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Abstract The purpose of this paper is to delineate the
research challenges of human–machine collaboration in
risky decision-making. Technological advances in
machine intelligence have enabled a growing number of
applications in human–machine collaborative decision-
making. Therefore, it is desirable to achieve superior
performance by fully leveraging human and machine
capabilities. In risky decision-making, a human decision-
maker is vulnerable to cognitive biases when judging the
possible outcomes of a risky event, whereas a machine
decision-maker cannot handle new and dynamic contexts
with incomplete information well. We first summarize
features of risky decision-making and possible biases of
human decision-makers therein. Then, we argue the
necessity and urgency of advancing human–machine
collaboration in risky decision-making. Afterward, we
review the literature on human–machine collaboration in a
general decision context, from the perspectives of human–
machine organization, relationship, and collaboration.
Lastly, we propose challenges of enhancing human–
machine communication and teamwork in risky decision-
making, followed by future research avenues.

Keywords human–machine collaboration, risky deci-
sion-making, human–machine team and interaction, task
allocation, human–machine relationship*

1 Introduction

The machine in this paper refers to an intelligent system
that can make decisions in an autonomous and (partially or
fully) independent manner, and the machine’s autonomy is
realized through artificial intelligence (AI), deep learning,
or other algorithms (Rahwan et al., 2019).
With the rapid development of information technology

such as AI, deep learning, and big data (Duan et al., 2019),
machines have transitioned from mechanization and
automation to intelligentization in the past decades.
Increased computation power and advanced algorithms
enable the machine to catch up with or even surpass human
capabilities in various contexts. For example, Alpha Go
beats the top human player in a strategy game that used
to be exclusive to humans (Silver et al., 2016; 2017).
Google’s unmanned vehicles are safer and more stable
than vehicles driven by humans (Hancock et al., 2020).
In medical treatment (Patel et al., 2019; Topol, 2019),
intelligence technology has developed unprecedentedly
fast to assist medical staff in diagnosing and caring for
patients. Given evolutions in the depth and breadth of
machine capabilities, machines’ ability to undertake
increasingly independent and essential tasks in the near
future is promising.
However, machines, especially weak AIs, are often

developed for specific purposes and trained with limited
input data. As a result, they generally perform well only
within a pre-defined scope. In addition, the causal
relationships between input and output data are often
poorly structured; hence, many weak AI machines function
as “black boxes”. Even though the capability and speed of
a machine (or algorithm) in collecting, processing, and
analyzing information can easily surpass those of a human
decision-maker (Jarrahi, 2018), its flexibility, adaptability,
and accountability are lacking. Moreover, autonomous
machines still cannot work independently without human
supervision in decisions involving high stakes such as
human lives (Xu, 2019) due to insufficient reasoning under
moral dilemmas.
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Currently, integrating human and machine capabilities
has demonstrated potential in various applications. For
example, the swarm-based technology, i.e., a networked
group of radiologists modeled after biological swarms,
together with deep-learning technology, was shown to
achieve superior diagnostic accuracy than either method
alone (Patel et al., 2019). Damacharla et al. (2018)
reported that a team of two non-expert chess players and
three personal computers outperformed either a group of
supercomputers or a group of grandmasters. Holzinger
(2016) discussed the efficacy of interactive machine learning
(iML), which guides machine computation with human
expertise, in solving computationally difficult problems, for
example, subspace clustering in protein folding.
Moreover, machines are tools to humans instead of

teammates (Phillips et al., 2011). The development of
machines has shifted human–machine relationships from
mere interaction to cooperation, teaming, and collaboration
(Hoc, 2000; Xu, 2019; Haesevoets et al., 2021). In a
hybrid system, machine behaviors influence and shape
human behaviors and vice versa (Rahwan et al., 2019).
Parker and Grote (2019) argued that the fundamental
difference between the emerging human–AI relationship
and the traditional human–machine relationship posed
new questions on work design. Roth et al. (2019) also
advocated proactive research on work design and function
allocation. Besides, facilitating mutual understanding
between humans and machines is a pressing matter.
Many recent studies have focused on designing explain-
able and trustable AIs and building effective and healthy
human–AI relationships (Gunning, 2016; DARPA, 2018;
Warden et al., 2019).
In this paper, we are particularly interested in sum-

marizing research challenges in human–machine colla-
borative decision-making under risk. Risky decision-
making refers to the problem of making choices without
knowing the exact consequences (Bier et al., 1999). Such
problems are ubiquitous in economics, technology, policy-
making, and daily life, for example, determining a
portfolio of investments, allocating medical resources
during a pandemic, and deciding which medical treatment
to apply. In a typical risky scenario, the decision-maker
faces several choices, and each choice involves multiple
possible outcomes whose probabilities are knowable.
Thus, likelihoods and consequences are two critical
dimensions to characterize the outcome of such a decision
(Bedford and Cooke, 2001). In a normative perspective,
the decision-maker is supposed to act rationally according
to expected utility theory (von Neumann and Morgenstern,
1944) based on evaluating the likelihoods and conse-
quences of all possible outcomes. In a descriptive
perspective, we often observe cognitive biases in human
decisions, and people tend to exercise simple heuristics to
reach a solution (Kahneman and Tversky, 1979).
Many open questions arise about establishing human–

