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Abstract
This paper develops a novel hybrid Autoregressive Distributed Lag Mixed Data 
Sampling (ARDL-MIDAS) model that integrates both deep neural network multi-
head attention Transformer mechanisms, and a number of covariates, including 
sophisticated stochastic text time-series features, into a mixed-frequency time-series 
regression model with long memory structure. In doing so, we demonstrate how the 
resulting class of ARDL-MIDAS-Transformer models allows one to maintain the 
interpretability of the time-series models whilst exploiting the deep neural network 
attention architectures. The latter may be used for higher-order interaction analy-
sis, or, as in our use case, for design of Instrumental Variables to reduce bias in 
the estimation of the infinite lag ARDL-MIDAS model. Our approach produces an 
accurate, interpretable forecasting framework that allows one to forecast end-of-day 
sentiment intra-daily, with readily attainable time-series regressors. In this regard, 
we conduct a statistical time-series analysis on mixed data frequencies to discover 
and study the relationships between sentiment from our custom stochastic text time-
series sentiment framework, alternative popular sentiment extraction frameworks 
(BERT and VADER), and technology factors, as well as to investigate the role that 
price discovery has on retail cryptocurrency investors’ sentiment (crypto senti-
ment). This is an interesting time-series modelling challenge as it involves work-
ing with time-series regression models in which the time-series response process, 
and the regression time-series covariates, are observed at different time scales. 
Specifically, a detailed real-data study is conducted where we explore the relation-
ship between daily crypto market sentiment (of positive, negative and neutral polar-
ity) and the intra-daily (hourly) price log-return dynamics of crypto markets. The 
sentiment indices constructed for a variety of “topics” and news sources are pro-
duced as a collection of time-series capturing the daily sentiment polarity signals 
for each “topic”, namely each particular market or crypto asset. Different sentiment 
methods are developed in a time-series context, and utilised in the proposed hybrid 
regression framework. Furthermore, technology factors are introduced to capture 
network effects, such as the hash rate which is an important aspect of the money 
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supply relating to the mining of new crypto assets, and block hashing for transaction 
verification. Throughout our real data study, we provide guidance and insights on 
how to use our hybrid model to combine—in a transparent, non-black-box way—
covariates obtained with different time resolutions, how to understand the arising 
dynamics between these covariates, potentially under the presence of long memory 
structure, and, finally, successfully leverage these in forecasting applications. The 
hybrid model developed demonstrated superior performance to alternatives in both 
in-sample and forecasting application on real data.

Keywords  Mixed-data sampling time-series regression (MIDAS) · Transformer 
deep neural network · Multi-scale resolution data · Natural language processing 
(NLP) · Text sentiment NLP time-series modelling · Gegenbauer long memory · 
Econometrics · Time-series

JEL Classification  C32 · C36 · C45 · C49 · C51

1  Introduction

Cryptocurrency markets are emerging into mainstream finance with their adoption 
by institutions taking place on a regular basis, and regulatory frameworks coming 
into place to better manage the new classes of assets, markets and risks emerging 
from the re-envisaging of financial models through the Decentralised Finance (DeFi) 
movement. However, still the overwhelming majority of investors in the crypto 
space are comprised of retail investors rather than institutions. They are actors in 
the crypto markets for a variety of reasons; they may be seeking alternatives to the 
traditional fiat systems that could be overly oppressive in some countries, or may be 
seeking safe haven from hyper inflationary domestic currencies. Note that the latter 
may be due to the potential offering of a reliable, censorship-resistant scarce store of 
wealth, speculation of price activity, convenience of efficient financial transactions, 
or significantly greater interest bearing accounts from lending and staking platforms. 
However, there is no denying the fact that the crypto markets are still significantly 
influenced by sentiment as an entire industry on news and analytics has arisen in the 
crypto space that mirrors the mainstream financial media outlets such as MSNBC, 
Reuters and the like. In the online and print media, this includes news brands that 
have been servicing the crypto community for at least 5–6 years consistently at this 
stage, and includes well-known news brands in the crypto space such as Cointel-
egraph, cryptonews, CoinDesk, Bitcoin Magazine, Crypto Reddit, CryptoSlate, 
CryptoPotato, Coinmarketcap and Cryptoscoop, to name a few of the more widely 
followed news feeds.

Sentiment analysis, or opinion mining, is an active area of study in the field of 
natural language processing that analyses people’s opinions, sentiments, evaluations, 
attitudes, and emotions via the computational treatment of subjectivity in text, for 
instance, see detailed overviews of the field of sentiment analysis in Liu (2012) and 
Pang and Lee (2008).
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In this study, we aim to explore the relationship between crypto market senti-
ment and intra-daily price. In particular, we seek to study the time-series relation-
ship between the daily sentiment time-series of two major crypto assets, i.e. Bitcoin 
and Ethereum, to the intra-daily time-series for the price of leading crypto assets and 
the volatility dynamics of crypto currency markets, on an hourly time resolution. We 
construct the sentiment time-series based on a collection of curated news articles 
about Bitcoin and Ethereum that span the last 3 years, which we have collected from 
widely-read crypto news sources. A range of crypto news sentiment perspectives is 
then captured by sentiment signals of positive, negative and neutral sentiment polar-
ities for a variety of different cryptocurrency markets and news sources.

To achieve this, we introduce a new approach to cryptocurrency sentiment that 
is tailored to the crypto space context, and we compare and contrast our proposed 
methodology with existing sentiment extraction methods such as BERT (an atten-
tion-based Transformer sentiment model) and VADER (a rule-based model for 
online social media text sentiment analysis).

The studies we performed extract sentiment on particular cryptoassets, incorpo-
rating in the process the sentiment arising from market opinion, crypto regulation 
and Decentralised Finance news articles, into a common sentiment index. In addi-
tion, we incorporate technology factors related to network and mining efficiency, 
as well as transaction costs. We finally combine this information into two classes 
of econometric models. First, we relate sentiment extracted by our rigorous crypto-
specific framework, to other less interpretable crypto sentiment methods, using an 
Autoregressive Distributed Lag (ARDL) modelling framework. Having shown the 
utility of our proposed sentiment time-series methodology, we next adopt a time-
series regression framework that will accommodate the different time scales of the 
response time-series of daily crypto sentiment, and the covariate time-series of 
hourly crypto asset prices, volatility and network effects, such as the hash rate.

We will focus our analysis on currency pair markets for the asset exchange rates 
of BTC/USDT and ETH/USDT extracted from an aggregate price, and obtained 
from CoinGecko, a leading price aggregator from a variety of centralised cryptocur-
rency exchanges and distributed DEXs.

1.1 � Statistical modelling and application contributions

To undertake the proposed cryptocurrency studies we have adopted and extended a 
class of time-series regression models known as the mixed data sampling (MIDAS) 
models which were recently made popular in the econometrics community. They 
allow one to parametrically accommodate Autoregressive Distributed Lag (ARDL) 
structures where the response time-series is sampled at a different frequency to the 
covariate time-series. In this work, we explore and extend the class of MIDAS mod-
els to accommodate a few additional key structures:

•	 First, we incorporate within the MIDAS-ARDL model an infinite-lag structure 
that is transformed to a finite lag MIDAS-ARDL model via use of the MIDAS-
modified classical Koyck transform. We call this the Koyck-MIDAS transform. 
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We study the calibration of these models using Instrumental Variables (IV) for 
the sentiment signal, constructed based on VADER and deep learning solutions 
such as BERT. This in turn produces a hybrid time-series model that is denoted 
as the ARDL-MIDAS-Transformer model, which is an illustration of a class 
of ARDL-MIDAS-NeuralNet time-series regression models in which the neu-
ral network is a Transformer model that combines attention mechanisms with 
a Feed-Forward Neural-Network. This is used to construct the Instrumental 
Variables to reduce bias in the estimation of the infinite-lag Koyck-transformed 
ARDL-MIDAS model. We note that this is a significant contribution in terms of 
IV design and usage that remains on the interface between classical time-series 
IV regression and deep learning. There have been deep learning approaches 
that either jointly perform instruments construction and regression (Singh 
et al., 2020) or use solely deep learning models in a 2-stage IV regression set-
ting (Hartford et al., 2017; Xu et al., 2020). Yet, such methodologies are distinct 
to our approach in that we use the expressive power of the complex black-box 
model while maintaining the transparent, time-series econometrics approach of 
the 2-stage IV regression: Stage 1 being a regression from the instrument to the 
treatment, and Stage 2 subsequently regressing the outcome on the treatment, 
conditioning on the instrument. In our setting, the challenge is not only to find 
an instrumental variable, but also the fact that the space of the IV is not a stand-
ard space, but rather it comes from a document set. Thus, one needs to learn a 
mapping from an abstract space of text data to a real-valued time-series, which 
is distinct to what other methods adopt to obtain an IV and is the reason why the 
Large Language Transformer-based Model was adopted, given it is efficient at 
learning this mapping. Furthermore, the proposed framework gives a more direct 
aspect of interpretability to the components of the model and their influence on 
the response. For instance, in the proposed solution we have a direct interpre-
tation of short-term and long-term dynamic effects of instantaneous or persis-
tent changes in the covariate and the influence this would have on the response 
(see also Sect. 2.3.1 for an in-depth discussion). This can be achieved through 
standard equilibrium and transfer function analysis of the class of time-series 
models developed, which is not achievable or interpretable with other black-box 
approaches due to their complicated structure. The ability to interpret the influ-
ence of the covariate on the response is critical to understanding the practical 
and statistical relationship between the regression variable and the response. In 
the context of this work, it gives a direct interpretation of the effect of price on 
market sentiment, both when there is an instantaneous change of price at time t 
and how that propagates over time, and when there is a persistent effect of price 
on sentiment.

