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a useful solution in determining the minimum time since 
death which is known as the minimum post mortem interval 
(PMIMIN). Usually, forensic entomologists precisely calcu-
late PMIMIN depending on species identification, duration of 
different stages at different temperatures, and other certain 
abiotic factors as geographic location, climate, latitude and 
so on (Turchetto and Vanin 2004; Sharif and Qamar 2021).

Usually, in death investigations, forensic profession-
als collect all insect specimens (adults, eggs, maggots and 
pupae) on corpses or around them. Sometimes, fresh insect 
samples are absent and only puparial exuviae (cases) are 
typically found. The exuvial identification of forensically 
important flies is so problematic, as they are often destroyed 
by the mechanical activity of adult emergence. Accordingly, 
traditional taxonomical identification of these deteriorated 
exuviae is very difficult. Also, natural degradation of DNA, 
enzymes and proteins during aging process deeply com-
promise molecular analysis of forensic samples (Gibbs and 

Introduction

Flies of family calliphoridae (blow flies) are strong flying 
insects, highly mobile and typically one of the first flies 
reaching corpses within minutes after death (Goff et al. 
1993; Kabadaia 2015). Accordingly, these flies may provide 
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Abstract
The distinct and species-specific chemical compounds found on the insect cuticle have demonstrated effectiveness in vari-
ous applications, including species identification. Accurate identification of fly species becomes challenging when only 
damaged empty puparial cases are available, making it difficult to use traditional morphological and molecular identifi-
cation methods. This study aimed to analyze the chemical compositions of puparial exuviae from three forensically and 
medically important fly species; Lucilia sericata, Chrysomya albiceps, and Chrysomya marginalis. Gas chromatography/
mass spectrometry (GC–MS) was employed to assess the chemical profiles of these exuviae and evaluate their accuracy 
in identifying Dipteran insects. The study revealed the presence of twelve classes of chemical compounds across the three 
species, with retention times ranging from 18.78 to 35.03. A total of forty-two compounds with chain lengths ranging from 
C12 to C45 were identified. The profiles of Ch. albiceps and L. sericata displayed similarities, with alcohol being the most 
abundant compound (28.6%) in L. sericata. However, alkanes, including n-alkanes, branched alkanes, and cycloalkanes, 
constituted the main components of the cuticles in the three species, with Ch. marginalis displaying the highest percentage. 
These findings represent an initial step towards utilizing hydrocarbon composition as a practical tool for distinguishing 
between forensic species in Egypt.
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Crockettj 1998; Ye et al. 2007; Moore et al. 2021). One alter-
native method to identify and age insect species is cuticular 
hydrocarbon analysis (CHC). The external layer of insect 
exoskeleton is the cuticle which acts as a mechanical sup-
port, prevents desiccation, protects against different micro-
organisms and serves as a contact or close-range pheromone. 
It is composed of a mixture of esters, alcohols, ketones, 
aldehydes, fatty acids and hydrocarbons (Suarez et al. 2011; 
Sharif et al. 2023). In many insect species; hydrocarbons 
predominate the cuticle (Blomquist and Ginzel 2021) and 
proven to be very stable (Drijfhout 2010; Braga et al. 2016; 
Moore et al. 2022). Cuticular hydrocarbons are composed 
mainly of n-alkanes, branched methyl-alkanes, and alkenes 
(Blomquist and Bagnères 2010; Drijfhout 2010). The con-
stituents of CHCs profile differ among various insect taxa; 
in the number of compounds, their proportions, chemical 
compositions, and chain lengths (Howard and Blomquist 
2005; Sprenger and Menzel 2020; Sharif et al. 2023). These 
differences, along with certain other properties allowed the 
cuticular hydrocarbon content to be utilized for precise cal-
culations of the weathering time of exuviae as well as the 
post mortem interval (Zhu et al. 2007; Sharif et al. 2023).

