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Abstract
Purpose In December 2019, the Covid-19 pandemic began in the world. To reduce mortality, in addiction to mass vaccina-
tion, it is necessary to massify and accelerate clinical diagnosis, as well as creating new ways of monitoring patients that 
can help in the construction of specific treatments for the disease.
Objective In this work, we propose rapid protocols for clinical diagnosis of COVID-19 through the automatic analysis of 
hematological parameters using evolutionary computing and machine learning. These hematological parameters are obtained 
from blood tests common in clinical practice.
Method We investigated the best classifier architectures. Then, we applied the particle swarm optimization algorithm (PSO) 
to select the most relevant attributes: serum glucose, troponin, partial thromboplastin time, ferritin, D-dimer, lactic dehy-
drogenase, and indirect bilirubin. Then, we assessed again the best classifier architectures, but now using the reduced set of 
features. Finally, we used decision trees to build four rapid protocols for Covid-19 clinical diagnosis by assessing the impact 
of each selected feature. The proposed system was used to support clinical diagnosis and assessment of disease severity in 
patients admitted to intensive and semi-intensive care units as a case study in the city of Paudalho, Brazil.
Results We developed a web system for Covid-19 diagnosis support. Using a 100-tree random forest, we obtained results 
for accuracy, sensitivity, and specificity superior to 99%. After feature selection, results were similar. The four empirical 
clinical protocols returned accuracies, sensitivities and specificities superior to 98%.
Conclusion By using a reduced set of hematological parameters common in clinical practice, it was possible to achieve 
results of accuracy, sensitivity, and specificity comparable to those obtained with RT-PCR. It was also possible to automati-
cally generate clinical decision protocols, allowing relatively accurate clinical diagnosis even without the aid of the web 
decision support system.

Keywords Covid-19 · Clinical diagnosis support · Covid-19 rapid protocols · Hematological parameters · Software-based 
rapid test · Computer-aided diagnosis
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Introduction

Motivation and problem characterization

The world that emerged after the Second World War was 
marked by a rapid process of globalization. An intercon-
nected world has emerged, totally connected both by 
advanced means of transport, such as airplanes and ships, 
and by means of information and communication tech-
nologies. Trade necessarily integrates nations and intensi-
fies the movement of people across the globe. However, 
from the point of view of Epidemiology, a fully connected 
world is also a world more susceptible to several threats, 
including health threats, such as epidemics and pandem-
ics (Crooks et al. 2018, Prior et al. 2019). The pathways 
through which international trade flows are also the path-
ways used by infectious disease vectors.

In December 2019, in the city of Wuhan, China, the 
most critical outbreak in the last hundred years began: 
Coronavirus Disease 2019 (Covid-19), transmitted by the 
SARS-CoV2 virus, a virus of zoonotic origin until then 
unknown, present in bats and pangolins (Barbosa et al. 
2021b, Ciotti et al. 2019; de Lima et al. 2020; Rothan 
and Byrareddy 2020; Wu et al. 2020). SARS-CoV-2, when 
compared to its predecessors, proved to be much more 
resistant and infectious. The most common symptoms are 
fever, dry cough, and tiredness (Ciotti et al. 2019, de Lima 
et al. 2020, Gomes et al. 2020a, Rothan and Byrareddy 
2020, Wu et al. 2020). Pain and discomfort, sore throat, 
diarrhea, conjunctivitis, headache, loss of taste or smell, 
rash on the skin, or discoloration of the fingers or toes 
may also appear (Cascella et al. 2020; Ciotti et al. 2019; 
Peeri et al. 2020; Rothan and Byrareddy 2020; Wang et al. 
2020b; Wu et al. 2020). Its severe symptoms are difficulty 
in breathing or shortness of breath, pain or pressure in 
the chest, and loss of speech or movement (Cascella et al. 
2020, Ciotti et al. 2019, de Lima et al. 2020, Gomes et al. 
2020a, Peeri et al. 2020, Rothan and Byrareddy 2020, 
Wang et al. 2020b, Wu et al. 2020). Despite the lower 
lethality, the virus spreads very quickly, producing a large 
volume of deaths and leaving sequels that are often per-
manent (Cascella et al. 2020; de Lima et al. 2020; Peeri 
et al. 2020; Wang et al. 2020b). Due to their high rate 
of contagion, public health system resources are rapidly 
depleted (de Lima et al. 2020). The Covid-19 pandemic is 
one of the biggest health crises in decades. In March 2021, 
SARS-CoV had already infected almost 130 million peo-
ple, more than seventy million of whom recovered, while 
almost 3 million died (Organization 2021). In this context, 
it is not enough to invest in the opening of new hospital 
beds for the treatment of patients. It is necessary to have 
tests that guarantee fast and reliable diagnoses; specific 

treatments to decrease the lethality of the disease; efficient 
and low-cost vaccines applied to a considerable portion of 
the population; and social isolation and quarantine policies 
to seek to control the disease vector while vaccines and 
specific treatments are not available for Covid-19.

Several studies have sought to highlight the nature of 
Covid-19 as a disease that affects the cardiovascular sys-
tem (Chatterjee et al. 2020; Fan et al. 2020; Gao et al. 
2020; Liu et al. 2020; Tan et al. 2020; Zheng et al. 2020). 
Coronaviruses, such as SARS-CoV and SARS-CoV-2, 
have the angiotensin-converting zinc metallopeptidase 
2 (ACE2), an enzyme present in the cell membranes of 
the arteries, heart, lungs and other organs as a functional 
receptor. ACE2 is involved in cardiac function, hyperten-
sion and diabetes (Turner et al. 2004). The MERS-CoV 
and SARS-CoV coronaviruses can cause acute myocar-
ditis and heart failure (Zheng et al. 2020). Some of the 
impacts of coronaviruses on the cardiovascular system are 
increased blood pressure and increased levels of troponin I 
(hs-cTnI) (Zheng et al. 2020). Covid-19 patients may also 
develop lymphopenia, i.e., low level of lymphocytes (Fan 
et al. 2020; Liu et al. 2020; Tan et al. 2020); and leuko-
penia, i.e., few leukocytes. COVID-19 patients may also 
experience decreased hemoglobin levels, absolute lympho-
cyte count (ALC), and absolute monocyte count (AMC) 
(Fan et al. 2020). Patients who have developed severe 
forms of the disease have significantly higher levels of 
Interleukin-6 and D-dimer than patients who have devel-
oped a moderate form of COVID-19 (Gao et al. 2020). 
Therefore, considering that COVID-19 is a disease that 
affects blood parameters, hematological tests can be used 
to help diagnose the disease.

Given that the result of the RT-PCR test can take hours 
or even days, given the pandemic situation that increases the 
demand for tests with the high speed of contamination, clini-
cal diagnosis assumes a fundamental role in determining the 
treatment and the type of care correct for mild, moderate and 
severe cases. In this sense, the observation of complemen-
tary clinical parameters, such as the hematological parameters 
obtained from common tests in clinical practice, takes on an 
important role. Several works have been using machine learn-
ing techniques to diagnosis diseases by analyzing hematologi-
cal parameters automatically (Barbosa et al. 2021b, Guncar 
et al. 2018; Luo et al. 2016, Tannerˇ et al. 2008). Blood tests 
are commonly used during medical screening. The most 
common blood tests, like complete blood count, bilirubin, 
serum glucose, C-reactive protein, urea, and others, are easily 
available at low-cost compared with other diagnosis methods. 
Therefore, intelligent systems can be used to automatically 
analyze hematological parameters and use them to support 
COVID-19’s clinical diagnosis and to suggest appropriate 
patient care (Barbosa et al. 2021b).
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In this work we propose two main applications to support 
the clinical diagnosis of COVID-19 based on hematological 
parameters: (1) rapid diagnosis based on automatic analy-
sis by an intelligent web system based on particle swarm 
optimization and random forests; (2) a tool to build clinical 
analysis protocols, to be used in contexts where the intel-
ligent rapid diagnosis system is not available. In the first 
approach, an intelligent web system was developed to sup-
port decision making. This system was put into operation in 
the city of Paudalho, Brazil, to support the clinical diagno-
sis and assessment of the severity of the disease in patients 
admitted to intensive and semi-intensive care units, in the 
year 2020. In the second approach, we used decision trees 
to infer which hematological parameters would be statisti-
cally more relevant for clinical diagnosis. In the particular 
case of COVID-19, the most relevant hematological param-
eters were ferritin and prothrombin partial time. From these 
results, these hematological parameters can be inserted as a 
new medical protocol in the investigation of suspected cases 
of COVID-19. Finally, the results of general accuracy, sen-
sitivity, and specificity were quite high for both approaches, 
demonstrating that rapid diagnosis is possible using only 
well-known and low-cost clinical exams, with the potential 
support of an intelligent decision support system. The high 
correlation between ferritin, prothrombin time and a positive 
diagnosis for COVID-19 in symptomatic patients also points 
to the need for more research on treatments to combat early 
clotting and the main symptoms of the disease.

Related works

Several studies emphasize the importance of hematological 
parameters to support COVID-19 clinical diagnosis. Some 
of them point to the relevance of using hematological analy-
sis as an indicative of the severity degree of COVID-19. 
Fan et al. (2020) analyzed hematological parameters of 69 
patients with COVID -19. The study was conducted with 
subjects from the National Center for Infectious Diseases 
(NCID) in Singapore. 65 of these patients underwent com-
plete blood count (CBC) on the day of admission. 13.4% of 
patients needed intensive care unit (ICU) care, especially the 
elderly. During the first exams, 19 patients had leukopenia 
and 24 had lymphopenia, with 5 cases classified as severe 
(Absolute Lymphocyte Count (ALC) < 0.5 ×  109/L). The 
study also pointed out that patients who needed to be admit-
ted to the ICU had lower ALC and a higher rate of Lactate 
Dehydrogenase (LDH). These data indicated that monitoring 
these hematological parameters can help to identify patients 
who need assistance in the ICU. The authors found that the 
patients who were in the ICU had a significant decrease 
in their hemoglobin levels, ALC and Absolute Monocyte 
Count (AMC) levels, when compared to the non-ICU group. 
ICU patients also tend to develop neutrophilia. The platelet 

count did not prove to be a factor for discrimination between 
the type of hospitalization.

Gao et  al. (2020) assessed hematological character-
istics of 43 patients at Fuyang Second People’s Hospital. 
The patients had diagnosis confirmed by the COVID-19 
ground truth test, the fluorescent reverse transcription-
polymerase chain reaction (RT-PCR). They were divided 
into two groups: the moderate group with 28 patients, and 
the severe group with 15 patients. The groups have no sig-
nificant difference in age and sex, and both were evaluated 
by routine blood tests and blood biochemistry parameters. 
Thereby, from statistical tests, the study noted that the levels 
of glucose (GLU), C-reactive protein (CRP), interleukin-6 
(IL-6), thrombin time (TT), fibrinogen (FIB), and D-dimer 
were significantly higher in the severe group than in the 
mild group. Performing this analysis with ROC curves, the 
authors pointed out that the best indicators for predicting 
severity were IL-6 and d-D combined, with AUC of 0.840, 
specificity of 96.4%, and sensitivity of 93.3%. These results 
indicate that patients with severe conditions would have 
abnormal coagulation.

Liu et al. (2020) reported that lymphopenia and inflam-
matory cytokine storm are abnormalities commonly found 
in other infections caused by coronavirus, such as SARS-
Cov and MERS-Cov. With that in mind, they studied 40 
patients with positive RT-PCR for COVID-19 at Wuhan 
Union Hospital. The information provided was epidemio-
logical, demographic, clinical manifestations, and laboratory 
tests. Similar to the previous study, patients were divided 
into two groups: mild patients, with symptoms such as 
epidemiological history, fever or respiratory symptoms, 
and abnormalities in imaging tests; the second group with 
severe patients, patients should additionally have symptoms 
such as shortness of breath, oxygen saturation < 93%, res-
piratory > 30 times/min, or  PaO2/FiO2 < 300 mmHg. A total 
of 27 patients were classified in the first group, while 13 
were classified in the second. The study reported that levels 
of fibrinogen, D-dimer, total bilirubin, aspartate transami-
nase, alanine transaminase, lactate dehydrogenase, creatine 
kinase, C-reactive protein (CRP), ferritin, and serum amy-
loid A protein were significantly higher in the severe group. 
Futhermore, most severe patients presented lymphopenia, 
while white blood cells and neutrophils counts were higher.

