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Abstract
It is well accepted that the phenology of insects whose life activities are closely related to temperature is changing in response 
to global climate warming. To investigate the impacts of climate warming on the phenology of Bactrocera dorsalis (Hendel) 
across large temporal and spatial scales, this study collected historical data on the occurrence and population dynamic of  
this pest in China, and systematically explored its phenological responses. The results showed a delayed trend for the dates 
of first occurrence, end occurrence, population initial growth, and population peak of B. dorsalis in China during 40 years, 
and the changes of the latter two phenological parameters were significant. The mean temperature in spring and summer 
were the key climatic factors affecting the occurrence and population growth of B. dorsalis in China, respectively. Moreo-
ver, the B. dorsalis data in eastern, southern, central, and southwestern China showed spatial heterogeneity of phenological 
responses to climate warming at a regional scale. B. dorsalis phenology and their changing patterns with climate warming 
varied by geographical location. This study provides valuable information for future monitoring, prediction, and prevention 
of the oriental fruit fly in the context of climate warming.
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Introduction

Climate change, the most debated issue of time, threatens 
many organisms. The Intergovernmental Panel on Climate 
Change (IPCC) reported that the average global tempera-
ture had increased by 0.72 °C with a mean increase rate 
of 0.012 °C per year from 1880 to 2012 (IPCC 2014). The 
global temperature rise significantly impacts individual 

development, population dynamics, phenology, and the geo-
graphical range of organisms, including insects, which has 
recently attracted much attention (Wu et al. 2020). Insects, a 
large group of poikilotherms, are highly sensitive to climate 
warming. The life activities of insects, including growth 
and development, survival, reproduction, and mobility, 
are closely associated with ambient temperature, thus, are 
inevitably influenced by climate warming (Meglitsch 1972; 
Bale et al. 2002; Meineke et al. 2014). Thus, understanding 
the proximate mechanisms resulting in these shifts becomes 
increasingly urgent now that accumulating evidence exhibits 
that climate change can significantly impact individual sur-
vival and the population development of species.

Many studies have demonstrated that climate warming 
accelerates insects’ growth and development rates, resulting 
in a shorter life cycle and earlier occurrences (Harrington 
et al. 2001; Robinet and Roques 2010; Raza et al. 2014). 
It has been demonstrated that increasing temperature could 
accelerate the reproductive cycle of insects, such as butter-
flies, dragonflies, damselflies, flies, aphids, bees, and bee-
tles, to produce more generations (Gordo and Sanz 2005;  
Harrington et al. 2001). For instance, rising temperatures 
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halved Dendroctonus rufipennis Kirby’s breeding time in 
northwestern North America (Berg et al. 2006). Based on 
the data of the British Butterfly Monitoring Schemes (BMS), 
from 1976 to 1998, the first occurrence of most British but-
terflies advanced and the period of their mean flight was 
prolonged due to the increasing temperatures in spring and 
summer in central England. Similar results were observed 
for the butterflies in Spain (Stefanescu et al. 2010) and Cali-
fornia, USA (Forister and Shapiro 2003), and 37 Odonata 
species in the Netherlands (Dingemanse and Kalkman 2008). 
In China, three aphid pests, Myzus persicae Sulzer, Aphis 
gossypii Glover, and Sitobion avenae Fabricius are occurring 
earlier, and their migration seasons have become longer due 
to climate warming (Wu et al. 2020).

Bactrocera dorsalis (Hendel), commonly known as the ori-
ental fruit fly, is a highly polyphagous species, which attacks 
more than 300 host plants of commercially grown vegetables 
and fruits, and is thus regarded as a major pest worldwide 
(Clarke et al. 2005; Vargas et al. 2009). First recorded in 
Kaohsiung of Taiwan, China, in 1912 (Drew and Hancock 
1994), B. dorsalis spread beyond tropical Asia over the fol-
lowing years, due to their adaptability to diverse climatic con-
ditions (Clarke et al. 2005; Aketarawong et al. 2007). This 
pest has recently caused serious economic losses in more than 
10 Chinese provinces. These losses in southern China amount 
to around three billion dollars annually (Ji et al. 2016).

