adapting the 
dynamic chambers (Figure S1b). At the end of each sam-
pling period for NH3, airflow was stopped, and the vacuum 
pump disconnected, using the chamber in a static condition. 
All chamber inlets and outlets were sealed with plastic taps 
leaving only one outlet with a three-way stopcock connector. 
Through this connector, air samples (30 mL) were collected 
using a syringe at 0, 30, and 60 min and stored in 22-mL 
glass vials. Air samples were sampled before N fertilization 
and at 2 h, 6 h, and then every 24 h during the first week. 
Then, air sampling frequency continued every 2–3 days for 
the following 2 weeks, and once a week until day 53. The 
concentration of N2O in the gas samples was determined 
using a gas chromatograph (Perkin Elmer® Precisely, Clarus 
600 Model, Shelton, USA) fitted with a 63Ni electron cap-
ture detector (ECD) and a Carboxen™ 1010 PLOT column 
(15 m × 0.32 mm ID, Sigma-Aldrich Co. LLC., St. Louis, 
USA). The oven, injector, and ECD temperatures were oper-
ated at 60, 260, and 360 °C, respectively. The carrier gas was 
helium with a flow of 4 mL min−1. The minimum detectable 
flux for the methodology was 11 µg N-N2O m−2 h−1.

The N2O fluxes were calculated from the slope of the 
linear increase or decrease of the three concentrations meas-
ured over the enclosure time, similarly to the procedure out-
lined by Saggar et al. (2004). Flux rates were expressed on 
an elemental weight basis as mg N-N2O m−2 h−1. Flux rates 
were calculated and adjusted for air temperature, atmos-
pheric pressure, and the ratio of chamber volume to surface 
area as follows in Eq. 2:

where ΔC/Δt is the slope of the headspace concentration 
during the enclosure time (ppm h−1), M is the atomic weight 
of the gas (28 for N-N2O, 2 N atoms in the N2O molecule), 
Vm is the pressure and temperature-corrected mole volume 
(L mol−1), V is the volume of the measuring chamber (m3), 
and A is the area of the measuring chamber (m2). The frac-
tion V/A equals the height of the measuring chamber.

(1)N − NH
3
rate = (CxV)∕(Axt)

(2)N − N
2
Orate = (ΔC∕Δt)x(M∕Vm)x(V∕A)

(3)Vm = (RxT)∕n × P
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In Eq. 3, R is the gas constant 0.08205 atm L mol−1 K−1, 
T is the chamber temperature during the measurement 
(Kelvin), n is equivalent to 1 mol of the gas, and P is the 
air pressure at the experimental site. Air pressure inside 
the chamber was estimated from the height above sea 
level using a barometric equation. To calculate cumulative 
fluxes, daily fluxes were then added according to the meas-
urement period before averaging across the four replicate 
chambers. Days without measurements were filled by linear 
interpolation.

2.5 � Net N Losses from Total N Applied

Gaseous net N losses from total N applied were calculated 
from the difference between emissions from each N treat-
ment and the control, divided by the applied N rate. Nitrogen 
losses were expressed as the percentage of total N applied 
for NH3, N2O, and total N. Indirect N2O emissions were cal-
culated for net total N losses in both experiments, according 
to the Intergovernmental Panel on Climate Change guide-
lines (IPCC 2006) using the default emission factor EF4 (1%) 
for volatilized N (N-NH3).

2.6 � Additional Determinations

2.6.1 � Soil Available N Concentration

At the end of the experiment, lysimeters were dissem-
bled, soil was thoroughly mixed, and a subsample was 
sieved (2 mm) and then use to estimate soil available N 
(N-NO3

− plus N-NH4
+) following the methodology com-

piled by Sadzawka et al. (2006). Samples were analyzed 
using automated colorimetry (SKALAR, SA 4000, Breda, 
the Netherlands) after extraction with 2 M KCl solution. 
Final soil concentration was corrected by the respective 
soil water content, by air drying samples at 105 °C for 24 h 
(Rowell 1997).

2.6.2 � Plant Yield and N Uptake

Two harvests were carried out on days 32 and 74 after fer-
tilizers application, once plants reached 25 cm height, on 
average, leaving a 5 cm of plant neck and leaves over soil 
surface, in each lysimeter to allow further regrowth. Dry 
mater concentration (%) was determined by drying the clip-
pings obtained at 60 °C for 24–48 h or until constant weight, 
according to Sadzawka et al. (2007). Yield (g DM m−2) was 
calculated multiplying total fresh plant weight from each 
lysimeter by the dry matter concentration and then expressed 
as grams of dry matter yield per unit area. Nitrogen concen-
tration in plant leaves (%) was determined by the Kjeldahl 
digestion method (AOAC 2016) for each harvest and used 

to determine N uptake per treatment using the respective 
yield estimation.