These studies have pointed out that hematological param-
eters can be indicators of the risk factors and degree of 
severity of COVID-19. The identification of these clinical 
parameters can be essential to optimize clinical care for each 
group of patients. In this sense, the development of intelli-
gent systems based on blood tests is useful. Faced with the 
pandemic scenario, in which most hospitals are full, decision 
support systems can facilitate clinical management. Thus, it 
can increase the assertiveness in the treatment for each case 
and, consequently, the number of lives saved.
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Regarding the use of intelligent systems to support 
COVID-19 diagnosis, Saba and Khan (2021) present a col-
lection of 14 chapters focused on COVID-19 solutions. From 
these chapters, we highlight the following works related to 
our proposal: Khan et al. (2021) present a review of the state-
of-the-art of the intelligent solutions to support COVID-19 
image diagnosis by applying deep learning methods over 
x-ray thoracic images and computerized tomography x-ray 
images. Hassan et al. (2021) made a selective assessment 
of the latest research articles relevant to the applications 
of artificial intelligence and machine learning (ML) tech-
niques from the databases of the Web of Science, Scopus, 
and Google Scholar, using keywords of coronavirus, artifi-
cial intelligence, and ML. The authors analyzed the use of 
computed tomography (CT) imaging, X-ray, and magnetic 
resonance imaging (MRI) and their applications COVID-
19 pandemics. Karimi et al. (2021) and Nourbakhsh (2021) 
present reviews of the state-of-the-art of the use of computa-
tional intelligence, on computerized tomography x-ray imag-
ing to support COVID-19 diagnosis and progress evaluation.

Fei et al. (2021) highlighted the applications of modern 
digital technology, statistical methods, data platforms and 
data integration systems to improve diagnosis and treatment 
of diseases in clinical research and novel epidemiologic tools 
to tackle infection source problems, such as finding Patient 
Zero in the spread of epidemics. The authors concluded that 
analyzing and interpreting COVID-19 big data is an incred-
ibly challenging task that requires a multi-disciplinary effort 
to continuously create more effective methodologies and 
powerful tools to transfer data information into knowledge 
that enables informed decision making.

Pani et al. (2022) present a large collection of intel-
ligent solutions in the fight against COVID-19 regard-
ing disease prediction (Pandit et al. 2022; Torcate et al. 
2022), temporal and spatiotemporal forecasting (Biswas 
and Dash 2022; da Silva et al. 2022; Pandit et al. 2022), 
and intelligent diagnosis on computerized tomography 
x-ray imaging (Adetunji et al. 2022c; de Santana et al. 
2022; Majhi et al. 2022; Pandit et al. 2022), thoracic x-ray 
imaging (Adetunji et al. 2022c; Majhi et al. 2022; Pandit 
et al. 2022; Usharani 2022), electrical impedance tomog-
raphy imaging (Wolff et al. 2022), signals and symptoms 
(Adetunji et al. 2022a,d; Pandit et al. 2022; Peter et al. 
2022; Tripathi et al. 2022), molecular analysis (Adetunji 
et al. 2022c; Pani et al. 2022; Sharma et al. 2022), and 
hematological parameters (Torcate et al. 2022) based on 
ML (shallow and deep algorithms) Adetunji et al. (2022b, 
c, e) and swarm intelligence Usharani (2022).de Santana 
et al. (2022) proposed an automatic system for COVID-
19 diagnosis using ML techniques and CT X-ray images 
named IKONOS-CT, an intelligent system dedicated to 
provide a binary classification, differentiating COVID-
19 patients from non- COVID-19 ones. For classification 

tasks, the authors performed 25 experiments for the fol-
lowing classifiers: multilayer perceptron (MLP), support 
vector machines (SVM), random tree and random forest, 
and Bayesian networks. The best overall performance was 
reached using Haralick as feature extractor and SVM with 
polynomial kernel of exponent 3. The authors found the 
following results: accuracy of 96.994% (1.375), sensitiv-
ity/recall of 0.952 (0.024), and specificity of 0.987 (0.014). 
The authors claim that, by using a computationally low-
cost method based on the Haralick texture features extrac-
tor, it was possible to achieve high diagnosis performance. 
These experimental results point out that an effective path 
for COVID-19 diagnosis is composed by the combination 
of artificial intelligence and human-based clinical analysis.

Torcate et al. (2022) wanted to make predictions regard-
ing treatment and assessments of severity of patients with 
and without COVID-19 based on blood tests. The authors 
used hematological data from patients who attended the 
units of the Brazilian public healthcare system in the city of 
Paudalho in 2020. Their objective was to analyze intelligent 
classifiers able to make hospitalization predictions consider-
ing three scenarios: regular ward, semi-intensive care unit, 
and intensive care unit, corresponding to mild (non-critical), 
moderate, and serious cases. The results obtained in the 
experiments show that the classifiers managed to perform 
better with the database balanced with the SMOTE method, 
and the 100-tree random forest demonstrated the best poten-
tial to perform the predictions for regular ward (sensitivity 
of 0.730, and specificity of 0.913), as for the semi-intensive 
care unit (sensitivity of 0.890, and specificity of 0.875), and 
intensive care unit (sensitivity of 0.640, and specificity of 
0.947). The authors intended to assist health professionals in 
decision making, aiming to streamline the process of direct-
ing patients to the most suitable care units for each patient.

Guncar et al. (2018) proposed a system based on ML 
for analyzing blood tests andˇ predicting hematological dis-
eases. Their database was acquired between the years 2005 
and 2015 at the University Medical Center of Ljubljana. In 
this case, 43 diseases and 181 clinical parameters or features 
were selected to generate a first model (SBA-HEM181). In 
addition to it, a second model with 61 parameters was also 
developed (SBA-HEM061). The selection criteria were 
based on the frequency of use. Regarding the missing val-
ues (about 75%), the authors filled in with median values for 
each attribute. As classification methods, the authors tested 
classic approaches, such as SVM, Naive Bayes, and ran-
dom forest. The simulations were repeated 10 times using 
tenfold cross validation. Finally, the models SBA-HEM181 
and SBA-HEM061 reached an accuracy of 57% consider-
ing all the diseases chosen. By restricting the prediction to 
five classes, the systems achieved an accuracy of 88% and 
86%, respectively, when using random forest for classifica-
tion. This study also pointed to the possibility of effectively 
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detecting diseases through blood tests using classic intel-
ligent classifiers.

Barbosa et al. (2021b) proposed an intelligent system 
to support COVID-19 diagnosis using blood exams. Heg.
IA was developed in a context where it was necessary and 
urgent to develop a diagnostic support system that would 
provide rapid results with high sensitivity and high specific-
ity. In this context, blood tests have some advantages. First, 
they are commonly used during medical screening. In addi-
tion, blood tests are cheaper and less time consuming than 
other diagnostic methods, making the system more acces-
sible. By combining these blood test results with analysis 
based on artificial intelligence, the authors built a relatively 
robust, efficient and easily available system for diagnos-
ing COVID-19. The intelligent system was built using a 
5644-subjects public database from the Hospital Israelita 
Albert Einstein, Brazil (Kaggle 2020). The authors also 
optimized the system to reduce the number of tests needed, 
based on its relevance to describing the diagnostic prob-
lem and its price and availability worldwide, especially in 
low-income communities. First, an automatic selection of 
exams was performed using the particle swarm optimization 
method. Then, the authors manually selected some exams 
with the objective of reaching an ideal combination of price, 
time and number of procedures. This procedure resulted in 
24 blood tests, which can be delivered in up to 1 h. As com-
putational classification can be performed in milliseconds, 
with the 24 blood test results, a technician can obtain diag-
nostic results relatively quickly. The user just needs to fill the 
electronic form with these 24 blood test results. Using clas-
sic Bayesian networks, the system returned high diagnostic 
performance: 95.159% (0.693) overall accuracy, kappa index 
of 0.903 (0.014), sensitivity of 0.968 (0.007), accuracy of 
0.938 (0.010), and specificity of 0.936 (0.010). If compared 
to methods based on deep learning, the proposed system also 
reduces the computational cost. Although the study achieved 
very high results, the set of selected tests did not considered 
all the exams indicated by subsequent recommendations 
from the Brazilian Ministry of Health when dealing with 
COVID-19 patients (Brazilian Ministry of Health Guide-
lines for the diagnosis and treatment of COVID-19 2020), 
since these exams were not established as mandatory for 
the context of clinical diagnosis of COVID-19 in the time 
of the publication.

Barbosa et al. (2021a) propose the Heg.IA web system, 
a solution to optimize the diagnosis of COVID-19 through 
the automatic analysis of blood tests using machine learn-
ing. The system aims to support decision-making regarding 
the diagnosis of COVID-19 and the indication of admission 
to a regular ward, semi-ICU or ICU based on the decision 
of a random forest architecture with 90 trees. To this end, 
healthcare professionals can enter 41 hematological param-
eters from common blood tests and arterial blood gases into 

the system. Then the proposed intelligent system provides 
a diagnostic report. The Heg.IA web system employs blood 
tests to support the diagnosis of COVID-19. The machine 
learning method was trained using the database provided 
by Hospital Israelita Albert Einstein located in São Paulo, 
Brazil. The database is formed by information from 5644 
patients.

Among them, 559 patients were diagnosis with COVID-
19 by RT-PCR with DNA sequencing and identification 
and additional laboratory tests during a visit to the hospital. 
For each patient, the database has more than one hundred 
laboratory tests like blood counts and urine test. From this 
database we set a new one that contains only 41 blood tests 
recommended by the Brazilian Ministry of Health when 
dealing with COVID-19 patients. The system achieved 
good results both for the diagnosis of COVID-19 and for the 
recommendation of hospitalization. To support the clinical 
diagnosis of COVID-19, the solution achieved an accuracy 
of 92.891% (0.851), kappa index of 0.858 (0.017), sensitiv-
ity of 0.936 (0.011), precision of 0.923 (0.011), specificity of 
0.921 (0.012), and area under ROC curve of 0.984 (0.003). 
Regarding the indication for hospitalization, the system pro-
vided high performance: accuracy above 99% and kappa, 
sensitivity, specificity, area under ROC curve, and precision 
above 0.99. Using a method with low computational cost, 
based on classical decision trees, the authors obtained a high 
diagnostic performance. The authors claim that the Heg.IA 
system could be a way to overcome the unavailability of 
tests in the context of COVID-19. The work of Barbosa et al. 
(2021a) is a significant improvement of the proposal of Bar-
bosa et al. (2021b).

Similarly, Soares et al. (2020) use a method based on 
artificial intelligence to identify COVID-19 through blood 
tests. As Barbosa et al. (2021b) and Barbosa et al. (2021a) 
did, they used the database from the Hospital Israelita Albert 
Einstein. However, since the database has many missing 
data, they chose to include only the subjects that had most 
of the data. This procedure reduced the dataset from 5644 to 
599 samples. By using Support Vector Machines as a classi-
fier and SMOTE Boost technique to perform oversampling, 
they achieved average specificity of 85.98%, negative predic-
tive value (NPV) of 94.92%, average sensitivity of 70.25%, 
and positive predictive value (PPV) of 44.96%.

Martinez-Velazquez et al. (2021) present a solution for 
detecting COVID-19 infections exclusively on the basis of 
self-reported symptoms. The motivation of the authors was 
providing a relatively inexpensive and easy to deploy solu-
tion at either an individual or population scale. The authors 
trained and tested a large set of machine learning models to 
detect COVID-19 based exclusively on symptoms and signs, 
similar to the process of anamnesis assessment. Martinez-
Velazquez et al. (2021) evaluated 15 different classifiers: 
decision tree (DT), perceptron neural network (NN), and 



514 Research on Biomedical Engineering (2023) 39:509–539

1 3

support vector machine (SVM), random forest (RF), and a 
voting classifier. The best model was a voting ensemble of 
a random forest and a decision tree. This model was able 
to reach a mean area under the ROC curve of 0.728, a sen-
sitivity of 0.752, a specificity of 0.609, and a precision of 
0.660. The best classifier among those reported in this study 
presents a sensitivity and precision higher than health pro-
fessionals’ anamnesis; however, the specificity is lower. The 
immediate benefit of adopting such an ML-powered assess-
ment approach is to maximize the use of the limited avail-
able RT-PCR tests, to find more COVID-19 positive infec-
tions within the community by identifying a higher ratio of 
actual positive cases (higher sensitivity).

The intelligent systems based on blood tests may play 
a key role in the process of diagnosing COVID-19, since 
many studies are confirming evidences of how this disease 
affects hematological parameters. Positive cases can be for-
warded for results confirmation through RT-PCR, comput-
erized tomography scans and/or radiography (Gomes et al. 
2020a, b).

Negri et al. (2020) have been using elevated D-dimer as 
a predictor of severity and mortality in COVID-19 patients. 
They also observed that COVID-19 patient autopsies 
revealed thrombi in the microvasculature, suggesting that 
hypercoagulability is a prominent feature of organ failure. 
In this context, Negri et al. (2020) performed a clinical study 
involving 27 COVID-19 patients admitted to Sirio-Libanes 
Hospital in São Paulo, Brazil. They treated these patients 
with heparin in therapeutic doses tailored to clinical severity.

