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Abstract
Purpose  The human body is a complex structure. Its strength is ensured by the collagen protein which exists under the 
form of fibers. The quantitative analysis of these fibers in biological tissues can be very interesting to establish a relation-
ship between the microstructure and their functions. This analysis is usually performed using two-photon microscopy and 
second harmonic generated (SHG) images. Lately, more and more researchers focused on the use of SHG images since it is 
a non-invasive technique and allows the capture of collagen fibers only. Many image-processing techniques can be used to 
extract quantitative information from those images such as fiber orientations, dimensions, and density. Therefore, accurate 
measure extraction depends mainly on the used image processing methods and, thus, it is necessary to know what process-
ing technique to use.
Methods  The main purpose of this article is to exhibit the most used techniques in collagen fiber quantitative analysis then 
categorize them according to the information to extract. A comparison of three most used methods in fiber orientation’s 
estimation is carried out.
Result and conclusion  Despite the considerable number of papers aiming to quantitatively analyze collagen fibers from 
SHG images, two main aspects were not deeply covered. First, the use of deep learning algorithms is still limited even for 
segmentation and denoizing applications. Second, most of the studies processed in this review focused on two-dimensional 
SHG images and did not take into consideration collagen fibers as a three-dimensional volume.
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Introduction

Collagen is the most abundant protein in the human body and 
in mammals, in general. This protein is what holds the body 
together since it ensures the strength and elasticity of the body’s 
connective tissues. It can be divided into different types. Around 
80 to 90% of the collagen in the human body are collagen types 
I (skin, tendons, bones, ligaments), II (cartilages), and III (scar 
tissue, muscles, vessel walls) (Lodish et al. 2000). It is mostly 
found in the form of fibers, but it is important to recall that the 
structures which can be seen in microscopic images depends 
on the imaging scale and what is observed: one can see bundles 
composed of collagen fibrils at a 20-µm scale or single collagen 

fibrils at a 100-nm scale. The fundamental structural unit of 
these fibrils is a triple helix with a length of 300 nm and a diam-
eter of 1.5 nm (Lodish et al. 2000). For simplicity, the bundles 
are also often called collagen fibers, and their typical dimensions 
are in the order of 1 to a few tens of micrometers in diameter and 
several hundreds of micrometers in length. The study of these 
fibers, which are essential to the proper function of tissues, is 
fundamental in understanding the etiology of pathologies, their 
evolution, and in improving their clinical diagnosis and manage-
ment. It is a multidisciplinary field involving mechanics, image 
processing, chemistry, biology, etc. Relevant studies targeting 
this aspect require both suitable imaging techniques and reliable 
image analysis methods.

Early studies conducted on this protein led to the characteri-
zation at the microscopic scale (around 30 µm) of many tissues 
composed essentially of collagen by the mean of histology. 
This technique consists in studying the microscopic structure 
of biological tissues and the relations between individual ele-
ments (Lowe et al. 2015). It involves a chemically destructive 
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process, which can only be performed on ex vivo samples, and 
eventually a slicing step, which prevents from 3D observations. 
The process can also have an impact on the microstructure of 
the considered specimen. For example, freezing of the tissue is 
used for visualization purposes, which may destroy some of its 
components. Its use remains, however, a standard for pathology 
diagnoses in clinics. Hence, the study of the microstructure evo-
lution of a biological system ex vivo under a mechanical load is 
impossible with histology. In order to deal with this issue, new 
imaging techniques have been tested and proved their efficiency. 
Among those imaging modalities, one can cite first scanning 
electron microscopy (SEM) (Prado et al. 2003; Orberg et al. 
1982). It allows obtaining images with a resolution of 1–20 nm, 
but it lacks in-depth signal: only the peripheral surface can be 
imaged accurately. As a remedy, other techniques would ide-
ally ensure a precise quantification of the collagen fibers within 
the volume of the material as oriented structures in space in an 
adapted scale (1–100 µm). For instance, X-ray computed tomog-
raphy (XRCT) and X-ray micro-tomography are well suited for 
quantifying collagen fiber architecture because they allow cap-
turing their microstructure through larger fields of view (up to 
1.7 mm × 1.7 mm) as compared to other microscopy techniques 
(Bailly et al. 2018; Disney et al. 2017; Walton et al. 2015). In 
addition, it offers a resolution of 20–100 µm, though a com-
promise between resolution and field of view must be made. 
However, the addition of X-ray contrast agents may change the 
behavior of the specimen components, restraining their use. 
Optical coherence tomography (OCT) (Fujimoto et al. 2000) 
has been used as an alternative (Babalola et al. 2014; Ugryu-
mova et al. 2009). Just like XRCT, OCT provides a resolution 
of 1–15 µm, but it does not allow capturing individual compo-
nents of a specimen. This makes quantitative analysis hard to 
achieve such as for aortic ostial lesions where it is not possible 
to clear the blood at the entrance to neighboring arteries. It is 
dependent on the considered biological tissue scattering and 
absorption. Yet, it is possible to use optical clearing agents to 
reduce light scattering but it can have an impact on the tissue 
structure. Recently, a strong interest was shown toward fluo-
rescence microscopy, which requires the use of stains, but has 
limited physico-chemical modification of biological tissues. For 
instance, confocal microscopy was often used (Wu et al. 2003; 
Stein et al. 2008) because of its resolution of around 160 nm 
and its capability to capture images through the specimen depth. 
Later, the emergence of powerful lasers enabled multi-photon 
microscopy. This imaging technique, with (Chen et al. 2012; 
Polzer et al. 2013; Yeh et al. 2002) or without polarizer (Ayy-
alasomayajula et al. 2019; Cavinato et al. 2017) does not harm 
the sample because it is less exposed to the laser. It offers a scale 
for representation of the order of a micrometer and a resolu-
tion up to 150–200 nm. Besides, it allows imaging deeper into 
the sample and thus collecting more images in the depth (up to 
500 µm (Yamada et al. 2014)). Additionally, collagen fibers react 

to multi-photon laser by generating second harmonics across 
the spectral region between 400 and 500 nm (Theodossiou et al. 
2006). This property, called second harmonic generation (SHG), 
is an asset to capture images of collagen fiber only, as this signal 
is specific and can be separated from other signals.

The cited imaging modalities introduced some improve-
ment on how to capture sufficiently good images to extract 
information related to the structure and the function of col-
lagen fibers. Studying the organization of the collagen fibers 
is of interest in biomedical research since it allows diag-
nosing fibrosis (Campagnola 2011; Strupler et al. 2007) or 
analyzing their interaction with cancerous cells (Bredfeldt 
et al. 2014). Moreover, in Brown et al. (2003), the authors 
tried to quantify the dynamics of collagen modification in 
tumors in vivo after pharmacologic intervention. Besides, 
other researchers focused on the quantification of fiber ori-
entation in order to study structure-to-function relationships 
such as in pressurized vessels (Ayyalasomayajula et al. 2019; 
Cavinato et al. 2017; Schriefl et al. 2013) or waviness and 
density in order to identify the impact of sample aging (Sug-
ita and Matsumoto 2017; Wu et al. 2016).

However, this type of quantification is complicated and 
requires dedicated methods. To date, the conducted research in 
this field succeeded in characterizing collagen structures only 
in 2D planes although those tissues are three dimensional.

In the present review, we focus on the analysis of those 
SHG images of collagen fibers and the different techniques 
developed to extract information aimed at characterizing those 
fiber networks. We emphasize on the accurate quantification 
of several quantities such as the fiber orientation, waviness, 
and dimensions in addition to the collagen density. To this 
aim, the paper is organized as follow: the first section will 
explain the physics behind SHG imaging. The second section 
will focus on the different image processing techniques used 
to quantify collagen fibers in SHG image. The third section 
will exhibit what has been done in the literature to extract 
the collagen fiber geometric, composition, and morphological 
information from SHG images. This review will end with a 
comparison between of three common methods used to extract 
fiber orientation from SHG images of collagen networks.

Study design

Articles that could answer questions relating to the quanti-
tative analysis collagen fibers were carefully selected. Only 
papers dealing with biological tissues and second harmonic 
generation acquisition technique were taken into considera-
tion. Papers dealing with polarized SHG and papers with 
only abstracts were excluded. The search was performed 
using some of the most popular digital repositories (Google 
Scholar, PubMed, Springer, Science Direct and Optica 
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publishing group) by using keywords “SHG,” “collagen,” 
and “quantitative analysis.”

The collected articles were divided into three categories with 
respect to the quantitative information extracted (the geometry 
and morphology of collagen fibers and the composition of the 
considered specimen in collagen). Then, these articles were cat-
egorized following the techniques used to improve SHG images 
or to extract relevant information. The most frequent techniques 
were selected to be cited and explained in this review.

SHG acquisition technique

Optical harmonics were first discovered in the 1960s when 
the high-intensity pulsed lasers have been invented. Franken 
et al. (1961) observed second harmonic generation (SHG) in 
crystalline quartz by using a Q-switched ruby laser. It became 
a very used method to characterize the second-order non-
linear optical (NLO) response of emerging materials, espe-
cially organic NLO materials. It led to an increase of its use 
in different fields such as biomedical research (Singer and Wu 
2013). SHG imaging in biology was reported by Freund et al. 
(1986) when he tried to characterize the polarity of collagen 
fibers in a rat-tail tendon. Campagnola et al. (2002) reported 
a more recent practical implementation in where the authors 
succeeded in imaging biological tissue at high resolution and 
fast acquisition rate. In order to collect SHG images of col-
lagen in biological tissues, a two-photon light microscopy has 
been developed. This imaging technique is based on the exci-
tation of a molecule to a virtual state by two photons which 
are then converted into a single photon of same total energy 
at double frequency, without absorption or re-emission of 
photons. For two-photon excitation, photons in the infrared 
spectral range are used under highly intense laser illumination 
(for example, Ti:sapphire lasers). Infrared photons are chosen 
because of their low energy. When the energy gap between 

the ground state and the excited state is smaller than the sum 
of the energy of the two photons, the nonlinear process can 
occur. In this case, the probability that a fluorescent molecule 
absorbs simultaneously two infrared photons is a quadratic 
function of the excitation radiance (So 2002).

The possibility to take microscopic images in three 
dimensions (i.e., depth discrimination) is considered one of 
the most interesting properties of two-photon microscopes. 
It originates from the almost absence of out-of-focus light 
resulted by the reflection. Eighty percent or more of the total 
florescence signal may be cramped in a region of 1 µm thick-
ness around the focal plane of a two-photon excitation (So 
2002). Notable two-photon excitation occurs where the pho-
ton density is high. It corresponds to the focal volume of the 
microscope, which can be as small as ~ 0.1 µm3 (Zipfel et al. 
2003). The laser needs to scan the entire specimen in the 
three dimensions to generate a 3D image, which may involve 
relatively long acquisition times according to the volume 
size and acquisition parameters. Finally, the use of two low-
energy photons limits the risk of photo-damage of the sam-
ple (Svoboda and Yasuda 2006). In addition, it maximizes 
the probability of detecting photons per excitation event in 
the right spot and, thus, minimizes photo-bleaching (when 
the molecule loses its ability to fluoresce) and photo-toxicity.

Method description

We here provide a succinct description of the methods 
allowing extracting quantitative information from SHG 
images of collagen fibers. We first introduce some common 
pre-processing techniques. Then, we focus on the different 
image transformations that may be used to analyze the SHG 
images. Finally, we highlight the methods useful to extract 
and select information from SHG images. Fig. 1 displays the 
methods that will be covered in this section.

Fig. 1   Overview of SHG 
images manipulation techniques
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Pre‑processing

In order to process an SHG image or stack and to extract as 
much accurate information as possible, it is important to remove 
the noise. SHG images of tissues present usually Poisson noise 
because of their poor signal-to-noise ratio (Bredfeldt et al. 2014). 
Common methods in pre-processing SHG images are introduced 
in the following and are summarized up in Table 1.

Median filter

It is simple and widely used filter to reduce noise in images 
and to smooth them. Median filter (Huang et al. 1979) is a 
nonlinear smoothing filter. The value of each pixel in the 
image is replaced by the median value of pixel’s intensity in 
a previously defined neighborhood of size m * m.

Median filters work well for removing random salt and pep-
per noises (Gonzalez and Woods 2018). However, this kind of 
filters does not allow the suppression of Gaussian noise (Ohki 
et al. 1995) which can be dealt with through deconvolution. 
They do not reduce the difference in brightness of images and, 
hence, preserve edges. However, when the signal-to-noise ratio 
of the image is small, or the neighborhood is too large, median 
filters tend to delete useful information and produce false noise 
edges.

Contrast enhancement

The recognition of image features depends on the image 
contrast. However, the contrast can be distorted by the 
imaging system because of poor illumination conditions. 
For this purpose, histogram equalization is widely used. A 
well-acquired gray-scale image should cover black and white 
pixels. It is also better that the image’s shades are evenly 
distributed (i.e., the image histogram is uniform). Many 
contrast transforms can be used for this purpose such as his-
togram equalization, adaptive histogram equalization, and 
contrast limited adaptive histogram equalization (CLAHE) 
(Mustafa and Abdul Kader 2018). Here, we will focus on 
the CLAHE algorithm, which is very used on SHG images 
(Koch et al. 2014; Hu et al. 2012).