•	 Second, we incorporate long memory structure into the MIDAS-ARDL model 
class, creating a form of MIDAS-GARDL model where the G stands for the 
class of long memory structures we incorporate, known as the Gegenbauer long 
memory polynomial filtertaps. The MIDAS class of models has been a break-
through in that it allows joint modelling of covariates sampled at different time 
scales without having to aggregate the high-frequency covariates to match those 
at a lower-frequency thus losing information content. With our proposed exten-
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sion with the long memory filter, we show, in addition, that stylised features of 
the covariates, like long memory, can be explicitly incorporated into the model 
as part of model development. Consequently, the MIDAS polynomial choice 
does not need to be treated during model selection, for example, provided that 
we know that the high-frequency regressors have certain structure. This structure 
can inform the choice of MIDAS polynomial in a transparent fashion.

•	 Third, we study the combination of MIDAS exponential Almon weight func-
tions, Koyck-transformed geometric weight decay structures, and the Gegen-
bauer polynomial weight function generator in the case studies undertaken in the 
crypto space.

From an application perspective we make the following additional practical 
contributions:

•	 In terms of statistical modelling, we develop an approach to constructing time-
series formulations of sentiment to quantify in a single index the market senti-
ment that is extracted from multiple collections of daily sets of news articles. 
We propose a novel way to construct the sentiment index, and provide a com-
bining rule to obtain a single index, which is important to parsimoniously sum-
marise the sentiment content from a large collection of different news and text 
data sources (editorially curated news articles, analysts’ reports, social media, 
GitHub, Discord, Telegram, Twitter etc.), thus facilitating sentiment incorpora-
tion into a time-series framework. Details on the construction and text sentiment 
usage in the cryptospace are presented in Sect. 4.

•	 We demonstrate that our approach to constructing sentiment time-series is dis-
tinct from those that can be derived by popular deep learning, Transformer solu-
tions such as BERT, but also rule-based approaches such as VADER. This is 
achieved using ARDL time-series regressions methods and formal statistical 
tests (Sect. 6.1). We remark that at the time of writing this paper, we were not 
aware of any statistical rigorous study that compares the information content of 
a classical lexicon-based time-series sentiment and a deep neural network-based 
sentiment signal. We hope that the fact that we determine meaningful and inter-
pretable differences will encourage researchers also in other disciplines, to start 
investigating more when to use each method and to find ways to combine the 
best of both worlds, rather than resorting directly to the most complex but not 
necessarily effective solution without questioning.

•	 We analyse the relationships between financial intra-day price signals, technol-
ogy and network factors related to money supply in cryptocurrencies, and the 
daily sentiment time-series signal. The goal of the analysis is to enhance under-
standing of the evolving dynamics between covariates and responses of differ-
ent time scales, thus facilitating in-sample fitting and out-of-sample forecasting 
applications (Sect.  6.2). In the application under study in this manuscript, we 
are interested in forecasting end-of-day sentiment at any point intra-daily, using 
intra-daily signals from price and technology factors. This kind of setting natu-
rally arises in an NLP sentiment context, where documents arrive for process-
ing at a batch daily rate contrary to the intra-daily price signals obtained from 
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financial markets and network analytics; nevertheless, many applications would 
benefit from a forecast of end-of-day sentiment obtained intra-daily. Specifically, 
regarding forecasting applications, the model can be used to extract information 
on different forecasting horizons for relationships between processes at differ-
ent time scales, which is not commonly available; standard time-series or neu-
ral network models assume common time scales between response and covari-
ates. Furthermore, this formulation can be extended to other finance and digital 
finance applications or any other type of markets; for instance, agricultural com-
modities markets, where one could study the relationship between investor senti-
ment and price dynamics. Institutional (Commodity Futures Trading Commis-
sion, US Department of Agriculture) reports or public news around their release 
dates could be used to construct sentiment signals, commodity futures or spot 
prices could be utilised as covariates, and the dynamics of price on sentiment in 
commodities market could also be studied in a term structure setting. Additional 
examples include building sophisticated trading strategies; detecting potential 
market manipulation attempts considering unusual market movements that con-
sistently lead to particular sentiment responses at the end of the forecasting win-
dow, e.g. at end of day; forecasting end of day sentiment of a particular news 
outlet considering, for instance, sentiment from articles published at an hourly 
rate, journalists’ Tweets at a minute rate and articles from more prolific and less 
prolific journalists. Furthermore, financial time-series often exhibit long memory 
structure, thus being able to explicitly account for that feature, even at different 
levels of strength per high-frequency covariate, can significantly improve model 
estimation.

2 � ARDL‑MIDAS long‑memory time‑series regressions

In this section, we present the modelling framework that incorporates four work-
ing components: Koyck-transformed infinite-lag Autoregressive Distributed Lag 
time-series regressions; Mixed Data Sampling (MIDAS) multi-time resolution 
time-series regressions; natural language text component obtained both via crypto-
tailored text processing and Transformer deep neural network architectures; and 
Gegenbauer long memory structure to parametrically capture persistence. The logic 
of combining these models is to exploit the ability of deep learning architectures to 
learn higher-order feature structures that can act as inputs to interpretable regression 
time-series models. We will begin with an overview of the overall regression struc-
ture before exploring each component.

The context of this study naturally allows one to explore a range of both Autore-
gressive Distributed Lag models, as well as MIDAS regression models. There is a 
subtle difference between such classes of models as explained in detail in Dhrymes 
et  al. (1970). One can not strictly classify a MIDAS model as an autoregressive 
model in the standard sense as they involve regressors with different sampling fre-
quencies. This can be understood as a consequence of the fact that autoregressive 
structures implicitly assume that data are sampled at the same frequency in the past. 
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Instead, MIDAS regressions share some features with distributed lag models but 
also have unique features we will adopt for part of this study.

The following notation conventions are adopted to accommodate the various time 
scales considered in the MIDAS structures. The low frequency time scale is indexed 
by t for the regression response process {yt, t ∈ ℤ} and the higher frequency time 
scale denoted by m for the regression covariate time-series processes {x(m)t , t ∈ ℤ} 
which is observed m-times faster than time scale t,  such that for each low frequency 
period t one has m values of x(mi)

t−1+1∕mi

, xt−1+2∕mi
,… , xt. Here, mi will denote the i-th 

high frequency time scale and there may be numerous high-frequency time scales 
used depending on the covariates utilised. Two lag operators are employed:

•	 a low-frequency lag operator, which is denoted by L and will be applied as: 
LYt = Yt−1; and

•	 a high frequency lag operator L1∕m which will apply to time-series observed 
m-times faster than the t time scale, and which, when applied, produces 
L1∕mX

(m)
t = X

(m)

t−1∕m
.

From this, we will define the following characteristic polynomials for the autore-
gressive (AR) and distributed lag (DL) time-series components:

The standard multiple ARDL-MIDAS model would then be given by a regression 
structure

with Φp(L) the standard AR characteristic polynomial expressed in lag operator L 
at time scale t,  and �(L1∕mj) is the j-th time-series covariate’s characteristic polyno-
mial with MIDAS weight function expressed in lag operator L1∕mj , namely at time 
scale mj times faster than t. This MIDAS polynomial is applied to the covariate time-
series observed at the time scale of mj times faster than t. Note that in this notation 
we have a vector covariate at time t constructed from the mj sub-time steps.

We wish to extend this model in three important ways: 

1.	 Considering an infinite-lag structure at time scale t with 𝜷∞(L) and developing 
an ARDL-MIDAS Koyck Transform.

(1)

Φp(L) = 1 −

p∑
j=1

�jL
j,

x
(m)
t =

[
xt−1+1∕m, xt−1+2∕m,… , xt

]
,

�k(L
1∕m) =

k∑
j=1

� jL
j∕m, � j =

[
�j,0,… , �j,m

]T
,

Lj∕mx
(m)
t =

[
Lj∕mxt−1+1∕m, L

j∕mxt−1+2∕m,… , Lj∕mxt
]T
.

(2)Φp(L)Yt =

J∑
j=1

�
(j)

k
(L1∕mj )X

(mj)

t + �t,
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2.	 Considering an infinite-lag structure at time scale mj with 𝜷∞(L, L
1∕m) using a 

fractional integration of the Gegenbauer form, to capture the potential for long 
memory structure in the regression relationship, where we add the fractional dif-
ference operator 

(
1 − 2uL1∕mj + L2∕mj

)−d
.

3.	 Adding a generative embedding model for the construction of high-order covariate 
feature interactions that can be combined within the multiple ARDL-MIDAS-
Gegenbauer time-series regression and includes:

•	 Transformer regression structures based on deep neural network multi-head 
attention architectures;

•	 Natural Language crypto-specific covariate feature generation, which may 
range from time-series on semantics and word distributions to Context-Free 
Grammar parsing higher-order features.