Following the steps of (Negri et al. 2020), several studies 
confirmed the importance of D-dimer as severity predictor 
and specific treatment based on anticoagulants as capable to 
reduce COVID-19 mortality and improve prognosis (Chat-
terjee et al. 2020, Menezes-Rodrigues et al. 2020, Sahu and 
Agrawal 2020, Shi et al. 2020, Tang et al. 2020, Viecca et al. 
2020, Wang et al. 2020c). Klok et al. (2020) findings also 
state that COVID-19 may predispose patients to both venous 
and arterial thromboembolism due to excessive inflamma-
tion, hypoxia, immobilization, and diffuse intravascular 
coagulation. The authors’ findings are strongly suggestive of 
increasing the prophylaxis towards high-prophylactic doses. 
For Long et al. (2020) and Panigada et al. (2020), D-dimer 
and prothrombin time are most significant indicators of 
severe COVID-19 cases and poor prognosis due to hyper-
coagulation hypercoagulability together with severe inflam-
matory states. Other clinical studies confirm evidences to 
this finding and point out to partial thromboplastin time as 
other important biomarker (Connors and Levy 2020; Iba 
et al. 2020; Liao et al. 2020; Pavoni et al. 2020; Spiezia et al. 
2020; Wright et al. 2020).

For Gómez-Pastora et  al. (2020), as ferritin can be 
actively secreted at the site of infection, it is possible that 
ferritin can take on other functions in addition to its classic 

role as an iron storage protein. Ferritin has been shown to 
be a signaling molecule and direct mediator of the immune 
system (Rosário et al. 2013). Complex feedback mecha-
nisms may exist between ferritin and cytokines in the con-
trol of pro-inflammatory and anti-inflammatory mediators, 
as cytokines can induce ferritin expression. Ferritin can 
also induce the expression of pro- and anti-inflammatory 
cytokines (Rosário et al. 2013). However, the pathogenic 
role of ferritin during inflammation remains unclear (Kernan 
and Carcillo 2017). For Gómez-Pastora et al. (2020), it is 
necessary to investigate the structure of plasma ferritin in 
patients with COVID-19.

For Vargas-Vargas and Cortés-Rojo (2020), there is a 
strong evidence supporting the hypothesis that ferritin levels 
might be a crucial factor influencing the severity of COVID-
19. Lin et al. (2020) found an association between hyperfer-
ritinemia and disease severity in patients with COVID-19. 
Lin et al. (2020) conducted a retrospective study on 147 con-
firmed COVID-19 patients in Changsha, China. The over-
all proportion of severe disease was 16.32% (24/147). The 
severe patients had higher levels of serum ferritin than the 
non-severe patients. Multivariate logistic regression analysis 
indicated that the serum ferritin level on admission was an 
independent risk factor for disease severity in COVID-19 
patients. Other studies agree on the importance of serum fer-
ritin as a COVID-19 biomarker (Bataille et al. 2020; Cheng 
et al. 2020; Dahan et al. 2020; Kappert et al. 2020; Tural 
Onur et al. 2021).

The general objective of this work is to propose a solu-
tion to support the clinical diagnosis of COVID-19 through 
the introduction of rapid protocols based on the automatic 
analysis of hematological parameters using machine learn-
ing. Hematological parameters are obtained from common 
blood tests in clinical practice: the complete blood count and 
biochemical tests. These are low-cost tests that are already 
mandatory to support clinical diagnosis. The rapid protocols 
are based on two approaches: (a) the introduction of the Heg.
IA web tool in clinical diagnostic practice, through the adop-
tion of diagnostic suggestion reports based on the analysis 
of hematological parameters using machine learning and 
swarm intelligence; (b) the generation of rapid protocols to 
support clinical diagnosis by using offline decision trees. In 
this work, we present an improved version of the web sys-
tem Heg.IA, developed by Barbosa et al. (2021a). In turn, 
the work of Barbosa et al. (2021a) is an improvement of the 
workstation solution developed by Barbosa et al. (2021b). 
In this newer version, we introduced the functionality of 
generating offline protocols based on decision trees, to sup-
port clinical diagnosis without having the Heg.IA system 
available. The motivation was to make clinical diagnosis 
fast and accurate, previously supported by machine learning, 
but without the need for a web application. Furthermore, the 
database used in this updated version was the result of a pilot 
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project applied in the public health system of the city of Pau-
dalho, Pernambuco, Brazil, during the years 2020 and 2021, 
while using the older application version. The database is 
composed of 6215 records obtained from electronic medi-
cal records collected from 2019 to 2020. In Paudalho, the 
Heg.IA system was used not only to support the diagnosis 
of COVID-19, but also to monitor the progress of moderate 
and severe cases of COVID-19 in ICU and semi-ICU. The 
version of the Heg.IA web proposed in this work also has 
the functionality of predicting the hospitalization of symp-
tomatic patients with COVID-19 (ICU or semi-ICU) based 
on hematological parameters. These results, however, were 
published by Torcate et al. (2022).

Materials and methods

Proposed method

In this work, we propose two approaches of rapid proto-
cols to support the clinical diagnosis of COVID-19 based 
on hematological parameters: (1) rapid diagnosis based on 
automatic analysis by an intelligent web system based on 
particle swarm optimization and random forests; (2) rapid 
diagnosis by statistical inference by decision trees. In the 
first approach, we developed an intelligent web system for 
decision COVID-19 diagnostic support: Heg.IA web. This 
system was based on a standalone solution based on Win-
dows and Linux PCs, Heg.IA (Barbosa et al. 2021b). The 
system started operating in the city of Paudalho, Brazil, as 
a prototype and has been used to support clinical diagnosis 
and assessment of disease severity in patients admitted to 
intensive and semi-intensive care units in public health units 
in the city since 2020.

These approaches are called clinical diagnosis support 
protocols because they are proposed: (a) as part of the clini-
cal decision-making process, integrating the currently exist-
ing processes in the form of an intelligent decision support 
system using machine learning; or (b) as an application of 
decision trees to automatically build rules for evaluation of 
hematological parameters and clinical decision making by 
the human specialist, i.e., the medical professional.

In this approach, we used a knowledge base composed 
of 6215 patient records seen in health units in the city. 
The records were represented by age and up to 43 hemato-
logical parameters. We do not use biological sex because 
it is not relevant to the COVID-19 diagnostic problem. 
Using the particle swarm optimization method, with 20 
individuals evolving in 50 generations, we reduced the 
dimension of the attribute vectors from 43 to 8 statisti-
cally more relevant attributes. Both the original knowledge 
base (43 features) and the simplified knowledge base (8 
features) was used to build machine learning models based 

on the following architectures: multilayer perceptron neural 
networks (MLP), support vector machines (SVM), naive 
Bayes classifier, Bayesian network, decision trees, and 
random forests. The diagram in Fig. 1 shows a summary 
of this solution. A general method was proposed: patients 
with characteristic symptoms of COVID-19 are referred 
to a health unit and are evaluated by a medical team. This 
team orders blood tests. After obtaining the results, the 
health professional accesses Heg.IA web. On the website, 
he must login. Then he can enter the results of the patient’s 
blood tests. Upon completion, the system will generate a 
report with a positive or negative diagnosis for COVID-19, 
in addition to the hospitalization forecast. This report can 
be printed and used by the medical team to define the final 
clinical conduct.

In the second approach, we use decision trees to find the 
most significant relationships between hematological param-
eters and decision making, i.e., whether COVID-19 is posi-
tive or not. This process was used to infer that hematological 
parameters are statistically more relevant for clinical diagno-
sis without the support of an intelligent system.

All experiments were performed with 30 repetitions of 
tenfold cross-validation, resulting in 300 computational 
experiments. As metrics of quality, we use accuracy, sensi-
tivity, specificity, and area under the ROC curve.

Database

The city of Paudalho is located 38 km from the coastal cap-
ital Recife, State of Pernambuco, Brazil, has a semi-arid 
climate (Vilar and Medeiros 2019) and is inserted in the 
Atlantic Forest biome. It has a territorial area of 269,651 
 km2 and its population was around 51,357 in 2010 (last cen-
sus conducted in Brazil). It is estimated that in 2020 it had 
56,933 inhabitants (IBGE 2010). Its demographic density of 
185.06 inhabitants/km2 places it among the 40 most popu-
lated municipalities in the state.

Some social determinants of health provide a more func-
tional view of the municipality in question. Directly related 
to health care, the municipality has 21 SUS health establish-
ments, encompassing primary, secondary and tertiary care 
(IBGE 2010). SUS is an acronym for “Unique Public Health 
System,” the Brazilian public health system. It presents only 
31.5% of households with adequate sanitation (position 132 
in the State of Pernambuco) (IBGE 2010) and infant mortal-
ity rate of 13.55/1000 live births (IBGE 2010).

This retrospective study used the medical records of 
patients provided by the Health Secretariat of the city of 
Paudalho as a database. All procedures for this research 
were approved by the Research Ethics Committee at the 
Federal University of Pernambuco under number CAAE 
34932020.3.0000.5208.
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We used 6215 records of patients seen in outpatient clin-
ics, emergency rooms and the emergency department of SUS 
in the city in question, from August 30, 2019 to August 17, 
2020. Of these records, 57.61% were women (3581) and 
0.27% were newborns (17) and did not have their gender 
identified. The mean age was 41.79 (22.94) years. Among 
men, 4.54% tested positive for COVID-19 and proportion-
ally the most affected age group was over 90 years, where 

20% of patients were victims of the disease. Among the 
women, 3.88% had the diagnosis of COVID-19 confirmed, 
with 11.86% of the patients aged 50 to 60 years and 11.88% 
of the age group 80 to 90 years tested positive.

The graph in Fig. 2 shows the demographic stratifi-
cation by sex and age of all records used in this study. 
We highlight the positive cases of COVID-19 from male 
(COVID-19 M) and female (COVID-19 F) patients using 

Fig. 1  General method proposed: The system can be used in two dif-
ferent scenarios. The first scenario consists of using the system as 
a diagnostic support tool. In this case, patients with characteristic 
symptoms of COVID-19 are referred to a health unit and are evalu-
ated by a medical team. This team orders blood tests. After obtain-
ing the results, the health professionals access the HegIA web. On the 
website, they must login. Then these health professionals can enter 
the results of the patient’s blood tests. Upon completion, the sys-
tem will generate a report with a positive or negative diagnosis for 

COVID-19, in addition to the hospitalization forecast. This report can 
be printed and used by the medical team to define the final clinical 
conduct. The second scenario consists of using the system to build 
clinical analysis protocols, in case of absence of the automatic analy-
sis solution. In this case, the physician can generate a protocol docu-
ment. In this way, the document can guide the request for blood tests, 
optimizing the time of collection and results. Finally, the medical 
team will be able to define the clinical management.  Source: Authors
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the colors blue and red, whilst the total of male and female 
patients are associated to orange and green, respectively. 
Table 1 shows the demographic details of the database, 
in which 2617 records are related to males, whilst 3581 
are females; from these records, 119 (4.54%) are males 
positive for COVID-19 and 139 (3.88%) are females with 
COVID-19 as well, in a total of 258 COVID-19 patients 
distributed among moderate and severe COVID-19 cases.

Since not all 6215 records correspond to medical 
records with tests that cover all the hematological param-
eters provided for in this work, the database has several 
missing values. To fill in these missing values, we used 
mean predictors. For each class (positive or negative for 
COVID-19), the sample mean for each attribute was cal-
culated. This mean was used as a predictor for the missing 
values in the attribute with missing value in the vector of 
attributes of the corresponding class. The total of medical 
records with blood tests considered incomplete does not 
exceed 30% of the data set.

To perform this research, we initially selected 41 hema-
tological parameters. These hematological parameters cor-
respond to blood exams recommended by the Ministry of 
Health of Brazil as an initial clinical approach and part of the 
COVID-19 diagnostic process (Brazilian Ministry of Health 
Guidelines for the diagnosis and treatment of COVID-19 
2020). Therefore, considering that health centers must 
already perform these tests, there is no monetary loss or time 
spent on additional tests. On the contrary, the diagnostic pro-
cess can be optimized with the system proposed here. The 
list of 41 hematological parameters is shown in Fig. 3. The 
Complete Blood Count (CBC) with differential comprises 20 
of these hematological parameters, while arterial blood gas 
analysis includes 9 hematological parameters. The remain-
ing 12 exams are those of total, indirect, and direct bilirubin; 
serum glucose; lipase dosage; urea; D-dimer; lactic dehy-
drogenase; C-reactive protein (CRP); creatinine; and partial 
thromboplastin time (PTT); and prothrombin time activity 
from coagulogram. To this 41-item list, we added patient’s 
age and a redundant lymphocytes parameter. This additional 
lymphocyte item corresponds to a different electronic patient 
record specification that used to categorize atypical lympho-
cytes but was abandoned since the beginning of 2020.

Feature selection

The database constructed during the pre-processing was sub-
mitted to feature selection using Particle Swarm Optimiza-
tion (PSO) (Kennedy and Eberhart 1995; Poli et al. 2007; 
Wang et al. 2007). As objective function, we employed a 
simple decision tree to guide the optimization process. We 
set the algorithm to 20 individuals and 500 iterations. The 
goal of the attribute selection is to find the most significant 
exams for classification tasks and to reduce the number of 
required exams for diagnostic support.