2.7 � Statistical Analysis

Rates and cumulative NH3 and N2O emissions, soil available 
N at the end of the experimental period, plant yield, N con-
centration in plant leaves, and N uptake were analyzed using 
JMP® 10.0.0. Mean statistical differences (p < 0.05) were 
estimated using ANOVA followed by Tukey-HSD test. For 
outliers detection, a robust Z-score method was conducted 
(Iglewicz and Hoaglin 1993). All data met the assumption 
of normality and homogeneity of variance.

3 � Results

3.1 � Characterization of Nanoformulations

The cross analysis of the structural characterization tech-
niques (XRD and FT-IR) confirms the presence of nano-
structures bound to urea, NH4, and NO3, detected by FT-IR 
peaks of bonds’ vibrations of the molecules (see examples 
in Figures S2 and S3). The degree of functionalization deter-
mined by TGA obtained by the synthesis of Urea-F and 
NH4-F was c. 13% by weight with an irregular and slightly 
porous surface (see example in Figure S4). For NO3-F, the 
TGA and the derivative thermogravimetric analysis (DTG) 
indicated an ion exchange capacity of c. 3.9 mmol NO3. 
Particle size in solution by DLS ranged from 121 to 195 nm, 
after dissolution, sonication, and stirring.

3.2 � Ammonia Volatilization

Cumulative NH3 emissions during the 21-day sampling 
period ranged from 101.4 ± 19.5 to 2,550.7 ± 197.9 mg 
NH3-N m−2 for the different N treatments, being higher for 
NH4-F > Urea-d, Urea-F > Urea-g, NH4NO3, and NO3-F 
(Table 1). For ammonium- and urea-based formulations, 
NH3 emissions were higher during the first 2 h after fer-
tilizer application, contrasting to what was observed for 
nitrate-based treatments (Fig. 1a). On the other hand, NH4-F 
reached 826 ± 62.0 and NO3-F reached 2.0 ± 0.3 mg N-NH3 
m−2 h−1 after 2 h of N application (p < 0.05), respectively. 
For all nitrate-based formulations, daily emission rates were 
low and similar to those of the control treatment over the 
21 days of the evaluation period (Fig. 1a, p > 0.05).

Greater emissions were observed with foliar ammo-
nium-based nanoformulation compared to Urea-d and 
Urea-F (p < 0.05; Table 1), representing c. 51%, 22%, and 
19% of the applied N, respectively. On the other hand, 
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NH3 losses from NH4NO3 and NO3-F were low, with 
emissions similar to those observed under control con-
ditions (p > 0.05), equivalent to < 5% of total cumulative 

loss. Additionally, NH3 volatilization was 25 and 111-fold 
greater with NH4-F (largest N loss) than NO3-F and con-
trol treatments (lowest N loss), respectively.

Table 1   Total cumulative N losses (mg N m−2) during the sampling period for the different N treatments applied. Average value ± standard error 
of the mean (n = 4)

Different letters in columns indicate significant differences (p < 0.05), LS means comparison by Tukey HSD test, NA not applicable

Treatments Total cumulative N losses (mg N m−2) N loss from total N applied (%) Indirect N-N2O 
emissions (mg N 
m−2)

N-NH3 N-N2O Total gaseous 
losses

Net total losses N-NH3 N-N2O Net total losses N-N2O

Control 23 ± 4.2d 4 ± 0.1d 27 ± 4.3d NA NA NA NA NA
Urea-g 488 ± 38.0c 14 ± 1.7ab 503 ± 37.4c 476 ± 37.7c 9.3 ± 0.8c 0.21 ± 0.03ab 9.5 ± 0.8c 4.9 ± 0.4c
Urea-d 1,110 ± 77.1b 16 ± 2.0a 1,126 ± 79.0b 1,100 ± 77.4b 21.7 ± 1.5b 0.25 ± 0.04a 22.0 ± 1.6b 11.1 ± 0.8b
NH4NO3 242 ± 64.2 cd 9 ± 0.7bc 252 ± 64.3 cd 225 ± 68.5b 4.4 ± 1.4c 0.11 ± 0.02bc 4.5 ± 1.47c 2.4 ± 0.6c
NO3-F 101 ± 19.5 cd 7 ± 0.5 cd 109 ± 20.0 cd 82 ± 20.1c 1.6 ± 0.4c 0.07 ± 0.01c 1.6 ± 0.4c 1.0 ± 0.2c
Urea-F 980 ± 64.6b 10 ± 1.0bc 990 ± 64.4b 963 ± 58.7b 19.1 ± 1.3b 0.12 ± 0.02bc 19.3 ± 1.3b 9.8 ± 0.6b
NH4-F 2,551 ± 197.9a 13 ± 0.8ab 2,564 ± 198.3a 2,537 ± 176.9a 50.6 ± 4.0a 0.18 ± 0.02ab 50.7 ± 4.0a 25.5 ± 2.0a