2.1 � Infinite‑lag autoregressive distributed lag (ARDL) regressions

In this section, we briefly recall the basic framework of the ARDL regression mod-
elling structure that will be adopted in the studies performed. The concept of dis-
tributed lag models is widely studied in econometrics and time-series literature and 
dates back to early works in the former, e.g. see the following papers on the estima-
tion of such models (Dhrymes et al., 1970; Hannan, 1965; Klein, 1958).

A stylised distributed lag model is a time-series model in which the effect of a 
covariate on an outcome variable occurs over time. By adding autoregressive lags 
to a simple distributed lag model, a new model is formed, called an autoregressive 
distributed lag model (ARDL). A general ARDL(p, k) model is defined as follows 
either in expanded form or in terms of characteristic AR and DL polynomials:

where �t is a stationary white noise error term, Φp(L) and �k(L) are respectively 
order-p and order-k characteristic polynomials for the AR and DL components 
expressed with regard to the backshift operator L.

In many cases, it can be challenging to determine the appropriate choice of lag 
structure for k,  so one may set up an infinite-lag model structure by setting k = ∞. 
This model is very similar to an ARMA model, except that the infinite-lag polyno-
mial is applied to the explanatory variable rather than the error term as would be 
the case in an ARMA structure. As such, this class of models is termed an infinite 
ARDL model:

Yt = � +

p∑
i=1

�iYt−i +

k∑
j=0

�jXt−j + �t

Φp(L)Yt = � + �k(L)Xt + �t

(3)Yt = � +

p∑
i=1

�iYt−i +

∞∑
j=0

�jXt−j + �t.
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It can be immediately recognised that it is impossible to estimate the coefficients of 
equation (3) since the number of unknown parameters is infinite, therefore, further 
assumptions are required to make the problem tractable.

One popular way to solve the infinite-lag distributed model estimation problem is 
to impose a parametrisation on the relationship of the infinite lag coefficients to map 
the problem back to a finite parameter space. One may use for instance a geomet-
ric distributed lag model. As indicated by the name, these models are based on the 
geometric distribution. One of the most popular geometric distributed lag models is 
the Koyck model (Koyck, 1954). Under Koyck’s approach one can assume that all 
the coefficients of equation (3) have the same sign and decline geometrically, with 
a specified rate of decay. Then, by taking advantage of the geometric series conver-
gence, the Koyck model turns the infinite coefficients of equation (3) into an equa-
tion that includes a finite number of unknown parameters.

Based on the Koyck transformation method, in Eq. (3) we make the substitution 
of a geometric decaying coefficient relationship given by �j = �� j where 0 < 𝛾 < 1. 
Using the convergence of geometric series, Eq. (3) can now be rewritten as follows:

where �� = (1 − �)�, �� = �1 + � , ��� = −��p, �i = �i − ��i−1, and 

(�t − ��t−1) = ��
t

i.i.d.
∼ N(0, �2). The operation of the Koyck model to decrease the 

number of parameters in the model is appreciable; however, whilst the problem of 
an infinite number of parameters is resolved by this assumed functional parametrisa-
tion, the reformulated model then produces a challenge for parameter estimation. In 
Eq. (4), the error term �′

t
 and Yt−1 are not independent anymore. Hence, this renewed 

equation cannot be efficiently solved using conventional techniques that solve the 
regression models in an unbiased manner.

One common way to resolve this challenge is to introduce the concept of an 
instrumental variable. In our model, Yt−1 should be replaced by an instrumental vari-
able which is independent of �′

t
, whilst capturing the basic dynamic structure of Yt−1. 

If such an IV can be constructed then the new model can be solved using the con-
ventional regression model estimation techniques, see Stock and Trebbi (2003). One 
must be careful with the introduction of an IV to resolve this challenge, as, whilst 
the estimation can be performed, the properties of the resulting estimators will 
depend on the performance of the constructed IV. In later sections, we will demon-
strate how to use deep neural network Transformer-based methods to construct such 
instrumental variables.

2.2 � Fractionally integrated mixed data sampling (MIDAS) models for long 
memory regressions

In the MIDAS regression model context, the objective is to accommodate such dis-
tributed lag structures but the time-series of observations and regressors acting as 
lagged predictors are no longer sampled or observed at the same temporal resolution. 

(4)Yt = �� + ��Yt−1 + ���Yt−p−1 +

p∑
i=2

�iYt−i + �Xt + ��
t
,
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It is assumed that the covariate variables of the ARDL-type model are now observed 
at higher frequency than the covariates in an AR-type regression.

In Ghysels et al. (2005) and Ghysels et al. (2006), such classes of problems were 
studied and the resulting modelling framework was named the MIDAS class of dis-
tributed lag regressions. The MIDAS structures have been extended broadly by oth-
ers such as Ghysels et al. (2007), Andreou et al. (2013), and Andreou et al. (2011). 
This is a suitable model structure with established estimation techniques that is 
capable of treating mixed frequency ARDL-type regression models.

Let the variable Yt represent the crypto sentiment constructed at a daily sampling 
frequency and let Xt represent an explanatory factor such as crypto asset prices, 
technology factors such as hash rate which are sampled m times faster than Yt (as an 
example, when Yt is daily, X(m)

t  is sampled hourly in the 24 h, 7 day per week crypto 
markets giving m = 24 ). Suppose that Yt is available once between t − 1 and t. Using 
the MIDAS model, we want to project Yt onto a history of lagged observations of 
Xm
t−j∕m

. A simple MIDAS regression model is defined as below:

where B(L1∕m;�) =
∑K

k=0
B(k;�)Lk∕m , as before L1∕m is a lag operator on fractional 

time scale such that L1∕mX(m)
t = X

(m)

t−1∕m
, � and �1 are the unknown parameters of the 

model, and �(m)t  is the error term. In Eq. (5), the lag coefficients in B(k;�) are para-
metrised as a function of a low dimensional vector of the parameters � .

One of the concepts in introducing the MIDAS models is to take advantage of the 
lag polynomials. In Ghysels et al. (2005), the authors use lag polynomials to avoid 
the parameter proliferation problem, and to reduce the cost of estimation of a variety 
of finite basis models are considered—we will focus on the Exponential Almon fam-
ily. By applying some modifications to the Almon lag, Ghysels et al. (2005) intro-
duce the Exponential Almon lag defined as:

where K is the number of lags required in Eq. (5).
In this work, we are interested in working with the potential for a strong persis-

tence in the ARDL-MIDAS regression structure, which we will demonstrate can be 
achieved through the introduction of a long memory component in the model. A 
stationary time-series process Y ≡ {Yt}t=1∶T is said to be a long memory stationary 
process if the following condition (Beran, 1994) holds in terms of the divergence of 
the autocorrelation function for Yt and Yt+j at lag j:

where

(5)Yt = � + �1B(L
1∕m;�)X

(m)
t + �

(m)
t ,

B(k;�) =
exp(�1k +⋯ + �Qk

Q)
∑K

k=1
exp(�1k +⋯ + �Qk

Q)
,

(6)lim
n→∞

n∑
j=−n

|�(j)| → ∞,
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We will parametrise processes with this property into the ARDL-MIDAS model 
through a fractional difference operator that will admit an infinite-lag Gegenbauer 
functional polynomial series generator that can be combined with the ARDL-
MIDAS models previously presented. We introduce, for the first time we believe, 
this new class of lag basis functions that incorporate long memory features to the 
MIDAS structure to produce a family of fractional-MIDAS basis functions that can 
produce long memory regression effects in the distributed lag factors at the high-
frequency time scale m.

Definition 1  (Gegenbauer MIDAS basis) Consider the fractional long-memory 
Gegenbauer weight functional form given by

with �j given by Gegenbauer polynomial functions

where |u| < 1, d ∈ (0, 1∕2) and [j/2] represents the integer part of j/2. Furthermore, 
the Gegenbauer polynomials satisfy the recursive calculation given by

where �0 = 1, �1 = 2du and �2 = −d + 2d(1 + d)u2.

Remark 1  The following remarks characterise this class of Gegenbauer-MIDAS 
coefficient functions that we introduce:

•	 The class of fractional Gegenbauer-MIDAS basis functions allows one to control 
the strength of the long-memory in the process through selection of d and u.

•	 If u = 1 one produces an ACF function that is strictly positive and decays with a 
hyperbolic decay rate.

•	 For |u| < 1 the ACF will oscillate between positive and negative with period dic-
tated by d and a hyperbolic envelope decay rate.

•	 As d ↑ 0.5 the strength of long-memory increases, the slower the hyperbolic decay 
of the coefficients in the MIDAS weight function will decay and therefore the longer 
the past of X(m)

t  will influence the current regression response.

(7)�(j) =
Cov(Yt, Yt+j)√

Var(Yt), Var(Yt + j)
.