We chose the PSO algorithm because it is a well-estab-
lished search and optimization algorithm with few optimiza-
tion parameters to be defined (Kennedy and Eberhart 1995; 

Fig. 2  Demographic stratification by sex and age of all records used 
in this study. We highlight the positive cases of COVID-19 from male 
(COVID-19 M) and female (COVID-19 F) patients using the colors 
blue and red, whilst the total of males and females patients are associ-
ated to orange and green, respectively.  Source: Authors

Table 1  Demographic details of 
the database: distribution of the 
number of patients by gender 
and by diagnosis of COVID-
19, with a percentage of the 
population with COVID-19 
by gender and by age group.  
Source: Authors

Age (years) Males (total) COVID-19 males Females (total) COVID-19 females

0–10 302 0 311 1 (0.32%)
10–20 171 0 313 2 (0.63%)
20–30 287 2 (0.69%) 709 5 (0.7%)
30–40 332 11 (3.31%) 594 6 (1.01%)
40–50 405 17 (4.19%) 549 14 (2.55%)
50–60 380 19 (5%) 413 49 (11.86%)
60–70 323 29 (8.97%) 265 26 (9.81%)
70–80 270 26 (9.62%) 284 21 (7.39%)
80–90 97 5 (5.15%) 101 12 (11.88%)
 > 90 50 10 (20%) 42 3 (7.14%)
Total 2617 119 (4.54%) 3581 139 (3.88%)
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Poli et al. 2007; Wang et al. 2007). The PSO algorithm was 
created taking inspiration from the behavior of flocks of 
birds (Kennedy and Eberhart 1995; Poli et al. 2007; Wang 
et al. 2007). These flocks of birds were modeled as dynamic 
systems where there is a global leader, who guides the flock 
in a direction that optimizes a given measure of perfor-
mance, and local leaders. While the global leader governs 
the overall dynamics of the flock of birds, local leaders are 
defined as those who perform best among their neighbors. 
Each bird is modeled using pairs of spatial position and 
velocity vectors. Throughout the evolution of the system, 
it is possible for a local leader to become a global leader, 
as it is also possible for leaders to become simple members 
of the flock of birds. Each bird represents a candidate for 
solving the problem of maximizing or minimizing a given 
objective function. In the case of maximization problems, 
the candidates for the solution that correspond to the global 
maximum and local minimums are the respective global and 
local leaders. Figure 4 illustrates the metaphor that inspires 
the PSO algorithm. PSO algorithm uses a population of 
randomly generated particles. In this approach, each par-
ticle corresponds to randomly generated solution and have 
an associated velocity and position. For each particle, each 
position vector is binary: 1’s and 0’s corresponds to the pres-
ence or the absence of one of the 43 features in the process 
of training and testing the decision tree classifier associ-
ated to the objective function. The output of the objective 
function is the overall accuracy of a tenfold cross validation 
training process. In this objective function, a decision tree 

is used as classifier. We employed meta-heuristic libraries 
developed in Java for Weka data mining platform (Gnanam-
bal et al. 2018). We adopted the following feature selection 
methods: individual weight of 0.34, inertia weight of 0.33, 
mutation probability of 0.01, report frequency of 20, social 
weight of 0.33 (Bratton and Kennedy 2007, Kennedy and 
Eberhart 1995, Poli et al. 2007, Van den Bergh and Engel-
brecht 2004).

The feature selection implementation resulted two data-
bases: the original database with 43 attributes, SARS-
CoV-2, and the dimension-reduced database, SARS-CoV-2 
(PSO). Age was not selected: it appeared as not statistically 
relevant according to PSO selection. The selected exams/fea-
tures were the following: serum glucose, indirect bilirubin, 
partial thromboplastin time, lactic dehydrogenase, lipase 
dosage, D-dimer, ferritin, and troponin.

Classification

Multilayer perceptron

Multilayer perceptron (MLP) consists of a generalization 
of the Perceptron proposed by Franklin Rosenblatt in 1958. 
Perceptron is the model is the simplest form of a neural net-
work, being able to deal with linearly separable problems. 
Multilayer perceptron networks, on the other hand, have 
several interconnected neurons (or nodes), arranged in lay-
ers: the input layer, the hidden layers, and the output layer. 
The input layer only has the network input vector, which is 

Fig. 3  The list of tests specified 
by the Ministry of Health of 
Brazil and used both in the ini-
tial assessment of symptomatic 
patients suspected of COVID-
19 and for the control and 
assessment of disease progress.  
Source: Authors
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passed on to the next layer. Then, each node in the next layer 
modifies these input values through non-linear activation 
functions, generating output signals. In addition, the network 
nodes are connected by weights, which scales these output 
signals. Finally, the superposition of several non-linear func-
tions allows the mapping of the input vector to the output 
vector. As MLPs can have one or multiple hidden layers, 
this process can be repeated several times, depending on 
the selected architecture (Barbosa et al. 2020; Gardner and 
Dorling 1998; Lerner et al. 1994; Phung et al. 2005).

Through the proper selection of activation functions and 
synaptic weights, an MLP is able to approximate the inputs 
at the desired outputs. This search and adjustment of param-
eters is called the training process. MLPs learn in a super-
vised manner. During this process, errors between the actual 
and desired outputs are calculated. These errors are used to 
adjust the network (Gardner and Dorling 1998).

In order to adjust these weights, the backpropagation 
algorithm is the most computationally straightforward and 
common algorithm. It occurs in two phases: the forward 
and backward propagation. In the first step, the initial 

network weights are set to small random values. Then, 
this first input vector is propagated through the network 
to obtain an output. This actual output is compared with 
the desired one, and the error is calculated. In the sec-
ond phase, the backward propagation, the error signal is 
propagated back through the network and the connection 
weights are updated, aiming to minimize the overall error. 
These steps can be repeated until the overall error is satis-
factory (Haykin 2001).

MLPs and other artificial neural networks architectures 
are commonly used in support diagnosis applications (Naraei 
et al. 2016), e.g., liver disease diagnosis (Abdar et al. 2018), 
heart diasese diagnosis (Hasan et al. 2017), breast cancer 
diagnosis over breast thermography (de Vasconcelos et al. 
2018; Pereira et al. 2020a,b,c; Rodrigues et al. 2019; Santana 
et al. 2020, 2018) and mammography images (Cordeiro et al. 
2016, 2017, Cruz et al. 2018, de Lima et al. 2014, 2016, 
Lima et al. 2015, Silva and Santana 2020), for recognition 
of intracranial epileptic seizures (Raghu and Sriraam 2017), 
and multiple sclerosis diagnosis support (Commowick et al. 
2018).

Fig. 4  The particle swarm optimization (PSO) algorithm is based on 
the behavior of flocks of birds. Each bird is modeled by a position 
vector and a velocity vector. Thus, the movement of a bird in search 
of resources is governed by a global leader and local leaders whose 
performance is defined by an objective function. In the problem of 
selection of the most significant exams, we use a decision tree as an 

objective function, with the overall accuracy of the training and test-
ing process by tenfold cross-validation being returned as output. Each 
bird is a candidate for solving the problem of maximizing accuracy. 
Position vectors are binary, where each coordinate corresponds to the 
presence or absence of one of the 43 attributes.  Source: Authors
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Support vector machines

Support vector machines (SVM) were created by Vladimir 
Vapnik and Alexey Chervonenkis (Boser et al. 1992; Cortes 
and Vapnik 1995) in 1963. Their main purpose is to build a lin-
ear decision surface, called a hyperplane. The idea is that this 
hyperplane should be able to separate classes in the best pos-
sible way. The optimal hyperplane is found when the margin 
of separation between it and a given nearest point is maximum 
(Haykin 2001).

SVM classifier are known for its good generalization per-
formance. They are employed in several healthcare applica-
tions, such as breast cancer diagnosis using thermography and 
mammography (Cordeiro et al. 2016, 2017, Cruz et al. 2018, 
de Lima et al. 2014, 2016, de Vasconcelos et al. 2018, Lima 
et al. 2015, Pereira et al. 2020b, Santana et al. 2020, Silva 
and Santana 2020), diabetes mellitus diagnosis (Barakat et al. 
2010), heart valve diseases (Çomak et al. 2007) and pulmonary 
infections detection (Yao et al. 2011), and also diagnosis of 
pulmonary cancer (Sun et al. 2013). However, its performance 
varies depending on the problems complexity. The type of 
the machine varies with the type of kernel used to build the 
optimal hyperplane. Table 2 shows the kernel functions used in 
this study: the polynomial and RBF kernels. For the first case, 
it was tested exponents of value 1 (linear kernel), 2, and 3.

Decision trees

Decision trees are sequential models, which combine several 
simple tests. They can be understood as a series of questions 
with “yes” and “no” answers. These tests can be the compari-
son of a value with a threshold or a categorical attribute com-
pared to a set of possibilities, for instance. Thus, when analyz-
ing the data with these tests, the decision trees will guide to 
a certain class in classification problems, or to a continuous 
value, in cases of regression problems. In this way, a decision 
tree is built with certain questions, called nodes. Essentially, 
there are four types of nodes: root, parent, child, and leaf. 
Starting at the root node, an instance is classified. Then, the 
outcome for this instance is determined ad the process con-
tinues through the tree. In addition, one node may connect to 
another, establishing a parent–child relationship, in which a 
parent node generates a child node. Finally, the terminal nodes 
of the tree are the leaf nodes, and they represent the final deci-
sion, that is, the predicted class or value. There are several 
types of decision trees, depending on the tree structure. The 

most popular ones are random tree and random forest. Both of 
them were tested in this study by using multiple configuration 
parameters (Kotsiantis 2013; Podgorelec et al. 2002).

Random tree uses a tree built by a stochastic process. This 
method considers only a few randomly selected features in 
each node of the tree Geurts et al. (2006).

In contrast, random forest is a model made up of many 
decision trees. In this case, a set of trees is built and their 
votes are combined to classify an instance, by means of the 
majority vote. Each decision tree uses a subset of attributes 
randomly selected from the original set of attributes (Brei-
man, 2001).

Bayesian network and naive Bayes classifier

Bayesian classifiers are based on Bayes’ decision theory. 
Among the most popular Bayes’ classifiers are naive Bayes 
and Bayes Nets, also known as Bayesian networks. Bayesian 
networks describe the probability distribution over a set of 
variables. They represent, in a simple way, the causal rela-
tionships of the variables of a system using Graph Theory, 
where the variables are the nodes, and the arcs identify the 
relationships between the variables. In the learning process, 
it is necessary to calculate the probability distributions and 
to identify the network structure. Learning the network 
structure can be considered an optimization problem, where 
the quality measure of a network structure needs to be maxi-
mized (Bouckaert 2008; Cheng and Greiner 1999).

On the other hand, the Naive Bayes classifier is a simple 
model that considers that the domain variables are condi-
tionally independent, that is, one characteristic is not related 
to the other. Its learning is done in an inductive way, pre-
senting a set of training data and calculating the conditional 
probability of each attribute, given a class. Naive Bayes 
needs to estimate few configuration parameters (Bouckaert 
2008; Cheng and Greiner 2001).

Parameters settings of the classifiers

All experiments were performed using the Weka Java library 
in 30 runs. During training, we used the k-fold cross-valida-
tion method with k = 10 to split the set (Jung and Hu 2015). 
Therefore, in each run the training was performed 10 times, 
with 9 parts of the set being used for training and 1 part 
used for validation. It is worth mentioning that this method 
guarantees that the validation set does not participate in the 
training. Thus, we were able to verify the performance of 
the model against external training data and tenfold cross 
validation. The experiments were made by using the fol-
lowing methods:

– Naive Bayes classifier;
– Bayes net;

Table 2  Kernel functions of SVM.  Source: Authors

Type of SVM Kernel function

Polynomial K(x, y) = (x ∙ y + 1)E

Radila Basis Function (RBF) K(x, y) = exp(−�(x − y) ∙ (x − y))
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– Multilayer perceptron: one hidden layer, for 20, 50, and 
100 hidden neurons;

– Support vector machines: we tested the following ker-
nels, for the configuration parameter C varying for 0.01, 
0.1, 1, and 10: linear kernel, polynomial kernel with 
degree varying for 2, 3, 4, and 5; and Radial Basis Func-
tion (RBF) kernel, with γ of 0.01, 0.25 and 0.5;

– Decision trees: J48 and random tree; random forests, for 
10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 trees.

Metrics

We chose the following metrics to evaluate the performance 
of diagnostic tests: accuracy, sensitivity, specificity, and the 
area under ROC curve. Accuracy is the probability that the 
test will provide correct results, that is, be positive in sick 
patients and negative in healthy patients. In other words, it 
is the probability of the true positives and true negatives 
among all the results. The sensitivity is the rate of true posi-
tives and indicates the classifier ability to detect correctly 
people with COVID-19. Specificity is the capacity of clas-
sifying healthy patients as negatives. It is the rate of true 
negatives. Finally, the area under the ROC curve is a meas-
ure of a classifier’s discriminating ability. That is, given two 
classes — a sick individual and a non-sick individual—cho-
sen at random, the area below the ROC curve that indicates 
a probability of the latter being correctly classified. If the 
classifier cannot discriminate between these two separately, 
an area under a curve is equal to 0.5. When this value is the 
next 1, it indicates that the classifier is able to discriminate 
these two cases (Hand 2009).

