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Abstract
In the paper Shariff (Q. J. Mech. Appl. Math. 76:143–161, 2023) a functional basis of a system of vectors and symmetric tensors 
is proposed. The functional basis is expressed in terms of eigenvalues and eigenvectors of the first tensor and includes a smaller 
number of terms in comparison to the classical irreducible representation (see, e.g., Boehler, J. Appl. Math. Mech. 57:323–327, 
1977; Pennisi and Trovato, Int. J. Eng. Sci. 25:1059–1065, 1987). In the present contribution, we show that elements of the 
functional basis by Shariff (Q. J. Mech. Appl. Math. 76:143–161, 2023) do not represent isotropic invariants of the vector and 
tensor arguments and cannot thus be referred to as the functional basis. To this end, a counterexample with two symmetric tensors 
is considered. Under an arbitrary orthogonal transformation the functional basis (Shariff, Q. J. Mech. Appl. Math. 76:143–161, 
2023) of these two tensors should remain constant but it does change in contrast to the classical representation.
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A functional basis of a vector and tensor system is a set of their isotropic invariants such that every invariant can uniquely be 
expressed in terms the basis. Thus, by the very definition elements of the functional basis should represent isotropic invari-
ants of the given system of vectors and tensors, which is not the case for the functional basis by Shariff [4].

To prove this statement we consider a simple special case of two symmetric tensors A1 and A2 . Any scalar-valued isotropic 
function (invariant) of these tensors should satisfy the condition

where Orth3 denotes a group of all orthogonal transformations within the three dimensional Euclidean space. According 
to the classical invariant theory a functional basis of these tenors can be given by ten following invariants (see, e.g., [1, 2])

where tr∙ denotes the trace of a tensor. In contrast, according to Shariff [4] the functional basis of this tensor system can be 
represented by a smaller number (nine) of terms as follows
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where ei form an orthonormal basis such that ei ⋅ ej = �ij, (i, j = 1, 2, 3) , where �ij denotes the Kronecker symbol. Accord-
ingly, the vectors vi can be set as

so that the basis (3) becomes

Consider now an orthogonal transformation by an (orthogonal) tensor

in which A�

1
= QA1Q

T
= A1 but

Due to the fact that A�

1
= A1 the eigenvectors (5) remain unchanged so that

in view of (6). These five terms do change under the orthogonal transformation by (7) and thus do not represent isotropic 
invariants of two symmetric tensors A1 and A2 (4) according to (1). On the contrary, one can easily check that the invariants 
(2) do remain constant under this transformation and satisfy (1). Thus, the terms proposed in [4] do not represent a functional 
basis and cannot also be used in a functional basis of vector and tensor valued functions.

The above statement can also be argued by means of the following thought experiment. Consider two students which 
independent of each other are asked to calculate invariants according (3). They get the following sets of tensors 

1st	� student: A1 and A2 (4),

2nd	� student: A1 and A′

2
 (8)

 and do not know about each other. Most probably, they both will use the given orthonormal basis ei, (i = 1, 2, 3) , with respect 
to which the components of A1 , A2 and A′

2
 are defined. Thus, they will set vi = ei, i = 1, 2, 3 and get different sets of the ele-

ments in the factional basis (3). However, in this case the invariants should be the same as predicted by (2) according to the 
classical invariant theory. Alternatively, the students can use arbitrary orthonormal bases since every of them represents a 
set of eigenvectors of the identity tensor A1 . However, in this case the probability that the bases chosen by student 1 and 2 
are accidentally related to each other by the orthogonal transformation (7) and their invariants (3) will thus coincide is zero.
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