Many authors reported the uniqueness of CHCs and suc-
cessfully identified many species (Anyanwu et al. 2000, 
2001; Horne and Priestmann 2002; Bejarano et al. 2003; 
Shaalan et al. 2019; Moore et al. 2022). Also, studies con-
firmed that several CHCs exhibit changes in their relative 
abundance with chronological age of insect samples in dif-
ferent life stages (Urech et al. 2005; Zhu et al. 2006; Braga 
et al. 2016; Moore et al. 2021). In many insect species; 
CHCs function as sexual attractant pheromones or clues 
for species discrimination hence, very useful in speciation 
(Rundle et al. 2005). Changes in the composition of these 
clues alter mating preferences and pre-mating isolation and 
can be produced by changing the diet (Stennett and Etges 
1997) or temperature (Buckley et al. 2003). This explains 
the divergence in the cuticular hydrocarbons of geographi-
cally isolated populations due to differences in food and/
or temperature which may lead to reproductive isolation. 
Hence, CHCs represent better indicators of recent specia-
tion events and reproductive isolation than other genetic 
and morphological characters, that require more time to be 
expressed after speciation events.

As far as we know this is the first study on Egyptian cal-
liphorids investigating their cuticular hydrocarbon compo-
sition. Only few studies were done on other insect taxa as 
Hymenoptera (Surtasi et al. 2016; Elshaier 2021), Mantodea 
(Mohammad et al. 2009), or other dipteran species (Gal-
houm 2017, 2018; Shaalan et al. 2019). So, the aim of this 
preliminary study is to use the technique of gas chromatog-
raphy/mass spectrometry (GC–MS) to analyze the chemical 

composition of the puparial exuviae of three widely distrib-
uted Egyptian blow flies of forensic relevance.

Materials and methods

Flies collection and identification

Stock colonies of Lucilia sericata, Chrysomya albiceps and 
Chrysomya marginalis were established from flies initially 
collected during May, June & July 2019 from El-Mansuryia, 
Giza Governorate and Cairo Governorate, Egypt. Collected 
adults were transferred to be reared in the Entomology labo-
ratory, Zoology department, Zagazig University where they 
were maintained in rearing cages under laboratory condi-
tions at (27˚C ± 2) and (55–70%) relative humidity.

Adults were provided with water, sugar and meat as ovi-
position media. Meat was supplied in a clear plastic cup 
with damp cotton piece to prevent drying out of meat and 
checked daily for oviposition. After that, each deposited egg 
batch was transferred to a new plastic jar containing fresh 
meat. Newly hatching larvae were transferred to new jars 
containing fresh meat, covered with muslin and fastened 
with rubber bands. Dry autoclaved sieved sawdust was used 
as a medium for pupation. The pupae were sieved from the 
sawdust and transferred in petri dishes to the rearing cages 
for adult emergence. After adult emergence, puparial exu-
viae were collected for cuticular hydrocarbon analysis.

Morphological identifications were done using the iden-
tification key of adult Calliphoridae (Lutz et al. 2018) at 
Entomology Department, Faculty of Science, Ein Shams 
University, Egypt.

Cuticular hydrocarbon analysis

The extraction procedures of Ye et al. (2007) were slightly 
modified. Three replicates were analyzed for each species. 
Eight puparial cases of L. sericata and Ch. albiceps and 
only six puparial cases of Ch. marginalis (as large size) 
were used for each replicate. Puparial exuviae were washed 
with distilled water, cleaned by tip of fine paint brush and 
then dried at filter papers. Puparial exuviae of each repli-
cate were immersed in 5mL n-hexane in glass vial and 
gentle swirl for 10 to 15  min at room temperature. After 
that, puparial cases were removed from the extracts. The 
extracts were then filtrated and collected in clean glass vials 
and stored at -20 ˚C till GC-MS analysis.
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Gas chromatography–mass spectrometry analysis 
(GC-MS)

The GC-MS system (Agilent Technologies) was equipped 
with gas chromatograph (7890B) and mass spectrometer 
detector (5977 A) at Central Laboratories Network, National 
Research Centre, Cairo, Egypt. The GC was equipped with 
HP-5MS column (30 m x 0.25 mm internal diameter and 
0.25  μm film thickness). Analyses were carried out using 
helium as the carrier gas at a flow rate of 1.0 ml/min at a 
splitless, injection volume of 1 µl and the following tem-
perature program: 45  °C for 2  min; rising at 10  °C /min 
to 300  °C and held for 10 min. The injector and detector 
were held at 280 and 300  °C, respectively. Mass spectra 
were obtained by electron ionization (EI) at 70  eV; using 
a spectral range of m/z 25–700. Identification of different 
constituents was determined by comparing the spectrum 
fragmentation pattern with those stored in Wiley and NIST 
Mass Spectral Library data.