Severe crop damage caused by B. dorsalis prompted 
research on this pest's biology and population ecology in sub-
tropical and tropical regions (Uchida et al. 2007; Piñero et al. 
2009; Vargas et al. 2008a, b). The phenology and population 
dynamics of this pest have been extensively investigated in 
eastern, southern, southwestern, and central China, such as 
Fujian (Zheng 2013), Jiangxi (Li et al. 2019), Guangdong (Lv 
et al. 2008), Yunnan (Chen and Ye 2007; Ye and Liu 2005), 
and Hubei Provinces (Han et al. 2011). These researches 
demonstrated that the seasonal occurrence of B. dorsalis was 
determined by factors, such as temperature, rainfall, and host 
plant availability. Particularly, the temperature was considered 
as a crucial factor affecting the occurrence of this pest (Vargas  
et al. 1996; Michel et al. 2021; Manrakhan et al. 2022). Bac-
trocera dorsalis development and reproduction permitting 
temperature range is 15–34 °C, and the optimal temperature 
range for development is 20–28 °C. The threshold temperature 
ranges for eggs, larvae, and pupae are 11–12 °C, 9–11 °C, 
and 9–11 °C, respectively. Many adults and larvae die when 
the temperature is > 34 °C or < 15 °C (Chen and Ye 2007). 
Moreover, the low winter temperatures restrict the expan-
sion and establishment of B. dorsalis in the newly invaded 
regions (Stephens et al. 2007). Han et al. (2011) overwintering 
experiments in Wuhan, Hubei province, showed that only a 
small proportion of B. dorsalis pupae might survive the cold 
winter and bridge the gap between winter and spring, giving 
a small initial number of viable adults early in the season.  

In the context of climate change, it is not yet known how  
climate warm affects population dynamics and the phenol-
ogy of fruit flies. It is important to investigate the effects of  
climate warming on the occurrence of fruit flies over a long 
historical period, which can provide valuable information for 
forecasting and comprehensive control of this pest.

To limit B. dorsalis damage, a series of area-wide Inte-
grated Pest Management (IPM) were implemented in recent 
years. This IPM program is based on biological and sustain-
able technologies, including (1) trapping adults using methyl 
eugenol (ME) and other lures (Uchida et al. 2007; Vargas 
et al. 2008b; Gu et al. 2018; Lin et al. 2022), (2) protein bait 
sprays (Wang et al. 2021), (3) promptly removal of infested 
fruits, (4) elimination of overwintering pupae by turning 
soil, (4) bagging fruit to prevent fly infestation (Mau et al. 
2007; Vargas et al. 2008a), (5) application of parasitoids 
(Cai et al. 2017, 2020, 2022; Yang et al. 2018), (6) mass 
release of sterile insect (Cai et al. 2018; Lin et al. 2020; 
Zhang et al. 2021). However, whether climate warming 
would influence the timeline of when and how to perform 
these effective control methods across different geographical 
scales remained unknown. Therefore, exploring this issue 
with this notorious pest from different geographical regions 
is urgently needed.

With vast territory, varied topography, and various climate 
types, China is also significantly influenced by global warm-
ing, with a temperature growth rate of 0.026 ℃/a over the past 
70 years, which is significantly higher than that in the world 
or the northern hemisphere (Climate Change Center of China 
Meteorological Administration 2022). However, the long-
term impacts of climate warming on fruit fly pests remained 
largely unknown due to the absence of long-term population 
monitoring data. To address this research need, historical data 
extracted from the literature may provide insight into this 
issue (Tian et al. 2010; Hu et al. 2019; Matsuda et al. 2018). 
Thus, our research thoroughly collected historical data on the 
seasonal occurrence and population dynamics of B. dorsalis, 
rated as the TOP 10 invasive pests in China (Wan et al. 2017). 
Based on the collected historical data, the effects of long-term 
climate change on B. dorsalis were determined by analyzing 
changes in several phenological parameters.