Fig.1   Nitrogen emissions as 
a mg N-NH3 m−2 h−1 and b 
mg N-N2O m−2 h−1 follow-
ing the application of different 
foliar N formulations. Average 
values ± standard error of the 
mean (n = 4)

a)

b)
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3.3 � Nitrous Oxide Emissions

Cumulative N2O losses during the experimental period were 
greater in the urea treatments, either as granular or foliar 
fertilizer, reaching up to 31 mg N m−2 after N application 
(Table 1), with no differences between soil (granular) and 
foliar applications (p > 0.05). The lowest emissions were 
registered in the control treatment (3.8 mg N m−2, p < 0.05). 
The use of NH4NO3 as foliar fertilizer significantly reduced 
N2O losses by 42% in relation to Urea-d. The use of nano-
formulations significantly reduced N2O losses when applied 
as NO3 or urea, by 56% and 41%, respectively in relation to 
Urea-d (p < 0.05).

Losses of N2O were distributed along the sampling period 
and only reached similar fluxes to those of the control treat-
ment after day 35, except for the Urea-g treatment (Fig. 1b). 
Emissions were significantly higher in the first 3 weeks 
after the fertilizer application (2.2 mg N m−2, on average), 
in comparison to the emissions during the rest of the evalu-
ation period (0.8 mg N m−2, on average). The NH4NO3 and 
Urea-d emissions started immediately after application, 
while granular urea emissions started 1 week after appli-
cation. Nanoformulations had lower initial emission rates, 
compared to conventional fertilizers, either applied to the 
soil or plants leaves.

Direct N2O losses were low compared to NH3 losses 
(< 5% expressed as net total, and 1.8% ± 0.5, on average, 
Tables 1 and S3). Indirect N2O emissions were high in urea-
based formulations (Urea-d, Urea-F y Urea-g) and in NH4-F 
treatment, ranging from 4.9 ± 0.4 to 25.5 ± 2.0 mg N m−2 
(p < 0.05, Table S3). From all N treatments, the lowest indi-
rect losses were observed in NO3-F and NH4NO3 formula-
tions (p > 0.05; Table 1). Thus, indirect N2O losses were 0.3 
(NO3-F treatment) to 2.8 (NH4-F treatment) times greater 
than those directly measured during the experiment.

Net losses were similar to NH3 emissions, varying from 
82 to 2,537 mg de N m−2. These represented 1.6 ± 0.4 to 
50.7 ± 4.0% of the total N applied. Nitrogen loss as N2O was 
low and did not exceed 0.2% of N applied.

3.4 � Soil Available N and Yield

No significant treatments effect was observed on final soil 
available N concentration (p > 0.05; Table 2), which ranged 
between 22 and 30 mg kg−1 ds, although these values were 
higher than the initial soil concentration (10.8 ± 1.3 mg kg−1 
ds, Table S1).

Treatments did not affect plant yield or N foliar concen-
tration at each harvest or the total cumulative value (p > 0.05; 
Table 2). Plant yield varied between 271 and 451 g DM 
m−2 for the experimental period, while N foliar concentra-
tion varied between 4.5 and 5.2 g 100 g−1, with an average 
of 4.8 g 100 g−1. Treatments neither affected N uptake per 
harvest or overall values (p > 0.05), varying between 13 and 
22 g N m−2.

4 � Discussion

The XRD and FT-IR analysis of NO3-F showed similar 
patterns to those reported by Ureña-Amate et al. (2011) 
and Jobbágy and Iyi (2010). For Urea-F, two phases were 
observed showing urea bonded to the nanostructure (Fig-
ure S2), as characteristic of these materials (Kottegoda et al. 
2017). On the other hand, FT-IR analysis showed a consist-
ent pattern for these molecules (Figure S2) as previously 
reported by Bianco et al. (2009). The TGA analysis showed 
three decomposition stages in the nanoformulations, simi-
lar to those reported by Kameda et al. (2010) and Bianco 
et al. (2009). Particle size analysis according to DLS and 
SEM micrographs (Figure S3) showed that the dimension 
of the nanostructures in all the nanoformulations was within 
the range reported for other nanomaterials as in Meier et al. 
(2020) and Bianco et al. (2009).