Statistical analysis

In the present study, the data were analyzed using SPSS 
version 22. The peaks were selected for analysis based on 
their retention time (RT). Peaks with RT > 18 was chosen 
and annotated according to their retention times. The rela-
tive abundance of each peak was calculated based on their 
computed area under curve for each hydrocarbon. Discrimi-
nant analysis was executed, and discriminant functions were 
conducted using Wilk’s lambda method. One-way ANOVA 
was applied to study the statistical effect of fly species on 
the percent composition of hydrocarbons. Least significant 
differences (LSD) test was used to illustrate the statistical 

differences in the studied variables among the different 
species.

Results

Twelve classes of chemical compounds were identified from 
the empty puparial cases of the three fly species at retention 
time 18.78 to 35.03. The percentages and the types of the 
extracted compounds were listed in Table 1. The profiles for 
Chrysomya albiceps and Lucilia sericata were very similar. 
Alcohol represented the highest percentage of compounds 
with 28.6% in L. sericata. However, in the three fly species 
L. sericata, Ch. albiceps and Chrysomya marginalis, alkanes 
(n-alkanes, branched alkanes and cycloalkanes) constitute 
the major component of cuticular hydrocarbons with 28.5, 
50 and 89.4%, respectively. The chromatographs in Fig. 1 
showed the characteristic peaks for each fly. Among stud-
ied species, the CHCs abundance in Ch. albiceps was lower 
than that in the others (18 compounds) as shown in Table 2.

The retention times, names, and the frequency of each 
hydrocarbon in the three flies were listed (Table 2). Forty-
two compounds were identified with chain lengths rang-
ing from C12 to C45. Heptacosane (7.6%) is the n-alkane 
dominated the chemical profile of Ch. marginalis, while 
Dodecane is the major one found in L. sericata (2.36%) and 
Ch. albiceps (1.88%). The predominant methyl branched 
alkane is 2-Methyltetracosane in L. sericata and Ch. albi-
ceps and accounted for 5.53 and 4.92%, respectively. While 
the most abundant methyl branched alkane in Ch. margi-
nalis is 2,6,10,14-Tetramethylhexadecane, (2.65%). The 
three species shared one compound in common which is the 
cycloalkane, 1-(2-Octyldecyl)octahydropentalene. Halogen 
branched hydrocarbons were detected in the chemical pro-
files of L. sericata and Ch. albiceps, but none was found in 
Ch. marginalis profile. Also, alkenes with different function 
groups as acid anhydride, alcohol and ester were detected 
in L. sericata and/or Ch. albiceps as illustrated in Table 2 
peaks number 29, (26, 18) and (11, 7), respectively.

Alkadienes were represented in L. sericata with peak 30 
(aldehyde) and in L. sericata and Ch. albiceps profiles with 
peak 35 (alcohol). The only cycloalkadienes observed in 
the chromatogram is the ketone compound, 3-(Dodecenyl)
dihydro-2,5-furandione (peak 36) in the profiles of L. seri-
cata and Ch. marginalis. The later species revealed several 
specific compounds demonstrated by peaks 34, 33, 31, 28, 
27, 25, 23, 20, 17, 15, 13, 9, 8, 6, 5, 4 and 2. The chro-
matogram of Ch. marginalis shows more alkanes than those 
found in other species. According to test equality of group 
means, most peaks differed significantly (P < 0.01) among 
all species.

Table 1  The frequency and percentage of each hydrocarbon classes in 
the three flies
Peak 
No.

Hydrocarbon 
class

Frequency (% of total abundance)
Lucilia 
sericata

Chrysomya 
albiceps

Chrysomya 
marginalis

1 Cyclic Alkane 2 (9.5%) 2 (11.1%) 2 (10.5%)
2 Alkane 2 (9.5%) 2 (11.1%) 15 (78.9%)
3 Alcohol 6 (28.6%) 3 (16.7%) ---
4 Ester 2 (9.5%) 2 (11.1%) ---
5 Ketone 3 (14.3%) 2 (11.1%) 1 (5.3%)
6 Halogenated 

alkane
2 (9.5%) 2 (11.1%) ---

7 Ether 1 (4.8%) 2 (11.1%) ---
8 Halogenated 

Cycloalkane
--- 1 (5.6%) ---

9 Acid --- --- 1 (5.3%)
10 Acid anhydride 1 (4.8%) 1 (5.6%) ---
11 Aldehyde 1 (4.8%) --- ---
12 Epoxide 1 (4.8%) 1 (5.6%) ---
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(2-Ethyl-1-decanol), peak 14 (2-Butyl-1-octanol), and peak 
18 (Phytol).