CLAHE is a variant of adaptive histogram equalization 
(Pizer et al. 1987). It consists in computing histograms of 
distinct regions and using them to redistribute the pixel 
intensity values of the image. The difference between 
CLAHE and other adaptive histogram equalization algo-
rithms is that it clips the histogram at a pre-defined value 
(i.e., if a histogram bin is higher than the clip limit, those 
pixels are clipped and uniformly shared with other bins 
before proceeding to the histogram equalization). It oper-
ates on small regions of the image called tiles. To remove 
the artificial boundaries between the different tiles, bi-linear 
interpolation is used.

CLAHE is a good technique to improve local contrast 
and to enhance edges. Compared to other adaptive histo-
gram equalization techniques, it limits the noise amplifica-
tion. However, if the image is too noisy, a phenomenon of 
noise amplification may occur. The combination of CLAHE, 
median filter, and edge sharpener (such as high-pass filters) 
can be successful to maintain the image high spatial fre-
quency content.

Directional filters

When there is a need to study oriented features in an image, 
directional filters can be used (Bamberger and Smith 1992). 
They consist in a filter bank containing lines in different 
directions. They can be used to detect edges or to identify 
objects orientations. Those filters have wedge-shaped pass-
band spectral regions, and are therefore usually referred to 
as wedge or fan filters (Simoncelli and Farid 1996). When 
the orientation of the wedge is known, the determination of 
objects direction is straightforward.

Wedge filters are an easy to implement and efficient tool 
to study oriented objects in images. However, in order to 
have a fine description of the image features, it is necessary 
to have thin wedges in as many directions as possible which 
will add more computational costs.

Gradient

The gradient vector is a fundamental approach for find-
ing extrema of a continuous and smooth function in space 
(Hyvärinen et al. 2009). The gradient is defined as the partial 
derivatives of a function with respect to all its components. 
For 2D images, the gradient is usually achieved by the con-
volution of the image by a couple of filters based on the 
Sobel filter (Sobel 1968) or the Prewitt operator (Prewitt 
1970).

The fact that small displacements are taken into consid-
eration to compute the gradient allows capturing as much 
details as possible in any direction. The gradient works fine 
with clear images without much noise. However, if the con-
sidered image is noisy, the gradient will not bring any useful 
information.

Frangi filter

The Frangi filter (Frangi et al. 1998) was first developed 
to be a vessel enhancement filter. However, it was used to 
detect both vessel-like and tube-like structures in images. 
Because of the collagen fiber morphology, which can be 
assimilated to tubes, the Frangi filter was used to extract the 
fibers from SHG images.

The Frangi filter is based on the computation of the 
image’s Hessian matrix. In the proposed framework, the 
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derivative of an image corresponds to its convolution with 
derivatives of Gaussians. The second derivative of a Gauss-
ian kernel shape allows to measure the contrast between 
the region in and out of a range (− s, s), s being the stand-
ard deviation of the Gaussian. Through the analysis of the 
eigenvalues of the image’s Hessian matrix, it is possible 
to extract the direction of the smallest vessel’s curvature 
which corresponds to the main directions in which the local 
second-order structure of the image can be decomposed 
(Frangi et al. 1998). The eigenvalue decomposition gives 
three orthonormal directions, which allow describing ves-
sels in images.

The use of multiscale Frangi filter, through the analysis 
of the eigenvalues of the Hessian matrix, makes it possible 
to capture the smallest details of an image and, thus, avoid 
the application of different filters of different sizes. However, 
the Frangi filter may not take into consideration any object 
in the image, which does not have a circular cross-section.

Image transformations

A strong interest was shown to signal decomposition because 
of the uneven distribution of signal energy in the frequency 
domain. It consists in dividing the signal spectrum into its 
sub-spectra, which are then treated individually (Akansu 
2001). Signal decomposition was used for many applica-
tions such as compression and feature extraction. For image 
analysis, and particularly for studying the collagen fibers in 
SHG images, several image decomposition methods have 
been used: the fast Fourier transform (FFT), the wavelet 
transform (WT), the radon transform (RT), and the Hough 
transform (HT). Table 2 sums up these methods.

Fast Fourier transform (FFT)

The FFT is an efficient method to study the spatial frequency 
distribution of the pixels in an image. The Fourier transform 
(FT) was initially used to characterize linear systems and to 
identify their frequency components that make a continuous 
waveform (Bergland 1969). Images are processed using the 
discrete Fourier transform (DFT). The DFT coefficients can be 
computed by the FFT. This transform is a computationally cheap 
and fast algorithm originally introduced by Cooley et al. (1969). 
Different approaches can be chosen to compute the FFT (Rader 
1968; Bluestein 1970; Bruun 1978; Rivard 1977). The 2D DFT 
is a two-time process (Rivard 1977). It consists in combining 
vertical and horizontal 1D DFT of an array into one 2D trans-
form that makes sense. First, a 1D DFT over horizontal lines of 
an image is performed. Then, a 1D DFT over vertical lines is 
applied on the result of the previous operation.

The 2D FFT is an efficient operator to characterize an 
image and to capture the variation of its texture. However, 
the space notion is lost when the transition from space to 
frequency is done. In fact, the 2D Fourier transform gives 
information of the global contents and changes in frequency 
without knowledge on the section of the image that corre-
sponds to it. Besides, Fourier transform may not work accu-
rately to reconstruct an image, which is highly non-smooth 
(Jaffar Iqbal Barbhuiya and Hemachandran 2013).

Wavelet transform (WT)

Wavelet methods have become a widely used tool in image 
processing during the last 20 years. This is due to their ability 
to analyze non-stationary structures and characterize local 
properties. An image is mapped to a phase space, which is 

Table 1   Pre-processing methods

Methods Output Advantages Drawbacks

Median filter Low-passed image -It preserves edges
-It works well with random and salt and 

pepper noise (Gonzalez and Woods 
2018)

-It can delete useful information when the 
SNR is low

-It does not work with Gaussian noise (Ohki 
et al. 1995)

CLAHE Image with equalized histogram -It improves local contrast and enhance 
edges

-It limits noise amplification compared to 
other histogram equalization techniques

-It does not work properly on very fine 
details

-It is complex and computationally expen-
sive

Directional filters Filtered image with respect to the 
direction of the highest intensity

-It is a good tool to study oriented objects
-It is easy to implement

-It needs to be fine tuned to capture all 
details

-It may be computationally expensive
Gradient Double images representing the 

gradient values at each pixel
-It allows to capture small details -It is limited with noisy images

Frangi filter Images with only tube-like objects -It captures the smallest details (Frangi 
et al. 1998)

-It only takes into consideration objects with 
circular cross-section (Frangi et al. 1998)
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parameterized by a scale/size/resolution and a time/space 
parameters. Wavelet transform is an alternative to the Fourier 
transform which characterizes the image in a time/space 
frequency space (Dahlke et al. 2008). It was first introduced by 
Grossmann and Morlet (1984) as an elegant multi-resolution 
signal processing tool thanks to its ability to naturally vary the 
time–frequency resolution (Akansu 2001). It is a mathematical 
function of zero average used to divide a function into 
components at different scales. Each scale is computed using 
a specific wavelet generated from an initial function named 
mother wavelet by dilation and translation. The dilation allows 
carrying out a multi-scale analysis and enables to capture small 
details.

It is possible to perform a wavelet decomposition of an image 
(in 2D or even for higher dimensions) in order to compress the 
data or to obtain a vector of features that characterizes the data in 
a basis of wavelet. It is helpful to capture the orientation changes 
in an image. For this matter, we need to perform a 2D discrete 
wavelet transform (DWT). As for the 2D FFT, it can be gener-
ated using the horizontal and vertical 1D DWT.

The main advantage of the wavelet transform is that it 
provides a localization in both space and frequency domains. 
The wavelet transform allows capturing small and coarse 
details. Indeed, wavelet transforms over-perform traditional 
Fourier transforms in representing functions with sharp 
peak discontinuities and in correctly decomposing and 
reconstructing non-stationary, non-periodic, and finite 
signals (Jaffar Iqbal Barbhuiya and Hemachandran 2013). 
It can also be used to detect discontinuities and irregularities 
in signals. However, this technique is computationally 
expensive for fine decomposition. The choice of the mother 
wavelet and the number of decompositions can highly 
influence the result.

Radon transform (RT)

The radon transform is a mathematical transformation based on 
projections, which is the basis of computed tomography (CT). 
We can also use it to detect edges. The radon transform con-
sists in performing different projections of an image according 
to different angles. The resulting projection corresponds to the 
integral of the line integral (i.e., the sum of the pixel intensi-
ties in every direction) (Deans 2007). In other terms, the RT 
maps an image from Cartesian coordinates to polar ones. This 
transform can also be applied to 3D images. In this case, the 
integral is taken over planes. The RT data is usually referred to 
as sinograms.

The use of a FFT gives qualitative information about fiber 
orientations. To deal with this issue, it is possible to apply an 
RT on the result of the FFT. Since it is based on projections, it 
gives quantitative information for each considered angle. It is 
important to have a sufficient number of angles to get accurate 
results in detecting and extracting the fiber orientations.

Hough transform (HT)

The Hough transform (Hough 1962) was first introduced to detect 
lines in images. This algorithm was then simplified by Duda and 
Hart (1972) and generalized to detect circles and curves. The 
original HT algorithm assumes that every line in an image can 
be represented by a unique couple (slope, intercept). Duda and 
Hart (1972) changed this representation by the couple (angle, 
distance), where the angle and the distance correspond to the 
polar coordinates of a considered line in the image (the distance 
being the distance between the image origin and its projection on 
the line). A matrix called accumulator is created where its axes 
correspond to the parameters characterizing the line. Thus, for 
each pixel of the image, the accumulator is incremented for all 
possible lines passing through that pixel. The presence of an edge 

Table 2   Image transformation methods

Methods Output Advantages Drawbacks

FFT Complex representation of 
the image in the frequency 
domain

-It captures the variation of the image texture -It loses spatial information
-It does not work properly with highly non-smooth 

images (Jaffar Iqbal Barbhuiya and Hemachandran 
2013)

WT Decomposed image -It provides a localization in both space and 
frequency domains

-It detects discontinuities and irregularities 
(Jaffar Iqbal Barbhuiya and Hemachandran 
2013)

-It captures small and coarse details (Jaffar 
Iqbal Barbhuiya and Hemachandran 2013)

-The result highly depends on the choice of the 
mother wavelet

-It is computationally expensive for fine decomposi-
tion

RT Projection data -It gives information with respect to the angle 
of projection (Deans 2007)

-It depends on the chosen number of angles (Deans 
2007)

-It is computationally expensive for fine analysis
HT Polar map of the image -It corrects properly the detected edges (Leav-

ers 1992)
-It can be used to estimate object orientations

-It works better on detected edges
-It does not distinguish between objects if they are 

aligned
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corresponds to a high value position in the accumulator (Leavers 
1992). A reconstruction of the initial image is possible by retriev-
ing the parameters corresponding to the peaks in the accumulator.

The HT gives good results when applied on an image where 
the edges were already detected. It works fine with noisy data. 
This method allows reconstructing an edge if it is discontinuous 
when performing the edge detection algorithm. Therefore, the 
application of the HT needs a prior step to detect the edges. For 
linear objects, the HT is a good method to detect edge orienta-
tion directly from the accumulator matrix. However, its effec-
tiveness depends on the considered image: if two objects are 
aligned in an image, the HT will exhibit them as one.

Information selection and extraction

After the pre-processing of an image, the SHG image analysis 
needs to extract as much valuable information as possible. For 
this matter, it is possible to extract this information through a 
spatial characterization or a statistical one. For both types of 
characterizations, many methods can be used. Some of them are 
detailed hereafter and are summed up in Table 3.

Spatial information selection

To analyze an image, it is important to consider the spatial dis-
tribution of the pixel intensity. This is possible through several 
techniques: (i) segmentation, which transforms an SHG image 
into a binary image where only the collagen fibers are repre-
sented; (ii) skeletonization, which determines the center line of 
the collagen fibers in the SHG images and thus, allows extract-
ing geometrical information about the fibers.

Pixel‑based segmentation  This type of segmentation aims 
to gather pixels corresponding to an object and mark them. 
It is based on their intensity similarity and spatial prox-
imity. The (automatic) thresholding segmentation is the 
easiest method for image segmentation. Otsu thresholding 
algorithm (1979) is the most used one, especially on SHG 
images, because of its simplicity in addition to the fact that it 
works particularly well when the considered image contains 
two classes (an object and the background). Its principle is 
to find the threshold that maximizes the interclass variance 
of a two-classes histogram. In addition to this method, sev-
eral other approaches exist to compute the threshold such 
as entropy-based thresholding (Khattak et al. 2015; Luthon 
et al. 2004), minimum error thresholding (Kittler and Illing-
worth 1986), moment-preserving thresholding (Tsai 1985), 
fuzzy set thresholding (Tizhoosh 2005), etc.

Thresholding decomposes the image gray scale informa-
tion with respect to gray level of targeted objects. There 
are two types of thresholding segmentation: global and 
local. The global threshold looks at the global picture: it 
divides the image into two regions (background and target) 

regardless of the positions of objects. On the contrary, local 
thresholding looks for a threshold in a neighborhood around 
any pixel of the image.