These metrics allow to discriminate between the target 
condition and health, in addition to quantifying the diagnos-
tic exactitude (Borges 2016). The accuracy, sensitivity, and 
specificity can be calculated as following:

where TP is the true positives, TN is the true negatives, 
FP is the false positives, and FN, the false negatives. TPR 
and TNR are the true positive and the true negative rates, 
respectively (Fawcett 2006).

An area under the ROC curve (AUC) is a measure of 
a classifier’s discriminative ability. The ROC curve is pro-
duced by calculating and plotting the true positive rate 
(TPR) against the false-positive rate (FPR) for a single 

(1)Accuracy = �0 =
TP + TN

TP + TN + FP + FN
�

(2)Sensitivity = TPR =
TP

TP + FN
�

(3)Specif icity = TNR =
TN

TN + FP
�

classifier at a variety of thresholds. Given two classes chosen 
at random, the area below the ROC curve indicates a prob-
ability of the latter being correctly classified. If the classifier 
cannot discriminate between these two separately, an area 
under a curve is equal to 0.5. When this value is the next 1, 
it indicates that the classifier is able to discriminate these 
two cases. Mathematically (Fawcett 2006):

The classification methods used in the COVID-19 detec-
tion task considering vectors of hematological parameters 
were compared using the following metrics: accuracy, sen-
sitivity, specificity, and area under the ROC curve. Metrics 
are compared using the sample average and standard error 
(format: average (standard error)) and boxplots. Two clas-
sification methods are considered equivalent according to a 
given metric if their box plots match, i.e., similarity between 
median, lower and upper quartiles, and outliers. By means 
of the qualitative and quantitative comparison of the box 
plots, it is not necessary to assume a certain probability dis-
tribution and, therefore, it is not necessary to use tests of 
normality or tests of hypotheses that assume normality of 
the data. The classifiers are first compared considering the 
most clinically relevant criteria: sensitivity, specificity and 
area under the ROC curve. Then, they are compared consid-
ering box plots of sensitivity and specificity. Furthermore, 
for the final decision, we selected two of them with best 
performances according to boxplots and mean values, and 
performed the paired t-test. We computed p-values and con-
sidered a p-value less than or to 0.05 as significant.

Protocol proposals

In this subsection, we present protocol proposals to support 
the clinical diagnosis of COVID-19 from the hematologi-
cal parameters obtained clinically from the complete blood 
count and biochemical tests. Clinical diagnosis support pro-
tocols are composed of empirical rules applied to clinical 
examinations. Our hypothesis is that decision trees, as they 
are techniques to support decision-making based on rules, 
can be used both to explain the functioning of intelligent 
systems to support clinical diagnosis, and to automatically 
build protocols for clinical diagnosis.

In decision trees, it is natural that one or more attributes 
dominate the decision process, creating dominant branches 
in the trees. Seeking to detail the role of each attribute, that 
is, of each hematological parameter in the construction of 
the clinical diagnosis, we subsequently decided to build new 
decision trees by removing the dominant attribute from the 

(4)
AUC = ∫

1

0

TPRdFPR ≈
1

2
(1 − FPR + TPR)

=
Sensitivity + Specificity

2
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previous tree. The process of building new decision trees is 
interrupted when the diagnostic accuracy drops below an 
acceptable value. In this way, each decision tree expresses 
a rapid clinical decision protocol where a hematological 
parameter is dominant.

Heg.IA web application

After selecting the best classifier, the Heg.IA web system 
was developed. It can be accessed through the link: https:// 
hegia. ufpe. br/ welco me. Its front-end was developed using 
the library React.js. This library is based on pure JavaScript. 
It is open source and used to create user interfaces, more 
specifically, single page application (SPA) web platforms. 
As for data access and manipulation of application state, we 
used the Redux-Saga structure, a powerful tool that allows 
us to manage masterfully asynchronous queries, receiv-
ing API data, and trigger actions to the application of state 
safely and easily to maintain. Furthermore, our back-end was 
developed in Python (version 3.7.7). Only the random forest 
classifier was implemented in this final solution. Figure 5 
illustrates how Random Forest was be applied as a classifier 
for the COVID-19 rapid diagnosis proposal we suggest in 
this work.

On the initial screen, it is possible to visualize a brief 
description of the intelligent system, as well as the support-
ers of this initiative: The Federal University of Pernambuco 
(UFPE) and the Department of Biomedical Engineering at 

UFPE. To get to know the members of the project’s devel-
opment team and their respective functions, it is possible to 
access the “About” option on the top menu of the screen. 
The options “Login” and “Consult” are also available. For 
the “Login” option, health professionals, especially medical 
laboratory professionals and nurses, will be able to access 
their private account or register a new account, in cases of 
first access. In the Consult option, it is possible to view the 
report with the diagnosis for a specific patient, as long as the 
user has the patient’s personal locator.

After logging into the system, the user can register a patient 
or view the complete history of registered patients. In the case 
of a new registration, personal information such as full name, 
ID, date of birth, telephone, sex, and full home address will be 
requested. In the following, the user will be directed to the screen 
shown in Fig. 6. In this screen, the results of the complete blood 
count (CBC) with differential must be entered. The units and 
reference values are available next to each of the hematological 
parameters. After filling in the CBC, the user will be directed to 
the screens for the other blood tests and arterial blood gas tests, 
as shown in Figs. 7 and 8. Thus, the list of tests required to make 
the predictions will be complete. The user can then check the 
hematological parameters entered to be sure that everything is 
correct. If he realizes that he made a typo, he can go back to the 
previous steps and correct it.

Finally, the report will be available immediately, similarly 
to that shown in Fig. 9. The diagnostic report will indicate the 
positive or negative diagnosis for COVID-19. Hospitalization 

Fig. 5  Random Forest classifier architecture adapted to COVID-19 rapid diagnosis as implemented in Heg.IA web proposal.  Source: Authors

https://hegia.ufpe.br/welcome
https://hegia.ufpe.br/welcome
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predictions are also reported, indicating the best type of hospi-
talization for the patient: regular ward, semi-ICU or ICU. Infor-
mation on accuracy, kappa index, sensitivity, and specificity of 
the determination of each of these scenarios are also available, 
in order to assist the physician’s decision making. In addition to 
viewing the report, it is also possible to print it.

Results

The results of this research are organized in three parts: in the 
first part, we present the investigation of the best classification 
architecture for the original dataset and for the version with the 
reduced number of attributes through feature selection based 
on the PSO algorithm. The most suitable classifier was used 
in the implementation of the COVID-19 diagnostic support 

web system, Heg.IA web. In the second part, we present the 
use of decision trees as an alternative to build humanly intel-
ligible models to support clinical diagnosis. These models, 
although less sophisticated, are important for the clinician to 
have a better understanding of the hematological parameters 
that are not only more prevalent in the diagnosis, but which 
can also be important for monitoring the clinical status of 
patients with COVID-19. Finally, in the third part, we present 
the prototype of the Heg.IA web system, in operation in the 
city of Paudalho, Brazil, since June 2020.

Evaluation of classifiers to support the diagnosis 
of COVID‑19

We investigated the best classifier architectures for classi-
fying patterns of hematological parameters. We investigate 

Fig. 6  Complete blood count 
screen: after the patient’s 
registration, the results of the 
patient’s complete blood count 
with differential can be inserted. 
The units and reference values 
can be viewed next to each 
hematological parameter.  
Source: Authors
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Fig. 7  Additional serological 
tests screen: additional tests, 
such as total, direct, and indirect 
bilirubin, can be inserted in 
this screen. In addition, serum 
glicose, dosage lipase, urea, 
PTT, D-dimer, lactic dehydro-
genase, prothrombin time, CRP, 
and creatinine results can also 
be included here. The units and 
reference values can be viewed 
next to each hematological 
parameter.  Source: Authors

Fig. 8  Blood gasometry screen: 
arterial gasometry can be 
inserted in this screen, finalizing 
the list of necessary exams. The 
units and reference values for 
each hematological parameter 
are available.  Source: Authors
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multilayer perceptron artificial neural networks, support vec-
tor machines, Bayesian networks, Naive Bayes classifiers, 
simple decision trees, and random forests. We studied the 
behavior of these classification architectures for the 6215 
patient records, 258 of which were positive for COVID-19, 
mostly moderate and severe cases of COVID-19.

Table 3 shows the average and standard error for accuracy, 
sensitivity, specificity, and area under the ROC curve, tak-
ing into account the original dataset, with all 43 attributes. 
Looking at Table 3, we can see that Bayes Net’s performance 
is optimal (nearly 1.0000 or 100.00%) for all metrics, with 
standard error less than 0.0001. The results for Naive Bayes 

Fig. 9  Results screen: In this 
screen it is possible to view 
the patient’s diagnostic report. 
In the report, the diagnosis for 
COVID-19 is available, as well 
as the hospitalization predic-
tions, indicating whether the 
patient should be admitted to 
the regular ward, semi-inten-
sive care unit, or to the ICU. 
Information on accuracy, kappa 
index, sensitivity, and speci-
ficity of the determination of 
each of these scenarios are also 
available, in order to assist the 
physician’s decision making. In 
addition to viewing the report, 
it is also possible to print it.  
Source: Authors
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Table 3  Sample mean and standard error for accuracy, sensitivity, specificity, and area under ROC curve (AUC) for all classifiers, considering 
the original 43-feature dataset.  Source: Authors