Peaks 1, 3, 11, 12, 14 and 18 were found in Lucilia 
sericata. Peaks 1, 3, 7, 10, 14, and 18 were identified in 
Chrysomya albiceps. However, in Chrysomya marginalis, 
peaks 2, 4, 5 and 6 were only presented. According to one-
way ANOVA, all the peaks showed significant differences 
among the studied species.

Two canonical standardized functions were obtained by 
discriminant analysis (Table 3). Function 1 explained 83.8% 
of the variations in the dependent variables (Fly species) and 

Discriminant analysis

According to multiple regression analyses using Fisher 
discriminant method, twelve spectral peaks identified as 
characteristic variables among the three species of flies. 
They include peak 1 (Hydroxymethylcyclododecane), 
peak 2 (Heneicosane), peak 3 (Dodecane), peak 4 (Triac-
ontane), peak 5 (Tetracosamethyl-cyclododecasiloxane), 
peak 6 (Tricosane), peak 7 (Oxalic acid, allyl pentadecyl 
ester), peak 10 (9-t-Butyl-4-iodo-2,2-dimethyladaman-
tane), peak 11 (Oxalic acid, allyl octadecyl ester), peak 12 

Fig. 1  Representative gas chromatographs of cuticular compounds of Lucilia sericata, Chrysomya albiceps and Chrysomya marginalis
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Table 2  Classes and percent composition of the compounds isolated from the cuticle of the three flies
Peak 
No.

Hydrocarbon 
class

Compound RT Percent composition p-Value
Lucilia 
sericata

Chrysomya 
albiceps

Chrysomya 
marginalis

1 Cyclic 
Alkane

Hydroxymethylcyclododecane 18.78 8.13 ± 0.70 7.12 ± 0.22 --- 0.000

2 Alkane heneicosane 18.87 --- --- 1.04 ± 0.18ab 0.000
3 Alkane Dodecane 19.65 2.36 ± 0.32 1.88 ± 0.66 --- 0.000
4 Alkane Triacontane 19.75 --- --- 1.85 ± 0.38ab 0.000
5 Cyclic 

Alkane
Tetracosamethyl-cyclododecasiloxane 19.83 --- --- 0.83 ± 0.11ab 0.000

6 Alkane Tricosane 20.60 --- --- 2.43 ± 0.36ab 0.000
7 Ester Oxalic acid, allyl pentadecyl ester 20.98 --- 0.99 ± 0.21a --- 0.000
8 Alkane Tetracosane 21.41 --- --- 4.12 ± 0.64ab 0.000
9 Alkane Heptacosane 22.21 --- --- 7.60 ± 2.17ab 0.000
10 Halogenated 

Cycloalkane
9-t-Butyl-4-iodo-2,2-dimethyladamantane 22.41 --- 1.04 ± 0.14a --- 0.000

11 Ester Oxalic acid, allyl octadecyl ester 22.50 2.50 ± 0.93 --- --- 0.000
12 Alcohol 2-Ethyl-1-decanol 22.52 3.06 ± 1.10 --- --- 0.000
13 Alkane Pentatriacontane 22.94 --- --- 5.94 ± 0.57ab 0.000
14 Alcohol 2-Butyl-1-octanol 23.53 4.42 ± 0.17 2.69 ± 0.41 --- 0.000
15 Alkane Octacosane 23.67 --- --- 6.75 ± 0.77ab 0.000
16 Cycloalkane 1-(2-Octyldecyl)octahydropentalene 25.33 5.68 ± 0.58 0.86 ± 0.04a 0.88 ± 0.25a 0.000
17 Alkane Hexatriacontane 24.36 --- --- 5.91 ± 0.73ab 0.000
18 Alcohol 2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, 

(2E,7R,11R)- Phytol
24.53 3.25 ± 0.35 2.35 ± 0.46a --- 0.000

19 Ketone N-[4-Bromo-n-butyl]-2-piperidinone 24.61 4.07 ± 0.27 3.37 ± 0.25a --- 0.000
20 Alkane Nonacosane 25.03 --- --- 5.57 ± 0.32ab 0.000
21 Alkane 2-Methyltetracosane 25.05 5.53 ± 0.99 4.92 ± 0.33 --- 0.000
22 Halogenated 

alkane
1-Bromohexadecane 25.18 4.87 ± 0.05 2.89 ± 0.29a --- 0.000

23 Alkane Dotriacontane 25.68 --- --- 3.53 ± 0.35ab 0.000
24 Ketone 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione 25.98 3.85 ± 0.09 2.99 ± 0.24a --- 0.000
25 Alkane 2,6,10,14-Tetramethylhexadecane (phytan) 26.31 --- --- 2.65 ± 0.18ab 0.000
26 Alcohol 2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, 