Volatilization of NH3 was found to be the main path-
way of N loss in agreement with previous results in similar 
volcanic soils (Alfaro et al. 2018; Salazar et al. 2014) and 
other soil types elsewhere (Pan et al. 2016). In the present 
study, NH3 losses were directly affected by the N form in the 

Table 2   Treatments effect on final soil available N concentration (mg kg−1 ds), overall plant yield (g DM m−2), overall N concentration (g 
100 g−1), and overall N plant uptake (g N m−2), n = 4, ± standard error of the mean

Different letters in columns indicate significant differences (p < 0.05)

Parameters Unit Treatments p-value

Control Urea-g Urea-d NH4NO3 NO3-F Urea-F NH4-F

Soil
  Available N mg N kg−1 ds 26.8 ± 2.7 30.3 ± 4.5 26.2 ± 3.0 21.6 ± 6.3 24.5 ± 3.9 25.7 ± 5.4 21.8 ± 4.6 0.834

Plant
  Dry matter yield g DM m−2 422 ± 38.6 360 ± 63.6 271 ± 45.9 329 ± 44.3 451 ± 70.5 417 ± 95.0 432 ± 61.0 0.395
  N concentration g 100 g−1 4.7 ± 0.09 4.8 ± 0.1 4.9 ± 0.1 4.9 ± 0.1 4.8 ± 0.04 4.8 ± 0.1 4.8 ± 0.1 0.703
  Total N uptake g N m−2 19.8 ± 1.56 17.4 ± 3.0 13.5 ± 2.1 16.4 ± 2.1 21.7 ± 3.5 19.9 ± 4.2 20.8 ± 3.0 0.449
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fertilizer source, with high emissions after the application of 
NH4-F, compared to the urea-based formulations. This can 
be associated to the rapid release of NH4 in an aqueous solu-
tion. In fact, more than 80% of the total N was released when 
NH4-F was dissolved in water (Table S5) after 2-h reaction 
time. This suggests a fast equilibrium between NH4 and NH3 
in liquid solutions, in agreement with Sigurdarson et al. 
(2018). Losses were low in the nitrate-based fertilizers, as 
expected given the reduced potential for N-NH3 formation, 
according to previous studies reported by Pan et al. (2016) 
with NH4NO3 in different agricultural systems. There is a 
lack of information on N gaseous emissions, particularly of 
concurrent measurements of NH3 and N2O, after foliar appli-
cation of nanoformulations (Mejías et al. 2021) so that no 
direct comparison to similar formulations can be presented.

Ammonia losses occurred immediately after N applica-
tion, especially in ammonium- and urea-based nanoformula-
tions, where on average volatilization rates were equivalent 
to 65%, 72%, and 82% at 2 h, 6 h, and 24 h, respectively. 
For Urea-g, NH3 loss occurred after those from dissolved 
formulations, with high emissions 48 h after N fertilization. 
This delay effect could be related to the time required for the 
urease enzyme to hydrolyze urea, as reported previously by 
Dawar et al. (2011). Additionally, the study carried out by 
Torello and Wehner (1983) in Kentucky bluegrass turf (Poa 
pratensis L.) showed that on a dry weight basis, urease activ-
ity was 18 to 30 times higher from turfgrass clippings than in 
soil, which can explain the higher losses observed in foliar 
versus granular formulation application. Also, the surface 
area in foliar application is larger than granular formulations, 
which can exacerbate NH3 loss.

The use of foliar N application has been previously 
foreseen to reduce N2O emissions (Freney 1997). Foliar N 
application would allow to bypass soil N cycle, significantly 
reducing N2O emissions. Nevertheless, emissions still occur 
as N2O dissolved in the soil solution can be taken up by plant 
roots and eventually being translocated through transpira-
tion stream and released through open stomata (Ferch and 
Römheld 2001; Pihlatie et al. 2005), being transported to the 
leaf through the xylem along with the upward movement of 
water (Borah and Baruah 2016; Bowatte et al. 2014; Pihlatie 
et al. 2005). In this case, the leaf area, stomatal density, and 
xylem vessel size can be associated with N2O emissions 
(Bordoloi and Baruah 2017).