B(L1∕m;�) =

∞∑
j=0

�jL
j∕m = (1 − 2uL1∕m + L2∕m)−d,

(8)�j =

[j∕2]∑
q=0

(−1)q(2u)j−2qΓ(d − q + j)

q!(j − 2q)!Γ(d)
,

(9)�j = 2u

(
d − 1

j
+ 1

)
�j−1 −

(
2
d − 1

j
+ 1

)
�j−2,
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We will work with the extended MIDAS framework often termed in the economet-
rics literature as the Multi-MIDAS regression structure. In this model, one may adopt 
multiple covariates with different time scales as follows, for the J-variate case:

where one has J covariates each sampled at time scales {m1,m2,… ,mJ} with asso-
ciated driving white noise processes for each time scale. We will consider the real 
data case studies the situation where J = 2 and m1 = 24 and m2 = 1. Often we will 
assume that we subsume all the driving noise processes for the regression, in the case 
of i.i.d. Gaussian errors, into one driving noise process given by �t ∶=

∑J

i=1
�
(mi)

t .

2.3 � Koyck infinite‑lag ARDL‑MIDAS(p, ∞, K, m) regressions

An ARDL-MIDAS model can be expressed in numerous ways. In this work, we have 
built upon the approach of Ghysels et al. (2004) and we have extended it by incorpo-
rating the infinite-lag ARDL(p,∞) Koyck transform model with the MIDAS struc-
ture. Using Eqs. (4) and (10), we produce a variation of the classical ARDL(p,∞) 
time-series regression, with the normalised 

∑K

k
B(k;�)Lk∕m MIDAS weight func-

tion, given in the ARDL-MIDAS(p,∞,K,m) context as follows:

which can be written in compact form as

with the double polynomial given by

We will now introduce for this class of models a variation of the classical Koyck 
transform that we will denote as the MIDAS-Koyck Transform which we will use to 
refactor this model into a parsimonious parametrisation as detailed in the following 
proposition.

(10)Yt = � +

J∑
i=1

�1,iB(L
1∕mi ;�i)X

(mi)

t,i
+

J∑
i=1

�
(mi)

t ,

(11)

Yt = � +

p∑
i=1

�iYt−i +

∞∑
j=0

�jB(L
1∕m;�)X

(m)

t−j
+ �

(m)
t

= � +

p∑
i=1

�iYt−i +

∞∑
j=0

K∑
k=0

�jB(k;�)Lk∕mX
(m)

t−j
+ �

(m)
t

= � +

p∑
i=1

�iYt−i +

∞∑
j=0

K∑
k=0

�jB(k;�)X
(m)

t−j−k∕m
+ �

(m)
t ,

(12)Φp(L)Yt = � + �̃∞(L, L
1∕m)X

(m)
t + �

(m)
t ,

(13)�̃∞(L, L
1∕m) =

∞∑
j=0

K∑
k=0

�jB(k;�)Lj+k∕m.
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Proposition 2.1  (MIDAS-Koyck Transform) Consider the time-series model given 
by the ARDL-MIDAS(p,∞,K,m) model specified as follows:

Then the modified Koyck transform applied to this model uses the modified geomet-
ric decay characteristic polynomial at time scale t given as follows:

for � ∈ (0, 1), which can transform this ARDL-MIDAS(p,∞,K,m) into the simplified 
ARDL-MIDAS(p, 1, K, m) given by

where �� = (1 − �)�, �� = �1 + � , ��� = −��p, �i = �i − ��i−1, and 
(�

(m)
t − ��

(m)

t−1
) = �

(m)�

t

i.i.d.
∼ N(0, �2).

Proof  The derivation of this MIDAS-Koyck transform is a basic extension of the 
standard Koyck transform approach with a MIDAS component applied. This pro-
ceeds to transform the ARDL-MIDAS(p,∞,K,m) model as follows:

If one then multiplies the second row with the geometric decay rate �:

and subtracts the expressions in Eqs. (17) (for Yt ) and (18) one then obtains:

which results in

(14)Φp(L)Yt = � + �̃∞(L, L
1∕m)X

(m)
t + �

(m)
t .

(15)�̃∞(L, L
1∕m) ∶= �0B(L

1∕m;�)

∞∑
j=1

� jLj =
�0B(L

1∕m;�)

1 − �L
,

(16)Yt = ��
0
+ ��Yt−1 + ���Yt−1−p +

p∑
i=2

�iYt−i + �0

K∑
k=0

B(k;�)X
(m)

t−k∕m
+ �

(m)�

t

(17)

Yt = �0 +

p∑
i=1

�iYt−i + �0B(L
1∕m;�)

+∞∑
j=0

� jX
(m)

t−j
+ �

(m)
t ,

Yt−1 = �0 +

p∑
i=1

�iYt−1−i + �0B(L
1∕m;�)

∞∑
j=0

� jX
(m)

t−1−j
+ �

(m)

t−1
.

(18)�Yt−1 = ��0 + �

p∑
i=1

�iYt−1−i + �0B(L
1∕m;�)

+∞∑
j=0

� j+1X
(m)

t−1−j
+ ��

(m)

t−1
,

Yt − �Yt−1 = (1 − �)�0 +

p∑
i=1

�i(Yt−i − �Yt−1−i) + �0B(L
1∕m;�)X

(m)
t + �

(m)
t − ��

(m)

t−1
,

Yt − �Yt−1 = (1 − �)�0 + �1Yt−1 − �p�Yt−1−p +
p
∑

i=2
(�i − �i−1�)Yt−i

+ �0B(L1∕m;�)X(m)
t + �(m)t − ��(m)t−1,
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which then gives the desired result after some changes of variable.	�  □

Remark 2  One can make the following remarks about this ARDL-
MIDAS(p,∞,K,m) model transformed via the MIDAS-Koyck Transform to an 
ARDL-MIDAS(p, 1, K, m) model:

•	 This specification of the infinite-lag structure allows one to specifically accom-
modate a type of m-period seasonal structure for the regressors at time scale m 
which will be consistent with a period t seasonal pattern for the high-frequency 
covariates. This has an advantage over other approaches to constructing infinite-
lag structures due to the fact that it does not require assumptions of knowledge of 
the slower time scale process yt at times between t − 1 and t.

•	 One should consider the use of an Instrumental Variable to replace the term Yt−1 
to attempt to break the correlation that would be present between this variable 
and the transformed regression error term �(m)

�

t .

2.3.1 � The evolution and interplay of dynamics between MIDAS covariates 
and the response variable

The significance of the proposed econometrics model based on the MIDAS formu-
lation becomes apparent when one tries to investigate and interpret the dynamics 
between the covariates at different frequencies and the response variable. Specifi-
cally, one may deploy standard time-series analysis methods to quantify the impact 
of the covariates at different time scales on the response variable at time t;   the 
mechanism that will facilitate this analysis are the dynamic multipliers, which are 
defined as follows. Beginning with Eq. (12), the model can be equivalently written 
in the following form, provided that Φp(L) is invertible:

where 𝛽∞(L, L1∕m) = Φp(L)D(L). Then the impact of different lags of the covariate X 
on the response Y is given by:

(19)

Yt = Φp(L)
−1𝜇 + Φp(L)

−1𝛽∞(L, L
1∕m)X

(m)
t + Φp(L)

−1𝜖
(m)
t

= Φp(L)
−1𝜇 + D(L)X

(m)
t + Φp(L)

−1𝜖
(m)
t

= Φp(L)
−1𝜇 +

∞∑
s=0

𝛿sX
(m)
t−s + Φp(L)

−1𝜖
(m)
t



309

1 3

Digital Finance (2023) 5:295–365	

where �s, s = 0, 1,… can be obtained by matching coefficients in the system of 
equations 𝛽∞(L, L1∕m) = Φp(L)D(L). Note here that s = g(p, j,K), for some func-
tion g(⋅) determined by the previous system of equations, which means that the time 
scale of the lags is also considered in the measurement of the impact on Y.

The interpretation behind �s is that we can investigate not only how much a change 
in X affects Y but also when that effect occurs and whether it is instantaneous or it 
occurs over time. In particular, the short-run multiplier �0 expresses the immediate 
impact of a unit change in Xt at time t to the change of Yt at time t,  while the interim 
multipliers �s, s ≥ 1, show the response of Yt to a unit change in Xt−s at time t − s. 
On the other hand, the long-run cumulative effect of X on Y measures how much Y 
will eventually change in response to a permanent change in X as t → ∞. Assum-
ing a long-run equilibrium condition, namely that changes in X do not cancel out, 
e.g. Xt−s = Xt−s+1 = ⋯ = Xt = X and Yt−s = Yt−s+1 = ⋯ = Yt = Y , then changes to 
Xt−s,Xt−s+1,… ,Xt lead to cumulative marginal effects on Y given by:

2.3.2 � Gegenbauer‑MIDAS Koyck transform

The ARDL-MIDAS structure is especially suitable for the application considered, 
where, if one lines up the time reference t with one of the leading markets morning 
period, for instance in Europe or Korea, then one would expect a periodic daily struc-
ture, when referenced to a US-based timezone. Based on this result, we can then con-
struct the following specialised corollary models incorporating the Gegenbauer long 
memory coefficient functions within the infinite-lag ARDL-MIDAS model.