The main advantages of thresholding techniques are their 
simplicity and their fast computation. This type of segmentation 
works well when the image’s histogram presents two or more 
peaks. However, it is highly sensitive to the tackled problem and 
is specific to the considered image. In addition, it takes only into 
consideration the intensity of the pixel/voxel and not its spatial 
information, which makes this method highly sensitive to noise 
(Yuheng and Hao 2017). In fact, small areas or isolated pixels 
can be classified as independent regions even though they rep-
resent noise or belong to another region. Besides, to segment 
SHG stacks where the pixels intensity decreases with depth, it 
is complicated to find a threshold that takes into consideration 
that phenomenon.

Region‑based segmentation  Unlike pixel-based segmenta-
tion which classifies a pixel-based on its intensity value with-
out taking into consideration the spatial context, region-based 
segmentation looks for pixels having similar features. Several 
techniques belong to this category such as region growing algo-
rithm (Adams and Bischof 1994; Mancas et al. 2006), split and 
merge algorithm (Damiand and Resch 2003; Chaudhuri and 
Agrawal 2010), and clustering (Thilagamani and Shanthi 2011). 
Our interest is paid to the region-growing algorithm since it has 
been used in quantifying SHG images of collagen. First, the user 
selects initial seed points to be in a region. Then the algorithm 
checks iteratively if the adjacent pixels should be added to the 
region according to one or several of available criteria (gray 
scale texture, intensity, color, etc.) (Yuheng and Hao 2017).

Region-based segmentation allows partitioning the image 
into sub-regions. However, those methods depend on the 
choice of seed points and do not work properly on non-
smoothly varying regions. Besides, a threshold is needed 
as a criterion to construct the regions; thus, its choice is 
important. Finally, it is a local technique with no global view 
on the image and it is sensitive to noise, which may lead to 
an over-segmentation.

Edge‑based segmentation  An important feature carrying infor-
mation about objects is their borders, i.e., the discontinuities 
in the pixels’ intensity. To detect the gray level discontinui-
ties, the most common approach is based on detecting edges, 
which represents a set of connected pixels forming a boundary 
between two regions (Gonzalez and Woods 2018). There is a 
gap between the pixel values of two adjacent regions. Those dis-
continuities can be either step edges or line edges. Step edges are 
characterized by the sudden change in the pixel intensity from 
a region to another. Line edges correspond to a sudden change 
of the pixel values followed by another sudden change to return 
to the initial value within a short distance (Senthilkumaran and 
Rajesh 2009). However, in real images, it is impossible to find 
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those types of edges because of the smoothing introduced by the 
optical systems or by the low-frequency components of images. 
One can find ramp edges instead of step edges and roof edges 
instead of line edges, where the pixel intensity change occurs 
over a finite distance. Such gaps can be detected with the help 
of differential operators such as the Sobel operator (Sobel 1968), 
the Laplacian and the Laplacian of Gaussians (also called Marr-
Hildreth operator) (Acharya and Ray 2005), the Prewitt opera-
tor (Prewitt 1970), or the Kirsch operator (Kirsch 1971). More 
sophisticated techniques such as the Hough transform were also 
used to determine image edges (Hough 1962). Once the edges 
are detected, mathematical morphology operators (erosion, dila-
tion, opening, closing, etc.) are used to fill the targeted regions 
and, thus, segment the image.

Edge-based segmentation is a high-level segmentation 
approach similar to the way humans perceive an image. It works 
well on images with high contrast. However, it is highly sensitive 
to noise. It is centered on local information and does not take 
into consideration the global view. In addition, it does not work 
well to detect corners and when the contrast is low.

Fast marching method (FMM)  The fast-marching algorithm 
(Malladi and Sethian 1996) allows to track object boundary. 
It was initially developed to follow an interface or contour 
propagating under a speed function F and was then used in 
medical applications (Cardinal 2010). The FMM is a discre-
tized and computationally optimized version of the level set 
method (Osher and Sethian 1988). It aims at spreading an ini-
tial surface until it covers the entire surface of interest (the 
collagen fibers in our case) by solving the Eikonal equation. It 
is based on computing a distance map between the initial sur-
face and its surroundings. The surrounding points are divided 
into three regions: the accepted points, the narrow band, and 
the far region. Initially, the accepted point region is the initial 
surface. The narrow band constitutes the closest pixel to the 
initial front. The far region is what is left of the image. The 
Eikonal equation is solved on the edge points of the initial sur-
face. The points that satisfy this equation are then added to the 
initial surface and the same steps are applied again until there 
are no more points that may be added to the accepted point set.

The algorithm gives good results when the image is very 
distinct from its background. Besides, the use of such algo-
rithm does not need a prior setting of the parametric repre-
sentation of the surface contour to be followed: this tech-
nique is robust with respect of the topology to be analyzed. 
However, it relies entirely on a physical interpretation of the 
problem characterized by the isotropic front propagation of 
the initial surface (Cristiani 2009). Besides, the use of the 
first-order neighbors (only four neighbors) introduces errors 
in the computation of the travel time from a point to another.

CT‑FIRE  The CT-FIRE is an algorithm introduced by 
Bredfeldt et al. (2014) that enables the extraction of fibers 

through their skeletons. It was developed to extract collagen 
fibers from SHG images in order to estimate their orientation 
and geometric information.

This algorithm is based on two steps. The first one is a 
filtering using curvelet transform (CT). Curvelet filters were 
introduced by Starck et al. (2002) in order to overcome the 
limitation of highlighting lines and edges. The curvelet 
transform is a wavelet transform except that instead of the 
wavelets we use curved functions called curvelets. The sec-
ond step consists in applying the fiber extraction algorithm 
FIRE developed by Stein et al. (2008) It describes the fibers 
as a set of n vertices and p paths. Every path corresponds to 
a fiber characterized by k vertex identifiers pi = (ni

1, ni
2, …, 

ni
k). The image is smoothed using a Gaussian filter before 

segmenting it through thresholding. Then, for each pixel of 
the segmented image, the Euclidean distance map is com-
puted. This map is used to identify the centerlines of the 
fibers. Once the centerlines identified, short non-relevant 
fibers are deleted and close fibers are connected.

The CT step introduced in the CT-FIRE algorithm improved 
the result of the fiber extraction compared to the classic FIRE 
algorithm. It provides better results when the collagen fibers 
are densely packed. However, for highly noisy images, other 
pre-processing techniques may be needed before applying the 
CT-FIRE algorithm. It also does not work well on images where 
the fibers are wavy and present many intersections.

Statistical feature extraction

The analysis of an image texture covers the region-specific iden-
tification of higher-order properties which are hard to detect visu-
ally. Texture analysis leads to the definition of statistically uniform 
regions of an image based on the intensity distribution (Dudenkova 
et al. 2019). Statistical approaches that have been used to analyze 
SHG collagen images can be divided into three categories: first-
order statistics, second-order statistics, and directional statistics.

First‑order statistics (FOS)  First-order statistics estimates parame-
ters derived directly from the image statistics. They are often used 
to simply describe the image intensity distribution. However, they 
ignore the spatial correlations between the pixels of the image. In 
other terms, FOS describes the probability to observe a pixel hav-
ing a certain intensity in any position in the image. In more details:

•	 The intensity distribution histogram is a representation 
of the number of pixels in an image with respect to their 
values. It is a useful tool to detect saturation effects in an 
image (i.e., presence of pixels with maximum intensity), 
to deduce the brightness (the image is bright if the histo-
gram values are more concentrated around high values), 
and to check the contrast (if the values of the histogram 
are spread out without a noticeable peak).
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•	 The mean calculated from the pixels’ intensity or from 
the probability distribution of the pixels’ intensity is used 
to evaluate the presence of one texture in the image.

•	 The standard deviation captures how the pixels are 
spread out with respect to their intensity.

•	 The skewness evaluates the histogram’s lack of symmetry 
and allows characterizing the slope of the image histogram 
with respect to the central line. The skewness of a normal 
distribution is equal to zero. A negative (resp. positive) 
skewness denotes an image for which the majority of pix-
els have values smaller (resp. greater) than the mean value.

•	 The kurtosis describes how much a distribution is con-
centrated around a peak (the mean) and allows evaluating 
the efficiency of a denoizing algorithm.

FOS are easy and fast to calculate. However, their inter-
pretation is not always simple. They give global information 
and cannot be used to quantify local information (unless the 
initial image is divided into several ROIs).

Second‑order statistics (SOS)  Second-order statistics estimate 
parameters from the matrix generated by performing a correla-
tion between the image pixels. It studies, in particular, the topol-
ogy of one region compared to the image. Here we talk about 
texture analysis. This technique is usually used to describe and 
characterize a local area in an image through the use of gray 
level co-occurrence matrix (GLCM) and some statistics (Haral-
ick et al. 1973).

•	 The GLCM evaluates the spatial relationships between 
the values of the pixel intensity. It is a squared matrix of 
dimension equal to the number of gray levels in the con-
sidered image (for example, 256 for 8-bit images). The 
parameters that will be presented subsequently (Iqbal 
et al. 2021) can be calculated from the initial image but 
they are more relevant when they are performed on the 
GLCM.

•	 The energy (also called uniformity) allows to evaluate the 
uniformity of the image.

•	 The inverse difference moment (IDM) measures the 
local homogeneity of an image. When the IDM value 
increases, it means that the incidence of pixels’ pairs co-
occurrence is enhanced which means that IDM is high 
when the image is homogeneous.

•	 The inertia (also called contrast) allows studying local 
variations in an image. It is highly sensitive to large dif-
ferences in the GLCM values and has a strong correlation 
with the lowest and highest values in a ROI.

•	 The correlation characterizes the gray-level linear 
dependency on specified pixels on an image (i.e., the 
repetitive nature of the texture element position).

•	 The entropy focuses on the randomness of regions in 
an image with respect to its neighborhood in terms of 
intensity distribution. Low entropy values correspond to 
a uniform and homogeneous image

Texture analysis can be performed on an entire image, but 
it is more interesting on a localized area to capture morpho-
logical changes. This technique allows seeing morphologi-
cal changes of the collagen structure (for example, to make 
a comparison between a benign and a malignant tumor), 
but it does not give information about their geometric and 
composition information.

Directional statistics  Directional statistics focuses on 
observations that have directions. These observations 
usually lie whether on the circumference of a circle (cir-
cular statistics) or on the surface of a sphere or a hyper-
sphere (spherical statistics) (Ley and Verdebout 2017). 
Statistical analysis of directional data became more used 
after Fisher’s paper (1953) where he explained the need 
to consider the curved nature of the sample space. Sev-
eral directional distributions emanated from Fisher’s 
contribution. They are based on the extension of classi-
cal concepts from multivariate analysis (e.g., point esti-
mation, regression, multi-sample testing procedure) to 
directional setting (Pewsey and Garcίa-Portugués 2020; 
Mardia et al. 2008; Mardia and Jupp 2000). In the follow-
ing, we will focus on the Von Mises distribution which 
has been used to extract quantitative information from 
SHG images of collagen fibers.

The Von Mises distribution is considered a flexible cir-
cular distribution. It is useful for a circle from a statistical 
inference point of view (Mardia and Jupp 2000). It repre-
sents the maximum entropy distribution for circular data 
when the first circular moment real and imaginary parts are 
specified. It is characterized by two parameters, a location 
parameter µ ∊ [− π, π] and a concentration parameter κ. κ is 
positive and it allows to regulate the concentration of the 
distribution around µ. This distribution was later generalized 
to higher dimensions by Von Mises and Fisher and, thus, 
was named von Mises-Fisher distribution. The Von Mises 
distribution can also be referred to as the circular normal 
distribution. To characterize collagen in SHG images, it is 
possible to evaluate the fiber dispersion and its diameter by 
fitting a Von Mises distribution.

It is a good tool to study 3D images because it can be gen-
eralized to high dimensions without using many parameters. 
However, for SHG images of collagen, this method assumes 
that all the fibers belong to a single family (i.e., having the 
same orientation).
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Quantities to measure and associated 
questions

In order to analyze and understand how collagen fibers behave 
when they are under a mechanical load, it is necessary to quan-
tify them using some relevant information. For example, for 
arteries, the quantitative information extracted from correspond-
ing SHG images can be introduced in previously developed 
mechanical models to better characterize the behavior of arter-
ies (Holzapfel et al. 2000; Morin et al. 2021). In the literature, 
researchers focused on three types of information that can be 
extracted from SHG images of collagen fibers: its geometry, its 
composition, and its morphology. However, they dealt with dif-
ferent types of input data (thus, the output data were different) 
at different scales of measure. In the present section, we will 
exhibit how that information was extracted through the litera-
ture. We summarize it in Table 4.

Geometric information (orientation, waviness)

A strong attention in the biomedical community is paid 
to geometric information of the collagen fibers. Changes 
in their geometric characteristics when they are under 
a mechanical load can actually be seen with a naked eye 
on SHG image; hence, the will to quantify it. Besides, 

their arrangement has a strong impact on the tissue’s 
biomechanics.

Scale of measure

Orientation, waviness, and curvature are the important 
geometric information about collagen fibers. Orientation is 
usually calculated globally, but sometimes researchers focus 
on specific regions in an image and therefore on the local 
directions. On the other hand, waviness and curvature are 
determined locally.

Local characterization  The study of collagen fibers in bio-
logical tissues showed that those fibers are crimped and 
undulated. Thus, it is important to characterize their shapes. 
For this matter, several techniques have been proposed.