machine teams for risky decision-making, where the

context is generally uncertain, complex, and dynamic.
For example, who should be assigned with which tasks,
including cognition, judgment, and decision, and under
what principles? How can a machine understand human
decision-makers’ values and behaviors and prescribe both
normatively correct and subjectively acceptable solutions?
The quest to answer these essential questions motivated us
to conduct a literature review and seek potential research
directions in this paper.
In particular, we organized this paper as follows. We

discussed the necessity and urgency of human–machine
collaboration in risky decision-making in Section 2. In
Section 3, we reviewed current developments on human–
machine collaboration for task allocation (organizational
perspective), human–machine relationship (relationship
perspective), and human–machine interfaces (interaction
perspective). In Section 4, we focused on emerging
challenges and potential research avenues concerning
human–machine collaboration in risky decision-making.
Finally, Section 5 concluded this review paper.

2 Human–machine collaboration in risky
decision-making

2.1 Human decision-maker’s cognitive limitations in risky
decision-making

The outcome of a decision is susceptible to uncertainty
(March and Shapira, 1987). Thus, the decision quality also
relies on how a decision-maker handles uncertainty,
including aleatory uncertainty that is inherent in the
random phenomenon underlying a risk event, and
epistemic uncertainty that arises from incomplete
knowledge about the phenomenon under consideration
(Apel et al., 2004). Human decision-makers have been
shown to employ simple heuristics and exhibit cognitive
biases (see Fig. 1).
When assessing the likelihoods and consequences of a

risk event, people are vulnerable to representativeness bias,
availability bias, and anchoring effect (Tversky and
Kahneman, 1974; Bier, 2004; Kahneman and Frederick,
2002), and their judgments do not always follow the
Bayesian rule (Grether, 1992; El-Gamal and Grether, 1995;
Griffiths and Tenenbaum, 2006; Charness et al., 2007).
In empirical studies, cognitive biases are widely found in
the fields of operations management, medical diagnosis,
enterprise strategy, and investment (Wickham, 2003; Chen
et al., 2007; Croskerry, 2013; Blumenthal-Barby and
Krieger, 2015; Tong and Feiler, 2017). Moreover, people
fall prey to bounded rationality by not choosing an option
with the highest expected utility (von Neumann and
Morgenstern, 1944; Wakker, 1989) but following other
rules (Edwards, 1962; Luce and Fishburn, 1991; Mearman,
2011) as suggested by prospect theory (Kahneman and
Tversky, 1979), regret theory (Bell, 1982), and satisficing
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theory (Simon et al., 2004). Additionally, the decision
strategies people adopt are dependent not only on the
decision-maker’s cognitive style (Hunt et al., 1989) and
ability (Cokely and Kelley, 2009), but also on the contexts
such as cognitive load (Deck and Jahedi, 2015), emotion
and pressure (Zinn, 2008; Ordóñez et al., 2015), and
framing of the decision task (Payne et al., 1993; Dörner
and Wearing, 1995). For example, in public decision-
making, consequences will be borne by someone other
than the decision-maker (Gregory et al., 1996), leading to
strong emotional reactions (Gregory et al., 1996) and
moral dilemmas (Tetlock, 2003). In general, cognitive
limitations (see Fig. 1) of human decision-makers create
barriers to rational and consistent decisions and induce
unwanted results.

2.2 Opportunities for human–machine collaboration in
risky decision-making

Human–machine collaboration has great potentials for
risky decision-making. Machines could be more suppor-
tive in gathering information and assessing uncertainties,
and conveying key messages to human decision-makers
to save cognitive resources. Moreover, human decision-
makers could debias their judgments and constrain
emotional influences with the assistance of a machine.
Empirical evidence has demonstrated the benefits of
human–machine collaboration in decisions under risk.
Take medical diagnosis as an example. Dawes et al. (1989)
compared the performance of doctors’ clinical models with
the regression-based actuarial model and found that the
actuarial model was more accurate than the subjective
diagnostic model. Nowadays, the superiority of algorithms
remains prevalent in clinical settings (Miller, 2018; Topol,
2019), thanks to their invulnerability to cognitive biases,
fatigue, recent experience, and environmental factors
(Whelehan et al., 2020). However, doctors consistently
outperformed AI in outlier analysis and rapid grasp of new,
complex, and rare symptoms (Amann et al., 2020; Lee,

2020). Therefore, the synergy of human and machine
capabilities is desirable (Lee, 2020).
In this section, we characterize the opportunities for

human–machine collaboration in risky decision-making by
the levels of uncertainty involved (see Fig. 2). On the one
hand, when the decision task features low uncertainty, the
research opportunities are mainly algorithm-centered,
which lie in the effective utilization of the computing
power of machines (Patel et al., 2019). If programmed in
proper ways following decision rules approved by a human
decision-maker, or trained with sufficient data to achieve
desirable accuracy, a machine can produce stable output
without interference from cognitive overload, emotion, or
other factors. In this case, machines typically support
humans in a unilateral manner.
On the other hand, when the decision task is associated