Corollary 2.1  (Gegenbauer-MIDAS Koyck transform) Consider the time-series 
model given by the ARDL-Gegenbauer-MIDAS(p,∞,∞,m) specification as follows:

Then, the modified Koyck transform applied to this fractionally integrated MIDAS 
model produces

(20)

m0 =
�Yt
�Xt

∶= �0,

m1 =
�Yt
�Xt−1

∶= �1,

⋮

ms =
�Yt
�Xt−s

∶= �s,

(21)mT =

∞∑
s=0

�s.

(22)Φp(L)Yt = � + �∞(L)(1 − 2uL1∕m + L2∕m)−dX
(m)
t + �

(m)
t .
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where |u| < 1, d ∈ (0, 1∕2), �� = (1 − �)�, �� = �1 + � , ��� = −��p, �i = �i − ��i−1, 
and (�(m)t − ��

(m)

t−1
) = �

(m)�

t

i.i.d.
∼ N(0, �2).

3 � Hybrid ARDL‑MIDAS‑NeuralNet time‑series regressions

To complete our framework, we now present a general hybrid time-series regres-
sion structure that allows one to incorporate into the ARDL-MIDAS time-series 
structure additional components obtained from a deep neural network architec-
ture. We will consider a generic example at first using a feed-forward neural net-
work and then we will specialise, for the NLP sentiment time-series context, to 
Transformer multi-head attention mechanisms.

3.1 � Hybrid ARDL‑MIDAS‑FFNN time‑series regressions

At this point, it suffices to capture the idea where we extend the ARDL-MIDAS 
regression to the hybrid Feed-Forward Neural Network (FFNN) version (ARDL-
MIDAS-FFNN), with neural network depth n (number of computation layers) and 
additional covariate time-series denoted by {S(m)

t
} that are observed at frequency 

m times faster than t, 

where z(l), 1 ≤ l ≤ n denotes the l-th hidden network layer of dimension qm + 1 ∈ ℕ 
and �q(L

1∕m) is the MIDAS Distributed Lag (DL) operator at time resolution m 
times faster than t for a single neuron output layer. Note that this can trivially be 
generalised for each output layer neuron, but for clarity of notation it suffices to con-
sider this simple case for the model specification.

This readout transformed covariate time-series is then combined with a 
MIDAS DL structure to produce an additional higher-order interaction compo-
nent that enhances the linear non-interaction terms of the ARDL-MIDAS model 
through the readout lag operator parameters in polynomial �q(L

1∕m). This com-
ponent can then be used either as additional trend structure, or, as we will do, as 
Instrumental Variables to reduce bias in the infinite lag ARDL-MIDAS setting.

Yt = ��
0
+ ��Yt−1 + ���Yt−p−1 +

p∑
i=2

�iYt−i + �0(1 − 2uL1∕m + L2∕m)−dX
(m)
t + �

(m)�

t

= ��
0
+ ��Yt−1 + ���Yt−p−1 +

p∑
i=2

�iYt−i + �0

∞∑
j=0

[j∕2]∑
q=0

(−1)q(2u)j−2qΓ(d − q + j)

q!(j − 2q)!Γ(d)
X
(m)

t−j∕m
+ �

(m)�

t ,

(23)

Φp(L)Yt =

J∑
j=1

�
(j)

k
(L1∕mj)X

(mj)

t +
⟨
�q(L

1∕m),
(
z(n)◦z(n−1)◦⋯◦z(1)

)
(S(m)

t
)
⟩
+ �t,
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In this architecture, for a given activation function in the FFNN denoted by 
� ∶ ℝ → ℝ, the l-th hidden network layer with activation function � is a map

with hidden neurons z(l)
j
, 1 ≤ j ≤ ql, being described by

for given network parameters �(l)

j
∈ ℝ

ql−1+1.

For instance, in the case of the FFNN we could set n = 3, q1 = 16, q2 = 12 and 
q3 = 10 and we would have the output 

(
z(n)◦z(n−1)◦⋯◦z(1)

)
(S(m)

t
) that is projected 

as a time-series into the regression via the MIDAS lag operator and depicted in 
this case by the architecture given in Fig. 1.

(24)z(l) ∶ {1} ×ℝ
qn−1 → {1} ×ℝ

qn , z → z(l)(z) =
(
1, z

(l)

1
(z),… , z(l)

ql
(z)

)

(25)z
(l)

j
(z) = �⟨�(l)

j
, z⟩,

Fig. 1   Example of a simple 3-layer Deep Neural Network architecture for a Feed-Forward Neural Net
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3.2 � Hybrid ARDL‑MIDAS‑Transformer time‑series regressions

In the context of Natural Language Processing and sentiment analysis it will be 
meaningful to also consider a class of deep neural network architectures known as 
“Transformers”. This is a specific neural network model which has proven to be 
especially effective for common natural language processing tasks such as senti-
ment analysis, see discussion in Vaswani et al. (2017). In particular, the Transformer 
model makes use of multiple attention mechanisms (Vaswani et al., 2017) which are 
effectively incorporated as encoders in sequence-to-sequence architectures (Sutske-
ver et al., 2014), which aim to capture the sequential nature of text data. A thorough 
and detailed account of a Transformer is beyond the scope of this manuscript; suffice 
to say we will think of it as a more complex projection function of the input time-
series generically denoted by {S(m)

t
} to produce a transformed output time-series 

denoted by {T(S(m)
t

)}, in which the transformation is comprised of significantly 
more components than the FFNN case. The Transformer-based model deployed in 
the study of the current manuscript and which has been the state-of-the-art in NLP, 
is BERT (Devlin et al., 2019), which is benefiting from multiple attention modules 
(“heads”), the basic format of one of which is illustrated diagrammatically in Fig. 2. 
A detailed description of BERT’s architecture is available in Tenney et al. (2019a, 

Fig. 2   The Transformer model 
architecture that forms the 
fundamental building block of 
BERT (Devlin et al., 2019) for 
NLP tasks such as sentiment 
analysis (figure from “Attention 
Is All You Need” by Vaswani 
et al., 2017)
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b). Having this component  will allow us to develop an ARDL-MIDAS-Transformer 
model as follows:

To briefly explain the mapping inside the Transformer which we denoted generically 
by T(⋅), we may summarise it conceptually as follows. A Sequence-to-Sequence 
(“Seq2Seq”) architecture is a neural net system configuration, which comprises 
two components: an Encoder and a Decoder. The Encoder takes the input sequence 
and maps it into a higher dimensional feature space (n-dimensional vector). That 
abstract vector is then fed into the Decoder which turns it into an output sequence. 
The output sequence can be in another language, symbols, or a copy of the input. 
An initial, more intuitive, popular choice for this type of model is Long-Short-Term-
Memory (LSTM)-based models. With sequence-dependent data, the LSTM modules 
can give meaning to the sequence while remembering (or forgetting) the parts they 
find important (or unimportant). Sentences, for example, are sequence-dependent 
since the order of the words is crucial for understanding the sentence, hence LSTM 
models are a natural choice for this type of data. Therefore, a very basic choice for 
the Encoder and the Decoder of a Sequence-to-Sequence model could be a single 
LSTM for each of the two components.

The Transformer is then integrating the attention mechanism into the Seq2Seq 
modelling, effectively looking at an input sequence and deciding at each step which 
other parts of the sequence are important. In contrast to LSTM-based encoders, for 
each input that the attention-based Encoder reads, the attention mechanism takes into 
account at the same time several other inputs that precede and follow the current input 
and decides which ones are important by attributing different weights to those inputs. 
The Decoder will then take as input the encoded sentence and the weights provided by 
the attention mechanism.

Hence, BERT (BERT: Bidirectional Encoder Representations from Transformers) 
is an architecture for transforming one sequence into another one via an Encoder and 
Decoder, but it differs from previous sequence-to-sequence models because it does not 
imply any Recurrent Networks (GRU, LSTM, etc.), but rather is solely based on Trans-
former modules. The BERT Transformer architecture provides significant improve-
ments in Natural Language Tasks such as sentiment extraction. We use it in a manner 
to facilitate effective Instrumental Variable design to reduce bias in the estimation of 
our infinite-lag ARDL-MIDAS-Koyck-transformed Gegenbauer long memory time-
series regression models.

3.3 � Deep neural networks for instrumental variable design to reduce estimation 
bias

In this section, we will explain why we have chosen to extend our ARDL-MIDAS 
structure to an ARDL-MIDAS-NN or ARDL-MIDAS-Transformer type time-series 
regression. Consider the case of the infinite lag ARDL-MIDAS model parametrised 

(26)Φp(L)Yt =

J�
j=1

�
(j)

k
(L1∕mj )X

(mj)

t + ⟨�q(L
1∕m), T(S(m)

t
)⟩ + �t.
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under a Koyck Transform as in Proposition 2.1, then we know that the transformed 
model given by

is modified via the proposed MIDAS-Koyck Transform to produce, for � ∈ (0, 1) 
a transform of the ARDL-MIDAS(p,∞,K,m) model into the simplified ARDL-
MIDAS(p, 1, K, m) given by

In this model the classical Ordinary Least Squares OLS estimator will be biased by 
the fact that Yt−1 and �(m)

�

t = �
(m)
t − �

(m)

t−1
 are no longer independent, as a result of the 

Koyck Transformation. In this case it is standard practice to replace the regression 
variable Yt−1 with an Instrumental Variable which should capture similar informa-
tion to Yt−1 but remain uncorrelated with white noise �(m)

�

t . This is where we use the 
Neural Network structure to build such an Instrumental Variable and we obtain the 
regression model given by

where we select the instrumental variable as

We will illustrate this in more detail below in the context of Natural Language pro-
cessing sentiment time-series, where we will consider state-of-the-art Transformer 
models for the IV construction.