For the estimation of the fiber waviness, one needs to 
start by extracting the fibers. Sugita and Matsumoto (2017) 
determined the centers of the fibers as the pixels with a local 
maximum intensity. Then, they computed the length of the 
fiber as the distance between all the centers of a same fiber.

The CT-FIRE algorithm (Bredfeldt et al. 2014) is one 
of the techniques used to improve the images by extract-
ing the fibers. The developers used also their algorithm to 
extract the collagen fibers and then estimated the waviness. 

Table 3   Information selection and extraction methods

Methods Output Advantages Drawbacks

Thresholding Binary image -It is simple and fast
-It works well for images having a histo-

gram with distinct peaks
-It is a global method

-It is highly sensitive to noise (Yuheng and 
Hao 2017)

-It is specific to the considered image

Region-based segmentation Binary image -It allows to partition the image (Yuheng 
and Hao 2017)

-It works properly on smoothly varying 
regions

-It depends on the choice of the seed points
-It is local technique with no global view

Edge-based segmentation Binary image -It is a high-level segmentation approach 
(Gonzalez and Woods 2018)

-It works well on images with good con-
trast

-It is highly sensitive to noise
-It does a poor job detecting corners

FMM Segmented image -It gives good results when the image is 
very distinct from its background (Cris-
tiani 2009)

-It is robust and fast

-It is a static technique (Malladi and Sethian 
1996)

-The first-order nature introduces errors in 
computation (Cristiani 2009)

CT-FIRE Fiber skeleton -It works well on images of densely packed 
collagen fibers (Bredfeldt et al. 2014)

-It needs sometimes some additional pre-
processing

FOS Statistical information -It is fast and easy to implement -It gives global information
SOS Statistical information -It captures changes in images -It only gives information on the fibers 

texture
Directional statistics Mathematical function -It fits well the orientation distribution 

profile of collagen fibers
-It can be generalized to higher dimensions 

with few parameters

-It assumes that the fibers follow one direc-
tion

282 Research on Biomedical Engineering (2023) 39:273–295



1 3

CT-FIRE was also used in Best et al. (2019) to extract the 
collagen fibers in renal cell carcinoma and by Zhou et al. 
(2017) in gastric cancer in order to characterize their organi-
zation and their straightness.

It is also possible to segment the SHG images and extract 
the collagen fibers using other methods such as the skel-
etonization. Koch et al. (2014) proposed a new approach 
based on the application of several filters before segment-
ing the images. They used sequentially a CLAHE, a his-
togram adjustment, and a Frangi filter to reduce the noise 
and enhance the fibrous information. Then, a threshold was 
applied to recover a binary image where the fibers are well 
defined. Finally, they applied mathematical morphology 
operators to retrieve the fiber skeleton.

Techniques which were not initially developed for quan-
tifying collagen in SHG images were also used. The most 
known one is the NeuronJ plugin of ImageJ software (Mei-
jering et al. 2004). This plugin was designed to characterize 
neurons which have a linear shape. NeuronJ was used for 
tracing the fibers and analyzing their waviness (Zyablitskaya 
et al. 2017; Chow et al. 2014; Zeinali-Davarani et al. 2013). 
Besides, a 3D implementation of this technique was pro-
posed and tested on SHG images. For example, to determine 
the fiber arc length, Hill et al. (2012) proceeded to a recon-
struction of the SHG stack using a fast-marching algorithm 
to trace the fibers.

Once an accurate extraction of the collagen fibers is 
reached, it is possible to compute the waviness as a ratio 
between the Euclidean distance between the starting and 
ending points of a fiber and its actual length (Ayyalasomaya-
jula et al. 2019; Hill et al. 2012; Koch et al. 2014). The 
estimation of those distances is done manually using ImageJ 
(National Institutes of Health, Bethesda, MD, USA) or Ima-
ris (Bitplane, CT, USA).

The waviness in the 3D space was also investigated by 
Luo et al. (2017). They proceeded to a 3D skeletonization 
based on the fast-marching algorithm. The waviness com-
putation is similar to what has been explained before, except 
that the considered points have 3D coordinates.

Regarding the local orientation, some interesting tech-
niques were tested on collagen gels and showed their effi-
ciency. One can cite the work of Bayan et al. (2009) where 
they used the Hough transform on different small partitions 
of the SHG image to determine the dominant local orienta-
tion of the considered fiber. The size of the partitions is 
chosen such as they are likely to contain a linear fiber. The 
SHG images were pre-processed to delete the noise through 
an adaptive thresholding and the application of an erosion 
and a dilation if needed.

It is also possible to evaluate orientations after fiber 
extraction. In Koch et al. (2014), the authors used the seg-
mented skeleton to calculate the local orientation as the 
angle of the tangent line between the first and last points 

in a considered segment. Some other researchers used the 
FFT to evaluate the local orientation (Sivaguru et al. 2010; 
Rao et al. 2009; Ambekar et al. 2012a; Lau et al. 2012). For 
example, Rao et al. (2009) focused on the preferred orienta-
tion and the maximum spatial frequency of some regions 
in the SHG images. To determine those metrics, they com-
puted the 2D FFT of the considered regions. The FFT gives 
the perpendicular angle to the preferred direction. To have a 
better quantitative approximation, one can fit the probability 
distributions of fiber orientations using one Gaussian func-
tion (Sugita and Matsumoto 2017). It is also possible to apply 
a 3D FFT on the entire stack to evaluate the fiber preferred 
direction in the space (Lau et al. 2012). However, the poor 
resolution of the SHG images in the third dimension may 
have a bad impact on the result of the 3D FFT to estimate the 
fiber directions in space.

Wavelet transforms were also used for direction estimation 
(Tilbury et al. 2014). The properties of the wavelet transform 
allow capturing small details and thus estimating correctly the 
orientation of the fibers. For this matter, the local coefficients 
of the wavelet transform were calculated and then clustered 
using K-nearest neighbors (K-NN) (Altman 1992) and prin-
cipal component analysis (PCA) (Pearson 1901).

Image gradient is an efficient method to estimate orienta-
tions. This technique was initially developed by Chaudhuri et al. 
(1993). It consists in computing the gradient of the image to 
detect its edges and then to keep only the most relevant direc-
tion. The proposed method is similar to the Hough transform. It 
was later applied to biological tissues (Karlon et al. 1998) and 
to SHG images in particular (Hill et al. 2012; Phillippi et al. 
2014; Kabir et al. 2013; Sun et al. 2015). In Kabir et al. (2013), 
the authors focused on a ROI from initial SHG image where the 
fibers have a pronounced dominant direction and calculated its 
2D gradient to estimate the fiber orientation. A powerful ImageJ 
plugin that has proven its efficiency on biological images is Ori-
entationJ. It is based on computing the image’s gradient and its 
related weighted 2D structure tensors at each pixel. Cavinato 
et al. (2017) used this plugin to extract the orientation distribu-
tion histogram. Gaussian functions were then fitted to the his-
togram in order to quantify the dominant fiber directions. In 
Avila and Bueno (2015), the authors also used it on the image 
structure tensor.

Even though most of the proposed methods that have 
been used to quantify collagen fiber orientation were per-
formed in 2D, some researcher such as Liu et al. (2018) took 
into consideration the collagen fiber distribution in the 3D 
space. They used the 3D directional variance algorithm to 
identify each pixel orientation and then estimate the entire 
fiber orientation.

More recently with the emergence of deep learning 
algorithms, some authors applied this technique to esti-
mate local orientations of collagen fibers. For example, in 
Schmarje et al. (2019), a comparison of different 2D and 
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3D methods aiming at estimating local orientations was 
proposed. Besides, the authors introduced a new modality 
to transfer 2D weights to 3D weight in different-network 
architecture to perform a segmentation of some images with 
respect to local orientations.

Global characterization  Most of the scientific contributions 
aiming at extracting quantitative information from SHG 
images of collagen fibers in biological tissues focused on 
the fiber orientation.

It is possible to determine fiber orientation using the 
FFT. It is the most used technique for this matter (Ayyala-
somayajula et al. 2019; Bueno et al. 2013; Chiu 2010; Chow 
et al. 2014; Forouhesh Tehrani et al. 2021; Lau et al. 2012; 
Lee et al. 2019; Pijanka et al. 2019; Robinson et al. 2016; 
Sivaguru et al. 2010; Wu et al. 2011). This approach is also 
called FT-SHG imaging (Ambekar et al. 2012a). In Lee et al. 
(2019), the authors used the FFT on the entire stack and then 
performed a segmentation on the transformed images to only 
keep the dominant fibers’ direction. Once the segmentation 
achieved, it is possible to recover the angles’ distribution that 
corresponds to each image. It is then possible to evaluate 
the variation of the angles while going deeper in the stack. 
Germann et al. (2018) used the same methodology as Bueno 
et al. (2013), based on some pre-processing (noise reduction 
and edge sharpening) and a FFT to extract the orientation of 
collagen fibers in SHG corneal images.

Usually, the use of the FFT is sufficient to estimate the 
fiber directions, but sometimes it is useful to make the pro-
cedure more automated. For example, Ayyalasomayajula 
et al. (2019) extracted the distribution using a finite mixture 
of Von Mises distribution to fit the orientation distribution 
extracted from the FFT in order to determine the global 
mean orientation. Others, such as Schriefl et al. (2013) and 
Polzer et al. (2013), used a classical Von Mises distribution 
for the same purpose. It is also possible to use a Gaussian 
function for the fitting such as in Ambekar et al. (2012b). In 
some papers (Brisson et al. 2015; Kroger et al. 2021; Tang 
et al. 2014; Wu et al. 2011), the focus was oriented toward 
the result of the FFT where an ellipse was superposed. The 
major axis of this ellipse corresponds to the orthogonal of 
the dominant direction if the ratio between the major and the 
minor axes is high. Otherwise, there is no preferable orien-
tation. Besides, it may be useful to use the radon transform 
on the 2D FFT of the SHG images (Mclean 2015; Mega 
et al. 2012) since, unlike the FFT, it provides quantitative 
information for each discrete angle. It is also common to use 
wedge filters after the FFT and then fit the orientation distri-
bution with a Von Mises distribution to better estimate the 
orientation (Polzer et al. 2013; Schriefl et al. 2013; Niestraw-
ska et al. 2016). In Zeitoune et al. (2017) the author applied 
an FFT on the images. Then, they improved the result of the 
transform by smoothing and enhancing it.

Directional filters were also used to determine the local 
orientation of the collagen fibers. Wen et al. (2014) proposed 
an approach based on those filters with different scales to 
determine the collagen fiber orientation in ovarian cancer. 
They extracted a histogram of the frequency of occurrence 
of individual patterns in an image. A nearest neighbor clas-
sification was then performed on the extracted histograms 
to distinguish between human normal and high-grade malig-
nant ovarian tissues.

Some local techniques such as texture analysis have been 
used to quantify and describe the main fiber orientation. 
They showed their efficiency and they may be also more 
precise than the classic FFT. In fact, Hu et al. (2012) pro-
posed a new approach for texture analysis based on orienta-
tion-dependent gray level co-occurrence matrix. They used 
their algorithm on ex vivo rat tendons to study the dominant 
collagen fiber direction. For this matter, they focused on the 
correlation feature of the GLCM.

Input data nature (2D/projected 3D/3D)

The determination of the orientation and the waviness of 
collagen fibers can be done using different types of input. 
Multi-photon microscopes allow going deeper in the tissue, 
and one can recover 3D stacks of images. However, most of 
the proposed techniques in the literature were limited to the 
image plane.

Generally, 2D images are used. For example, Zyablits-
kaya et al. (2017) used 2D SHG image of rabbit sclera to 
estimate the waviness of the collagen fibers. In addition, to 
assess the accuracy of their measurements, they calculated 
the average value on 10 SHG images. Ayyalasomayajula 
et al. (2019) used 2D images but limited their study to 10 
slices of the stack. Then, the global orientation was set as 
the average of the computed orientations.

However, for the computation of the waviness of the colla-
gen fibers, some papers processed 3D images such as in Hill 
et al. (2012), so they were able to characterize this metric in 
3D in arterial tissues. In this paper, the waviness was com-
puted from a 3D reconstruction of the SHG images by tracing 
the fibers using a 2D marching algorithm. This is possible 
because the waviness estimation is based on coordinates, 
which can be deduced from 3D SHG images. Meanwhile, an 
accurate 3D reconstruction of the SHG image may be hard to 
get because of the poor data resolution in the third dimension.

Regarding the orientation measurements, Hill et  al. 
(2012) and Cavinato et al. (2020) used a 2D superimposed 
projection of the 3D stack of SHG images. Phillippi et al. 
(2014) succeeded in evaluating both collagen and elastin 
fibers in the aorta using superimposed 2D image stacks. The 
dominant orientation from a projection of all the SHG stack 
images can be extracted to recover a 2D image that contains 
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all information from the entire stack (Hristu et al. 2018). 
However, it is more common to use 2D images to estimate 
the orientation (Bueno et al. 2013; Kabir et al. 2013) and 
look at its evolution with respect to the stack depth (Lee 
et al. 2019).