Materials & methods

Phenological data

Bactrocera dorsalis phenological data were extracted and 
compiled from historical literature, most of which originated 
from the CNKI database (http://​www.​cnki.​net), the most exten-
sive and comprehensive database of Chinese periodicals (Tu  
et al. 2017), and Web of Science (http://​www.​webof​knowl​edge. 
​com/). Firstly, the common and Latin names of this fruit  

http://www.cnki.net
http://www.webofknowledge.com/
http://www.webofknowledge.com/
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fly specie were used as subject words and searched by subject 
word retrieval. Afterward, the related literature from January 
1980 to March 2022 recording the occurrences, geographi-
cal distributions, and population dynamics of B. dorsalis 
in diverse areas of China was consulted. The specific time 
and geographic information on life cycle parameters were 
extracted and a database was constructed. All data collection 
sites documented in the B. dorsalis collected literature were 
georeferenced into geographical maps utilizing ArcGIS 10.2 
(ESRI, Inc., Redlands, CA, USA).

The collected data were organized based on the four most 
frequently recorded life cycle parameters, the first occur-
rence date, the end occurrence date, the population peak 
date, and the population initial growth date. In this study, the 
first occurrence date was defined as the time when adult flies 
were first detected in the fields, the end occurrence date was 

the time when no adult flies were detected in the field, the 
population peak date as the time when the trapping amount 
of adult flies reached the highest levels in the field, and the 
time when the population of adult flies began to grow rapidly 
as the population initially growth data. For each parameter, 
“change of days” was quantified by calculating the differ-
ences (number of days) between the dates of first occurrence, 
end occurrence, population peak or population increase 
records in our dataset, and January first of that year. In some 
literature, time descriptions of these parameters were vague, 
such as “the beginning of the month”, “the middle of the 
month”, “the end of the month”, “the first (middle or last) 
ten days”. Thus, such time information without specific dates 
was specifically approximated. For instance, the description 
about the beginning of a month was set as the first day of that 
month while the end of a month was set as the last day of 

Fig. 1   The collection sites of phenological data of B. dorsalis used in this study
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that month, and the first, middle, and last ten days of a month 
were set as 5th, 15th, and 25th of that month, respectively.

Meteorological data

The annual and seasonal mean temperatures of each province in 
China from 1980 to 2020 were obtained. Temperature records were 
downloaded from Chinese meteorological websites (http://​data.​
cma.​cn/). According to the collected literature, the annual mean 
temperature of southern China, eastern China, central China, 
southwestern China, and whole China where had phenological 
records of B. dorsalis were calculated and analyzed the overall 
change rates by a simple linear regression method to clarify the 
trend and temperature change about the past 40 years, respectively.

Statistical analysis

All analyses were conducted using SPSS for Windows version 
20.0 (SPSS Inc., Chicago, IL, USA). The phenological responses 
of B. dorsalis were analyzed by plotting changes of the pheno-
logical parameters described above (the first occurrence, the end 
occurrence, the population increase, and the population peak). The 
change in days for each parameter was taken as the Y‐axis, and 
the occurrence year was taken as the X‐axis. Linear regression 
analysis was used to construct regression equations and reveal 
the trends of the four parameters in the time series. A normal test 
for all estimated data sets was performed, showing that all data 
sets were under normal distributions. Pearson correlation analysis 
was performed to verify the correlation between the phenological 
parameters of B. dorsalis and seasonal mean temperature.

Results

Phenological records of B. dorsalis in China

In March 2022, 150 pieces of literature that documented the 
phenological records of B. dorsalis in China were found in 
the CNKI and Web of Science databases (see supplemental 
files Table S1), involving 4 regions namely, southern China 
(Guangdong, Guangxi, and Hainan provinces), southwestern 
China (Sichuan province, Guizhou province, and Yunnan 
province), central China (Hubei, Hunan, and Henan prov-
inces), eastern China (Shanghai city, and the Jiangsu, Jiangxi 
Fujian, Anhui, Zhejiang, and Shandong provinces) (Fig. 1). 
The collected data on B. dorsalis were mainly concentrated 
in southwestern, southern, and eastern China. These provide 
data support for investigating the impacts of climate warming 
to B. dorsalis at different geographical scales. The most pheno-
logical records of B. dorsalis have been reported from Yunnan 
province, followed by Guangxi and Fujian provinces, as they 
are the major fruit-producing areas where climatic conditions 
are also favorable for the survival, growth, and reproduction 
of this pest (Table 1).