4 � Natural language processing for sentiment time‑series structures

In this section, we discuss the specifics of the application studied in this paper, 
where the response time-series, denoted by {Yt}, for our ARDL-MIDAS-Trans-
former model is a novel construction of an entropy-based sentiment time-series from 
a corpus of news articles specific to particular financial assets, in this case from 
the cryptocurrency market. We will also discuss how to construct the instrumen-
tal variable time-series {Ỹt} to replace {Yt} in the infinite-lag ARDL-MIDAS-Trans-
former model as discussed in Sect. 3.3. This will be obtained from what is known in 
machine learning as generative embedding feature learning and we will use specific 
mechanisms for this in the NLP sentiment context: Transformer models as presented 
in the previous section [BERT (Devlin et al., 2019)] and semantic- and grammar-
based rules for sentiment extraction such as VADER [Valence Aware Dictionary for 
sEntiment Reasoning (Hutto et al., 2014)].

(27)Φp(L)Yt = � + �̃∞(L, L
1∕m)X

(m)
t + �

(m)
t

(28)Yt = ��
0
+ ��Yt−1 + ���Yt−1−p +

p∑
i=2

�iYt−i + �0

K∑
k=0

B(k;�)X
(m)

t−k∕m
+ �

(m)�

t .

(29)Yt = ��
0
+ ��Ỹt−1 + ���Ỹt−1−p +

p∑
i=2

�iỸt−i + �0

K∑
k=0

B(k;�)X
(m)

t−k∕m
+ �

(m)�

t .

(30)Ỹt = ⟨�q(L
1∕m),

�
z(n)◦z(n−1)◦⋯◦z(1)

�
(S

(m)

t−1
)⟩.
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Pre-trained Transformer models such as BERT have achieved state-of-the-art 
performance on natural language processing tasks and have been adopted as fea-
ture extractors for solving downstream tasks such as question answering, natural 
language inference, and sentiment analysis. The current state-of-the-art Transformer 
based pre-trained models consist of dozens of layers and millions of parameters. 
While deeper and wider models yield better performance, they also need large GPU/
TPU memory modules and a significant amount of text corpus for fine-tuning. For 
example, BERT-large is trained with 335 million parameters, and requires at least 
16 GB of GPU memory to fine-tune (24 GB is the minimum recommended). The 
larger size of these models limits their applicability in time- and memory-con-
strained environments. Furthermore, there is an entire discipline now emerging to 
attempt to simplify and understand the layers of such complex architectures, see 
examples such as Jiao et al. (2020).

In the context of sentiment extraction, alternative methods have been developed 
based on tailored Sentiment Lexicons or Context-Free Grammar (CFG) parsing; 
a popular example explored in this work is the VADER approach and its associ-
ated micro-blogging sentiment lexicons. A substantial number of sentiment analysis 
approaches rely greatly on an underlying sentiment (or opinion) lexicon. A senti-
ment lexicon is a list of lexical features (e.g. words) which are generally labelled 
according to their semantic orientation as either positive or negative.

Manually creating and validating such lists of opinion-bearing features, while 
being among the most robust methods for generating reliable sentiment lexicons, is 
also one of the most time-consuming. For this reason, much of the applied research 
leveraging sentiment analysis relies heavily on preexisting manually constructed lex-
icons (Loughran & McDonald, 2011; Pennebaker et al., 2007; Zhang & Liu, 2017) 
in which words are categorized into binary classes (i.e., either positive or negative) 
according to their context-free semantic orientation. We have developed a tailored 
lexicon for cryptocurrency markets taking into account the jargon and colloquial-
isms that arise in cryptocurrency text that is unique to this domain. We will con-
struct the target regression time-series {Yt} using our novel sentiment extraction 
framework, described below. Then, we will utilise both BERT and VADER to con-
struct the Instrumental Variable time-series {Ỹt}.

Therefore, in this section we briefly introduce how to transform processed text 
tokens into a time-series of distributions, in the process explaining what is known 
in the natural language processing context as the text embedding representation. 
Note that we are specifically interested in producing text embeddings with the aim 
to incorporate them in time-series regression models. Few approaches to construct-
ing sentiment indices readily admit a time-series construction. A recent example is 
Hassani et al. (2020), who construct a sentiment scoring rule based on the difference 
between the number of positive and negative words in Tweets, which is an approach 
significantly different from ours; for an in-depth description of our framework we 
refer the interested reader to Chalkiadakis et al. (2021) where we employ the senti-
ment time-series construction to COVID-19 sentiment analysis, and Chalkiadakis 
et al. (2020) where we study statistical causality in crypto markets.
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4.1 � Distributional sequential text data embedding for response time‑series 
{
Y
t

}

The embedding framework we construct is based on the well-known bag-of-words 
model (BoW), which is commonly applied in natural language processing (NLP) 
and information retrieval (Harris, 1954). The idea behind BoW in NLP is to repre-
sent a segment of text as a collection (“bag”) of words without considering the order 
in which they appear in the text. Instead, we are now setting BoW into a time-series 
context, and present a novel online formulation that allows us to incorporate the 
text-based sentiment index into a time-series system. Furthermore, in this way we 
avoid the computational limitations of BoW, stemming from having to manipulate 
large sparse matrices whose size depends on the number of distinct document words 
and corpus size, and may well be in the order of hundreds of thousands.

We begin by introducing some basic notation: t denotes a “token”, i.e. a linguistic 
unit of one or more characters (a word, a number, a punctuation character etc), V is 
the vocabulary, namely a finite set of tokens that is valid in the language, and D is a 
dictionary (D ⊆ V), i.e. a finite set of tokens, which we consider adequate to express 
the topic under study. We will work with n-grams, where n denotes the number of 
tokens in the text processing unit we consider, namely a set of n consecutive terms.

The time-series embedding is defined by the 3-ary relation R ⊆ V × � × Ñ, 
where � = {D1,D2,… ,Dp}, Dj ⊆ V is a set of dictionaries each of size qj, and 
Ñ = {ℕq1 ,ℕq2 ,… ,ℕqp}. To compute the members of Ñ  for each element of R we 
use the following equation, which defines R:

where 𝜈̃N = {𝜈̃wN}w=1∶n, m
j,l

N
= |{𝜈� ∶ 𝜈� ∈ 𝜈̃N} ∩ {Dj,l}|, and Dj,l denotes a diction-

ary token l ∈ {1,… , qj}, for dictionary j ∈ {1,… , p}, and

where N is the index of the current timestep, in n-gram “time” which indexes 
n-grams in our setting. Therefore, at each N we have a vector of dimension qj which 
is the embedding of the n-gram at N. In this construction, the condition in Eq. (32) 
restricts the count of any token of Dj which is in n-gram �1N ,… , �nN at timestep N to 
be at least mmin.

To capture the time-dependent nature of text, we note that the total number of 
observed tokens increases as we shift the n-gram towards the end of the text. There-
fore, we want to recursively extract proportions of the dictionary tokens within the 
n-gram at time N. To account for this effect we apply the following transformation 
at each N:

(31)𝛾̂
j,l

N

(
𝜈̃N ,D

j,l
)
=

{
m

j,l

N

n×N
, rm

(
𝜈̃N ,D

j,l
)
= 1

0, otherwise

(32)rm

(
𝜈̃N ,D

j,l
)
=

{
1, m

j,l

N
≥ mmin

0, otherwise,
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where mj,l

N
 is the count of token l in dictionary Dj at timestep N,  and MN is the total 

count of tokens we have observed up to timestep N which satisfy rm(⋅) = 1.

It is important to point out at this stage that the support of the distribution of pro-
portions is restricted by the condition in Eq. (32). Tokens with count less than mmin 
will be excluded from MN , and consequently the support of the distribution. To con-
struct the time-series for the current study, we set n = 20 and mmin = 1.

4.2 � Converting sequential text embedding to sentiment index time‑series 
{
Y
t

}

The final stage of the construction comprises mapping this time-series of distribu-
tions onto a scalar summary to create a sequence of summary statistics that will 
define the sentiment index time-series.

Using the embedding extracted from token occurrences, we construct additional 
time-series using properties of the empirical distribution of the embedded text. We 
acquire the density of the token proportions of Eq. (33):

where, as before, 𝜈̃N denotes the n-gram at time-step N,  and the indicator function 
�
j,l(𝜈̃N) selects the n-gram terms:

and then we can effectively study the density itself, that changes per n-gram, or use a 
suitable summary of it.