[R-[R*,R*-(E)]]- (T-phytol)
26.59 5.46 ± 1.10 --- --- 0.000

27 Alkane 4-Methyldocosane 26.91 --- --- 2.21 ± 0.17ab 0.000
28 Acid 3,5-Di-tert-butyl-4-hydroxy hydrocinnamic acid 27.01 --- --- 3.03 ± 0.46ab 0.000
29 Acid 

anhydride
2-Dodecen-1-yl(-)succinic anhydride 27.11 3.84 ± 0.91 1.38 ± 0.13a --- 0.003

30 Aldehyde 7,11-Hexadecadienal 27.16 4.00 ± 2.82 --- --- 0.000
31 Alkene Squalene 27.50 --- --- 1.57 ± 0.23ab 0.000
32 Halogenated 

alkane
1,2-Dibromododecane 27.66 3.21 ± 0.51 1.74 ± 0.28 --- 0.000

33 Alkane Tritetracontane 28.07 --- --- 1.13 ± 0.18ab 0.000
34 Alkane Tetratetracontane 28.63 --- --- 0.89 ± 0.08ab 0.000
35 Alcohol 12-Methyl-E,E-2,13-octadecadien-1-ol 29.08 1.88 ± 0.27 4.73 ± 0.18a --- 0.003
36 Ketone 3-(Dodecenyl)dihydro-2,5-furandione 23.73 1.06 ± 0.21 --- 5.73 ± 1.48ab 0.000
37 Alcohol 1-Eicosanol 29.88 5.19 ± 1.79 --- --- 0.000
38 Ester Undec-10-ynoic acid, dodecyl ester 30.23 2.77 ± 0.02 1.90 ± 0.44a --- 0.000
39 Epoxide 1,2–15,16-Diepoxyhexadecane 31.15 2.90 ± 0.30 1.38 ± 0.18a --- 0.000
40 Ether 1-(Ethenyloxy)octadecane 33.50 1.57 ± 0.34 3.74 ± 0.02 --- 0.001
41 Ether Oxirane, [(hexadecyloxy)methyl]- 35.03 --- 1.58 ± 0.24a --- 0.000
According to one-way ANOVA test, P < 0.000, represent significant effect of the studied factor. According to post-hoc least significant differ-
ence (LSD) test a, b represent significant differences (P < 0.05) as compared to Lucilia sericata and Chrysomya albiceps, respectively
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Analysis of CHCs provides very helpful information in 
identifying ambiguous specimens due to physical damage, 
degradation of the genetic material or even in case of sexu-
ally dimorphic or morphologically similar species (Braga 
et al. 2013; Moore et al. 2021). Moreover, various studies 
confirmed the reliability of this technique in assigning indi-
viduals to certain geographic population (Charabidze et al. 
2017; Moore et al. 2022) which in turn can reveal the pres-
ence of non- native population on a cadaver, hence cadaver 

function 2 interpreted 16.2% of variable rate. To validate 
this result, species were plotted according to their scores on 
these two functions. Each individual was correctly assigned 
to its species as observed in Fig. 2 permitting establishment 
of a confident identification.

In Table 4, the unstandardized coefficients of the canoni-
cal discriminant function are displayed. The higher the value 
of the coefficient, the higher the ability to predict the change 
in the dependent variable. The canonical discriminant func-
tion for the three species is discernible.

Discussion

Cuticular hydrocarbons are proven to be species-specific 
in many insect taxa including Diptera (Braga et al. 2013; 
Moore et al. 2022). It is expected to be a promising tool 
when comes into the field of forensic entomology especially 
in cases where only empty puparia are available in a scene. 