with higher uncertainty, the research opportunities become
human-centered. High uncertainty makes many patterns in
past data unaccountable due to inherent randomness in
the risk event or human decision-makers’ lack of under-
standing. Thus, the required complexity of algorithms
increases to model and predict such data, and issues of
overfitting and “black box” become vital (Topol, 2019;
Amann et al., 2020). This challenge boils down to the
demand for explainability, which means the machine
should be able to explain its reasoning in a way that is
understandable and trustable to humans (Cadario et al.,
2021). In this regard, research on transparent AI,
explainable AI, and trustable AI can help algorithms
remove barriers that impede human decision-makers from
valuing their output (Lyons and Havig, 2014; Gunning,
2016; Chen et al., 2018).
Furthermore, in decision tasks with high uncertainty, the

research opportunities lie in human–machine collaboration
centered for two reasons. First, humans are vulnerable to
various cognitive biases, and their capabilities of informa-
tion processing are limited, whereas machines can calibrate
biases and handle mass data in a consistent and
normatively correct way. When human and machine

Fig. 1 Human decision-maker’s limitations and machine’s potential to enhance risky decision-making.
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judgments have disparity, machines need to be able to
explain why the human judgments are normatively wrong,
for example, by specifying which cognitive biases are
taking effect, what information is lacking, which correla-
tion/causality relationships are missing, and what regions
of the solution space are underexplored. In this way,
humans know that machines “understand” them, which
helps cultivate trust through bilateral transparency and
mutual understanding (Edmonds et al., 2019).
Second, machines are unable to handle highly uncertain

and rare cases well. By contrast, humans can use intuition
and experience to adapt to new situations and quickly learn
and generalize reasoning across tasks. Representation of
human cognitive and decision processes, for example, by
abstract mathematical models or rule-based models, is an
active topic in many fields such as cognitive science,
psychology, behavioral science, and computer science
(Renooij, 2001; Kemp and Tenenbaum, 2008; Broomell
and Budescu, 2009; Tenenbaum et al., 2011). Under-
standing the sources of adaptability and generalizability in
human judgments is key to equipping machines with
capabilities to deal with new, complex, and rare cases.
Despite extensive literature on human–machine colla-

boration, research on human–machine collaboration (i.e.,
AI algorithm) in risky decision-making, especially about
quantitatively assessing the likelihoods and consequences
of each option and logically reaching a final decision,
has drawn attention only recently. In the following section,
we first summarize existing studies on human–machine
collaboration, highlighting task allocation, human–
machine relationship, and human–machine interaction,
all of which are essential for decision tasks. We then
discuss the challenges of human–machine collaboration
in decision-makings under risk in the pursuit of high
decision performance.

3 Literature on human–machine
collaboration

We surveyed the literature on human–machine cooperation
or collaboration from 1940 to 2021. Here, we do not limit
the connotation of the machine. Instead, the machine
could refer to an automated or autonomous system, an
autonomous agent, a robot, an algorithm, or AI. Studies on
human–machine collaboration span a variety of fields,
including human–machine teaming (Calhoun et al., 2018;
Daugherty and Wilson, 2018; Wynne and Lyons, 2018;
Ferrari, 2019; Parker and Grote, 2019; Seeber et al., 2020;
Laid et al., 2020; Saenz et al., 2020), human–machine
relationship (de Visser et al., 2018; Lyons et al., 2018),
transparency (Patel et al., 2019; Skraaning and Jamieson,
2019; Kraus et al., 2020), explainability (Gunning, 2016;
Degani et al., 2017; DARPA, 2018; Amann et al., 2020;
Cadario et al., 2021), task allocation (van Maanen and van
Dongen, 2005; Roth et al., 2019; Dubois and Le Ny,
2020), acceptance (Gursoy et al., 2019; Shin, 2020),
human trust in machine (Hoff and Bashir, 2015; de Visser
et al., 2018; Gutzwiller and Reeder, 2021), (shared) mental
models (Cannon-Bowers et al., 1993; Flemisch et al.,
2012; Goodrich and Yi, 2013), situation awareness
(Salmon et al., 2008; Ososky et al., 2012), measurement
(Damacharla et al., 2018), and practice in decision-making
(Jarrahi, 2018; Duan et al., 2019; Haesevoets et al., 2021).
Here we elaborate on current studies on human–machine

collaboration from three perspectives, namely, the organi-
zational perspective, the relationship perspective, and the
interaction perspective (see Fig. 3). These perspectives
correspond to different levels of deployment in human–
machine collaboration, considering how humans and
machines are organized, how they work together, and
how they interact with each other. Specifically, the

Fig. 2 Research opportunities on human–machine collaboration in risky decision-making.
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organizational perspective concerns forming the human–
machine team organizations and solving task allocation
problems. The relationship perspective investigates accep-
tance, trust, and dependence of human and machine on
each other. Finally, the interaction perspective is mainly
about designs of communication to foster mutual under-
standing and bilateral interventions via physical and
mental interfaces. We summarize studies taking each
view in Tables 1–4, respectively.