Temperature changes in B. dorsalis‑infested 
areas in China over time

In the past 40 years, the annual mean temperature (AMT) in 
eastern (Jiangsu, Jiangxi, Fujian, Anhui, Shanghai, Zhejiang, 
and Shandong), southern (Guangdong, Guangxi, and Hainan), 
central (Hubei, Hunan, and Henan), and southwestern (Sichuan, 
Guizhou, and Yunnan) China exhibited a significant upward trend 
with fluctuations, with the temperature rising rates of 0.0485 ± SE 

Table 1   Phenological records of 
B. dorsalis in different regions 
in China

Region Province Valid record number of 
each province

Valid record number of 
each region

Total

Eastern China Fujian 70 191 628
Zhejiang 60
Jiangsu 22
Anhui 6
Jiangxi 22
Shandong 5
Shanghai 6

Southern China Guangdong 54 201
Guangxi 125
Haihan 22

Central China Henan 9 24
Hubei 9
Hunan 6

Southwestern China Guizhou 11 212
Sichuan 20
Yunnan 181

http://data.cma.cn/
http://data.cma.cn/
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0.0044 ℃ year−1, 0.0254 ± SE 0.0050 ℃ year−1, 0.0384 ± SE 
0.0044 ℃ year−1 and 0.0364 ± SE 0.0040 ℃ year−1, as revealed 
by linear regression calculations (all p < 0.0001, Fig. 2).

Between 1980 and 2020, the spring (March–May, SPMT), 
summer (June–August, SUMT), autumn (September–November,  
AUMT), and winter (December-February, WMT) mean 

Fig. 2   The change of annual mean temperature (AMT) in eastern China (a), southern China (b), central China (c) and southwestern China (d). 
The small circle indicates AMT in a specific year and the dashed line represents the trend of temperature change

Fig. 3   The change of the seasonal mean temperature in eastern China (a), southern China (b), central China (c) and southwestern China (d). The 
dash lines exhibited the temperature change trend
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temperatures in the areas infested by B. dorsalis in China had 
also increased over the years (Fig. 3). The linear regression 
analysis indicated that SPMT, SUMT, AUMT, and WMT in 
eastern China increased about 0.0677 ± SE0.0082 ℃ year−1, 
0.0383 ± SE0.0062 ℃ year−1, 0.0449 ± SE0.0082 ℃ year−1, 
0.0453 ± SE0.0122 ℃ year−1, respectively (all p < 0.001).  
Similar increasing trends of seasonal temperature parameters 
could be found in southern, central, and southwestern China. 
Still, the WMT in southern China did not show a significant 
rising trend (p = 0.0629).

The temporal trend of occurrence

Based on the collected long-term historical data, the first 
appearance of B. dorsalis in southern and central China fol-
lowed an insignificantly downward tendency over the years, 
indicating that the first occurrence times of oriental fruit 
flies moved earlier by -1.74 ± SE1.1 days year−1 (p = 0.1198) 
and -1.822 ± 1.977 days year−1 (p = 0.3684), respectively 
(Fig. 4bc). However, the first occurrence date of B. dorsalis 
in eastern China and southwestern China were significantly 

Fig. 4   First occurrence times of B. dorsalis in eastern China (a), 
southern China (b), central China (c), southwestern China (d) and 
whole China (e) for the period 1990–2020. The solid lines represent 

the trends of the beginning of occurrence and the dots indicate differ-
ent phenological records
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delayed by 3.73 ± SE1.062 days year−1 (p = 0.007) and 2.138 
± SE0.7702 days year−1(p = 0.0066), respectively (Fig. 4ad). 
For China as a whole, the scatter plots of the first occur-
rence change of B. dorsalis showed delayed tendency in the 
time series by 0.8197 ± SE0.5087 days per year (p = 0.1083, 
Fig. 4e).