Some studies showed that the collagen fiber orientation 
in the axial–radial direction is negligible (Humphrey and 
Holzapfel 2012; Wagenseil and Mecham 2009). However, in 
Lau et al. (2012), the authors proposed a 3D FFT approach 
to evaluate the fibers preferred orientation in 3D stacks of 
SHG images. SHG stacks were also used to determine the 
waviness of the fibers such as in Luo et al. (2017). Bivariate 
Von Mises distribution was also used on 3D stacks of colla-
gen in the aorta to fit the in-plane and out-of-plane collagen 
fiber orientations (Niestrawska et al. 2016).

Output data nature

The outputs of all the methods cited above can be divided 
into two types: a single value or an orientation distribution 
(i.e., a list). For example, the use of the FFT followed by 
ellipse fitting (Brisson et al. 2015; Tang et al. 2014; Wu et al. 
2011) gives one value corresponding to the dominant ori-
entation in the considered stack or ROI. Single-orientation 
values can also be extracted using texture analysis, which is 
applied locally (Hu et al. 2012). It is also possible to extract 
an orientation distribution histogram from the FFT by the 
application of a radon transform (Mclean 2015; Mega et al. 
2012). It is also possible to use a Von Mises distribution 
and fit it to the orientation distribution obtained by the FFT 
(Ayyalasomayajula et al. 2019; Niestrawska et al. 2016; 
Polzer et al. 2013; Schriefl et al. 2013). Histogram of the 
frequency of occurrence is another representation of the ori-
entation (Wen et al. 2014).

Composition information (density)

Fiber density estimation is important for collagen charac-
terization. In the literature, there are two ways to define the 
density: the volume occupied by the fibers in the stack (i.e., 
volume fraction) or the number of fibers in a considered 
region.

Scale of measure

The scale of measure depends on what has to be quantified. 
For volume fraction estimation, the procedure is global and 
applied to the entire stack. It may be interesting for some 
applications to focus on a ROI in the stack and calculate 
its volume fraction (for example, to characterize the evolu-
tion of tumors density). The same reasoning is applicable 
to calculate the density as the number of fibers in the entire 
stack or in a ROI. However, for an accurate estimation of the 

density, it is important to choose a ROI that covers up to 10 
times the collagen fiber diameter.

In order to evaluate the fiber density, it is mandatory to 
enhance the SHG image by improving the signal-to-noise 
ratio. For this matter, it is important to filter the image and 
to recover an accurate representation of the fiber network 
through segmentation (Hompland et al. 2008) or fiber extrac-
tion (Wegner et al. 2017).

Gade et al. (2019) performed a segmentation on the SHG 
stack using the Otsu thresholding. Then, the authors com-
puted the area of segmented pixels in every slice and sum 
up the segmented area across the volume to calculate total 
areal density in the image stack. The same procedure was 
followed by Balu et al. (2014) and Tjin et al. (2014) where 
they performed a segmentation using ImageJ and then com-
puted the collagen density as the sum of the pixels that have 
intensity values greater than a certain threshold.

It is sometimes interesting to proceed to a complete image 
enhancement step because of the diminution of the pixel 
intensity when we go deeper in the stack. For this matter, 
it is useful to apply a CLAHE on the SHG images. Cai 
et al. (2014) enhanced the dermal layer of human skin SHG 
images using the CLAHE algorithm. Then, they applied the 
Frangi filter and a segmentation using Otsu’s tresholding in 
order to capture a representation of both the fibers and the 
holes in the images.

CT-FIRE is another algorithm used to extract the col-
lagen fibers (Best et al. 2019; Wegner et al. 2017; Zhou 
et al. 2017). For example, in Best et al. (2019), the authors 
extracted the collagen in renal cell carcinoma in order to 
evaluate the density of the collagen in low- and high-grade 
tumors. The density can be calculated as the number of pix-
els corresponding to the fiber network with respect to the 
image or to the entire stack.

Second-order statistics, in general, and the grey level co-
occurrence matrix, in particular, have been used to estimate 
the density of collagen fibers. In Kroger et al. (2021), the 
authors used the GLCM and especially the homogeneity 
parameter to determine the density of features in an image.

Some papers focused on the estimation of the ratio of 
both collagen and elastin fibers in SHG stacks (Abraham and 
Hogg 2010; Lin et al. 2005; Koehler et al. 2006). In Abra-
ham and Hogg (2010), the authors started by filtering the 
images to reduce the noise. Then, they segmented the images 
and estimated the volume fraction of the fiber network as 
the sum of all the pixels belonging to the segmented region.

Input data nature (2D/projected 3D/3D)

The computation of the fiber density (also referred to as the 
volume fraction) requires the entire stack. The evaluation of 
the density can be done in 2D (i.e., slice per slice) or directly 
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on the entire stack. It depends on how the segmentation is 
performed (in 2D or 3D).

Cai et al. (2014) focused on 2D virtual biopsy images 
and not stacks. Therefore, they tested their approach only on 
single 2D images. In Zhou et al. (2017), the authors focused 
on single SHG images and, thus, calculated the collagen 
density in the 2D plane.

In general, SHG images are segmented separately. For 
example, in Gade et al. (2019) and Balu et al. (2014), the 
authors segmented the SHG images using a thresholding 
technique. Then, they calculated the number of white pixels 
in every image and summed them up across the volume to 
calculate total 3D density.

A global overview of the stack gives a more accurate esti-
mation of the collagen density. That is why some research-
ers such as Abraham and Hogg (2010) implemented their 
method on the entire SHG stack.

Morphologic information (fiber’s size)

In addition to geometric and composition information, it is 
necessary to know the fiber morphology in order to have a 
complete picture of the considered microstructure. For this 
matter, the intersections between the collagen fibers and the 
fibers size have been investigated in the literature.

Scale of measure

The study of the intersection between collagen fibers and 
even the estimation of their size is done locally because they 
are specific to a fiber (size) or a region (intersection). In 
order to be able to extract that information from the SHG 
images, it is important to enhance them.

For example, Koch et al. (2014) used segmented SHG 
images to estimate the fiber diameter. They performed some 
mathematical morphology operators (erosion and dilation) 
to obtain a 1-pixel-thick fiber skeleton. This skeleton was 
later used to calculate the fiber radii from the initial seg-
mented image.

In some cases, depending on the application, only the 
characterization of the evolution of the morphology is 
needed. For this matter, texture analysis is used. In Wu 
et al. (2016), the authors used this technique to study the 
impact of aging on the skin microstructure. They computed 
the contrast, correlation, and entropy from the GLCM of 
the image and analyzed them to characterize the fiber 
structure and morphology. The contrast was computed to 
assess the presence of a fine structure of collagen fibrils. 
Wu et al. (2016) characterized how the collagen matrix is 
distinct from its surrounding and if there is loss in collagen 
through time using the computation of correlation. This 

can be generalized to distinguish between the collagen fib-
ers and, thus, estimate their diameter (Cicchi et al. 2009). 
It is also possible to deduce if there are linear fibers and a 
fine structure through the computation of the entropy (Wu 
et al. 2016).

Some researchers showed interest in evaluating the 
fiber length. In Sugita and Matsumoto (2017), the authors 
extracted the centers of each fiber assuming that they cor-
respond to a maximum intensity value and then estimated 
the fiber length as the sum of the distances between their 
centers. Fiber length can be evaluated manually from the 
SHG images of collagen gels after segmentation and using 
ImageJ drawing tool (Ajeti et al. 2011).

Moreover, collagen fibers that are extracted using the 
CT-FIRE algorithm can be used to extract manually the 
length and the fiber diameter (Drifka et al. 2016; Rosen 
et al. 2020; Wegner et al 2017; Zhou et al. 2017). In 
Rosen et al. (2020), the collagen fibers in every SHG 
image of feline mammary adenocarcinoma were identi-
fied by the mean of the CT-FIRE algorithm. Once the 
fiber extraction is achieved, each fiber was analyzed and 
its length and width were extracted in addition to the 
percentage of straight fibers.

Some out-of-the-box techniques were used. For instance, 
Robinson et al. (2016) estimated the collagen fiber thick-
ness using the BoneJ plugin (Doube et al. 2010) for ImageJ 
which was initially developed to measure bone geometry. 
This algorithm gives the thickness of a considered fiber.

Input data nature (2D/projected 3D/3D)

For texture analysis, the application is usually performed 
on 2D images. Indeed, Wu et al. (2016) were only inter-
ested in investigating some layers of the dermis with 
the strongest collagen intensity. In Cicchi et al. (2009), 
the investigation was also limited to 2D SHG images of 
human dermis.

In the case of a skeletonization, the authors of Koch 
et al. (2014) used two 2D images (one of the fiber skele-
ton and one of the enhanced image) to determine the fiber 
radii. In addition, to estimate the fiber length, they used 
the skeleton of the fibers. Sugita and Matsumoto (2017) 
focused also on the fiber length and used 2D SHG images 
since fiber centers were determined in the 2D plane. It is 
also possible to extract the fiber network using the CT-
FIRE algorithm and determine the fiber length and diam-
eter (Drifka et al. 2016; Zhou et al. 2017). The papers that 
considered segmentation of the SHG images focused on 
each image individually and did not apply the segmenta-
tion to the entire stack (Ajeti et al. 2011).
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Comparison of some methods

In the following, some of the collagen quantification meth-
ods that were previously described will be tested on a case 
study SHG image. The choice of those methods is based on 
their efficiency and how often they are used. Therefore, the 
tested methods are the FFT, the gradient through the Orien-
tationJ plugin, and the CT-FIRE. The needed pre-processing 
is described. We performed all the cited methods on an SHG 
image of the adventitia layer of a human aorta, Fig 2.a. In the 
following, the estimated angles are expressed with respect 
to the horizontal direction.

FFT

The FFT was applied on a SHG image of collagen fibers of 
human aorta. We first used the FFT on the entire image to 
extract the dominant orientation in the considered image. 
Then, for comparison purposes, we focused on a ROI of 
the image where the fibers are aligned with respect to one 
direction.

The FFT of the SHG image was computed and a thresh-
olding operation was applied on the FFT result. For this 
purpose, we used ImageJ. Then, an ellipse was fitted on the 
resulting image to recover the main direction of the collagen 
fibers. It corresponds to the direction perpendicular to the 
angle of the major axis of the ellipse. Figure 2.b exhibits 
the result of the FFT of the considered SHG image after 
thresholding. In our case study, the dominant orientation of 
the collagen fibers corresponds to 41.954°.

We applied the FFT on a ROI from the initial image. The 
ROI was chosen as an area containing only one fiber. The 
ROI was smoothed using a median filter, Fig. 3.a. Then, the 
FFT (Fig. 3.b) and the power spectrum (Fig. 3.c) of the ROI 
were calculated. As can be seen from both the FFT and the 
power spectrum representations, the result emphasizes one 
angle that corresponds to the longest portion of the fiber. 
Our calculations give an angle around 61° as the dominant 
orientation.

One can clearly see that in the presence of a distinct ori-
entation, the result of the FFT gives a good estimation of 
that orientation.

Table 4   Main methods used in the literature to quantitatively analyze collagen fibers

Measure Methods References

Waviness Locally -Local maximum intensity
-Manual (ImageJ, Imaris)
-CT-FIRE
-Skeletonization
-NeuronJ
-FMM

(Sugita and Matsumoto 2017)
(Hill et al. 2012; Ayyalasomayajula et al. 2019)
(Best et al. 2019; Zhou et al. 2017; Bredfeldt et al. 2014)
(Koch et al. 2014; Luo et al. 2017)
(Zyablitskaya et al. 2017; Chow et al.2014; Zeinali-Davarani et al. 2013)
(Hill et al. 2012)

Orientation Locally -Segmentation + Hough transform
-Skeletonization
-FFT
-Wavelet transform
-Gradient
-3D directional variance

(Bayan et al. 2009)
(Koch et al. 2014)
(Sivaguru et al. 2010; Rao et al. 2009; Ambekar et al. 2012a; Lau et al. 2012; Sugita 

and Matsumoto 2017)
(Tilbury et al. 2014)
(Hill et al. 2012; Phillippi et al. 2014; Kabir et al. 2013; Cavinato et al. 2017; Avila 

and Bueno 2015)
(Liu et al. 2018)

Globally -FFT
-FFT + Von Mises
-FFT + wedge filter + Von Mises
-FFT + Gaussian
-FFT + ellipse fitting
-FFT + Radon transform
-Directional filters
-Texture analysis

(Bueno et al. 2013; Chiu 2010; Chow et al. 2014; Lee et al. 2019; Lau et al. 2012; 
Robinson et al. 2016; Zeitoune et al. 2017; Sivaguru et al. 2010; Wu et al. 2011; 
Pijanka et al. 2019; Germann et al. 2018)

(Ayyalasomayajula et al. 2019)
(Polzer et al. 2013; Schriefl et al. 2013; Niestrawska et al. 2016)
(Ambekar et al. 2012b)
(Brisson et al. 2015; Tang et al. 2014; Wu et al. 2011)
(Mclean 2015; Mega et al. 2012)
(Wen et al. 2014)
(Hu et al. 2012)

Density -Segmentation
-CT-FIRE

(Gade et al. 2019; Balu et al. 2014; Tjin et al. 2014; Cai et al. 2014; Abraham and 
Hogg 2010; Lin et al. 2005; Koehler et al. 2006)

(Best et al. 2019; Wegner et al. 2017; Zhou et al. 2017)
Size -Manual

-BoneJ
-Skeletonization
-Local maximum intensity
-Texture analysis
-CT-FIRE

(Ajeti et al. 2011)
(Robinson et al. 2016)
(Koch et al. 2014)
(Sugita and Matsumoto 2017)
(Wu et al. 2016; Cicchi et al. 2009)
(Rosen et al. 2020; Zhou et al. 2017; Drifka et al. 2016; Wegner et al. 2017)
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Gradient

To calculate the gradient of the SHG image presented in 
Fig. 4.a, we used the OrientationJ plugin on ImageJ. First, 
we tried a global approach to detect the dominant direc-
tion of all the collagen fibers. Figure 4.b shows the result 
of orientation distribution. One can see that the preferred 
orientation of the fibers is around 42.5°.