3.1 Task allocation between human and machine in
decision-making

Function allocation refers to distributing system functions
and tasks across people and technology (Roth et al., 2019).
The earlier representative work is theory of function
allocation (Fitts, 1951). Functions are allocated according
to the relative capabilities of humans and machines, that is,
the “Fitts List” or “Men-are-better-at/Machines-are-better-
at” classification scheme. This method divides and
dedicates tasks to humans or machines according to their

superior capabilities. Later, scholars argued that task
allocation should stress cooperation and developed the
theory of task allocation through the task and functional
analysis (Chignell and Hancock, 1986). With the increase
of automation levels, research attention gradually shifted
to supervisory control. For example, Parasuraman et al.
(2000) proposed the level of automation framework to
specify the levels of automation for independent functions
and the extent and process of human involvement.
As machine autonomy and intelligence improve,

humans and machines are no longer analyzed separately
but as a hybrid team (Chen and Barnes, 2014; Lyons et al.,
2018; Wynne and Lyons, 2018; Lyn Paul et al., 2019).
Findings in traditional task allocation studies are no longer
sufficient to support effective human–machine teams with
strong and intelligent machines. When assigning activities
in human–machine teams, a “missing middle” emerges,
that is, human–machine hybrid activities that are beyond
human-only and machine-only activities (Daugherty and
Wilson, 2018). A study by 65 scientists reported that
collaboration design in human–machine teams is one of the

Fig. 3 Literature perspectives on human–machine collaboration.

Table 1 Summary of studies on task allocation within human–machine teams

Topic Main focus Ref.

Task/Function
allocation

Capability Fitts (1951)

Capability, task (definition, process) Chignell and Hancock (1986); Parasuraman et al. (2000)

Capability, task, human–machine team Daugherty and Wilson (2018); Kunnathuvalappil Hariharan (2018);
Karstens et al. (2018); Patel et al. (2019); Seeber et al. (2020);

Tschandl et al. (2020)

Task requirements, interdependence requirements Roth et al. (2019)

Openness of the problem, known risk level Saenz et al. (2020)

Dynamic allocation Dynamic characteristics
(status, trust, workload, etc.)

Chignell and Hancock (1986); Lee and Moray (1992); Lee and See (2004);
Wickens et al. (2013); Hancock et al. (2020); Dubois and Le Ny (2020)
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three main design areas for human–machine collaboration
(Seeber et al., 2020). Future human–machine teams should
match tasks with the core capabilities of humans and
machines. Roth et al. (2019) advocated integrated methods
to support function allocation with high levels of autonomy
considering work requirements and interdependence
requirements for human–machine teams under routine
and off-nominal (unexpected) conditions. Regarding
decision-making tasks, in a recent study, Saenz et al.
(2020) proposed that how humans and machines work
together to make decisions depends on the openness of the
problem (whether the problem is well defined and whether
input variables are all known) and the risk level of the
problem. For example, humans act as sentinels when faced
with a relatively closed process with severe risks, whereas
machines perform the task independently (sequential
machine–human AI systems). By contrast, when the risk
is low and the decision-making process is open, humans
and machines cycle back and forth to reach the final
decision and improve performance by mutual learning
(cyclic machine–human AI systems).
Recent attempts have been investigating task allocation

between humans and AI algorithms in several fields
involving decisions under risk. For example, in financial
planning, decisions are based on examining financial

flows, anticipating the consequences of decisions, and
weighing pros and cons (Kunnathuvalappil Hariharan,
2018). Kunnathuvalappil Hariharan (2018) discussed task
allocation that leverages machine capabilities to collect
information, discover links among multiple aspects, and
picture an accurate outlook of prospective reactions to
decisions, and human capabilities to identify critical
factors and drill down to reach conclusions. In emergency
decision-making, Karstens et al. (2018) developed a new
human–machine mix paradigm to generate, inform, and
utilize the information for predicting severe convective
weathers, including four levels of automation and requir-
ing human forecasters capable of transferring from one
stage to another according to the evolution of hazard
severity. In chest radiograph diagnosis, Patel et al. (2019)
presented a practical case where the algorithm provides
outputs for the presence of disease with confidence in
probabilities while a human checks the outputs of lower
confidence to achieve superior combined decisions. In
skin cancer diagnosis, Tschandl et al. (2020) compared and
discussed varied representations of AI-based supports in
the clinical management decision and their effects across
different levels of clinical expertise and situations. The
researchers considered three strategies for dermatologist(s)
and AI-based support to work together: Aggregating

Table 2 Summary of studies on human–machine relationship

Topic Main focus Ref.

Human–machine
relationship

User and tool, pilot and co-pilot Hoc (2000); Urlings and Jain (2002)

Human-centered AI Gunning (2016); de Visser et al. (2018); Li and Etchemendy (2018); Xu (2019)

Machine as teammates Phillips et al. (2011); Lyons et al. (2018); Wynne and Lyons (2018); Seeber et al. (2020)

Table 3 Summary of studies on the physical interface of human–machine interaction

Topic Main focus Ref.

Physical
interface

Information display, the control of a machine/system Fitts and Seeger (1953); Bradley (1954); Ortiz and Park (2011)

Transparency, trust in automation Seong and Bisantz (2008); Wickens et al. (2013); Hoff and Bashir (2015);
Skraaning and Jamieson (2019)

Transparent interface, mental model,
effective human–machine team

Speier (2006); Kreye et al. (2012); Schaefer et al. (2017); Seeber et al. (2019);
Ferrari (2019); Hancock et al. (2020); Gutzwiller and Reeder (2021)

Table 4 Summary of studies on the mental interface of human–machine interaction

Topic Main focus Ref.