We expect that the frequency with which words are used in the course of the text, 
as well as the richness of the dictionary, will reflect on the value of the entropy of 
the empirical distribution of proportions, which we use to construct our time-series. 
The entropy is a vector-valued process of dimension p,  HN = [H

(1)

N
,… ,H

(p)

N
], whose 

marginal component that corresponds to the jth dictionary is given, for j = 1,… , p, 
by:

Using this framework, we construct the daily sentiment index per news source for 
positive and negative polarities. We then provide the robust median of the senti-
ment per day in each polarity to produce a robust, polarity-based collection of daily 

(33)̃̂𝛾
j,l

N
(⋅) =

� ∑N−1

i=1
m

j,l

i
+m

j,l

N

MN

, rm(⋅) = 1

0, otherwise,

(34)g
j,l

N
(𝜈̃N ,D

j,l) =
�
j,l(𝜈̃N)

̃̂𝛾
j,l

N
(𝜈̃N ,D

j,l)
∑qj

l=1
�j,l(𝜈̃N)

̃̂𝛾
j,l

N
(𝜈̃N ,D

j,l)

(35)�
j,l(𝜈̃N) = �(𝜈̃N ,D

j,l) =

{
1, if l ∈ {l� ∶ D

j,l� ∈ 𝜈̃N for some w}

0, otherwise
,

(36)

H
(j)

N

�
𝜈̃N

����
�
g
j,l

N
(⋅)
�
l = 1 ∶ qj

=

�
−
∑qj

l=1
�
j,l(𝜈̃N)g

j,l

N
ln(g

j,l

N
(⋅)), ∃ l s.t. g

j,l

N
(𝜈̃N ,D

j,l) ≠ 0

0, otherwise.
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sentiment indices in which to study relationships between retail sentiment and price 
dynamics.

Formally, our daily Entropy Sentiment index is constructed as follows (Chalki-
adakis et al., 2020):

where Hi,� ,… ,Hi+k,� are the entropy values of the text segments i,… , i + k, coming 
from articles written on the same calendar day �.

4.2.1 � Reference dictionary

The previous description of our framework for the construction of a lexicon-based 
sentiment index makes evident the requirement of an expressive dictionary (lexicon) 
of English words that will be purpose-built for the crypto space, as well as a collec-
tion of crypto-specific words annotated with sentiment information for that space—
positive, negative or neutral words. The lexicon will be the basis upon which all text 
tokens are related.

To construct the dictionary, often people collect the most frequent tokens pre-
sent in the corpus of documents that is available for training and evaluation of 
their model. However, we argue that this approach significantly restricts the rep-
resentational power of the dictionary. In contrast, we treated the construction of 
the dictionary as a separate task. We collected a general English dictionary, as 
well as a number of dictionaries covering different topics, including Engineer-
ing and Technology, Media, Business, Economics, Finance, Mathematics, and 
Computing, all of which are pertinent to the crypto space. The dictionaries were 
constructed by collecting words present in online dictionaries, mainly those of 
Oxford University. After obtaining the word lists via web scraping, we further 
curated them by cleaning the tokens from scraping artefacts. Finally, together 
with experts of the crypto community, we manually compiled a list of words that 
express positive, negative or neutral sentiment when used in the context of cryp-
tocurrency markets.

4.3 � Combining multiple news source sentiment time‑series: volume‑based 
weighting for crypto market sentiment

If we consider the different crypto assets (Bitcoin-BTC, Ethereum-ETH) that 
form the focus of this study, then the news articles written about each of these 
assets can be considered as “topics” in an NLP text processing context. We can 
then consider different options for combining the sentiment time-series from 
these different topics across different news sources.

Let X(s,j,q)
�  denote the sentiment indices where the index s refers to sentiment 

polarity s ∈ {positive, negative, absolute magnitude}, the index j refers to asset 
j ∈ { BTC, ETH }, q ∈ {Cryptodaily, Cryptoslate} refers to the news source of the 

(37)entropy_index(�) = median(Hi,� ,… ,Hi+k,� ),
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articles, � is an n-gram “time” index, and Ns,j denotes the total number of 
n-grams (or could also be sentences) of “topic” j,   with sentiment s in all news 

sources. For calendar time units t = 1,… , T  we can partition 
{
X
(s,j,q)
�

}Ns,j

�=1
 by 

grouping the observations that come from articles published on the same day in 

each news source: 
{
X
(s,j,q)
�

}n
s,j,q
t

�=1
, for t = 1,… , T , 

∑T

t=1

∑
q n

s,j,q
t = Ns,j and ns,j,qt ≥ 0.

To capture a market wide sentiment for a given polarity s ∈ {positive, negative, 
absolute magnitude} and asset j we use a volume-based weighting rule:

where X̃(s,j,q)
t = m

({
X
(s,j,q)
𝜏

}n
s,j,q
t

𝜏=1

)
, where m(⋅) denotes the mapping from each seg-

ment (set of n-grams) of topic j,  news source q,  and sentiment s that corresponds to 
time t. The weights are assigned according to the volume of n-grams per day for 
each topic, which ensures that article lengths have no effect on the weight.

In Fig.  3 we plot the smoothed volume-weighted positive and negative sen-
timent indices as well as the index of absolute sentiment strength, for articles 
referring to Bitcoin. The extracted crypto sentiments for Ethereum are available 
in the Supplementary Appendix, Section A.

5 � Estimation of ARDL‑MIDAS‑Transformer long‑memory regressions

In this section, we explain a simple five-stage estimation procedure to fit the 
infinite-lag Koyck ARDL-MIDAS-Transformer Gegenbauer Long Memory 
model. The procedure can be used to also fit intermediate models such as Mul-
tiple-MIDAS, the ARDL-MIDAS or other variants, such as the ARDL-MIDAS-
NeuralNet models for different architectures; as we discuss this explicitly in the 
sentiment NLP context, we focus on Transformers for our study. The four stages 
proceed as follows:

•	 Stage 1: Crawl and scrape cryptocurrency news articles to create a cor-
pus of crypto news for topics of relevance from each news feed identified. 
Munge the text articles according to a range of chosen pre-processing steps 
to address aspects of data cleaning and denoising, in terms of punctuation, 
numbering, letter casing, stemming, stopword removal, word compounds, 
and removal of low-frequency words. This stage produces an intra-daily time-
series of n-grams (n tokens), time-stamped and ordered, which we denote by 
{S(m)

t
}. In addition, construct a time-series of article sentences, which will be 

the input to the BERT and VADER models.
•	 Stage 2: Construct the Entropy Sentiment time-series for each news source 

and combine them as described in Sect. 4.3 to make the response time-series 
{Yt}. Then, construct the instrumental variable generative embeddings {Ỹt}, 

(38)X
(s,j)
t =

�
q

w
s,j,q
t X̃

(s,j,q)
t , w

s,j,q
t =

n
s,j,q
t∑
q n

s,j,q
t

,
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via the following steps. First, construct the BERT- and VADER-based senti-
ment time-series per news source and combine them in a single index across 
all news sources also according to the method of Sect.  4.3. Second, fit the 
regression models of Sect.  6.1.1 to generate a range of alternative possible 
IV {Ỹt}.

•	 Stage 3: Fit the Koyck-transformed ARDL model and assess which of the 
different instrumental variables of the previous step at time scale t are appro-
priate. Perform statistical testing on the suitability of the Transformer/BERT 
and VADER as IV versus the crypto-specific entropy sentiment signal.

•	 Stage 4: Using the selected IVs at time scale t,  fit the ARDL-MIDAS model 
to learn the optimal model structure for (p, K, m),  and estimate the MIDAS 
coefficient basis functions B(k;Ψ) and the geometric decay rate for the infi-
nite ARDL-Koyck transform � .

•	 Stage 5: Fit the residuals from Stage 4 with a Range-Scale (R/S) estima-
tion process for the Gegenbauer long memory to determine the Gegenbauer 
hyperbolic ACF decay parameter d and oscillation index u.

The advantage of this five-stage procedure versus a joint estimation of all com-
ponents in one stage is that standard R and Python packages may be utilised to 
perform each stage of the estimation, which we have found to work adequately 
as outlined in the experimental results section (Sect. 6).

Below we add some further details on stages 3–5.

5.1 � Stage 3: Estimation of ARDL(∞ ) regression

Consider time-series {Yt} given by the daily sentiment score based on our proposed 
sentiment time-series construction. We will then regress this sentiment scoring 
method against alternative sentiment extraction methods based on BERT (https://​
huggi​ngface.​co/​nlpto​wn/, model: bert-base-multilingual-uncased-sentiment) and 
VADER that we will transform into time-series covariates and denote them by {XB

t
} 

and {XV
t
} also constructed from daily measures of sentiment. Then we seek to fit the 

regression model:

Since the estimation of the classical ARDL(∞ ) model via a Koyck geometric para-
metrisation is standard in the time-series literature, we defer the interested reader to 
a brief summary provided in the Supplementary Appendix, Section C. We present 
the analysis of this regression in the results Sect. 6.1.1.

