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Abstract
The microscopic Cauchy strain energy for linear elasticity based on the sum of quadratic strain energies due to pair potentials
has only 15 material rari-constants. It is shown that the six vectors connecting opposing vertices of a regular icosahedron
can be used to develop a strain energy function for general linear elastic anisotropic response with 21 material constants.
Specifically, the six strains of material fibers characterized by these vectors are enhanced by 15 fiber distribution strains due
to all combinations of distinct pairs of these vectors. These two-vector fiber distributions introduce coupling that is essential
to obtaining general anisotropy. The model is generalized for large deformations by replacing the strains with stretches and
by using a Fung-type exponential strain energy which couples the responses of the 21 stretches. The resulting nonlinear
hyperelastic strain energy function can be used to model the anisotropic hyperelastic response of fibrous tissues.

Keywords Anisotropic · Fiber distributions · Fibrous tissues · Hyperelasticity · Icosahedron · Rari-constants

1 Introduction

The historical introduction in Love [26] describes the microscopic model of elasticity based on pair potentials published in
Cauchy’s memoir in 1828. The associated strain energy that is a quadratic function of strain based on the sum of energies
of pair potentials, each with its own elastic constant, is referred to as the microscopic Cauchy model. It is well known [3,
4, 14, 26, 33, 34] that this microscopic Cauchy model has only 15 independent rari-constants, whereas the general theory
of anisotropic elasticity has 21 independent constants. Specifically, the general theory introduces a strain energy � per unit
mass as a quadratic function of strain

ρz� = 1

2
K · ε ⊗ ε = 1

2
Ki jk�εi jεk� , (1)

where ρz is the constant zero-stress density. The constant components Ki jk� of the stiffness tensor K and the components εi j
of the strain tensor ε, relative to orthonormal base vectors ei fixed in the material, are defined so that

K = Ki jk�ei ⊗ e j ⊗ ek ⊗ e� , ε = εi jei ⊗ e j . (2)
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Also, the associated symmetric stress tensor T and its components Ti j are given by

T = ρz
∂�

∂ε
= K · ε , Ti j = Ki jk�εk� . (3)

In addition, throughout this paper, the usual summation convention over repeated lower cased indices (i = 1, 2, 3) is
implied, A · B = tr(ABT ) is the inner product of two second-order tensors (A,B), and a ⊗ b is the tensor product of two
vectors (a,b). Details of the inner product of higher-order tensors can be found in Rubin [29].Moreover, since� is a quadratic
function of strain and the strain tensor ε is symmetric, it follows that Ki jk� satisfies the symmetries

K jik� = Ki j�k = Kk�i j = Ki jk� , (4)

which indicates that Ki jk� has 21 independent constants.
The microscopic Cauchy strain energy is characterized by pair potentials and can be expressed in the form

ρz�̂ = 1

2

N∑

I=1

k̂ I ε̂
2
I = 1

2

N∑

I=1

k̂ I (sI ⊗ sI ⊗ sI ⊗ sI ) · (ε ⊗ ε) , (5)

where k̂ I are stiffnesses, the fiber strains ε̂I are defined by the unit vectors sI characterizing fiber directions, and the associated
structural tensors SI are defined so that

sI · sI = 1 , SI = sI ⊗ sI , SI · I = 1 , ε̂I = SI · ε . (6)

Due to the symmetry of the stiffness tensor in Eq.5, it is known [3] that the stiffness Ki jk� of the microscopic Cauchy
strain energy function satisfies the additional restrictions

Kik j� = Ki jk� , (7)

which reduces the number of independent constants to 15, called rari-constants. Consequently, the form Eq.5 cannot describe
a general anisotropic response no matter how many pair potentials are considered (large values of N ).

The stiffness Ki jk� can be separated additively into a Cauchy part Ki( jk)� and its complimentary part Ki[ jk]� defined by
Campanella and Tonon [3]

Ki jk� = Ki( jk)� + Ki[ jk]� ,

Ki( jk)� = 1

2
(Ki jk� + Kik j�) , Ki[ jk]� = 1

2
(Ki jk� − Kik j�) .

(8)

By definition, this complimentary part Ki[ jk]� is independent of the Cauchy part Ki( jk)�. A number of mathematical aspects
of this separation have been discussed by Hehl and Itin [14] and Itin [19–21]. Also, it is known [3] that for linear elasticity,
Ki[ jk]� does not contribute to the equations of equilibrium. It was shown by Rubin and Ehret [32] that a general strain energy
can be developed by adding to Eq.5 an additional strain energy that depends on components of ε2. Moreover, a new spectral
representation of the strain energy function was developed by Rubin [31] for general anisotropic response which does not
separate the stiffness as in Eq.8.