Table 3  Summary of Canonical Discriminant Functions
Function Eigenvalue % of 

Variance
Cumula-
tive %

Canonical 
Correlation

1 18355.136a 83.8 83.8 1.000
2 3537.382a 16.2 100.0 1.000

Table 4  Canonical discriminant function coefficients (unstandardized)
Characteristic peaks Function

1 2
C1 − 0.867 3.551
C2 17.835 74.332
C3 -37.899 29.267
C4 1.052 4.382
C5 -3.858 -16.078
C6 -10.439 -43.508
C7 112.916 -75.184
C10 135.229 20.004
C11 − 0.093 1.607
C12 -7.051 -3.120
C14 -12.785 10.309
C18 46.312 -9.549
(Constant) -74.299 -33.121

Fig. 2  Cuticular hydrocarbon composition of Lucilia sericata, Chrysomya albiceps and Chrysomya marginalis distributed in the space of discrimi-
nant functions 1 and 2
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some authors like (Elshaier 2021) recorded only five hydro-
carbons from the cuticle of the wool-carder bees Anthidium 
amabile from Egypt. However, (Drijfhout et al. 2009) esti-
mated the total number of hydrocarbons in the cuticle of 
insects as ranging from five to fifty compounds. Similar to 
many other dipteran flies, the chemical profile of the cuti-
cle of Ch. marginalis composed mainly of n-alkanes, with 
the most abundant compound is heptacosane (C27: H56) 
(Goodrich 1970; Ye et al. 2007; Moore et al. 2022; Kula 
et al., 2023). Squalene was found only in the profile of Ch. 
marginalis and most likely was ingested during feeding as 
insects don’t produce this compound (Braga et al. 2013).

Our results showed that, the only shared compound 
between the three flies is 1-(2-Octyldecyl)octahydropen-
talene (C26: H50). This compound was encountered in 
essential oils extracted from medicinal plants for cytotoxic, 
antimicrobial and insecticidal activities (Mohamed et al. 
2015; Al-Mazroa et al. 2015; Hamada et al. 2018; Sadiq et 
al. 2018; Mamza et al. 2021; Kewlani et al. 2022). Also, 
was detected in ground water samples used for drinking and 
irrigation in Egypt (Abd-Elgawad et al. 2022). So, the pres-
ence of this substance may be due to the feeding habits of 
the three fly species. Kranz et al. (2017), found that diet out-
most the impact of any other abiotic factors on the structure 
of insects cuticle, resulting in significant influence on their 
profiles. Until now, there is no study reported the presence 
of such compound in insect cuticle and the exact role of it 
is still unknown.

In conclusion, the use of GC-MS chemical analysis of 
puparial cases can accurately distinguish between the stud-
ied blow fly species without the need for specialized taxono-
mists for identification. This method has a lot of potential 
to be exploited in criminal investigations and post mortem 
interval estimation. Further research is needed to confirm 
these findings and to investigate the impact of factors such 
as temperature, diet, and location on cuticular components.
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movement from original death location. The main aim of 
this study was to establish if a distinction could be made 
among the empty puparial cases of the three blow fly spe-
cies (Lucilia. sericata, Chrysomya albiceps and Chrysomya 
marginalis) using cuticular hydrocarbon analysis. As far as 
we know, this is the first study that deals with the cuticu-
lar chemical composition of some Egyptian flies of foren-
sic importance. More investigation should be done on the 
cuticle of necrophagous flies as it could greatly facilitate 
species identification and accelerate solving forensic cases 
without the need to rear larvae or pupae to adult stage (Paula 
et al. 2017).

Morphological differentiation can be noticed among the 
adults of those flies (Lutz et al. 2018), while identification of 
larvae is time consuming and challenging specially in early 
instars (Szpila et al. 2014). When comes into pupae, usual 
morphological distinction is very difficult or even impossi-
ble for scientists other than taxonomists due to deformation 
or weathering conditions (Ye et al. 2007; Moore et al. 2022). 
Despite being known in many insect species, the chemical 
composition of the cuticle of many Egyptian species is still 
unknown and requires a thorough investigation. Our results 
showed that the three fly species have a distinct fingerprint 
profile. Their CHCs are like those of other insects and con-
sisted of alkanes, methylalkanes, halogenated alkanes and 
cyclic hydrocarbons (Ye et al. 2007; Braga et al. 2013; 
Galhoum 2018; Moore et al. 2022). We also included all 
compounds obtained from the chromatogram like alcohols, 
ketones, aldehydes, esters and acids into our analysis. As 
detected previously (Frederickx et al. 2012; Kranz et al. 
2017); those compounds yielded distinct peaks that can be 
used to distinguish between the three species. The classes of 
the chemical compounds obtained from the chromatogram 
of L. sericata and Ch. albiceps included hydrocarbons and 
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