Attitudes toward
machine (attitudes)

Influencing factors, models
and theories of acceptance

Fishbein and Ajzen (1975); Davis et al. (1989); Cramer et al. (2008);
Kuo et al. (2009); Venkatesh et al. (2012); Gursoy et al. (2019);

Du et al. (2019); Yalçın and DiPaola (2020)

Influencing factors, models
and frameworks of trust

Sheridan and Hennessy (1984); Lee and See (2004); McGuirl and Sarter (2006);
Madhavan and Wiegmann (2007); Hancock et al. (2011); Hoff and Bashir (2015);

Salem et al. (2015); Schaefer et al. (2016; 2017); Wang et al. (2016);
Akash et al. (2017); Kraus et al. (2020)

Mental representation
of machine
(understanding)

Mental model, shared mental model Cannon-Bowers et al. (1993); Johnson-Laird (1996); Gentner (2001);
Vosgerau (2006); Kulesza et al. (2009); Ososky et al. (2012);

Laid et al. (2020); Shin (2020)

Situation awareness, shared situation
awareness, situation awareness-based

agent transparency models

Endsley (1988; 1995); Ososky et al. (2012); Selkowitz et al. (2016);
Stowers et al. (2016); Chen et al. (2018); Bhardwaj et al. (2020)

94 Front. Eng. Manag. 2022, 9(1): 89–103



AI-based multi-class probabilities and crowd wisdom, AI-
based triage to screen patients, and using AI prediction as a
second opinion for dermatologists’ suspicious diagnoses.
Moreover, dynamic task allocation poses new chal-

lenges when the ways of human–machine interaction
evolve over time. So far, studies have focused on dynamic
task allocation considering human characteristics such as
trust and cognitive load (Lee and Moray, 1992; Lee and
See, 2004; Wickens et al., 2013). For example, with the
advanced autonomous vehicle technology, vehicular con-
trol between the driver and the vehicle is allocated
dynamically depending on driving circumstances and
driver status (Hancock et al., 2020). Dubois and Le Ny
(2020) developed a strategy based on the Markov decision
process and quantitative models of trust and workload and
showed the potential for improvement in human–machine
collaborative decision-making for a general repeatable
binary decision task.

3.2 Human–machine relationship

In earlier studies, humans and machines are regarded as
users and tools rather than as a system or team (Phillips
et al., 2011). For example, humans and machines collabo-
rate as “pilot” and “co-pilot” respectively (Urlings and
Jain, 2002), where the human is the ultimate decision-
maker, and the machine acts as an automatic worker. Thus,
the focus in these studies is on controllability and usability
of machines (Hoc, 2000).
Given humans’ fear of being replaced by superior

machines, researchers have begun to advocate machine
designs to follow the human-centered AI strategy (Li and
Etchemendy, 2018; Xu, 2019). These studies emphasize
that machines are meant to support and enhance humans
rather than replacing them, in which machines are required
to explain themselves to be understood. For example,
the Explainable Artificial Intelligence project proposed by
DARPA (DARPA, 2018) aims to make humans understand
machines about, for example, why machines (algorithms)
produce the current results, when they would succeed or
fail, when they can be trusted, or why machines make
mistakes (Gunning, 2016). Explainability and the explain-
able interface can promote human–machine collaboration
and foster a teammate-like relationship (de Visser et al.,
2018; Xu, 2019). In addition, Seeber et al. (2020)
summarized that machine as teammates (MaT) requires
not only machine artifact design but also collaboration
design and institution design; hence, issues such as conver-
sation, accountability, and task design would also affect
the team collaboration. Moreover, the perception of task-
independent relationship has been used as a dimension to
describe teammate-likeness and would ultimately impact
trust and team performance (Lyons et al., 2018; Wynne
and Lyons, 2018).

3.3 Human–machine interaction

3.3.1 Physical interface

The physical interface is the physical channel of
human–machine interaction, and its design focuses on
reducing the gap in human–machine communication and
promoting overall efficiency (Speier and Morris, 2003).
The research on interface design considers different
machine capabilities and roles in human–machine
systems. In the era of mechanization, information display
and interface layout are the main issues. The aim is to
improve the operative control of the machine by helping
people find the corresponding functions quickly, reducing
the error rate of operation, and increasing efficiencies
(Fitts and Seeger, 1953; Bradley, 1954; Ortiz and Park,
2011). In the automation era, many highly repetitive
works are completed by machines, and humans become
supervisors of the work process. Since then, the design of
transparency to improve the usability and the control of
complex systems has received extensive attention (Skraan-
ing and Jamieson, 2019). In complex systems with high
automation, such as nuclear power plants and aviation, a
proper level of transparency is in demand to enable
operators to understand the system strategy (Wickens
et al., 2013) and the internal working conditions, leading
to trust in automation (Hoff and Bashir, 2015; Schaefer
et al., 2017) and appropriate usage (Seong and Bisantz,
2008).
The era of intelligence is characterized by massive

information and a higher level of machine participation in
human–machine collaboration. The physical interface pays
more attention to human feelings and is expected to
promote understanding and collaboration through trans-
parent, effective human–machine interaction (Schaefer
et al., 2017). Compared with non-iML, the behavior and
judgment of iML are generally more credible and easier to
interpret and thus can provide more effective assistance
(Seeber et al., 2019; Gutzwiller and Reeder, 2021).
Transparent interface with the representations of machine
intent, perception of the environment, and system status
can help establish the human mental model of machine and
reduce the discrepancy between the human mental model
and what the machine generates (Hancock and Chignell,
1989; Schaefer et al., 2017; Ferrari, 2019). Kreye et al.
(2012) argued that human perception and judgment of
uncertainty are subject to different displays of the same
information and different contextual information. The
representation of information is essential to the decision-
making process and corresponding performance (Speier,
2006). For example, increasing the transparency of
interface design can reduce decision-making conflicts
between human and automated vehicles in autonomous
driving (Hancock et al., 2020).
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3.3.2 Mental interface