One objective of this paper is to develop a new representation of the quadratic strain energy for general anisotropic linear
elastic response based on fiber distributions. Instead of focussing on the separation of the stiffness tensor Ki jk� in Eq.8, the
strain energy function is expressed as the sum of 21 strain energies. In Ciambella and Rubin [6], a fiber distribution �I is
defined as a symmetric, positive-definite tensor with unit trace

�T
I = �I , �I · I = 1 , �I · s ⊗ s > 0 , (9)

where s is an arbitrary non-zero vector. In this work, the fiber distributions are allowed to be positive semi-definite with

�I · s ⊗ s ≥ 0 . (10)
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Specifically, these fiber distributions are defined by six unit vectors NI . Six fiber distributions �I (I = 1, 2, . . . , 6)
can be considered Dirac distributions each based on a single vector, and the remaining 15 planar-isotropic distributions �I

(I = 7, 8, . . . , 21) are defined by all pairs of distinct vectors. Then, the general strain energy function is proposed in the form

ρz� = 1

2

21∑

I=1

kI ε
2
I , εI = �I · ε , (11)

where kI are stiffnesses, εI are fiber distribution strains, and the associated stress is given by

T = ρz
∂�

∂ε
=

21∑

I=1

kI εI�I . (12)

The new feature of this representation is the coupling of the strain components εi j in the fiber distribution strains εI
(I = 7, 8, . . . , 21), which is more general than the coupling in the standard fiber strains εI (I = 1, 2, . . . , 6). This coupling
allows the new representation to characterize general anisotropy with 21 independent constants.

Lanir [25] proposed a model for fibrous tissues which is based on stretches of fiber bundles. Anisotropic response can be
modeled by introducing non-uniform distributions of the orientation of the fiber bundles; bundle undulation, which causes
nonlinear response to fiber stretch; and the stiffness. This model requires integration over all orientations of strains in the
direction of a vector defined on the unit sphere. The microplane model for strain-controlled inelastic behavior [2] and the non-
affine micro-sphere model of rubber elasticity [27] are examples of other models which require integration of distributions.
These structural models attempt to connect the anisotropic response of a material to observable microstructural features. Since
there are only five regular polyhedron platonic solids (tetrahedron (4 vertices), octahedron (6 vertices), cube (8 vertices),
icosahedron (12 vertices), dodecahedron (20 vertices)), no more than 20 points can be distributed equally spaced on the
surface of a sphere. Consequently, numerical integration over the unit sphere can introduce undesired anisotropy and requires
a large number of integration points for accuracy [1, 7, 22, 24, 35].

A second objective of this paper is to generalize the model to a nonlinear hyperelastic model for fibrous tissues that is
based on 21 affinely deformed fiber distributions. The resulting model is not an approximation of a model based on integration
over the surface of a sphere. Instead, it is a phenomenological model for nonlinear anisotropic response based on 21 fiber
distribution deformation measures. In this regard, it is mentioned that alternative phenomenological continuum models have
been developed using structural tensors to characterize anisotropy [8, 11, 15–18, 23].

An outline of this paper is as follows. Section2 defines the 21 fiber distributions based on a regular icosahedron. Section3
and Appendix determine values of the stiffnesses kI for general anisotropic linear elastic response. Section4 describes a
generalization for nonlinear hyperelastic response with examples that examine undesirable anisotropic response for pure
dilatation, isochoric extension, and simple shear. Finally, Section5 presents a discussion.

2 Fiber distributions based on vertices of a regular icosahedron

The six unit vectors NI parallel to opposing vertices of a regular icosahedron (see Fig. 1) were used by Elata and Rubin [9]
to study the isotropy of strain energy functions that depend on a finite number of directional strain measures. They were also
used by Elata and Rubin [10] to study anisotropy with damage, by Flynn et al. [12] to model the response of fibrous soft
tissues, and by Rubin [30] to study anisotropy of a discrete fiber icosahedron model for fibrous tissues. Specifically, NI by
Rubin [30] are specified by

N1 = e1 , N2 = 1√
5
(e1 + 2e2) ,

N3 = 1√
5
e1 + 1

2

(
1 − 1√

5

)
e2 +

√
1

2

(
1 + 1√

5

)
e3 ,
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1, I

2 3

III

II

Fig. 1 Sketch of a regular icosahedron and the equilateral triangular defined byN1,N2,N3 together with the points I , I I , and I I I defining loading
directions