To limit the non-relevant calculation due to noise, we 
applied a median filter on the initial SHG image to smooth it 
and to reduce the artifacts inside the fibers. Figure 5  shows the 
filtered image and the new orientation distribution. The orienta-
tion distribution presents one major peak located around 43°.

The gradient method was also applied on the ROI previ-
ously considered. The results can be seen in Fig. 6. The orien-
tation distribution shows a dominant peak at the angle 66.5°.

CT‑FIRE

The CT-FIRE algorithm was first applied to the initial SHG 
image without any pre-processing. The result is exhibited in 
Fig. 7. Because of the poor quality of the considered image, 
the CT-FIRE could not provide a good extraction of the col-
lagen fibers.

As the fiber extraction was not good, the estimation of the 
global orientation (63.4°) is far from what has been com-
puted using the FFT and the gradient (around 42°). The same 
steps were applied on the smoothed version of the SHG 
image and the results were similar. Indeed, the orientation 
was estimated to be equal to 61.3°.

We then applied the CT-FIRE algorithm on the same ROI. 
The algorithm was able to extract the skeleton of the fiber, 
Fig. 8. It estimated the fiber orientation to be around 70°.

Fig. 2   a Initial SHG image; b 
FFT of the SHG image after 
thresholding

Fig. 3   a ROI from the initial SHG image; b FFT of the smoothed ROI; c ROI power spectrum
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Comparison

The experiments conducted previously showed that the FFT 
is an appropriate tool to estimate the main orientation of the 
collagen fibers if the fibers are well organized. Otherwise, no 
distinct information can be retrieved from the FFT. Besides, 
the result is highly sensitive to the thresholding algorithm 
used. On our chosen SHG image, the Otsu thresholding did 
not give an accurate orientation estimation. Moreover, for 
noisy images, the result of the FFT may be noisy too and, 
thus, non-exploitable.

The study of a ROI containing one fiber with two orienta-
tions and different intensities showed that the FFT focuses 
only on the most “visible” portion of the image. Our tests 
allowed us to extract only one angle from the FFT.

The global overview of the collagen fiber orientation 
using the gradient gives a result close to the one found using 
the FFT. This can be explained by the fact that the fibers in 
the considered image are not very crimped and undulated. 
Because the gradient is locally calculated, it is very sensitive 
to the shape of the collagen fibers. Therefore, it considers the 
fiber geometry. This method will always provide an estima-
tion of a main orientation even if this one does not really 
exist. The result of this method is highly dependent on the 
quality of the image. Indeed, since it is a pixel-wise tech-
nique, it depends on the difference between the neighboring-
pixel intensities that can change while filtering the image.

When computed on a smoothed ROI with just one fiber, 
the gradient gives a good estimation of the orientation since 
it only involves information relevant to the considered fiber.

Regarding the CT-FIRE algorithm, its application on a 
bad-quality image without any pre-processing showed its 
limitation in extracting the collagen fibers. In addition, this 
technique looks like it computes the average of all the local 
orientations and not really the main global direction. The 
estimated orientation given by the CT-FIRE algorithm is 
close to the orientations given by the FFT and the gradient 
on a particular ROI of the image.

It is, however, interesting to use the CT-FIRE algorithm 
on a ROI. The experiments showed that, for small filtered 
ROI where there is only one fiber, the algorithm is able to 
extract correctly the position of the fiber’s skeleton and thus 
estimate its orientation and its width and length.

Discussion

To our knowledge, reviews dealing with the quantitative 
analysis of collagen fibers from SHG images are not very 
common. The only one that we identified treated the topic 
from a method point of view. In fact, the main contribution 
of the present paper lies in the categorization of the image 
processing method with respect to the information that we 
want to extract (geometry, composition, or morphology). This 
structure makes it easier to biomedical researchers to find the 
most suitable method to the problem they are trying to solve. 
On another hand, the third part of the present review, which 
compared three of the most used techniques to estimate col-
lagen fiber orientations, already gives the user an idea about 
how to use those methods and what to expect from them.

Fig. 4   a Initial SHG image; b orientation distribution using OrientationJ
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Many image processing methods have been used in order to 
extract valuable information from collagen SHG images. How-
ever, the choice of the methods to choose depends deeply on 
the quality of the images and, thus, on the used microscope. In 
most of the cases, a pre-processing phase is necessary. In addi-
tion, the result of the pre-processing can affect, for example, the 
dimension estimation. In fact, if the image is not well filtered, 
blur can be mistaken to be part of a fiber.

It may be interesting to use machine learning algorithms 
to quantitatively analyze SHG images of collagen fiber. Some 
encouraging attempts can be found in the literature. For 

example, in Schmarje et al. (2019), the authors used convo-
lutional neural networks (CNN) to segment SHG images of 
collagen fibers in order to quantify their local orientations.

Conclusion

In order to study the collagen fiber behavior in biologi-
cal tissues, it is necessary to extract quantitative informa-
tion to characterize them. To analyze those fibers, several 
techniques (including pre-processing and information 

Fig. 5   a Smoothed SHG image using a median filter; b orientation distribution using OrientationJ

Fig. 6   a Smoothed ROI; b orientation distribution using OrientationJ
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selection) can be used, each one of them having advan-
tages and drawbacks. The choice of the method to use is 
highly dependent on the information that need to be quanti-
fied. In this paper, we exhibited the most used techniques 
to quantify collagen fibers and we discussed the types of 
information that they allow to extract. As an illustration, 
we proposed a comparison of implementations of some 

of these methods to discuss their actual abilities to quan-
tify collagen orientation. The choice of the method still 
depends on the images that need to be processed, their 
quality, and the error tolerance rate. A proper quantitative 
analysis of collagen fibers needs a combination of some of 
the techniques presented previously.

On the other hand, the quantitative analysis of collagen 
fibers in 3D is still not widely developed because of the 
limitations of the acquisition technique when going deep 
into the tissue and the poor imaging resolution in the third 
dimension. Further studies need to be oriented toward this 
issue especially because it is important to quantify the fiber 
network in the 3D space.

Declarations 

Conflict of interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or for-
mat, as long as you give appropriate credit to the original author(s) 
and the source, provide a link to the Creative Commons licence, 
and indicate if changes were made. The images or other third 
party material in this article are included in the article's Creative 
Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article's Creative Com-
mons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy 
of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Fig. 7   Fiber extraction from a noisy image using CT-FIRE

Fig. 8   Fiber extraction from a noisy ROI using CT-FIRE

291Research on Biomedical Engineering (2023) 39:273–295

http://creativecommons.org/licenses/by/4.0/


1 3

References

Abraham T, Hogg J. Extracellular matrix remodeling of lung alveo-
lar walls in three-dimensional space identified using second 
harmonic generation and multiphoton excitation fluorescence. 
J Struct Biol. 2010;171(2):189–96.

Acharya T, Ray AK. Image processing: principles and applications. 
Hoboken: Wiley; 2005.

Adams R, Bischof L. Seeded region growing. IEEE Trans Pattern 
Anal Mach Intell. 1994;16(6):641–7.

Ajeti V, Nadiarnykh O, Ponik SM, Keely PJ, Eliceiri KW, Cam-
pagnola PJ. Structural changes in mixed Col I/Col V collagen 
gels probed by SHG microscopy: implications for probing stro-
mal alterations in human breast cancer. Biomed Opt Express. 
2011;2(8):2307–16.

Akansu AN. Multiresolution signal decomposition - transforms, sub-
bands, and wavelets. 2nd ed. San Diego: Academic Press; 2001.

Altman NS. An introduction to kernel and nearest-neighbor nonpara-
metric regression. Am Stat. 1992;46(3):175–85.

Ambekar R, Chittenden M, Jasiuk I, Toussaint KC. Quantitative 
second-harmonic generation microscopy for imaging porcine 
cortical bone: comparison to SEM and its potential to investi-
gate age-related changes. Bone. 2012a;50(3):643–50.

Ambekar R, Lau TY, Walsh M, Bhargava R, Toussaint KC. 
Quantifying collagen structure in breast biopsies using sec-
ond-harmonic generation imaging. Biomed Opt Express. 
2012b;3(9):2021–35.

Avila FJ, Bueno JM. Analysis and quantification of collagen organiza-
tion with the structure tensor in second harmonic microscopy 
images of ocular tissues. Appl Opt. 2015;54(33):9848–54.

Ayyalasomayajula V, Pierrat B, Badel P. A computational model 
for understanding the micro-mechanics of collagen fiber net-
work in the tunica adventitia. Biomech Model Mechanobiol. 
2019;18(5):1507–28.

Babalola O, Mamalis A, Lev-Tov H, Jagdeo J. Optical coherence 
tomography (OCT) of collagen in normal skin and skin fibrosis. 
Arch Dermatol Res. 2014;306(1):1–9.

Bailly L, Cochereau T, Orgéas L, et al. 3D multiscale imaging of 
human vocal folds using synchrotron X-ray microtomography in 
phase retrieval mode. Sci Rep. 2018;8:14003.

Balu M, Kelly KM, Zachary CB, et al. Distinguishing between benign 
and malignant melanocytic nevi by in vivo multiphoton micros-
copy. Can Res. 2014;74(10):2688–97.

Bamberger R, Smith M. A filter bank for the directional decomposi-
tion of images: theory and design. IEEE Trans Signal Process. 
1992;40(4):882–93.

Bayan C, Levitt JM, Miller E, Kaplan D, Georgakoudi I. Fully auto-
mated, quantitative, noninvasive assessment of collagen fiber 
content and organization in thick collagen gels. J Appl Phys. 
2009;105(10): 102042.

Bergland GD. A guided tour of the fast Fourier transform. IEEE Spectr. 
1969;6(7):41–52.

Best SL, Liu Y, Keikhosravi A, et al. Collagen organization of renal 
cell carcinoma differs between low and high grade tumors. BMC 
Cancer. 2019;19(1):490.

Bluestein L. A linear filtering approach to the computation of dis-
crete Fourier transform. IEEE Trans Audio Electroacoust. 
1970;18(4):451–5.

Bredfeldt JS, Liu Y, Pehlke CA, et al. Computational segmentation 
of collagen fibers from second-harmonic generation images of 
breast cancer. J Biomed Opt. 2014;19(1): 016007.

Brisson BK, Mauldin EA, Lei W, et al. Type III collagen directs stro-
mal organization and limits metastasis in a murine model of 
breast cancer. Am J Pathol. 2015;185(5):1471–86.

Brown E, McKee T, diTomaso E, et al. Dynamic imaging of collagen 
and its modulation in tumors in vivo using second-harmonic gen-
eration. Nat Med. 2003;9(6):796–800.

Bruun G. z-transform DFT filters and FFT’s. IEEE Trans Acoust 
Speech Signal Process. 1978;26(1):56–63.

Bueno JM, Palacios R, Chessey MK, Ginis H. Analysis of spatial lamel-
lar distribution from adaptive-optics second harmonic generation 
corneal images. Biomed Opt Express. 2013;4(7):1006–13.

Cai CS, Chen CF, Lee GG, et al. Density analysis of collagen fibers 
based on enhanced Frangi filter in second harmonic generation 
virtual biopsy images. IEEE China Summit & International 
Conference on Signal and Information Processing (ChinaSIP), 
Xi’an, China. 2014;465–9. https://​doi.​org/​10.​1109/​China​SIP.​
2014.​68892​86.

Campagnola PJ, Millard AC, Terasaki M, Hoppe PE, Malone CJ, 
Mohler WA. Three-dimensional high-resolution second-har-
monic generation imaging of endogenous structural proteins in 
biological tissues. Biophys J. 2002;82(1):493–508. https://​doi.​
org/​10.​1016/​S0006-​3495(02)​75414-3.

Campagnola PJ. Second harmonic generation imaging micros-
copy: applications to diseases diagnostics. Anal Chem. 
2011;83(9):3224–31.

Cardinal MHR. Fast-marching segmentation of three-dimensional 
intravascular ultrasound images: A pre-and post-intervention 
study. Med Phys. 2010;37(7):3633–47.

Cavinato C, Helfenstein-Didier C, Olivier T, du Roscoat SR, Laroche 
N, Badel P. Biaxial loading of arterial tissues with 3D in situ 
observations of adventitia fibrous microstructure: a method cou-
pling multi-photon confocal microscopy and bulge inflation test. 
J Mech Behav Biomed Mater. 2017;74:488–98.

Cavinato C, Badel P, Kransy W, Avril S, Morin C. Experimental 
characterization of adventitial collagen fiber kinematics using 
second-harmonic generation imaging microscopy: similarities 
and differences across arteries, species and testing conditions. 
In: Zhang Y, editor. Multi-scale extracellular matrix mechanics 
and mechanobiology. Switzerland: Springer; 2020. p. 123–64.