The use of NH4NO3 as N source with only a fraction of 
the N applied as NO3, resulted in lower N2O emissions, sug-
gesting this source of N as a potential alternative to reduce 
N2O losses. However, N2O emissions from NH4-based for-
mulations did not differ from those of conventional fertiliz-
ers. As indicated previously, volcanic ash soils can signifi-
cantly adsorbed NH4

+ thus also reducing NO3
− availability 

(Cardenas et al. 2013; Huygens et al. 2007) and denitrifica-
tion losses.

According to our results, total cumulative NH3 volatili-
zation resulted in 14 to 196 times greater losses than those 
as N2O considering the different fertilizer treatments, with 
the highest values in NH4-F, Urea-F, and Urea-d treatments 
(Table 1). As NH3 has been recognized as N2O precursor 
(Erisman et al. 2007), in the current experiment, indirect 
N2O emissions from NH3 volatilization varied between 1.0 
and 25.5 mg N-N2O m−2. Therefore, in the NH4-F treatment, 
indirect N2O losses due to NH3 volatilization were more 
relevant than direct N2O losses. This has been previously 
observed in concurrent measurements carried out after the 
application of N conventional fertilizers (Alfaro et al. 2018).

Although no significant effect on yield or N uptake was 
observed under controlled experimental conditions, this 
could be related to a masking effect of soil organic matter 
mineralization given the experimental set up with optimum 
conditions of temperature and soil moisture for microbial 
activity compared to field conditions, which resulted in an 
increase of soil available N of 2.4 times the initial value, 
with no significant differences between treatments. Soil 
organic matter mineralization in this Andisol has been previ-
ously described as a relevant source of N input in grassland 
systems, with contributions from c. 300 (Alfaro et al. 2009; 
Martínez-Lagos et al. 2015) up to c. 900 kg N ha−1 year−1 
in overfertilized sites (Lobos et al. 2016). This most likely 
resulted in the high N foliar concentrations, in agreement 
with results of pasture characterization in volcanic soils of 
southern Chile (Anrique 2014; Lobos et al. 2016; Pulido 
et al. 2010) and similar yield among treatments.

Our results showed that, high gaseous N losses were 
observed on ammonium- and urea-based formulations given 
the rapid formation of NH4 (Table S5) in these materials as 
discussed previously. In this context, future foliar nanofer-
tilizers would benefit from considering the use of urease 
inhibitors (e.g., NBPT), as in granular urea fertilizers. The 
incorporation of inhibitors have shown to be effective in 
reducing NH3 volatilization from pastures and crops (Pan 
et al. 2016; Silva et al. 2017). Inhibitors can have an impor-
tant effect especially on the first days following N applica-
tion, where according to our results most of the NH3 losses 
were observed for ammonium and urea base formulations. 
Other alternatives may consider foliar nanoformulations 
with low pH, in order to stabilize NH4

+ in the molecule, 
optimizing N absorption and potentially reducing environ-
mental losses, in agreement with results showed by Dawar 
et al. (2011).

Our results indicate that further studies are required to 
fully understand the processes involved, the synergies, and 
swapping effects when using novel nanoformulations. As a 
result, the cost–benefit analysis of the use of these materials 
in grasslands is still uncertain. Additionally, potential impli-
cations for the agri-food chain under field conditions should 
be tested, considering the role of environmental conditions 
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such as intense rainfall after application and the potential 
residues in plant, relevant for grazing animals’ intake.

5 � Conclusions

Greater losses were observed in urea-based formulations, 
due to ammonia volatilization, which represented between 2 
and 51% of the N applied, which mainly occurred immedi-
ately after N application due to a rapid NH4 initial release 
and fast NH3 and NH4 equilibrium in water solutions.

Direct nitrous oxide losses were low varying between 
0.07 and 0.25% N applied, which represented less than 5% 
of the total net N losses. Nitrous oxide emissions were sig-
nificantly higher in the first 3 weeks after the fertilizer appli-
cation (2.2 mg N m−2, on average), in comparison to emis-
sions in the rest of the evaluation period. Due to the high 
ammonia losses obtained in all treatments, indirect nitrous 
oxide losses were 0.3 to 2.8 times greater than those directly 
measured in the experiment.

Ammonium-based nanoformulations require further 
physical and/or chemical improvements, to reduce N losses. 
These options represent an opportunity for the development 
of foliar fertilizers for permanent grasslands, focusing on 
reducing N rates applied given the intrinsic characteristics 
of nanoformulations. Further studies should include field 
evaluations, cost–benefit analyses, and potential impacts in 
the agri-food chain.
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