N4 = 1√
5
e1 − 1

2

(
1 + 1√

5

)
e2 +

√
1

2

(
1 − 1√

5

)
e3 ,

N5 = 1√
5
e1 − 1

2

(
1 + 1√

5

)
e2 −

√
1

2

(
1 − 1√

5

)
e3 ,

N6 = 1√
5
e1 + 1

2

(
1 − 1√

5

)
e2 −

√
1

2

(
1 + 1√

5

)
e3 . (13)

Next, using these vectors, the 21 fiber distributions �I are defined by

�1 = N1 ⊗ N1 , �2 = N2 ⊗ N2 , �3 = N3 ⊗ N3 ,

�4 = N4 ⊗ N4 , �5 = N5 ⊗ N5 , �6 = N6 ⊗ N6 ,

�7 = 1
2 (N1 ⊗ N1 + N2 ⊗ N2) , �8 = 1

2 (N1 ⊗ N1 + N3 ⊗ N3) ,

�9 = 1
2 (N1 ⊗ N1 + N4 ⊗ N4) , �10 = 1

2 (N1 ⊗ N1 + N5 ⊗ N5) ,

�11 = 1
2 (N1 ⊗ N1 + N6 ⊗ N6) , �12 = 1

2 (N2 ⊗ N2 + N3 ⊗ N3) ,

�13 = 1
2 (N2 ⊗ N2 + N4 ⊗ N4) , �14 = 1

2 (N2 ⊗ N2 + N5 ⊗ N5) ,

�15 = 1
2 (N2 ⊗ N2 + N6 ⊗ N6) , �16 = 1

2 (N3 ⊗ N3 + N4 ⊗ N4) ,
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�17 = 1
2 (N3 ⊗ N3 + N5 ⊗ N5) , �18 = 1

2 (N3 ⊗ N3 + N6 ⊗ N6) ,

�19 = 1
2 (N4 ⊗ N4 + N5 ⊗ N5) , �20 = 1

2 (N4 ⊗ N4 + N6 ⊗ N6) ,

�21 = 1
2 (N5 ⊗ N5 + N6 ⊗ N6) . (14)

From Eqs. 9 and 14, it can be seen that the fiber distribution strains εI (I = 1, 2, . . . , 6) are strains of specific material
fibers like in Eq.6, whereas the strains εI (I = 7, 8, . . . , 21) are fiber distribution strains based on distributions of all pairs of
distinct vectors NI . Moreover, it is noted that these fiber distributions are different representations of the planar distribution
discussed by Holzapfel et al. [16].

3 Determination of thematerial constants

By equating the strain energy (1) with (11), using the expressions εI in Eq.9 and the fiber distributions �I in Eq.14, the
constants kI can be determined in terms of the stiffnesses Ki jk� and the results are recorded in Appendix.

3.1 Isotropic response

Using the values of Ki jk� for isotropic response in Eq.A.1, it can be shown that

kI = μ(7 − 18ν)

2(1 − 2ν)
(I = 1, 2, . . . , 6) ,

kI = μ(4ν − 1)

1 − 2ν
(I = 7, 8, . . . , 21) ,

(15)

where μ is the shear modulus and ν is Poisson’s ratio. Notice that for ν = 1/4, this strain energy function reduces to
a microscopic Cauchy energy with strains only due to material fibers. The interesting history of Poisson’s ratio over two
centuries in Greaves [13] discusses this value of ν for the single elastic constant microscopic Cauchy model. Using assumed
linear relations between stress and strain components, Cauchy also developed a continuum model for isotropic response with
two elastic constants [26]. Furthermore, it can easily be shown that the value ν = 1/4 is consistent with an isotropic linear
elastic material with only one independent elastic constant for which Lame’s constant λ = μ. Moreover, it is noted that kI
are non-negative for (1/4 ≤ ν ≤ 7/18), whereas for other values of ν (i.e. −1 < ν < 1/4 and 7/18 < ν < 1/2) in the range
(−1 < ν < 1/2), which ensures that the strain energy function is positive-definite, some of the values of kI are negative.