Chaudhuri B, Kundu P, Sarkar N. Detection and gradation of oriented 
texture. Pattern Recogn Lett. 1993;14(2):147–53.

Chaudhuri D, Agrawal A. Split-and-merge procedure for image seg-
mentation using bimodality detection approach. Defense Science 
Journal. 2010;60(3):290–301.

Chen X, Nadiarynkh O, Plotnikov S, Campagnola PJ. Second harmonic 
generation microscopy for quantitative analysis of collagen fibril-
lar structure. Nat Protoc. 2012;7(4):654–69.

Chiu YW. Second-harmonic generation imaging of collagen fibers 
in myocardium for atrial fibrillation diagnosis. J Biomed Opt. 
2010;15(2): 026002.

Chow MJ, Turcotte R, Lin CP, Zhang Y. Arterial extracellular matrix: a 
mechanobiological study of the contributions and interactions of 
elastin and collagen. Biophys J. 2014;106(12):2684–92.

Cicchi R, Kapsokalyvas D, De Giorgi V, et al. Scoring of collagen 
organization in healthy and diseased human dermis by multipho-
ton microscopy. J Biophotonics. 2009;3(1–2):34–43.

Cooley JW, Lewis PAW, Welch PD. The fast Fourier transform and its 
applications. IEEE Trans Educ. 1969;12(1):27–34.

Cristiani E. A fast marching method for Hamilton-Jacobi equa-
tions modeling monotone front propagations. J Sci Comput. 
2009;39(2):189–205.

Dahlke S, Maass P, Teschke, et al. Multiscale approximation. In: 
Dahlhaus R, Kurths J, Maass P, Timmer J, editors., et al., Math-
ematical methods in signal processing and digital image analysis. 
Berlin Heidelberg: Springer; 2008. p. 75–109.

Damiand G, Resch P. Split-and-merge algorithms defined on topo-
logical maps for 3D image segmentation. Graph Models. 
2003;65(1–3):149–67.

292 Research on Biomedical Engineering (2023) 39:273–295

https://doi.org/10.1109/ChinaSIP.2014.6889286
https://doi.org/10.1109/ChinaSIP.2014.6889286
https://doi.org/10.1016/S0006-3495(02)75414-3
https://doi.org/10.1016/S0006-3495(02)75414-3


1 3

Deans SR. The radon transform and some of its applications. Mineola: 
Dover Publications; 2007.

Disney CM, Madi K, Bodey AJ, Lee PD, Hoyland JA, Sherratt MJ. Vis-
ualising the 3D microstructure of stained and native interverte-
bral discs using X-ray micro tomography. Sci Rep. 2017;7:16279.

Doube M, losowski MMK, Arganda-Carreras I, et  al. BoneJ: 
free and extensible bone image analysis in ImageJ. Bone. 
2010;47(6):1076–9.

Drifka CR, Loeffler AG, Mathewson K, et al. Comparison of pic-
rosirius red staining with second harmonic generation imag-
ing for the quantification of clinically relevant collagen fiber 
features in histopathology samples. J Histochem Cytochem. 
2016;64(9):519–29.

Duda RO, Hart PE. Use of the Hough transformation to detect lines and 
curves in pictures. Commun ACM. 1972;15(1):11–5.

Dudenkova VV, Shirmanova MV, Lukina MM, Feldshtein FI, Virkin 
A, Zagainova EV. Examination of collagen structure and state 
by the second harmonic generation microscopy. Biochem Mosc. 
2019;84(S1):89–107.

Fisher R. Dispersion on a sphere. Proc R Soc Lond A. 
1953;217(1130):295–305.

Forouhesh Tehrani K, Pendleton EG, Southern WM, Call JA, 
Mortensen LJ. Spatial frequency metrics for analysis of 
microscopic images of musculoskeletal tissues. Connect Tis-
sue Res. 2021;62(1):4–14. https://​doi.​org/​10.​1080/​03008​207.​
2020.​18283​81.

Frangi AF, Niessen WJ, Vincken KL, Viergever MA. Multiscale vessel 
enhancement filtering. Wells WM, Colchester A, Delp S, edi-
tors. Medical image computing and computer-assisted interven-
tion — MICCAI’98. Lecture Notes in Computer Science. Berlin, 
Heidelberg: Springer; 1998:130–137.

Franken PA, Hill AE, Peters CW, Weinreich G. Generation of optical 
harmonics. Phys Rev Lett. 1961;7(4):118–9. https://​doi.​org/​10.​
1103/​PhysR​evLett.​7.​118.

Freund I, Deutsch M, Sprecher A. Connective tissue polarity. Opti-
cal second-harmonic microscopy, crossed-beam summa-
tion, and small-angle scattering in rat-tail tendon. Biophys J. 
1986;50(4):693–712. https://​doi.​org/​10.​1016/​S0006-​3495(86)​
83510-X.

Fujimoto JG, Pitris C, Boppart SA, Brezinski ME. Optical coherence 
tomography: an emerging technology for biomedical imaging 
and optical biopsy. Neoplasia. 2000;2(1–2):9–25.

Gade P. S,  Robertson A. M, Chuang C-Y. Multiphoton Imaging of 
Collagen Elastin and Calcification in Intact Soft-Tissue Samples. 
Current Protocols in Cytometry. 2019;87(1)

Germann JA, Martinez-Enriquez E, Marcos S. Quantization of Col-
lagen organization in the stroma with a new order coefficient. 
Biomed Opt Express. 2018;9(1):173–89.

Gonzalez RC, Woods RE. Digital image processing. 4th ed. New York: 
Pearson; 2018.

Grossmann A, Morlet J. Decomposition of hardy functions into square 
integrable wavelets of constant shape. SIAM J Math Anal. 
1984;15(4):723–36.

Haralick RM, Shanmugam K, Dinstein I. Textural features 
for image classification. IEEE Trans Syst Man Cybern. 
1973;SMC-3(6):610–21.

Hill MR, Duan X, Gibson GA, Watkins S, Robertson AM. A theoretical 
and non-destructive experimental approach for direct inclusion 
of measured collagen orientation and recruitment into mechani-
cal models of the artery wall. J Biomech. 2012;45(5):762–71.

Holzapfel G. A, Gasser T. C, Ogden R. W. A new constitutive frame-
work for arterial wall mechanics and a comparative study of 
material models. J Elast. 2000;61:1–48. https://​doi.​org/​10.​
1023/A:​10108​35316​564.

Hompland T, Erikson A, Lindgren M, Lindmo T, de Lange DC. Sec-
ond-harmonic generation in collagen as a potential cancer diag-
nostic parameter. J Biomed Opt. 2008;13(5): 054050.

Hough PVC, inventor; Method and means for recognizing complex 
patterns. United States patent US 3069654. 1962 Dec 18.

Hristu R, Eftimie LG, Stanciu SG, et al. Quantitative second harmonic 
generation microscopy for the structural characterization of 
capsular collagen in thyroid neoplasms. Biomed Opt Express. 
2018;9(8):3923–36.

Hu W, Li H, Wang C, Gou S, Fu L. Characterization of collagen fib-
ers by means of texture analysis of second harmonic generation 
images using orientation-dependent gray level co-occurrence 
matrix method. J Biomed Opt. 2012;17(2): 026007.

Huang T, Yang G, Tang G. A fast two-dimensional median filter-
ing algorithm. IEEE Trans Acoust Speech Signal Process. 
1979;27(1):13–8.

Humphrey J, Holzapfel G. Mechanics, mechanobiology, and mode-
ling of human abdominal aorta and aneurysms. J Biomechanics. 
2012;45(5):805–14.

Hyvärinen A, Hurri J, Hoyer PO. Natural image statistics. London: 
Springer; 2009.

Iqbal N, Mumtaz R, Shafi U, Zaidi SMH. Gray level co-occurrence 
matrix (GLCM) texture based crop classification using low alti-
tude remote sensing platforms. PeerJ Comput Sci. 2021;7: e536. 
https://​doi.​org/​10.​7717/​peerj-​cs.​536.

Jaffar Iqbal Barbhuiya AHM, Hemachandran K. Wavelet tranforma-
tions & its major applications in digital image processing. IJERT. 
2013;2(3).

Kabir MM, Inavalli VVGK, Lau TY, Toussaint KC. Application of 
quantitative second-harmonic generation microscopy to dynamic 
conditions. Biomed Opt Express. 2013;4(11):2546–54.

Karlon WJ, Covell JW, Mcculloch AD, Hunter JJ, Omens JH. Auto-
mated measurement of myofiber disarray in transgenic mice with 
ventricular expression of ras. Anat Rec. 1998;252(4):612–25.

Khattak SS, Saman G, Khan I, Salam A. Maximum entropy based 
image segmentation of human skin lesion. Int J Comput Control 
Quantum Inf Eng. 2015;9(5):667–71.

Kirsch RA. Computer determination of the constituent structure of 
biological images. Comput Biomed Res. 1971;4(3):315–28.

Kittler J, Illingworth J. Minimum error thresholding. Pattern Recogn. 
1986;19(1):41–7.

Koch RG, Tsamis A, D’Amore A, et al. A custom image-based analysis 
tool for quantifying elastin and collagen micro-architecture in 
the wall of the human aorta from multi-photon microscopy. J 
Biomech. 2014;47(5):935–43.

Koehler MJ, König K, Elsner P, Bückle R, Kaatz M. In vivo assessment 
of human skin aging by multiphoton laser scanning tomography. 
Opt Lett. 2006;31(19):2879.

Kroger M, Schleusener J, Jung S, Darvin ME. Characterization 
of collagen I fiber thickness, density, and orientation in the 
human skin in vivo using second-harmonic generation imag-
ing. Photonics. 2021;8:404. https://​doi.​org/​10.​3390/​photo​nics8​
090404.

Lau TY, Ambekar R, Toussaint KC. Quantification of collagen 
fiber organization using three-dimensional Fourier trans-
form-second-harmonic generation imaging. Opt Express. 
2012;20(19):21821–32.

Leavers VF. Shape detection in computer vision using the hough trans-
form. London: Springer; 1992.

Lee SL, Chen YF, Dong CY. Second harmonic generation imaging 
reveals asymmetry in the rotational helicity of collagen lamellae 
in chicken corneas. Biomed Opt Express. 2019;10(10):5223–34.

Ley C, Verdebout T. Modern directional statistics. Boca Raton: CRC 
Press; 2017.

293Research on Biomedical Engineering (2023) 39:273–295

https://doi.org/10.1080/03008207.2020.1828381
https://doi.org/10.1080/03008207.2020.1828381
https://doi.org/10.1103/PhysRevLett.7.118
https://doi.org/10.1103/PhysRevLett.7.118
https://doi.org/10.1016/S0006-3495(86)83510-X
https://doi.org/10.1016/S0006-3495(86)83510-X
https://doi.org/10.1023/A:1010835316564
https://doi.org/10.1023/A:1010835316564
https://doi.org/10.7717/peerj-cs.536
https://doi.org/10.3390/photonics8090404
https://doi.org/10.3390/photonics8090404


1 3

Lin SJ, Wu RJ, Tan HY, et al. Evaluating cutaneous photoaging by use 
of multiphoton fluorescence and second-harmonic generation 
microscopy. Opt Lett. 2005;30(17):2275–7.

Liu Z, Speroni L, Quinn KP, et al. 3D organizational mapping of col-
lagen fibers elucidates matrix remodeling in a hormone-sensitive 
3D breast tissue model. Biomaterials. 2018;179:96–108.

Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. 
Molecular cell biology. 4th ed. New York: W.H. Freeman; 2000.

Lowe JS, Anderson PG, Stevens A. Stevens & Lowe’s human histology, 
4th ed. Philadelphia: Elsevier/Mosby: 2015.

Luo T, Chen H, Kassab GS. Resliced image space construction for 
coronary artery collagen fibers. PLoS ONE. 2017;12(9):1–15.

Luthon F, Liévin M, Faux F. On the use of entropy power for thresh-
old selection. Signal Process. 2004;84(10):1789–804.

Malladi R, Sethian J. Level set and fast marching methods in image 
processing and computer vision. Proceedings of 3rd IEEE 
International Conference on Image Processing; 1996 Sep 19; 
Lausanne, Switzerland. IEEE, 1996.

Mancas M, Gosselin B, Macq B. Segmentation using a region 
growing thresholding. Image Process Algorithms Syst IV. 
2006;5672:388–98.

Mardia KV, Jupp PE. Directional statistics. New York: J. Wiley; 
2000.

Mardia KV, Hughes G, Taylor CC, Singh H. A multivariate Von 
Mises distribution with applications to bioinformatics. Cana-
dian Journal of Statistics. 2008;36(1):99–109.

McLean J. A linear method for quantification of collagen fiber orien-
tation in cornea. 41st Annual Northeast Biomedical Engineer-
ing Conference (NEBEC). 2015;1–2.

Mega Y, Robitaille M, Zareian R, McLean J, Ruberti J, DiMarzio 
C. Quantification of lamellar orientation in corneal col-
lagen using second harmonic generation images. Opt Lett. 
2012;37(16):3312–4.

Meijering E, Jacob M, Sarria JC, Steiner P, Hirling H, Unser M. Design 
and validation of a tool for neurite tracing and analysis in fluo-
rescence microscopy images. Cytometry. 2004;58A(2):167–76.