For the end occurrence, the scatter plots of B. dorsalis in 
eastern and southern China showed a climbing trend over 
time, predicting that the end occurrence date was slightly 
delayed by 1.088 ± SE0.965  days  year−1 (p = 0.2629, 
Fig. 5a) and 0.666 ± SE0.5151 days  year−1 (p = 0.2029, 
Fig. 5b) respectively. However, this parameter of orien-
tal fruit flies in central and southwestern China advanced 

by 4.984 ± SE2.006 days year−1 (p = 0.0274, Fig. 5c) and 
0.3162 ± SE0.383 days year−1 (p = 0.4123, Fig. 5d), respec-
tively. For China as a whole, the last occurrence times of B. 
dorsalis showed a slight upward shift, with a change rate 
of 0.4612 ± SE0.3657 days each year (p = 0.2087, Fig. 5e).

The temporal trend of population initial 
growth and peak

The current data collection revealed that the changes in 
population initial growth and peak of oriental fruit flies in 
central China exhibited significantly advanced tendencies 

Fig. 5   End occurrence times of B. dorsalis in eastern China (a), southern China (b), central China (c), southwestern China (d) and whole China 
(e) for the period 1995–2020. The solid lines represent the trends of the end of occurrence and the dots indicate different phenological records
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by 13.47 ± SE2.707 days year−1 (p = 0.0025, Fig. 6c) and 
3.563 ± SE1.599 days year−1 (p = 0.0370, Fig. 7c). In con-
trast, B. dorsalis population dynamics parameters in east-
ern, southern, and southwestern China were delayed. The 
population time change rates initially increased in the field 
were 8.52 ± SE1.152  days  year−1 (p < 0.0001, Fig.  6a), 
1.816 ± SE0.5468 days year−1 (p = 0.0013, Fig. 6b) and 0.35
16 ± SE0.5528 days year−1(p = 0.5261, Fig. 6d), respectively. 
While the date of their population reached the maximum 

in the regions delayed by 1.356 ± SE0.6899 days  year−1 
(p = 0.0509, Fig.  7a), 1.033 ± SE0.3647  days  year−1 
(p = 0.0051, Fig. 7b) and 2.833 ± SE0.4133 days  year−1 
(p < 0.0001, Fig. 7d), respectively. For China as a whole, 
the initial increase date and peak times of the B. dorsalis 
population were both significantly delayed over the years 
and with the change rates of 1.755 ± SE0.3923 days each 
year (p < 0.0001, Fig. 6e) and 1.618 ± SE0.2525 days each 
year (p < 0.0001, Fig. 7e), respectively.

Fig. 6   The change of initially growth times of B. dorsalis population 
in eastern China (a), southern China (b), central China (c), south-
western China (d) and whole China (e) for the period 1990–2020. 

The solid lines represent the trends of the end of occurrence and the 
dots indicate different phenological records
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Field phenology of B. dorsalis in relation 
to temperature

As a result, the date of the population peak of oriental fruit 
flies in eastern China was significantly negative correlated 
with the spring mean temperature (Pearson correlation 
coefficient = -0.4732, p = 0.0302, Fig. 8a). In southwestern 
China, there was a significant positive correlation between 
summer mean temperature and population peak date (Pear-
son correlation coefficient = 0.4332, p = 0.0240, Fig. 8d). 
For China as a whole, the date of the end occurrence and 
initial growth of B. dorsalis population were significantly 
positive correlated with spring mean temperature (Pearson 
correlation coefficient = 0.4556, p = 0.0380, Fig. 8e) and 

summer mean temperature (Pearson correlation coeffi-
cient = 0.3917, p = 0.0433, Fig. 8e).