Classifier SARS-CoV-2

Accuracy Kappa Sensitivity Specificity AUC F1 score

Mean Std dev Mean Std dev Mean Std dev Mean Std dev Mean Std dev Mean Std dev

Naïve Bayes 99.8890 0.2149 0.9868 0.0230 0.9989 0.0022 0.9997 0.0031 0.9999 0.0011 0.9994 0.0011
Bayes network 99.9716 0.0629 0.9965 0.0077 0.9997 0.0007 1.0000 0.0000 1.0000 0.0000 0.9999 0.0003
J48 tree 99.9839 0.0483 0.9980 0.0059 0.9998 0.0005 1.0000 0.0000 0.9999 0.0003 0.9999 0.0003
Random tree 99.8220 0.2005 0.9775 0.0251 0.9992 0.0014 0.9755 0.0332 0.9873 0.0167 0.9991 0.0010
Random forest (10 trees) 99.9619 0.0780 0.9951 0.0101 1.0000 0.0002 0.9913 0.0185 1.0000 0.0000 0.9998 0.0004
Random forest (20 trees) 99.9850 0.0469 0.9981 0.0060 1.0000 0.0000 0.9964 0.0113 1.0000 0.0000 0.9999 0.0002
Random forest (30 trees) 99.9882 0.0420 0.9985 0.0054 1.0000 0.0000 0.9972 0.0101 1.0000 0.0000 0.9999 0.0002
Random forest (40 trees) 99.9925 0.0340 0.9990 0.0043 1.0000 0.0000 0.9982 0.0082 1.0000 0.0000 1.0000 0.0002
Random forest (50 trees) 99.9925 0.0340 0.9990 0.0043 1.0000 0.0000 0.9982 0.0082 1.0000 0.0000 1.0000 0.0002
Random forest (60 trees) 99.9941 0.0303 0.9992 0.0039 1.0000 0.0000 0.9986 0.0073 1.0000 0.0000 1.0000 0.0002
Random forest (70 trees) 99.9946 0.0289 0.9993 0.0037 1.0000 0.0000 0.9987 0.0070 1.0000 0.0000 1.0000 0.0002
Random forest (80 trees) 99.9941 0.0303 0.9992 0.0039 1.0000 0.0000 0.9986 0.0073 1.0000 0.0000 1.0000 0.0002
Random forest (90 trees) 99.9946 0.0289 0.9993 0.0037 1.0000 0.0000 0.9987 0.0070 1.0000 0.0000 1.0000 0.0002
Random forest (100 trees) 99.9930 0.0328 0.9991 0.0042 1.0000 0.0000 0.9983 0.0079 1.0000 0.0000 1.0000 0.0002
MLP (20 neurons) 99.9415 0.0870 0.9928 0.0108 0.9995 0.0008 0.9973 0.0099 0.9997 0.0007 0.9997 0.0005
MLP (50 neurons) 99.9372 0.0909 0.9922 0.0113 0.9995 0.0008 0.9963 0.0114 0.9997 0.0007 0.9997 0.0005
MLP (100 neurons) 99.9372 0.0889 0.9922 0.0110 0.9995 0.0008 0.9961 0.0116 0.9997 0.0007 0.9997 0.0005
SVM polynomial E1; C = 0.01 96.3368 0.5989 0.1894 0.1581 0.9998 0.0005 0.1210 0.1454 0.5604 0.0726 0.9813 0.0031
SVM polynomial E2; C = 0.01 99.9560 0.0776 0.9945 0.0096 0.9997 0.0007 0.9973 0.0099 0.9985 0.0050 0.9998 0.0004
SVM polynomial E3; C = 0.01 99.9394 0.0951 0.9925 0.0118 0.9995 0.0008 0.9961 0.0116 0.9978 0.0058 0.9997 0.0005
SVM polynomial E4; C = 0.01 99.9512 0.0870 0.9939 0.0108 0.9997 0.0007 0.9961 0.0116 0.9979 0.0058 0.9997 0.0005
SVM polynomial E5; C = 0.01 99.9517 0.0878 0.9940 0.0109 0.9997 0.0007 0.9957 0.0129 0.9977 0.0065 0.9997 0.0005
SVM RBF G = 0.01; C = 0.01 95.8488 0.0629 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.5000 0.0000 0.9788 0.0003
SVM RBF G = 0.25; C = 0.01 95.8488 0.0629 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.5000 0.0000 0.9788 0.0003
SVM RBF G = 0.5; C = 0.01 95.9013 0.4584 0.0130 0.1120 1.0000 0.0001 0.0129 0.1115 0.5065 0.0557 0.9791 0.0023
SVM polynomial E1; C = 0.1 99.9705 0.0637 0.9964 0.0078 0.9997 0.0007 1.0000 0.0000 0.9998 0.0003 0.9998 0.0003
SVM polynomial E2; C = 0.1 99.9657 0.0723 0.9958 0.0088 0.9996 0.0008 1.0000 0.0000 0.9998 0.0004 0.9998 0.0004
SVM polynomial E3; cC = 0.1 99.9469 0.0875 0.9934 0.0109 0.9996 0.0007 0.9961 0.0116 0.9979 0.0058 0.9997 0.0005
SVM polynomial E4; C = 0.1 99.9474 0.0940 0.9935 0.0116 0.9996 0.0008 0.9961 0.0116 0.9979 0.0059 0.9997 0.0005
SVM polynomial E5; C = 0.1 99.9383 0.1065 0.9923 0.0132 0.9996 0.0009 0.9955 0.0124 0.9975 0.0063 0.9997 0.0006
SVM RBF G = 0.01; C = 0.1 95.8488 0.0629 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.5000 0.0000 0.9788 0.0003
SVM RBF G = 0.25; C = 0.1 99.9839 0.0483 0.9980 0.0059 0.9998 0.0005 1.0000 0.0000 0.9999 0.0003 0.9999 0.0003
SVM RBF G = 0.5; C = 0.1 99.9362 0.0975 0.9919 0.0124 0.9998 0.0005 0.9885 0.0199 0.9942 0.0099 0.9997 0.0005
SVM polynomial E1; C = 1 99.9796 0.0552 0.9975 0.0068 0.9998 0.0006 1.0000 0.0000 0.9999 0.0003 0.9999 0.0003
SVM polynomial E2; C = 1 99.9635 0.0712 0.9955 0.0087 0.9996 0.0007 1.0000 0.0000 0.9998 0.0004 0.9998 0.0004
SVM polynomial E3; C = 1 99.9480 0.0871 0.9935 0.0108 0.9996 0.0008 0.9968 0.0107 0.9982 0.0054 0.9997 0.0005
SVM polynomial E4; C = 1 99.9271 0.1062 0.9909 0.0132 0.9995 0.0009 0.9932 0.0151 0.9963 0.0076 0.9996 0.0006
SVM polynomial E5; C = 1 99.9244 0.1096 0.9906 0.0136 0.9995 0.0009 0.9932 0.0154 0.9963 0.0078 0.9996 0.0006
SVM RBF G = 0.01; C = 1 99.9839 0.0483 0.9980 0.0059 0.9998 0.0005 1.0000 0.0000 0.9999 0.0003 0.9999 0.0003
SVM RBF G = 0.25; C = 1 99.9689 0.0663 0.9961 0.0083 0.9998 0.0005 0.9964 0.0113 0.9981 0.0056 0.9998 0.0003
SVM RBF G = 0.5; C = 1 99.9512 0.0860 0.9938 0.0109 0.9998 0.0005 0.9921 0.0165 0.9960 0.0083 0.9997 0.0004
SVM polynomial E1; C = 10 99.9421 0.0945 0.9929 0.0115 0.9994 0.0010 1.0000 0.0000 0.9997 0.0005 0.9997 0.0005
SVM polynomial E2; C = 10 99.9426 0.0971 0.9930 0.0119 0.9994 0.0010 0.9996 0.0038 0.9995 0.0021 0.9997 0.0005
SVM polynomial E3; C = 10 99.9018 0.1145 0.9877 0.0143 0.9995 0.0009 0.9890 0.0183 0.9942 0.0092 0.9995 0.0006
SVM polynomial E4; C = 10 99.9163 0.1097 0.9895 0.0137 0.9995 0.0009 0.9915 0.0164 0.9955 0.0082 0.9996 0.0006
SVM polynomial E5; C = 10 99.9244 0.1096 0.9906 0.0136 0.9995 0.0009 0.9932 0.0154 0.9963 0.0078 0.9996 0.0006
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and the three MLP configurations are also considered close 
to optimal, with the sample means of all metrics greater 
than 99%, but with sample standard errors much higher than 
those of Bayes net, at least 100 times greater for AUC and 
specificity. For the Bayes net, as described on Table 3, sensi-
tivity, specificity, and AUC reached 0.9997 (0.0007), 1.0000 
(0.0000), and 1.0000 (0.0000), respectively.

Analyzing the results for the SVMs, we notice that the 
accuracy values are all greater than 95%. The results for 
the RBF kernel are similar and stable, concentrated around 
95% for C = 0.01. For RBF kernel with G = 0.25 and C = 0.1, 
sensibility, specificity, and AUC reached 0.9998 (0.0005), 
1.000 (0.000), and 0.9999 (0.0003), respectively. For the 
linear kernel, the accuracy results vary around 99% with less 
than 1% variation, with higher C values (C = 0.1,1, and 10).

Table 3 also shows that the accuracy results for Random 
Tree correspond to good classification results and that there 
was no bias due to base imbalance: the sensitivity was 0.999 
(0.001), the specificity was 0.98 (0.03), and the AUC was 
0.99 (0.02). Considering the accuracy, the best results were 
those obtained with 40, 50, 60, 70, 80, 90, and 100 trees. 
For the last case, sensitivity, specificity, and AUC reached 
1.000 (0.000), 0.998 (0.008), and 1.000 (0.000), respectively.

Figures 10 and 11 illustrate the sensitivity and specificity 
values for the database with all 43 attributes, respectively. 

For building the boxplots, only one example of each type 
of classifier that presented a good performance was used, 
since many of them presented similar results. The selected 
examples are highlighted in the Table 3.

When we analyze the results of the box plots in Figs. 10 
and 11, we can see that the sensitivity and specificity results 
are quite accurate, with results above 0.9 in both metrics. 
Considering the sensitivity boxplots, we can see that the 
selected classifiers have similar performance, difficult to 
distinguish visually. On the other hand, when analyzing the 
specificity plots, we see the presence of outliers for the ran-
dom tree and MLP classifiers.

In order to distinguish the best classifier among those 
tested, we performed the paired t-test, aiming to compare 
the random forest and Bayes network, which presented 
the highest mean values of AUC, and other metrics above 
99.9%. In this way, a p-value of 0.000000346 was found, 
using the accuracy values. It can be interpreted that there 
is a statistically significant difference between these two 
classifiers, and, therefore, the random forest with 100 trees 
classifier was chosen, considering that it has a higher aver-
age accuracy.

The feature selection method based on the PSO algorithm 
returned the following eight attributes that were statisti-
cally most relevant for classification: serum glucose, lactic 

Table 3  (continued)

Classifier SARS-CoV-2

Accuracy Kappa Sensitivity Specificity AUC F1 score

Mean Std dev Mean Std dev Mean Std dev Mean Std dev Mean Std dev Mean Std dev

SVM RBF G = 0.01; C = 10 99.9839 0.0483 0.9980 0.0059 0.9998 0.0005 1.0000 0.0000 0.9999 0.0003 0.9999 0.0003
SVM RBF G = 0.25; C = 10 99.9828 0.0531 0.9979 0.0065 0.9998 0.0006 1.0000 0.0000 0.9999 0.0003 0.9999 0.0003
SVM RBF G = 0.5; C = 10 99.9603 0.0799 0.9950 0.0101 0.9998 0.0005 0.9943 0.0144 0.9971 0.0072 0.9998 0.0004

Fig. 10  Sensitivity of one of the tested configurations for each classifier type, considering the original 43-feature dataset.  Source: Authors
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dehydrogenase, lipase dosage, partial thromboplastin time, 
troponin, ferritin, D-dimer, and indirect bilirubin. Table 4 
shows the average and standard error for accuracy, sensitiv-
ity, specificity, and area under the ROC curve results, taking 
into account these 8-feature PSO dimension-reduced dataset. 
In addition, Figs. 12 and 11 present the sensitivity and speci-
ficity behavior according to the set of classifiers we adopted 
herein this work.

Table 4 presents detailed results as sample average and 
standard error regarding accuracy, sensitivity, specificity, 
and AUC. In a similar way to the classification using all the 
extracted attributes, the sensitivity of the selected settings 
showed incredibly good results, as can be seen in Fig. 12. In 
addition, the mean specificity also remained close to 1.000. 
According to the Table 3, the best results were obtained 
with the Bayes Net classifier, with all metrics concentrated 
at 100% out of 1. The other classifiers also showed average 
accuracy above 95%. Among them, SVMs with C = 0.001 
presented the worst performance. In contrast, for experi-
ments with SVMs and C equal to 0.1, the results for the 
linear kernels, polynomial of degrees 2 and 3, and RBF with 
γ of 0.25 and 0.5, were significantly improved, all of them 
in the range of 99.9%. For C equal to 1.0, all results were 
considerably improved for all settings, including degrees 
of 4 and 5. For C equal to 10.00, there was no noticeable 
improvement compared to C equal to 1.00. Table 4 shows 
that, in this database with the 8 statistically most relevant 
hematological parameters, all tested SVM configurations 
were robust to high database imbalance only for C equal to 
1.0 and 10.0, according to values of specificity and AUC, 
with grade 4 and 5 polynomial kernels being the least robust 
configurations. In addition, Table 4 details that Random For-
ests and the J48 decision tree are well suited to support the 
diagnosis of COVID-19 using the eight selected hemato-
logical parameters: accuracy of 99.98% (0.05), sensitivity 

of 0.998 (0.006), and maximum specificity and AUC with 
sample standard error less than 0.0001, for classification 
using random forest with 100 trees (Fig. 13).

Humanly intelligible models to support the clinical 
diagnosis of COVID‑19

Figure 14 shows the J48 decision tree trained on the 8-fea-
ture dataset: serum glucose, partial thromboplastin time, tro-
ponin, lipase dosage, lactic dehydrogenase, ferritin, indirect 
bilirubin, and D-dimer. Training was done using 10- fold 
cross validation. The result shows that, for all 6215 records, 
the accuracy was 99.9839%, the sensitivity, specificity, and 
AUC were maximum. Only a single instance was misclassi-
fied: a negative record for COVID-19 out of the total of 5457 
negatives was classified as positive. All COVID-19 positive 
records were classified correctly.

To assess the influence of the other 7 hematological 
parameters on the diagnosis of COVID-19, we retrained the 
J48 decision tree after removing the partial thromboplas-
tin time. Training was done using tenfold cross validation. 
Figure 15 illustrates the resulting decision-making proto-
col, where only the following hematological parameters are 
statistically relevant: ferritin, troponin, lipase dosage, and 
serum glucose. The accuracy obtained was 99.8552%, sen-
sitivity of 0.999, specificity of 0.985, and AUC of 0.985. We 
had 5 false positives and 4 false negatives.