When machine capabilities of analysis, prediction, and
decision grow, humans will have increasing difficulty
understanding the “black box” of the machine. Lack of
understanding impedes acceptance and trust. Therefore, in
addition to the physical interface, how humans understand
the machine (algorithm), including its behavior and
mechanism, and what they think of or like/accept/trust
the machine, entail a critical issue in human–machine
collaboration (Chen et al., 2018; Cadario et al., 2021;
Haesevoets et al., 2021). In this paper, we propose to use
the term “mental interface” to describe the human’s mental
representation of the machine and attitudes toward the
machine. The term “mental interface” was originally used
in the field of computer science and engineering to refer
to a brain–computer interface technology (“Cyberlink”)
that allows disabled persons with physical and/or mental
disabilities to control a computer to play games and
communicate at a basic level (Doherty et al., 2000; 2001).
To connect to the literature on psychology and human

factors, the human’s mental representation of the machine
refers to the mental model (Gentner, 2001) and situation
awareness (Endsley, 1988). Precisely, the mental model
reflects the understanding of the surrounding environment
(including the machine), whereas situation awareness
depicts the human decision-maker’s understanding of the
task, especially in a dynamic context. Moreover, humans’
attitudes toward the machine encompass acceptance (Davis
et al., 1989) and trust (Lee and See, 2004).
Given close collaboration and significant differences

between humans and machines, understanding and trust
have come to the spotlight of research (Ososky et al.,
2013), primarily affected by the human acceptance of
machines. Low acceptance rates would discount the
benefits of human–machine collaboration and team
performance. Acceptance is related to a multitude of
factors in human–machine collaboration, for example,
machine capability (Gursoy et al., 2019; Yalçın and
DiPaola, 2020), transparency (Cramer et al., 2008),
explainability (Du et al., 2019), and human characteristics
(Kuo et al., 2009). Acceptance is a research topic with a
long history; hence, many acceptance models and theories
can help predict people’s acceptance level of machines and
technology, with adaptations to AI (Fishbein and Ajzen,
1975; Davis et al., 1989; Venkatesh et al., 2012; Gursoy
et al., 2019).
Moreover, to improve trust in human–machine teams,

the two sides of decision-makers should understand each
other and have a shared understanding of the task and
environment (Cannon-Bowers et al., 1993; Ososky et al.,
2012). This challenge requires establishing shared mental
models and shared situation awareness through bilateral
human–machine communication (Ososky et al., 2012;
Chen et al., 2018). The (generalized) mental model is an

explanatory model of how people understand the world,
including the assumption, impression, and representation
of themselves, teammates, organizations, and the world,
which is limited by cognitive style and existing knowledge
(Johnson-Laird, 1996; Gentner, 2001; Vosgerau, 2006).
Like human teams, shared mental models in human–
machine teams require mutual understanding and collec-
tive understanding of the environment. Machines should
be aware of the human teammates’ physical and mental
capabilities and their intentions and motivations; whereas,
humans should know the behaviors and working mechan-
isms of the machine teammates, including strengths,
weaknesses, and especially their unusual behaviors and
failure modes (Laid et al., 2020). The transparent and
explainable decision-making process behind the machine,
in turn, helps humans build their mental models, for
example, correcting for cognitive biases and insufficient
reasoning, supplementing missing information, and avoid-
ing ignored risks (Kulesza et al., 2009; Shin, 2020). A
shared situation awareness of the decision context and the
environment (time and space), especially when they
change dynamically, is another key to human–machine
mutual understanding (Endsley, 1988; 1995). Shared
situational awareness requires humans to understand
machine status and intention. For example, the situation
awareness-based agent transparency model (Selkowitz
et al., 2016; Stowers et al., 2016; Bhardwaj et al., 2020)
asks the machine to provide basic operation information
for the human decision-maker to perceive, comprehend,
and predict future events about the machine and the
environment.
As a core element of the mental interface, trust plays the

most pivotal role in human–machine collaboration. Trust is
defined as the attitude toward the machine to help humans
achieve the goal under the condition of uncertainty and
vulnerability (Lee and See, 2004). In human–machine
interaction, trust can influence people’s acceptance and use
of machines (Sheridan and Hennessy, 1984) and situation
awareness and behaviors (Schaefer et al., 2017). Further-
more, mistrust or distrust weakens the effectiveness of
human–machine teams (Hancock et al., 2011). As a multi-
dimensional and dynamic construct, models or frameworks
of trust have been widely studied and developed, including
impact factors (Lee and See, 2004; Hancock et al., 2011;
Hoff and Bashir, 2015; Salem et al., 2015; Schaefer et al.,
2016), and trust dynamics and calibration (McGuirl and
Sarter, 2006; Madhavan and Wiegmann, 2007; Wang
et al., 2016; Akash et al., 2017; Kraus et al., 2020).