Morin C, Hellmich C, Nejim Z, Avril S. Fiber rearrangement and 
matrix compression in soft tissues: multiscale hypoelasticity and 
application to tendon. Front Bioeng Biotechnol. 2021;9:725047. 
https://​doi.​org/​10.​3389/​fbioe.​2021.​725047.

Mustafa WA, Abdul Kader MMM. A review of histogram equalization 
techniques in image enhancement application. J Phys: Conf Ser. 
2018;1019: 012026.

Niestrawska JA, Viertler C, Regitnig P, Cohnert TU, Sommer G, 
Holzapfel GA. Microstructure and mechanics of healthy and 
aneurysmatic abdominal aortas: experimental analysis and mod-
elling. J Rl Soc Interface. 2016;13:20160620.

Ohki M, Zervakis ME, Venetsanopoulos AN. 3-D digital filters. In: 
Leondes CT, editor. Control and dynamic systems. London: Aca-
demic Press; 1995;69:49–88.

Orberg JW, Klein L, Hiltner A. Scanning electron microscopy of col-
lagen fibers in intestine. Connect Tissue Res. 1982;9(3):187–93.

Osher S, Sethian JA. Fronts propagating with curvature-dependent 
speed: algorithms based on Hamilton-Jacobi formulations. J 
Comput Phys. 1988;79:12–49.

Otsu N. A threshold selection method from gray-level histograms. 
IEEE Trans Syst Man Cybern. 1979;9(1):62–6.

Pearson KLIII. On lines and planes of closest fit to systems of 
points in space. London Edinburgh Dublin Philos Mag J Sci. 
1901;2(11):559–72.

Pewsey A, Garcίa-Portugués E. Recent advances in directional statis-
tics. arXiv:​2005.​06889 [stat]. 2020.

Phillippi JA, Green BR, Eskay MA, et al. Mechanism of aortic medial 
matrix remodeling is distinct in patients with bicuspid aortic 
valve. J Thorac Cardiovasc Surg. 2014;147(3):1056–64.

Pijanka JK, Markov PP, Midgett D, et al. Quantification of collagen fiber 
structure using second harmonic generation imaging and two-
dimensional discrete Fourier transform analysis: application to the 
human optic nerve head. J Biophotonics. 2019;12(5): e201800376.

Pizer SM, Amburn EP, Austin JD, et al. Adaptive histogram equali-
zation and its variations. Comput Vis Graphics Image Process. 
1987;39:355–68.

Polzer S, Gasser TC, Forsell C, et al. Automatic identification and 
validation of planar collagen organization in the aorta wall 
with application to abdominal aortic aneurysm. Microsc 
Microanal. 2013;19(6):1395–404.

Prado IM, Di Dio LJ, Miranda-Neto MH, et al. Distribution of col-
lagen fibers in the aggregated lymphoid follicles of swine ter-
minal ileum. Ann of Anat. 2003;185(1):73–80.

Prewitt JMS. Object enhancement and extraction. In: Lipkin BS, 
editor. Picture processing and psychopictorics. Cambridge: 
Academic Press; 1970. p. 75–149.

Rader C. Discrete Fourier transforms when the number of data sam-
ples is prime. Proc IEEE. 1968;56(6):1107–8.

Rao RAR, Mehta MR, Toussaint KC. Fourier transform-second-har-
monic generation imaging of biological tissues. Opt Express. 
2009;17(17):14534–42.

Rivard G. Direct fast Fourier transform of bivariate functions. IEEE 
Trans Acoust Speech Signal Process. 1977;25(3):250–2.

Robinson BK, Cortes E, Rice AJ, Sarper M, del Rίo HA. Quantita-
tive analysis of 3D extracellular matrix remodelling by pancre-
atic stellate cells. Biol Open. 2016;5(6):875–82.

Rosen S, Brisson BK, Durham AC, et al. Intratumoral collagen sig-
natures predict clinical outcomes in feline mammary carci-
noma. PLoS ONE. 2020;15(8): e0236516.

Schmarje M, Zelenka C, Geisen U, Glüer CC, Koch R. 2D and 3D 
segmentation of uncertain local collagen fiber orientations in 
SHG microscopy, arXiv:​1907.​12868 [cs], 2019;11824:374–
386. https://​doi.​org/​10.​1007/​978-3-​030-​33676-9_​26.

Schriefl AJ, Wolinski H, Regitnig P, Kohlwein SD, Holzapfel GA. 
An automated approach for three-dimensional quantification of 
fibrillar structures in optically cleared soft biological tissues. J 
Rl Soc Interface. 2013;10:20120760.

Senthilkumaran N, Rajesh R. Edge detection techniques for image 
segmentation – a survey of soft computing approaches. Int J 
Recent Trends Eng. 2009;1(2):250–4.

Simoncelli E, Farid H. Steerable wedge filters for local orientation 
analysis. IEEE Trans Image Process. 1996;5(9):1377–82.

Singer KD, Wu Y. Second harmonic generation (shg) as a charac-
terization technique and phenomological probe for organic 
materials. In: Ostroverkhova O, editor. Handbook of organic 
materials for optical and (opto)electronic devices. Sawston: 
Woodhead Publishing Limited; 2013:442–69. https://​doi.​org/​
10.​1533/​97808​57098​764.

Sivaguru M, Durgam S, Ambekar R, et al. Quantitative analysis of 
collagen fiber organization in injured tendons using Fourier 
transform-second harmonic generation imaging. Opt Express. 
2010;18(24):24983–93.

So PTC. Two-photon light microscopy. In: Encyclopedia of life sci-
ences. New York: Macmillan Publishers Ltd; 2002.

Sobel I. An isotropic 3x3 image gradient operator. Presentation at 
Stanford A.I. Project. 1968.

Starck JL, Candès EJ, Donoho DL. The curvelet transform for image 
denoising. IEEE Trans Image Process. 2002;11(6):670–84.

Stein AM, Vader DA, Jawerth LM, Weitz DA, Sander LM. An algo-
rithm for extracting the network geometry of three-dimensional 
collagen gels. J Microsc. 2008;232(3):463–75.

Strupler M, Pena AM, Hernest M, et al. Second harmonic imag-
ing and scoring of collagen in fibrotic tissues. Opt Express. 
2007;15(7):4054–65.

294 Research on Biomedical Engineering (2023) 39:273–295

https://doi.org/10.3389/fbioe.2021.725047
http://arxiv.org/abs/2005.06889
http://arxiv.org/abs/1907.12868
https://doi.org/10.1007/978-3-030-33676-9_26
https://doi.org/10.1533/9780857098764
https://doi.org/10.1533/9780857098764


1 3

Sugita S, Matsumoto T. Multiphoton microscopy observations of 
3D elastin and collagen fiber microstructure changes during 
pressurization in aortic media. Biomech Model Mechanobiol. 
2017;16:763–73.

Sun M, Bloom AB, Zaman MH. Rapid quantification of 3D collagen 
fiber alignment and fiber intersection correlations with high 
sensitivity. PLoS ONE. 2015;10(7): e0131814.

Svoboda K, Yasuda R. Principles of two-photon excitation microscopy 
and its applications to neuroscience. Neuron. 2006;50(6):823–39.

Tang SY, Monslow J, Todd L, Lawson J, Puré E, FitzGerald GA. 
Cyclooxygenase-2 in endothelial and vascular smooth muscle 
cells restrains atherogenesis in hyperlipidemic mice. Circulation. 
2014;129(17):1761–9.

Theodossiou TA, Thrasivoulou C, Ekwobi C, Becker DL. Second har-
monic generation confocal microscopy of collagen type I from rat 
tendon cryosections. Biophys J. 2006;91(12):4665–77.

Thilagamani S, Shanthi N. A survey on image segmentation through 
clustering. Int J Res Rev Inf Sci. 2011;1(1):14–7.

Tilbury K, Hocker J, Wen BL, Sandbo N, Singh V, Campagnola PJ. 
Second harmonic generation microscopy analysis of extracel-
lular matrix changes in human idiopathic pulmonary fibrosis. J 
Biomed Opt. 2014;19(8): 086014.

Tizhoosh HR. Image thresholding using type II fuzzy sets. Pattern 
Recogn. 2005;38(12):2363–72.

Tjin G, Xu P, Kable SH, Kable EPW, Burgess JK. Quantification of 
collagen I in airway tissues using second harmonic generation. J 
Biomed Opt. 2014;19(3): 036005.

Tsai WH. Moment-preserving thresolding: a new approach. Comput 
Vis Graphics Image Process. 1985;29(3):377–93.

Ugryumova N, Jacobs J, Bonesi M, Matcher S. Novel optical imaging 
technique to determine the 3-D orientation of collagen fibers in 
cartilage: variable-incidence angle polarization-sensitive opti-
cal coherence tomography. Osteoarthr Cartil. 2009;17(1):33–42.

Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial 
mechanics. Physiol Rev. 2009;89(3):957–89.

Walton LA, Bradley RS, Withers PJ, et al. Morphological charac-
terization of unstained and intact tissue micro-architecture 
by X-ray computed micro- and nano-tomography. Sci Rep. 
2015;5(1):10074. https://​doi.​org/​10.​1038/​srep1​0074.

Wegner KA, Keikhosravi A, Eliceiri KW, Vezina CM. Fluorescence of 
picrosirius red multiplexed with immunohistochemistry for the 
quantitative assessment of collagen in tissue sections. J Histo-
chem Cytochem. 2017;65(8):479–90.

Wen BL, Brewer MA, Nadiarnykh O, et al. Texture analysis applied 
to second harmonic generation image data for ovarian cancer 
classification. J Biomed Opt. 2014;19(9): 096007.

Wu J, Rajwa B, Filmer DL, et al. Quantification and reconstruc-
tion of collagen matrix from 3D confocal datasets. J Microsc. 
2003;210(2):158–65.

Wu S, Li H, Yang H, Zhang X, Li Z, Xu S. Quantitative analysis on 
collagen morphology in aging skin based on multiphoton micros-
copy. J Biomed Opt. 2011;16(4): 040502.

Wu S, Peng Y, Hu L, Zhang X, Li H. Classification and recognition 
of texture collagen obtaining by multiphoton microscope with 
neural network analysis. J Phys: Conf Ser. 2016;680: 012014.

Yamada M, Lin LL, Prow TW. Multiphoton microscopy applications 
in biology. In: Conn M, Anda Cornea P, editors. Fluorescence 
microscopy. Cambridge: Academic Press; 2014. p. 185–97.

Yeh AT, Nassif N, Zoumi A, Tromberg BJ. Selective corneal imaging 
using combined second-harmonic generation and two-photon 
excited fluorescence. Opt Lett. 2002;27(23):2082–4.

Yuheng S, Hao Y. Image segmentation algorithms overview. ArXiv, 
vol. Abs/1707.02051. 2017.

Zeinali-Davarani S, Chow MJ, Turcotte R, Zhang Y. Characterization 
of biaxial mechanical behavior of porcine aorta under gradual 
elastin degradation. Ann Biomed Eng. 2013;41(7):1528–38.

Zeitoune AA, Erbes LA, Casco VH, Adur JF. Improvement of co-
occurrence matrix calculation and collagen fibers orientation 
estimation. Proc. SPIE 10160, 12th International Symposium 
on Medical Information Processing and Analysis. 2017;101601B. 
https://​doi.​org/​10.​1117/​12.​22567​21.

Zhou ZH, Ji CD, Xiao HL, Zhao HB, Cui YH, Bian XW. Reorganized 
collagen in the tumor microenvironment of gastric cancer and its 
association with prognosis. J Cancer. 2017;8(8):1466–76.

Zipfel WR, Williams RM, Webb WW. Nonlinear magic: multiphoton 
microscopy in the biosciences. Nat Biotechnol. 2003;21(11):1369–77. 
https://​doi.​org/​10.​1038/​nbt899.

Zyablitskaya M, Takaoka A, Munteanu EL, Nagasaki T, Trokel SL, 
Paik DC. Evaluation of Therapeutic Tissue Crosslinking (TXL) 
for Myopia using second harmonic generation signal microscopy 
in rabbit sclera. Investigative Opthalmology & Visual Science. 
2017;58:21–9.

Publisher's note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

295Research on Biomedical Engineering (2023) 39:273–295

https://doi.org/10.1038/srep10074
https://doi.org/10.1117/12.2256721
https://doi.org/10.1038/nbt899

	Quantitative analysis of second harmonic generated images of collagen fibers: a review
	Abstract
	Purpose 
	Methods 
	Result and conclusion 

	Introduction
	Study design
	SHG acquisition technique
	Method description
	Pre-processing
	Median filter
	Contrast enhancement
	Directional filters
	Gradient
	Frangi filter

	Image transformations
	Fast Fourier transform (FFT)
	Wavelet transform (WT)
	Radon transform (RT)
	Hough transform (HT)

	Information selection and extraction
	Spatial information selection
	Statistical feature extraction


	Quantities to measure and associated questions
	Geometric information (orientation, waviness)
	Scale of measure
	Input data nature (2Dprojected 3D3D)
	Output data nature

	Composition information (density)
	Scale of measure
	Input data nature (2Dprojected 3D3D)

	Morphologic information (fiber’s size)
	Scale of measure
	Input data nature (2Dprojected 3D3D)


	Comparison of some methods
	FFT
	Gradient
	CT-FIRE
	Comparison

	Discussion
	Conclusion
	References