3.2 Orthotropic response

Using the values of Ki jk� for orthotropic response in Eq.A.1, it can be shown that an orthotropic material is characterized by
the nine constants

{
k1 , k2 , k3 , k4 , k7 , k8 , k13 , k16 , k17

}
,

with the remaining constants given by

k5 = k4 , k6 = k3 , k10 = k9 , k11 = k8 , k14 = k13 ,

k15 = k12 , k20 = k17 , k21 = k16 ,

k9 = (
√
5 − 1)k7
2

+ (3 − √
5)k8

2
,

k12 = −4k3 + 4k4 + (
√
5 − 1)k7
2

− (
√
5 − 1)k8
2

+ k13 + k16 − k17 ,
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k18 = 2k2 + (
√
5 − 1)k3 − (

√
5 + 1)k4 − (

√
5 − 1)k13

2
+ (

√
5 + 1)k17

2
,

k19 = 2k2 − (3 + √
5)k3 + (

√
5 + 1)k4 + k7 − k8

+ (
√
5 + 1)k13

2
+ k16 − (

√
5 + 1)k17

2
. (16)

Notice that if kI in Eq.16 are positive, then all kI will be positive if (k12, k18, k19) are positive. In this regard, (k2, k7, k16)
can be specified to cause (k12, k18, k19) to be positive. Therefore, a class of orthotropic materials exists for which all kI are
positive.

4 Nonlinear elastic response for fibrous tissues

For the nonlinear theory, the velocity v of a material point that is located at x in the current configuration is determined by

v = ẋ , (17)

where ˙( ) denotesmaterial time differentiation. Also, the total deformation gradientF from the reference configuration (F = I)
satisfies the evolution equation

Ḟ = LF , (18)

with the velocity gradient L and the rate of deformation tensor D defined by

L = ∂v/∂x , D = 1

2
(L + LT ) . (19)

Identifying NI in Eq.13 as material fibers, the fiber distribution stretches λI and the current affinely deformed fiber
distributions φ I are defined by

λI =
√
F�IFT · I , φ I = F�IFT

λ2I
, (20)

which satisfy the evolution equations

λ̇I

λI
= φ I · D , φ̇ I = Lφ I + φ IL

T − 2(φ I · D)φ I . (21)

The Fung strain energy by Chuong and Fung [5] is an exponential form of a quadratic strain energy function of the
Lagrangian strain. Motivated by this form and modifying the strains, it is possible to propose an exponential Fung-type strain
energy for fibrous tissues with 21 fiber distribution stretches in the form

ρz� = q
[
exp

(Q
q

) − 1
]
, Q = 1

2

21∑

I=1

kI [ln(λI )]2 , (22)

where the constant q > 0 controls nonlinearity and has the dimensions of stress. In this regard, it is noted that for q → ∞,
the strain energy reduces to ρz� = Q. Moreover, for values of λI infinitesimally close to unity, ρz� reduces exactly to the
linear elastic form (11). Next, the rate of material dissipation D for the purely mechanical theory requires

D = T · D − ρ�̇ ≥ 0 , (23)

where T is the symmetric Cauchy stress. Also, the current density ρ is related to ρz by the conservation of mass equation

ρ J = ρz , J = det(F) > 0 , (24)
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where J is the total dilatation. Then, using Eqs. 21–23 and the condition that D vanishes for a hyperelastic material, the
Cauchy stress T and the pressure p are given by

T = J−1 exp
(Q
q

) 21∑

I=1

kI ln(λI )φ I , p = −1

3
(T · I) . (25)

Using the values of kI in Appendix for the new model based on 21 fiber distribution stretches, it is possible to model
general small deformation anisotropy. However, since some of the values of kI can be negative for general anisotropy, the
large deformation response of the model does not necessarily ensure that the strain energy remains non-negative. Moreover,
using experimental data to determine values of kI for large deformation response, it is natural to identify differences in the
measured values of kI from the isotropic values (15) as measures of actual anisotropy. However, it was observed in Rubin
[30] that a model based on only (φ I , I = 1, 2, . . . , 6) does not predict isotropic response exactly for large deformations.
The purpose of this section is to examine the undesirable anisotropy of the new model using the isotropic values (15) by
considering examples of pure dilatation, isochoric extension, and simple shear. For all the following examples, kI are specified
by the isotropic values in Eq.15.