4 Challenges of human–machine collabora-
tion in risky decision-making

On the basis of the discussion about critical components
in human–machine collaboration for decision tasks, we
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propose three challenges of human–machine collaboration
in risky decision-making, pertaining to how to organize
human–machine teams, enhance each other’s capabilities,
and facilitate mutual understanding and humans’ trust in
machines. In addition, we discuss difficulties and potential
research directions.
Challenge 1: Developing a more dynamic and flexible

human–machine team organization. Human–machine
team organization plays a critical role in supporting the
allocation of tasks and accountability between human and
machine, affecting the performance of human and machine
in the team (Flemisch et al., 2012). The challenge is
specifically described below.
Designing the human–machine team organization mode

to make decisions under risk. Humans and machines
undertake different roles in the environment and tasks with
different levels of variability, uncertainty, and complexity
(Daugherty and Wilson, 2018). Authority seniority is
usually determined beforehand and is consistent with the
capabilities of human and machine decision-makers
(Flemisch et al., 2012). However, humans and machines
show variable capabilities in tasks and contexts with
different levels of uncertainty. Thus, determining combi-
nations of human and machine in human–machine teams
and their seniority is challenging.
Applying dynamic task allocation strategy to respond to

dynamic characteristics and to support the combined
performance. For specific risky decision-making tasks,
human–machine teams may encounter multiple environ-
ment uncertainty risk levels and exhibit dynamic behaviors
(Bier et al., 1999). In this case, dynamic task allocation,
based on the capability and characteristics of human and
machine, can give better results than a static task allocation
strategy (Dubois and Le Ny, 2020). However, the dynamic
nature of risky decision-making tasks makes the situation
unpredictable and poses higher requirements for the
capability of both sides of human–machine teams, which
induces difficulties for allocating tasks dynamically.
Determining appropriate accountability distribution in

human–machine teams in risky decision-making. Risky
decision-making is always accompanied by negative
outcomes, and each stakeholder in human–machine
teams has accountability for such outcomes (Shin and
Park, 2019). An appropriate accountability distribution in a
human–machine team can affect acceptance and facilitate a
beneficial human–machine relationship (Flemisch et al.,
2012). Human usually tends to blame the machine for the
same mistake and negative outcomes (Dietvorst et al.,
2015). This tendency would be more severe in risky
decision-making with more uncertain negative outcomes.
In addition, relevant laws and regulations are lacking,
thereby posing challenges for supporting relevant research
on accountability distribution.
To overcome Challenge 1, the following research

questions must be considered.
(1) How should the human–machine team be organized

and what are the criteria to decide which one (human,
machine, or human–machine collaboration) holds the
authority in risky decision-making?
(2) How should tasks between human and machine

decision-makers, including cognition, judgment, and
decision, be assigned? How can dynamic task allocation
based on task requirements and the characteristics of
human and machine decision-makers be achieved?
(3) What are the criteria to decide who should be

accountable for the decision outcomes in human–machine
teams in risky decision-making? How does different
accountability distribution impact human–machine colla-
boration performance?
Challenge 2: Employing machines to help overcome

humans’ undesirable behaviors effectively (hence
enhancing the human decision-maker) in risky deci-
sion-making. Existing studies pay more attention to how
machines assist humans for better decision-making than
to leveraging machines to discover and correct human
cognitive and behavioral limitations in risky decision-
making. We break down the challenge into three parts.
Determining the capability boundary of humans in risky

decision-making. The capability boundary of humans is
scoped by human cognitive and behavioral limitations in
risky decision-making (Blumenthal-Barby and Krieger,
2015). Thus, understanding those limitations and their
impacts is the basis of developing adaptive machines to
overcome these deficiencies. Nevertheless, the context-
dependent characteristic and insufficient research on the
limitations in risky decision-making make the determina-
tion of the capability boundary difficult in specific risky
decision-making situations.
Developing adaptive machine design to support in

overcoming or intervening humans’ multiple limitations.
In risky decision-making, behaviors of human decision-
makers, as well as multiple limitations in cognition and
behavior, are affected by multiple dynamic and uncertain
factors (Cokely and Kelley, 2009; Ordóñez et al., 2015).
Therefore, an adaptive machine is requisite to help avoid
negative outcomes in the case of rapidly changing
behaviors. However, the variability of tasks and individual
differences under the same task result in technical
difficulties to develop corresponding machine functions
to overcome human limitations.
Evaluating the collaborative decision-making process

objectively and subjectively. Evaluating the collaborative
decision-making process can help understand the colla-
borative process and move the machine design and
human–machine collaborative design forward (Dama-
charla et al., 2018). Owing to the variability and
uncertainty in risky decision-making, behaviors inside
the human–machine team exhibit dynamic and complex
characteristics. Besides, the collaboration process may
shape human behaviors and cause long-term changes in
relationships (Rahwan et al., 2019). These characteristics
make a single indicator insufficient to evaluate the
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complicated and evolving process. In addition, mere
objective measurements cannot cover the dimensions of
human–machine collaboration. Thus, subjective indica-
tors, such as trust, comfort, and the capability to under-
stand the human intention and to predict behaviors should
be measured properly. Therefore, choosing indicators and
measurement methods to evaluate the changes during the
collaborative decision-making process is challenging.
To overcome Challenge 2, we raise the following