Discussion

The analyses support several studies suggesting that, during 
four decades (1980–2020), the annual mean temperatures of 
the four regions infested by B. dorsalis in China have shown 
rising trends, as well as the seasonal mean temperatures of 
these regions. The population initial growth date and popula-
tion peak date of B. dorsalis in China have been significantly 
delayed due to climate warming. The results of Pearson cor-
relations analysis indicated that the initial growth of the B. 

Fig. 7   The change of population peak times of B. dorsalis in eastern 
China (a), southern China (b), central China (c), southwestern China 
(d) and whole China (e) for the period 1990–2020. The solid lines 

represent the trends of the end of occurrence and the dots indicate dif-
ferent phenological records
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dorsalis population had a significantly positive correlation 
with the summer mean temperature, implying that the initial 
growth of B. dorsalis population was similar to the sum-
mer mean temperature rising. The frequent appearance of 
extreme heat in the summer season may postpone the emer-
gence of fruit flies to avoid exposure to high temperatures, 
leading to a delay in the initial growth date. With delayed 
population initial growth, there was a concurrent deferment 
of population peak occurrence. It is widely accepted that 
increased ambient temperature would generally accelerate 
the completion of the insect reproductive cycle to produce 
more generations in different insect species, ultimately lead-
ing to enhanced potential for insect pest outbreaks (Raza 
et al. 2014). Thus, B. dorsalis produced more generations 
due to rising temperature, resulting in more serious genera-
tion overlap, possibly explaining the delayed reaching of its 
maximum population size.

We also found that the first and end occurrence dates of B. 
dorsalis in China exhibited a slight delay. These findings did 
not agree with the general prediction that climate warming 
would lead to the advanced occurrence of insects (Harrington 
et al. 2001; Robinet and Roques 2010; Raza et al. 2014). 
Although the environmental temperature was considered as a 
crucial variable affecting the occurrence of B. dorsalis (Vargas 
et al. 1996; Su et al. 2020), other factors not included in this 
study such as atmospheric humility, rainfall, sunlight hours, 
and host plant availability. may also influence the phenology 
of fruit flies. For example, in Mengzi city, Yunnan province, 
the population peak date of B. dorsalis in different orchards 
was quite different due to differences in the phenology of host 
fruits. In peach orchards, B. dorsalis first occurred in mid-
April, and in mid-March in jujube orchards, while on early-
April in loquat orchards (Fang et al. 2017). Moreover, soil 
moisture, closely related to precipitation and rainfall frequency, 
was supposed to be an important factor influencing the pupa-
tion and emergence of B. dorsalis (Duyck et al. 2010). Previ-
ous research found it difficult for adults to emerge when soil 
moisture is more than 30% (Alyokhin et al. 2001). Thus, the 
observed changes in phenology appear to be caused neither by 
a general elevation in the overall temperature over time nor by 
a general response of fruit flies to temperature, but instead by 
the combined effects of changes in temperature regimes and 
other environmental variables that influence larval develop-
ment and/or adult survival.

Additionally, our data in eastern, southern, central, and 
southwestern China show spatial heterogeneity of pheno-
logical responses to climate warming at a regional scale, as 

was found in previous research concerning three aphid spe-
cies in Xinjiang, China (Wu et al. 2020). Firstly, the occur-
rence times of oriental fruit flies varied in different regions 
in China due to the existing differences in the annual mean 
temperature in different regions. For instance, the average 
first appearance date of fruit flies in southern China was 
around mid-April, while the average first occurrence date in 
eastern, central, and southwestern China were around late 
May, mid-late June, and early May, respectively. The data for 
the other three phenological parameters in different regions 
in China also suggested geographical variation at a regional 
scale. Secondly, the long-term trends of population occur-
rence and dynamic of B. dorsalis showed different patterns 
between four regions in China. For example, the first occur-
rence of B. dorsalis in southern China was slightly ahead of 
time and their end occurrence date slightly delayed, contrary 
to that of B. dorsalis in southwest China (Table S2). It is 
possible that this variation may be a real reflection of spatial 
heterogeneity of the effect of climate warming.