By removing the partial thromboplastin time and lipase 
dosage, we can assess the importance of the other 6 hemato-
logical parameters. We train a J48 decision tree again using 
tenfold cross validation. The results are shown in Fig. 16. 
The hematological parameters considered most relevant this 
time were: ferritin, troponin, D-dimer, and serum glucose. 
The accuracy obtained was 99.8713%, with a sensitivity of 

Fig. 11  Specificity of one of the tested configurations for each classifier type, considering the original 43-feature dataset.  Source: Authors
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Table 4  Sample mean and standard error for accuracy, sensitivity, specificity, and area under ROC curve (AUC) for all classifiers, considering 
the 8-feature PSO dimension-reduced dataset.  Source: Authors

Classifier SARS-CoV-2 PSO

Accuracy Kappa Sensitivity Specificity AUC F1 score

Mean Std dev Mean Std dev Mean Std dev Mean Std dev Mean Std dev Mean Std dev

Naïve Bayes 99.9689 0.1369 0.9963 0.0149 0.9997 0.0014 1.0000 0.0000 1.0000 0.0001 0.9998 0.0007
Bayes Network 100.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
J48 tree 99.9839 0.0483 0.9980 0.0059 0.9998 0.0005 1.0000 0.0000 0.9999 0.0003 0.9999 0.0003
Random tree 99.9539 0.0849 0.9942 0.0107 0.9998 0.0006 0.9939 0.0151 0.9969 0.0076 0.9998 0.0004
Random forest (10 trees) 99.9812 0.0517 0.9977 0.0064 0.9998 0.0005 0.9992 0.0054 1.0000 0.0001 0.9999 0.0003
Random forest (20 trees) 99.9839 0.0483 0.9980 0.0059 0.9998 0.0005 1.0000 0.0000 1.0000 0.0000 0.9999 0.0003
Random forest (30 trees) 99.9839 0.0483 0.9980 0.0059 0.9998 0.0005 1.0000 0.0000 1.0000 0.0000 0.9999 0.0003
Random forest (40 trees) 99.9839 0.0483 0.9980 0.0059 0.9998 0.0005 1.0000 0.0000 1.0000 0.0000 0.9999 0.0003
Random forest (50 trees) 99.9839 0.0483 0.9980 0.0059 0.9998 0.0005 1.0000 0.0000 1.0000 0.0000 0.9999 0.0003
Random forest (60 trees) 99.9839 0.0483 0.9980 0.0059 0.9998 0.0005 1.0000 0.0000 1.0000 0.0000 0.9999 0.0003
Random forest (70 trees) 99.9839 0.0483 0.9980 0.0059 0.9998 0.0005 1.0000 0.0000 1.0000 0.0000 0.9999 0.0003
Random forest (80 trees) 99.9839 0.0483 0.9980 0.0059 0.9998 0.0005 1.0000 0.0000 1.0000 0.0000 0.9999 0.0003
Random forest (90 trees) 99.9839 0.0483 0.9980 0.0059 0.9998 0.0005 1.0000 0.0000 1.0000 0.0000 0.9999 0.0003
Random forest (100 trees) 99.9839 0.0483 0.9980 0.0059 0.9998 0.0005 1.0000 0.0000 1.0000 0.0000 0.9999 0.0003
MLP (20 neurons) 99.9496 0.0845 0.9937 0.0106 0.9997 0.0007 0.9955 0.0132 0.9999 0.0005 0.9997 0.0004
MLP (50 neurons) 99.9458 0.0888 0.9932 0.0111 0.9997 0.0007 0.9946 0.0145 0.9999 0.0005 0.9997 0.0005
MLP (100 neurons) 99.9458 0.0888 0.9932 0.0112 0.9997 0.0007 0.9943 0.0154 0.9999 0.0005 0.9997 0.0005
SVM polynomial E1; C = 0.01 96.3626 0.5919 0.1952 0.1561 1.0000 0.0001 0.1240 0.1440 0.5620 0.0720 0.9814 0.0030
SVM polynomial E2; C = 0.01 95.9281 0.4686 0.0245 0.1154 1.0000 0.0002 0.0195 0.1152 0.5098 0.0575 0.9792 0.0024
SVM polynomial E3; C = 0.01 95.9078 0.4678 0.0160 0.1137 1.0000 0.0002 0.0149 0.1150 0.5074 0.0574 0.9791 0.0024
SVM polynomial E4; C = 0.01 95.9024 0.4675 0.0136 0.1133 1.0000 0.0002 0.0136 0.1149 0.5068 0.0574 0.9791 0.0024
SVM polynomial E5; C = 0.01 95.8890 0.4708 0.0131 0.1133 0.9998 0.0005 0.0135 0.1149 0.5066 0.0574 0.9790 0.0024
SVM RBF G = 0.01; C = 0.01 95.8488 0.0629 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.5000 0.0000 0.9788 0.0003
SVM RBF G = 0.25; C = 0.01 95.9019 0.4631 0.0130 0.1125 1.0000 0.0000 0.0128 0.1105 0.5064 0.0552 0.9791 0.0024
SVM RBF G = 0.5; C = 0.01 95.9067 0.4728 0.0148 0.1146 1.0000 0.0001 0.0142 0.1151 0.5071 0.0575 0.9791 0.0024
SVM polynomial E1; C = 0.1 99.9839 0.0483 0.9980 0.0059 0.9998 0.0005 1.0000 0.0000 0.9999 0.0003 0.9999 0.0003
SVM polynomial E2; C = 0.1 99.9673 0.0687 0.9960 0.0084 0.9997 0.0007 1.0000 0.0000 0.9998 0.0004 0.9998 0.0004
SVM polynomial E3; C = 0.1 99.9673 0.0687 0.9960 0.0084 0.9997 0.0007 1.0000 0.0000 0.9998 0.0004 0.9998 0.0004
SVM polynomial E4; C = 0.1 96.1480 0.4815 0.1227 0.1305 0.9998 0.0005 0.0763 0.1190 0.5381 0.0594 0.9803 0.0025
SVM polynomial E5; C = 0.1 96.0097 0.4765 0.0659 0.1237 0.9998 0.0005 0.0430 0.1171 0.5214 0.0585 0.9796 0.0024
SVM RBF G = 0.01; C = 0.1 95.8488 0.0629 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.5000 0.0000 0.9788 0.0003
SVM RBF G = 0.25; C = 0.1 99.9839 0.0483 0.9980 0.0059 0.9998 0.0005 1.0000 0.0000 0.9999 0.0003 0.9999 0.0003
SVM RBF G = 0.5; C = 0.1 99.9689 0.0663 0.9961 0.0083 0.9998 0.0005 0.9964 0.0113 0.9981 0.0057 0.9998 0.0003
SVM polynomial E1; C = 1 99.9839 0.0483 0.9980 0.0059 0.9998 0.0005 1.0000 0.0000 0.9999 0.0003 0.9999 0.0003
SVM polynomial E2; C = 1 99.9673 0.0687 0.9960 0.0084 0.9997 0.0007 1.0000 0.0000 0.9998 0.0004 0.9998 0.0004
SVM polynomial E3; C = 1 99.9517 0.0816 0.9941 0.0100 0.9995 0.0009 1.0000 0.0000 0.9997 0.0004 0.9997 0.0004
SVM polynomial E4; C = 1 99.9517 0.0816 0.9941 0.0100 0.9995 0.0009 1.0000 0.0000 0.9997 0.0004 0.9997 0.0004
SVM polynomial E5; C = 1 99.9517 0.0816 0.9941 0.0100 0.9995 0.0009 1.0000 0.0000 0.9997 0.0004 0.9997 0.0004
SVM RBF G = 0.01; C = 1 99.9839 0.0483 0.9980 0.0059 0.9998 0.0005 1.0000 0.0000 0.9999 0.0003 0.9999 0.0003
SVM RBF G = 0.25; C = 1 99.9684 0.0667 0.9960 0.0084 0.9998 0.0005 0.9963 0.0115 0.9980 0.0057 0.9998 0.0003
SVM RBF G = 0.5; C = 1 99.9678 0.0671 0.9960 0.0084 0.9998 0.0005 0.9961 0.0117 0.9980 0.0058 0.9998 0.0003
SVM polynomial E1; C = 10 99.9689 0.0676 0.9962 0.0083 0.9997 0.0007 1.0000 0.0000 0.9998 0.0004 0.9998 0.0004
SVM polynomial E2; C = 10 99.9657 0.0711 0.9958 0.0087 0.9996 0.0007 1.0000 0.0000 0.9998 0.0004 0.9998 0.0004
SVM polynomial E3; C = 10 99.9517 0.0816 0.9941 0.0100 0.9995 0.0009 1.0000 0.0000 0.9997 0.0004 0.9997 0.0004
SVM polynomial E4; C = 10 99.9517 0.0816 0.9941 0.0100 0.9995 0.0009 1.0000 0.0000 0.9997 0.0004 0.9997 0.0004
SVM polynomial E5; C = 10 99.9517 0.0816 0.9941 0.0100 0.9995 0.0009 1.0000 0.0000 0.9997 0.0004 0.9997 0.0004
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0.999, specificity of 0.981, and AUC of 0.990. We get 3 false 
positives and 5 false negatives.

We retrained a J48 decision tree removing the partial throm-
boplastin time, ferritin, and lipase dosage from the database. The 
training was done using tenfold cross validation. The decision 
protocol is shown in Fig. 17. All 5 remaining hematological 
parameters were considered relevant in the diagnostic decision: 
serum glucose, D-dimer, troponin, lactic dehydrogenase, and 
indirect bilirubin. The accuracy obtained was 99.7908%, with a 
sensitivity of 0.998, specificity of 0.955, and AUC of 0.982. We 
got 1 false positive and 12 false negatives.

Discussion

Evaluation of classifiers to support the diagnosis 
of COVID‑19

Given that the best results were obtained with random forests 
and these classifiers are sufficiently robust to noisy data (pos-
sible typing errors of hematological parameters and missing 
data that need to be statistically estimated), we decided to 
adopt a Random Forest with 100 trees to implement the Heg.
IA web for COVID-19 diagnosis support. Another advantage 

of Random Forests and decision trees in general is their low 
computational cost of processing, although the memory 
consumption can be considerable. Also, sorting with deci-
sion trees does not require input attributes to be resched-
uled through normalization or standardization, a necessary 
preprocessing stage when we have to work with neural net-
works, support vector machines or Bayesian methods. Con-
sidering the 100-tree random forest, specificity, sensitivity, 
and AUC reached 1.0000 (0.0000), 0.9983 (0.0079), and 
1.0000 (0.0000), respectively.

These results show that the 43 attributes (age and 42 
hematological attributes) adopted in this work can be used 
to diagnose patients with symptoms of COVID-19 with a 
precision close to that obtained with RT-PCR, as shown in 
Table 3, for the results with Random Forests. Therefore, 
the Heg.IA web system can be an important aid for the 
development of a rapid protocol for the clinical diagnosis of 
COVID-19, providing more certainty for clinical practice. 
These results also show that these 42 hematological param-
eters, given the high accuracy, sensitivity, specificity, and 
AUC values obtained, comparable to those obtained with 
RTPCR, can be very important for monitoring COVID-
19-positive patients.

Table 4  (continued)

Classifier SARS-CoV-2 PSO

Accuracy Kappa Sensitivity Specificity AUC F1 score

Mean Std dev Mean Std dev Mean Std dev Mean Std dev Mean Std dev Mean Std dev

SVM RBF G = 0.01; C = 10 99.9839 0.0483 0.9980 0.0059 0.9998 0.0005 1.0000 0.0000 0.9999 0.0003 0.9999 0.0003
SVM RBF G = 0.25; C = 10 99.9807 0.0540 0.9976 0.0067 0.9998 0.0005 0.9992 0.0054 0.9995 0.0027 0.9999 0.0003
SVM RBF G = 0.5; C = 10 99.9684 0.0667 0.9960 0.0084 0.9998 0.0005 0.9963 0.0115 0.9980 0.0057 0.9998 0.0003

Fig. 12  Sensitivity of one of the tested configurations for each classifier type, considering the 8-feature PSO dimension-reduced dataset.  Source: 
Authors
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Fig. 13  Specificity of one of the tested configurations for each classifier type, considering the 8-feature PSO dimension-reduced dataset.  Source: 
Authors

Fig. 14  Clinical decision protocol based on J48 decision tree trained 
on the 8-feature dataset: serum glucose, partial thromboplastin time, 
troponin, lipase dosage, lactic dehydrogenase, ferritin, indirect biliru-
bin, and D-dimer. Training was done using 10- fold cross validation. 

Reduced partial thromboplastin time (< 22) is associated to symp-
tomatic COVID-19 case. The accuracy was 99.9839%, the sensitiv-
ity, specificity, and AUC were maximum. We had 1 false positive.  
Source: Authors

Fig. 15  Clinical decision protocol based on J48 decision tree trained 
on the 7-feature dataset. Only the following were statistically rel-
evant: lipase dosage, ferritin, troponin, and serum glucose. Training 
was done using tenfold cross validation. Lipase dosage was dominant 

in this decision protocol. The accuracy was 99.8552%, sensitivity of 
0.999, specificity of 0.985, and AUC of 0.985. We had 5 false posi-
tives and 4 false negatives.  Source: Authors



532 Research on Biomedical Engineering (2023) 39:509–539

1 3

Furthermore, the results also show that the eight hema-
tological parameters chosen by the PSO algorithm are very 
important for the clinical diagnosis of COVID-19 in sympto-
matic patients, reaching results comparable to those obtained 
with RT-PCR, the gold standard method for the diagnosis 
of COVID-19. Thereby, these hematological parameters are 
strongly related to COVID-19 itself, and should not only 
be part of COVID-19 clinical diagnosis protocols, but also 
protocols for patient follow-up and assessment of patient 
progress and severity of disease, as the review of the state 
of the art demonstrates.