4.1 Pure dilatation

For pure dilatation, the deformation gradient F is specified by

F = J 1/3I , λI = J 1/3 , φ I = �I , (26)

and it can be shown using Eqs. 22 and 25 and the results

6∑

I=1

�I = 2I ,

21∑

I=7

�I = 5I (27)

that

T = −pI , p = K exp
(Q
q

) ln(J )

J
,

Q = K

2
[ln(J )]2 , K = 2μ(1 + ν)

3(1 − 2ν)
,

(28)

where K is the small deformation bulk modulus. As expected the deviatoric stress vanishes and the response is isotropic
exactly. Figure2 shows the influence of q on the dilatational response, with Fig. 2b,c focusing on compression and extension,
respectively, to show the different responses more clearly. Moreover, from these figures, it can be seen that the maximum
magnitude of the pressure p increases with decreasing values of q and that the response for q = 100 [GPa] is very close to
that for the limiting value q = ∞ [GPa].

4.2 Isochoric extension

For isochoric extension in the unit p direction, the deformation gradient F is specified by

F = ap ⊗ p + 1√
a

(I − p ⊗ p) , J = 1 , (29)

where a > 0 is the stretch in the p direction. Figure1 shows a sketch of a regular icosahedron and one of its equilateral
triangular faces based on vertices defined by N1,N2,N3. Due to the symmetry of the icosahedron, the responses for p =
NI (I = 1, 2, . . . , 6) will be identical. Also, the responses for p piercing identical points in any of the equilateral triangular
faces of the icosahedron will be identical. Moreover, due to this symmetry, it is only necessary to consider p piercing only
one of the sub-triangles I-II-2, I-II-3, II-2-3 shown in Fig. 1. Thus, to examine potential anisotropy due to isochoric extension,
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Fig. 2 Pure dilatation: the influence of q on the response

consider unit vectors pwhich pierce this triangular face in the triangular region denoted by the points I , I I , and I I I , defined
by the unit vectors

For E1: p = p1 = N1 ,

For E2: p = p2 = N1 + N2 + N3

|N1 + N2 + N3| ,

For E3: p = p3 = N1 + N3

|N1 + N3| .

(30)

Also, the axial stress for each loading direction is defined by

σ = T · p ⊗ p . (31)

For all the following examples, ν = 1/3 and, unless otherwise stated, q = 10 (GPa). Figure3 examines the influence of
the constant q on the response for loading in the E1 direction. From this figure, it can be seen that the maximum magnitude
of the axial stress σ increases with decreasing values of q and that the response for q = 100 [GPa] is very close to that for
the limiting value q = ∞ [GPa].

The axial stresses σ and the pressures p for isochoric extension in the directions (E1, E2, E3) in Eq.30, shown in Fig. 4,
indicate that the response is not exactly isotropic. Also, it is noted that for extension (a > 1), the fiber distributions deform and
become more aligned causing increased resistance to extension in the loading direction, whereas for compression (a < 1),
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Fig. 3 Isochoric extension: influence of q on the response to loading in the E1 direction

the fiber distributions become flatter and cause increased resistance to expansion normal to the direction of loading, which
explains the low values of the axial stress σ for compression.

4.3 Simple shear

For simple shear, the deformation gradient F is specified by

F = I + βb1 ⊗ b2 , (32)

where b1 and b2 are orthonormal vectors defining the shearing plane with shearing β in the b1 direction. These vectors are
defined for the following two shearing planes:

For S1: b1 = p2 − (p2 · b2)b2
|p2 − (p2 · b2)b2| , b2 = N1 ,

For S2: b1 = p3 − (p3 · p2)p2
|p3 − (p3 · b2)b2| , b2 = N1 .

(33)

123
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Fig. 4 Isochoric extension: responses to loading in the three directions E1, E2, and E3 in Eq.30

where pi are defined in Eq.30. Also, b1 is the unit vector whose projection into the plane of the equilateral triangle in Fig. 1
is directed from the point I to the point II for S1 and directed from the point I to the point III for S2. Figure5 shows that the
response to simple shearing in these two shearing planes is nearly isotropic.

Fig. 5 Simple shear: responses to loading in the two planes S1 and S2 in Eq.33
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5 Discussion

It has been shown that general anisotropic linear elastic response can be characterized by the sum of energies of the 21 strains
of fiber distributions of all pairs of the six vectors NI in Eq.13 of a regular icosahedron. To understand the importance of
using fiber distribution strains based on two fiber directions to model general anisotropic response, it is recalled from Rubin
and Ehret [32] that no matter how many pair potential strains are included in the microscopic Cauchy strain energy (5), there
are only 15 independent rari-constants characterizing the strain energy. For example, it was shown by Rubin and Ehret [32]
that the dependence of the microscopic Cauchy strain energy on ε212 appears only in the combination

2ε11ε22 + ε212 . (34)