Considering that the phenology of fruit flies is temper-
ature-dependent, there is a possibility that “noise” such as 
unusual values for the field phenological parameters may be 
introduced in a long‐term data set due to weather anomalies 
in a specific year. For example, in 2008, the first and end 
occurrence dates of B. dorsalis in central China (data mainly 
originated from Wuhan city, Hubei province) were notably 
later than that of other years of this region (Han et al. 2011). 
According to literature records, low temperatures and heavy 
snow storms happened at the beginning of 2008 in Wuhan, 
which may postpone the occurrence of oriental fruit flies. 
Similarly, frost caused by a strong decreased temperature 
occurred in the Fujian province of eastern China in 2009. 
Thus, the first appearance date of B. dorsalis was deferred 
to mid-late August (Lin 2014).

Besides changing the phenology of B. dorsalis, a warm-
ing climate may facilitate range expansion of this pest and 
help them invade and colonize new territories (de Villiers 
et al. 2016). Previous research projected B. dorsalis to be 
capable of invading new territories and establishing persis-
tent populations throughout the tropics and subtropics under 
predicted future climatic conditions (Stephens et al. 2007; 
de Villiers et al. 2016). It is worth noting that the time of 
B. dorsalis damage in China has been changed due to ris-
ing temperatures, which may result in a mismatch of phe-
nological synchronicity between fruit flies and host plants  
or nature enemies (Visser 2008, 2017). If the pest emerges 
early, but the fruit of host plants does not germinate simul-
taneously, B. dorsalis females were finding less developed 
fruits during their oviposition period and this may have 
influenced their chances of reproduction (Gordo and Sanz 
2005). Alternatively, B. dorsalis may shift to new plants for 
oviposition to maintain the population, expanding the host 
plant range. Moreover, the shift in fruit flies' occurrence 

Fig. 8   The correlations between the phenological parameters of B. 
dorsalis and annual and seasonal mean temperatures in eastern China 
(a), southern China (b), central China (c), southwestern China (d) 
and whole China (e). The asterisk indicated the Pearson correlations 
were significant at the levels of p < 0.05

◂
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may also influence the original phenological synchroniza-
tion between pests and parasitoids, helping fruit flies avoid 
parasitoids' parasitism (Meineke et al. 2014). These are chal-
lenges to detecting and suppressing fruit flies in the future.

The long-term effect of climate warming on insects is a 
pressing issue for science and application. Due to the insuffi-
ciency of the long-term dataset, evidence concerning this issue 
remains limited (Hu et al. 2019; Matsuda et al. 2018). Though 
collecting a 40 years dataset on B. dorsalis population dynam-
ics, this study reveals the long-term effect of climate warming 
on this notorious pest. It is worth noting that some uncertainty 
could happen in quantifying time data due to the vagueness of 
time information extracted from some literature. Thus, care-
ful and thorough data collection, standardization, and careful 
analyses are essential to minimize the influence of uncertainty 
of historical literature data. In the future, a more detailed exami-
nation of the long-term effect of climate warming on fruit flies 
and other pests and the construction of a standard detection 
network are urgently required in China.

Conclusion

This research uncovered the long‐term impacts of climate 
warming on the phenology of B. dorsalis in China across 
large temporal and spatial scales by collecting and analyz-
ing historical data. The results showed that the annual and 
seasonal mean temperatures of four regions (eastern, south-
ern, central, and southwestern China) infested by B. dorsalis 
have increasing trends at different change rates over the past 
40 years. Under climate warming, the first and end occur-
rence date of B. dorsalis in China became later, and the initial 
growth and peak times of the B. dorsalis population were 
significantly delayed. The phenological date of B. dorsalis in 
eastern, southern, central, and southwestern China suggests 
spatial heterogeneity of the effect of climate warming at a 
regional scale. This research provides practical implications 
for understanding the effects of climate warming on insect 
pests, and theoretical guidance for future fruit fly pests' pre-
diction and control.
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