research questions.
(4) What are human cognitive and behavioral limitations

in risky decision-making? How can these limitations and
their impacts be understood and modeled?
(5) How can machines provide normatively correct

solutions for human cognitive and behavioral limitations?
What impacts do different contexts or tasks have on human
cognitive and behavioral limitations? In which way can
machines be designed and developed to help overcome
these limitations adaptively?
(6) What indicators can best describe and quantitatively

evaluate the collaborative decision-making process?
Challenge 3: Developing communication and inter-

face design to support mutual understanding and trust
in human–machine teams. Communication and informa-
tion sharing play a critical role in achieving an under-
standing of intentions and behaviors and creating an
effective human–machine team (Chen et al., 2018;
Edmonds et al., 2019). High uncertainty and task inter-
dependence bring forward request to bi-directional trans-
parency in real-time in human–machine teams (Gunning,
2016; Schaefer et al., 2017) to support effective commu-
nication and smooth task transition. More specific
challenge details are described below.
Design for intention identification and alignment. The

identification, understanding, and alignment of respective
goal(s), value(s), and intention(s) in a human–machine
team can improve the efficiency and performance of
human–machine collaboration (Schaefer et al., 2017).
However, human–machine teams do not have a common
ground and linguistic interaction (Dafoe et al., 2021).
Thus, problems would emerge when machines identify
humans’ explicit and implicit intentions in decision-
making as well as signal their intentions.
Effective behavior identification and monitoring of

behavioral limitations in risky decision-making. When
the capability boundary is known, monitoring and
identifying the human’s irrational behaviors or behaviors
due to cognitive limitations are critical for the intervention
toward the human (Damacharla et al., 2018). Humans
display various kinds of behaviors in risky decision-
making. However, given the unclear relationship between
used decision-making rules (cognition level) and obser-
vable behaviors, determining indicators from multiple
observable behaviors creates difficulties for the real-time
monitoring of the human’s behaviors during the human–
machine collaboration.

Appropriate intervention designs to overcome incon-
sistency in capabilities and behaviors in human–machine
teams. When decisions of the human and machine
decision-makers are inconsistent or capability/behavior
limitations arise, appropriate intervention can effectively
prevent possible negative outcomes (Daugherty and
Wilson, 2018). However, given the nonlinguistic interac-
tion, the machine has difficulty explaining its decisions and
behaviors to humans. In addition, to implement effective
intervention, a machine needs to overcome difficulties in
understanding humans’ decision-making rules and expres-
sing them in an acceptable and understandable way.
Interaction design and evaluation considering human

perception and understanding of machines. The physical
interface has developed to be adaptive and algorithm
dependent; more variables in the mental interface, such as
trust and acceptance, should be considered to facilitate
effective human–machine collaboration in risky decision-
making (Dubois and Le Ny, 2020). The construction of
mental interface depends heavily on embedding the model
with relevant psychological variables, but models with
these factors and their relationships have not been fully
studied.
To overcome Challenge 3, we pose the following

research questions for consideration.
(7) How do machines express their intentions, capa-

bilities, and behaviors in risky decision-making? What
behavioral indicators can represent human intentions? In
which way can a human–machine team effectively align
the goal, value, and intention?
(8) What behavioral indicators can represent the under-

lying cognition of human decision-making? How can
machines identify and collect those indicators?
(9) How does a machine explain its decision-making

rules? How does a machine understand humans’ decision-
making rules? How could the machine implement the
intervention in an acceptable way?
(10) How can influencing factors in human–machine

collaboration be modeled in risky decision-making? How
can these models be embedded in algorithms behind the
interaction interface?
To overcome those possible challenges (summarized in

Fig. 4) and facilitate effective human–machine collabora-
tion in risky decision-making, relevant disciplines and
research show great necessity and potentials. Mutual
enhancement is based on mutual understanding and the
effective communication mechanism in human–machine
teams and could be implemented through algorithms and
interface designs. Therefore, technological advances in
decision science, cognition science, and status evaluation,
and the practice of integrating existing theoretical research
into current human–machine teams can develop and
extend human–machine collaboration in risky decision-
making. Furthermore, the design of machine and
interface comes from what the designer expects and the
preset of the human–machine interaction mode and the

98 Front. Eng. Manag. 2022, 9(1): 89–103



human–machine relationship. However, in reality, human
and machine shape each other’s behavior and gradually
evolve into a stable and maybe different human–machine
relationship. Thus, each part of research of human–machine
collaboration in risky decision-making should be carried
out from a dynamic and evolutionary perspective.

5 Conclusions

This paper focuses on challenges and opportunities in
human–machine collaboration in risky decision-making,
which is often characterized by uncertainty, complexity,
and dynamics. We proposed three significant research
challenges, covering how to organize efficient human–
machine teams, foster healthy relationships between
humans and machines, and build effective mental inter-
faces. We believe that this review can help researchers
from multiple disciplines address exciting opportunities in
this emerging field.
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