This means that the resistance to ε212 cannot be controlled independently. However, the fiber distribution strain ε27 in Eq.9
for linear elasticity takes the form

ε27 = 25

4

[
ε211 + 3ε11ε12 + 2ε12ε22 + ε222 + (3ε11ε22 + ε212)

]
, (35)

which in combination with the microscopic Cauchy strain energy allows for separate control of the resistances to ε11ε22 and
ε212. The extra coupling in the fiber distribution strains ε2I (I = 7, 8, . . . , 21) may be somewhat similar to the extra coupling
in a rectangular truss element made of two triangular truss elements that has been stiffened by adding an additional diagonal
cross-bar (see Fig. 6).

Replacing the fiber distribution strains εI by the logarithm of the fiber distribution stretches λI , the strain energy function
(11) is generalized for large deformation to take the form Q in Eq.22. This strain energy function is further generalized by
the Fung-type exponential form � in Eq.22.

Inmicrostructuralmodels, like that proposed [25], the distributions of the orientation of the fiber bundles, bundle undulation,
and the stiffness are modeled explicitly, with the strain energy proposed as an integral over these distributions. In contrast, the
proposed model is phenomenological with the functional forms of the fiber distribution strains in the strain energy function
and their associated stiffnesses modeling the combined effects of the distributions in the microstructural models. In both a
microstructural model and the fiber distribution model, parameter identification is difficult due to coupled physical effects.
However, the proposed model with 21 fiber distributions significantly reduces the computational effort in evaluating the
response of the fibrous tissue over that in the microstructural models.

Since the two quantities
6∑

I=1

[ln(λI )]2 ,

21∑

I=7

[ln(λI )]2 , (36)

cannot be expressed as functions of the invariants of the right Cauchy-Green deformation tensor C = FTF, it follows that the
proposed strain energy function cannot characterize nonlinear isotropic elastic response exactly when kI are specified by the
values (15) for isotropic linear elastic response. However, it has been shown that the proposed model, with kI specified by
Eq.15, is exactly isotropic for small deformations and is nearly isotopic for moderate deformations. The examples indicate
that this model based on 21 fiber distribution stretches remains nearly isotropic for a larger range of loading than the model

Fig. 6 A truss element stiffened by adding a diagonal cross-bar

123



    3 Page 12 of 17 MB Rubin

in Rubin [30], which used a strain energy function based on the Lagrangian strains of six fiber directions. Furthermore, using
(27) and the expression (20) for λI , it can be shown that

6∑

I=1

λ2I = 2C · I ,

21∑

I=7

λ2I = 5C · I . (37)

Since C · I is the first invariant of C, it follows that exact nonlinear isotropic elastic response can be characterized by a
strain energy function that depends on either of these sums.

Modeling the response of fibrous tissueswith significant variability requires less accuracy thanmodeling standard structural
materials. For this reason, the undesirable anisotropy exhibited by the proposed model using the isotropic values kI in Eq.15
may be insignificant in modeling and understanding the anisotropic response predicted by general values of kI . In this regard,
it may be sufficient to consider anisotropic material response with positive kI , which ensure that the strain energy function is
positive-definite.

Furthermore, it is noted that the logarithmic dependence on the fiber distribution stretches λI in Eq.22 is motivated by the
modeling of inelastic response of cardiac muscle [28]. Future work is planned on modeling the anisotropic elastic-inelastic
response of fibrous tissues using a generalization of the nonlinear model developed in this paper.

Appendix: Values of thematerial constants

The material constants kI can be expressed in terms of the stiffness Ki jk� by

k1 = K1111 − 7K1122

4
− 7K1133

4
+ 3K2222

8
+ 3K2233

4
+ 3K3333

8
,

k2 = −K1112 − 3K1122

4
+ K1133

4
+ 2K1212 + 2K1222 − 2K1233

+3K2222

8
− 5K2233

4
+ 3K3333

8
,

k3 = (
√
5 + 1)K2222

16
+ (

√
5 + 1)K3333

16
+ (

√
5 − 1)K1122

8

− (3 + √
5)K1133

8
− (5 + √

5)K2233

8
+ (3 − √

5)K1212

4

+ (5 + √
5)K1313

4
+ (5 − √

5)K2323

4
− (

√
5 − 1)K1112

4

− (
√
5 + 1)

√
10 − 2

√
5 K1113

8
−

√
10 − 2

√
5 K1123

4
− K1222

2

− (3 + √
5)

√
10 − 2
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