The change in serum glucose by COVID-19 may explain 
the fact that diabetes is considered a comorbidity that can 

increase the chances of worsening the patient’s death by 
COVID-19. Indirect bilirubin is formed by the breakdown 
of red blood cells and is then transported to the liver. Bili-
rubin can be related to several complications in the blood, 
changes in heart function and liver problems. This, in turn, 
may be strongly related to how the chances of aggravation 
and death in patients with heart disease and liver disease 
may increase. Troponin alterations, also considered statisti-
cally relevant in this research, also show how patients with 
heart disease can have their chances of worsening the dis-
ease. D-dimer is one of the breakdown products of fibrin, a 
protein that is involved in clot formation. Therefore, when 
there are changes in the coagulation process, it is possible 

Fig. 16  Clinical decision protocol based on J48 decision tree trained 
on the 6-feature dataset. Only the following were statistically rel-
evant: ferritin, troponin, D-dimer, and serum glucose. Training was 
done using tenfold cross validation. The accuracy obtained was 

99.8713%, with a sensitivity of 0.999, specificity of 0.981, and AUC 
of 0.990. We get 3 false positives and 5 false negatives.  Source: 
Authors

Fig. 17  Clinical decision protocol based on J48 decision tree trained 
on the 5-feature dataset. All remaining features were statistically rel-
evant: serum glucose, D-dimer, troponin, lactic dehydrogenase, and 
indirect bilirubin. Training was done using tenfold cross validation. 

The accuracy obtained was 99.7908%, with a sensitivity of 0.998, 
specificity of 0.955, and AUC of 0.982. We got 1 false positive and 
12 false negatives.  Source: Authors
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that there is a greater amount of circulating D-dimer. Lac-
tic dehydrogenase is an enzyme present in all cells, but in 
greater concentration in the lungs, heart, skeletal muscle 
and liver. High levels of lactic dehydrogenase in patients 
with COVID-19 increase the chances of aggravation of the 
infection and, therefore, the probability of death. Lipase is 
an enzyme that is part of the digestive process. It works by 
breaking down fat molecules to be more easily absorbed 
by the intestine. The lipase test is a clinical analysis that 
helps identify changes in the levels of this enzyme in the 
individual’s body. High levels of lipase are associated with 
acute pancreatitis. Several studies show that COVID-19 also 
affects the pancreas in moderate and severe cases. State-of-
the-art investigations show that the occurrence of pancreati-
tis at different levels is reasonably common in patients posi-
tive for COVID-19 and may be a highly important clinical 
occurrence in intubated patients.

Reduced partial thromboplastin time indicates the pos-
sibility of early blood clotting. It is strongly related to the 
occurrence of thrombosis, thrombopenia and other problems 
related to early coagulation, common to moderate and severe 
cases of COVID-19 and in post- COVID-19 complicators. 
Ferritin is a protein produced mainly by the liver, whose 
basic functions are: transporting iron and mediating the 
inflammation process. High ferritin can be a symptom of 
inflammation or infections, as it is an acute phase protein, 
which may be increased in the following situations: COVID-
19, hemolytic anemia, megaloblastic anemia, alcoholic liver 
disease, Hodgkin’s lymphoma, myocardial infarction, leu-
kemia, and hemochromatosis. Symptoms of excess ferritin 
are joint pain, tiredness, shortness of breath or abdominal 
pain, i.e., symptoms common to COVID-19. This informa-
tion, combined with the results obtained with decision trees, 
suggest the clinical use of partial time thromboplastin and 
ferritin both for the rapid clinical diagnosis of symptomatic 
cases of COVID-19 without the aid of diagnostic support 
systems and for the assessment of severity of the disease and 
the follow-up of the patient’s clinical situation.

These results may also indicate the possibility of con-
structing specific treatments for moderate and severe cases 
of COVID-19, which can be based on therapies with antico-
agulants, IL-6 blocking drugs. Another possibility may be 
to adapt therapies aimed at reducing ferritin for COVID-19 
cases, respecting the degree of disease severity and patient 
limitations. The proposed system has been used to support 
clinical diagnosis and assessment of disease severity in 
patients admitted to intensive and semi-intensive care units 
as a case study in the city of Paudalho, Brazil.

Furthermore, it is known that reference data for hemato-
logical parameters vary according to the age and gender of 
patients. Since the absolute values of hematological param-
eters were used for the development of models to support 
the diagnosis of COVID-19, these reference values were 

not investigated. Discussions about reference values were 
therefore outside the scope of this work. However, in future 
work, we can investigate the influence of binary attributes 
defined from the reference values by gender and age on the 
diagnosis of COVID-19 and how these results can dialogue 
with the clinical diagnosis.

Humanly intelligible models to support the clinical 
diagnosis of COVID‑19

Regarding protocol proposals and human assessment of 
the features, Fig. 14 shows that, for the symptomatic case 
records of the public health system in the municipality of 
Paudalho, Brazil, the most important factor for a positive 
diagnosis for COVID-19 is the low partial thromboplastin 
time (less than or equal to 22). This is indicative of the pos-
sibility of early blood clotting, a clinical occurrence strongly 
associated with thrombopenia, thrombosis and blood clot 
formation. Since all patient records used in this research cor-
respond to symptomatic patients who sought medical care, it 
is reasonable to consider that all positive cases of COVID-19 
are moderate or severe. This raises the hypothesis that, for 
symptomatic COVID-19 patients in moderate or severe con-
dition, treatments with anticoagulants such as low molecu-
lar weight heparin may be successful. In fact, the literature 
and clinical practice report that these treatments are already 
being used with relative success, but they are restricted to 
very severe cases, often in intubated patients. For this proto-
col, the accuracy was 99.98%, whilst the sensitivity, specific-
ity, and AUC were maximum (approximately 1.00).

Figure 15 shows the decision protocol for clinical diag-
nosis generated automatically by decision tree J48 after 
excluding partial thromboplastin time. The protocol shows 
the importance of lipase dosing, ferritin, troponin, and serum 
glucose for the clinical diagnosis, monitoring, and evalua-
tion of COVID-19. Most patients with COVID-19 (238 out 
of 258) had high levels of lipase dosage (greater than 126) 
and ferritin (greater than 252). These appear to be critically 
ill patients, as ferritin indicates that the patient is highly 
symptomatic, whereas high-dose lipase may indicate cases 
of pancreatitis. A few patients were positive for COVID-19 
for low ferritin (less than 252) and lipase dosage between 
126 and 129 (7 patients). Other 10 patients had low lipase 
dosage (less than 126), but high ferritin (greater than 224), 
low troponin (less than 0.062), and high serum glucose 
(greater than 106). This may indicate the influence of high 
glucose levels in the worsening of COVID-19 symptoms, 
but it may be associated with milder or moderate cases. 
However, to be more certain, it would be necessary to have 
access to the clinical histories of these patients, which was 
not possible in this study. For this protocol, accuracy was 
99.8552%, and we got sensitivity of 0.999, specificity of 
0.985, and AUC of 0.985.
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Figure 16 shows the decision protocol obtained by remov-
ing the partial thromboplastin time and lipase dosage. In 
this case, we can observe that most patients with COVID-19 
had high ferritin (greater than 216), low troponin (less than 
0.062), and high serum glucose (greater than 110). A few 
patients had different situations: 5 patients with COVID-
19 had high ferritin (greater than 216) and high troponin 
(greater than 0.088); 8 patients had high ferritin (greater 
than 216), low serum glucose (less than 110), and troponin 
between 0.033 and 0.062. However, for 4 patients, D-dimer 
was high (greater than 1.343) and ferritin was low (lower 
than 191), which may indicate complicators due to previous 
heart disease, but these conditions would need to be verified 
in the patients’ clinical histories. For this protocol, we got 
accuracy of 99.8713%, sensitivity of 0.999, specificity of 
0.981, and AUC of 0.990.

Figure 17 shows the decision protocol obtained auto-
matically by the J48 decision tree after removing the partial 
thromboplastin time, lipase dosage, and ferritin. For this pro-
tocol, most patients with COVID-19 (237) had high serum 
glucose (greater than 147) and low but positive troponin (less 
than 0.062). As this hematologic parameter is often negative 
for healthy people, this condition may indicate a potential 
for COVID-19 to negatively alter cardiac function, possibly 
inducing myocardial damage and, depending on the patient’s 
history, myocardial infarction. The other patients did not 
present a specific rule for the relationship between hemato-
logical parameters. Its conditions were expressed in many 
rules. Some patients appear to be heart disease (4 patients) 
because they have high troponin. These patients had high 
lactic dehydrogenase (greater than 332) and serum glucose 
between 147 and 151. One group of patients (8 patients) had 
high D-dimer (greater than 1299) and low serum glucose 
(less than 105). Another group, with more specific condi-
tions (7 patients), had low troponin (less than 0.062), low 
D-dimer (less than 0.98), and serum glucose between 106.8 
and 147. Finally, only 2 patients had this condition: serum 
glucose between 109 and 147, low indirect bilirubin (less 
than 0.26), and high D-dimer (greater than 1.299). For this 
protocol, we have accuracy of 99.79%, sensitivity of 0.998, 
specificity of 0.955, and AUC of 0.982.

Taking into account the use of Heg.IA web as an online 
solution to support clinical diagnosis, based on the ran-
dom forest classifier of 100 trees, an accuracy of 99.98% 
(0.05), sensitivity of 0, 9998 (0.0005), specificity of 1.0000 
(0.0000), and area under the ROC curve of 1.0000 (0.0000). 
Although these results were obtained for a different database 
from the one used by Wang et al. (2020a), Barbosa et al. 
(2021a), Barbosa et al. (2021b), and Soares et al. (2020), the 
results are superior to those obtained by Wang et al. (2020a), 
with a linear discriminant analysis method that achieved an 
area under ROC curve of 0.938, sensitivity of 0.9000%. 
and specificity of 0.8470% when using the hematological 

parameters of neutrophil-to-lymphocyte ratio and red blood 
cell distribution width-coefficient of variation; by Barbosa 
et al. (2021a), with a random forest of 90 trees (accuracy 
of 92.89% (0.85), sensitivity of 0.9360 (0.0110), specific-
ity of 0.9210 (0.0120), and area under the ROC curve of 
0.984 (0.003); by Barbosa et al. (2021b), with a Bayesian 
Network (accuracy of 95.160% (0.690), sensitivity of 0.9700 
(0.0100), specificity of 0.9400 (0.0100), and area under the 
curve ROC of 0.9550 (0.0100); and by Soares et al. (2020), 
with a quadratic kernel support vector machine (average sen-
sitivity of 70.25% [95%CI: 66.57–73.12%], average speci-
ficity of 85.98% [95%CI: 84.94–86.84%], and average area 
under the ROC curve of 86.78% [95%CI: 85.65–87.90%]). It 
is important to highlight that, in this work, the results were 
obtained for 7 most relevant blood tests, selected by particle 
swarm optimization, including patient age, while Barbosa 
et al. (2021a) obtained 12 most relevant blood tests by selec-
tion by particle swarm optimization. particles; Barbosa et al. 
(2021b) found 24 most relevant exams, combining particle 
swarm optimization and manual selection; and Soares et al. 
(2020) manually selected 16 blood tests. These results show 
that our proposed method was not only able to achieve better 
diagnostic support performance, but also considers a smaller 
set of hematological parameters (only 7), in addition to the 
patient’s age, totaling 8 attributes.

It is also important to mention that there are several other 
studies that investigate the relationship between COVID -19 
and changes in hematological parameters (Jalil et al. 2022; 
Matin et al. 2022; Szklanna et al. 2021; Usul et al. 2020). 
However, it is also worth noting that these works do not deal 
with the analysis of these data to support the diagnosis of 
COVID-19.

Conclusion

In this study, we developed a web system, Heg.IA, which 
seeks to optimize the diagnosis of COVID-19 by combin-
ing blood tests and artificial intelligence. From the system, 
a healthcare professional may have a diagnostic report after 
providing patient’s age and 42 hematological parameters 
from common blood tests. The system is able to indicate 
if the patient is infected with SARS-CoV-2 virus. The pro-
posed system is based on decision trees and achieved great 
performance of accuracy, sensitivity, specificity, and area 
under ROC for all tested scenarios. Considering SARS-
CoV-2 detection, the system may play an important role as 
a highly efficient rapid test to aid at the clinical diagnosis 
as a way to provide rapid clinical diagnosis protocols. The 
system is designed to be easily updated with new data from 
blood test results available in electronic medical records as 
PDF files. The proposed system has been used to support 



535Research on Biomedical Engineering (2023) 39:509–539 

1 3

clinical diagnosis and assessment of disease severity in 
patients admitted to intensive and semi-intensive care units.

The experimental results demonstrate that the eight hema-
tological parameters selected by PSO, i.e., serum glucose, 
lactic dehydrogenase, lipase dosage, partial thromboplas-
tin time, troponin, ferritin, D-dimer, and indirect bilirubin, 
are very significant for the clinical diagnosis of COVID-
19 in symptomatic patients. Classification results are com-
parable to those obtained with RT-PCR. Consequently, 
serum glucose, lactic dehydrogenase, lipase dosage, partial 
thromboplastin time, troponin, ferritin, D-dimer, and indi-
rect bilirubin are closely related to COVID-19 dynamics. 
The experimental results are suggestive for the use of these 
eight hematological parameters as part of COVID-19 clini-
cal diagnosis protocols, as well as patient monitoring assess-
ment of patient progress and severity of disease, confirming 
state-of-the-art results. These hematological parameters may 
even be important for the construction of new specific treat-
ments for COVID-19, which take into account the clinical 
and biochemical interpretation of these variables.
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