5.2 � Stage 4: Estimation of ARDL(∞)‑MIDAS regression

Given the modified Koyck transform applied to the ARDL(∞)-MIDAS time-series 
regression structure as outlined in Proposition 2.1, one can perform estimation of 

(39)Yt = �0 +

p∑
i=1

�iYt−i + �B
+∞∑
j=0

�
j

B
XB
t−j

+ �V
+∞∑
j=0

�
j

V
XV
t−j

+ �t.

https://huggingface.co/nlptown/
https://huggingface.co/nlptown/
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this model using standard MIDAS model estimation packages such as the R pack-
age midasr as detailed in Ghysels et al. (2016). This package works with MIDAS 
models generically specified in a vectorised form as follows:

Clearly, the modified Koyck Transformed ARDL-MIDAS model we proposed to 
develop can readily be represented in this form. Then, the package midasr per-
forms a number of different model fitting structures including the U-MIDAS model 
which is an unrestricted variation of the MIDAS model formulation, in which a 
frequency alignment transformation and the estimation of the model is performed 
using Ordinary Least Squares (OLS), see further details in Foroni et al. (2015).

5.3 � Stage 5: Estimation of long memory components

We focus on the class of non-oscillatory long-memory models based on the 
ARFIMA(0, d, 0) type of long memory, i.e. we set u = 1, and only have to estimate 
d,  namely the long memory exponent in the model in Proposition 2.1. We adopted 
this setting as the empirical ACF was not oscillatory and so we simplified the gen-
erator of the long-memory fractional difference to the ARFIMA type.

We will estimate this long memory fractional difference parameter d on the resid-
uals of the model from stage 3. One can then obtain an estimate for the strength of 
long memory d based on a Hurst exponent estimator, by first estimating the Hurst 
exponent H (Hurst, 1951) and then using the relationship d = H − 0.5.

In this work, we adopt the Rescaled Range R/S Hurst exponent estimator that 
measures the intensity of long-range dependence in a time-series and was orig-
inally developed by Hurst (1951). Given a time-series Yt∈{1,2,3,…,T}, the sample 
mean and the standard deviation process are given by

where Xt = Yt − YT is the mean-adjusted series. Then a cumulative sum series is 
given by Zt =

∑t

j=1
Xj and the cumulative range based on these sums is

The following proposition describes the estimator of H as derived in Mandelbrot 
(1975).

Proposition 5.1  Consider a time-series Yt ∈ ℝ and define St and Rt in Eqs.  (41) 
and (42) respectively, then ∃ C ∈ ℝ such that the following asymptotic property of 
the Rescaled Range R/S holds

(40)Φp(L)Yt = �k(L
1∕m)X(m)

t
+ �t.

(41)YT =
1

T

T∑
j=1

Yj and St =

√√√√ 1

t − 1

t∑
j=1

(Xj)
2,

(42)Rt = Max
(
0, Z1,… , Zt

)
− Min

(
0, Z1,… , Zt

)
.
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In addition, for small sample size T,  the Rescaled Range R/S can be adjusted 
with the following formula Annis and Lloyd (1976):

where the T−1∕2
T

 term was added by Peters (1994). The estimate of H can then be 
obtained by a simple linear regression

Hence, we have the following definition for Ĥ, the estimator of H,   based on the 
unadjusted Rescaled Range R/S analysis and given by:

The empirical confidence interval of Ĥ given in Eq. (43) with sample size T = 2N 
(Weron, 2002) is

Note that no asymptotic distribution theory has been derived for the estimated Hurst 
parameter H for R/S analysis, however, we can apply bootstrap methods to find 
related properties to test for statistical significance of the estimates to detect the long 
memory properties.

6 � Results and discussion

In this section, we will present two real data case studies. The first is to illus-
trate that the sentiment time-series index constructed in this work is distinct 
in its information content compared to those extracted either from deep neu-
ral network solutions obtained via pre-trained non fine-tuned applications of 
BERT, or from rule-based systems like VADER. We demonstrate that both of 
these systems can be combined together to produce a viable time-series index 
for the design of an effective Instrumental Variable to act as a proxy for the pro-
posed entropy sentiment signal when fitting ARDL(∞)-MIDAS models via OLS, 
which would otherwise produce biased estimators.

[R∕S](T) =
1

T

T∑
t=1

Rt∕St ∼ CTH , as T → ∞.

�[R∕S(T)] =

⎧
⎪⎨⎪⎩

T−1∕2

T

Γ((T−1)∕2)√
𝜋(T∕2)

∑T−1

j=1

�
T−j

j
, for T ≤ 340

T−1∕2

T

1√
T𝜋∕2

∑T−1

j=1

�
T−j

j
, for T > 340

,

log
(
(R∕S(T) − �[R∕S(T)]

)
= logC + H logT .

(43)ĤR∕S =
T
�∑T

t=1
logR∕S(t) log t

�
−
�∑T

t=1
logR∕S(t)

��∑T

t=1
log t

�

T
�∑T

t=1
(log t)2

�
−
�∑T

t=1
log t

�2
.

(0.5 − exp(−7.33 log(logN) + 4.21), exp(−7.20 log(logN) + 4.04) + 0.5).
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Note that fine-tuning of Transformer-based models and re-construction of 
domain-specific rule-based systems for sentiment extraction is particularly dif-
ficult in this study context which is a “small data” problem relative to typical 
sentiment studies. The reason for this is that the number of crypto articles avail-
able is relatively small compared to the size of corpora used to train deep neural 
network architectures or inform decisions about potential rule sets that would 
generalise well. This is one of the key motivations we see for our proposed 
method, in that it is directly interpretable and applicable in relatively small data 
contexts such as the case study in question. Therefore, in the first case study 
we demonstrate that our proposed crypto sentiment index contains significantly 
different information, compared to the typical approach of just applying BERT 
and VADER as a black-box package without tailoring or fine-tuning. We demon-
strate the value of our sentiment time-series index through an ARDL regression 
example to show that the covariates of the competing sentiment methods are not 
strongly expressive of the variation in our daily sentiment signal.

In the second case study, we treat our daily sentiment index as the target 
response time-series and we seek to explore changes in daily sentiment for cryp-
tocurrency markets in terms of intra-daily crypto price fluctuations and tech-
nology factor variations. This will be meaningful for both interpretation of sen-
timent and price discovery as well as forecasting sentiment at the end of the 
day, given observations of current intra-daily price and technology network fac-
tors. We fit the sequence of infinite lag Koyck-transformed ARDL-MIDAS and 
ARDL-MIDAS-Transformer Gegenbauer long-memory models to undertake this 
second case study, exploring along the way each component of the model.

6.1 � Case study I: ARDL structure of Y
t
 and explanatory power of BERT and VADER 

sentiment methods for instrumental variable construction of Ỹ
t

Let {s1,�1 , s2,�2 ,… , sN,�N} be the collection of sentences from all articles, ordered 
according to article publication date �i and order of appearance in the article.

Valence Aware Dictionary for sEntiment Reasoning (VADER, Hutto et al., 2014) 
is a rule-based sentiment model derived from human annotation of online texts. In 
VADER, first a gold-standard sentiment dictionary is extracted, then validated using 
qualitative methods (based on human annotation) and lexical features are extracted 
together with five rules that incorporate grammatical or syntactical conventions that 
people use to express sentiment intensity.

In our setting, to construct the sentiment index from VADER we use a daily 
median filter:

where {si,� ,… , si+k,�} are sentences from articles written on the same calendar day � 
and VADER(⋅) returns the output of the VADER sentiment model.

Naturally, a challenge with this method arises in the context we consider as there 
is domain-specific knowledge and terminology in the cryptocurrency context that is 

(44)
VADER_index(�) = median

(
VADER(si,�),… , VADER(si+k,� )

)
∈ [−1, 1],
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not adequately captured by the standard formulation of VADER. Nevertheless, one 
may find examples of the use of the VADER sentiment model in the crypto market, 
e.g. Abraham et al. (2018), Kraaijeveld et al. (2020) and Kim et al. (2016). These 
studies significantly differ from our study in three main aspects: first, the type of 
sentiment model utilised; second, the type and quality of data used to produce the 
sentiment model; and third, the way in which sentiment is analysed or utilised. We 
specifically have not concentrated on social media sentiment, which VADER claims 
to extract, because of data quality challenges stemming from the short, mainly infor-
mal nature of social media text. We have instead focused on public news articles 
from community accepted reliable websites, which undergo editorial processing 
before publication, and have developed specific sentiment indices able to capture 
the particular nature of the vocabulary used in the domain due to our purpose-built 
crypto dictionary.

Furthermore, alternative methods to rule-based approaches include the word 
embedding-based models. Word embeddings are real-valued high dimensional vec-
tors that correspond to specific words, and are obtained via a complex non-linear 
optimisation process. This approach has been prevalent in the neural network-based 
NLP paradigm, and the optimisation process that obtains the embeddings aims to 
either learn a decomposition of the document-term matrix of a corpus of documents 
[e.g. GloVe (Pennington et al., 2014)], or minimise an entropy measure (‘perplex-
ity’) for a model that predicts the word that follows a given word sequence (‘lan-
guage modelling’), e.g. the Transformer-based BERT (Devlin et al., 2019) that we 
also utilise in this work).

For BERT, we used a pre-trained model based on an implementation from 
Hugging Face (https://​huggi​ngface.​co/​nlpto​wn/, model: bert-base-multilingual-
uncased-sentiment), a group well-known in the NLP community for code quality. 
The model has been pretrained on a corpus of product reviews, yet we did not 
fine-tune, i.e. further train, the model with data from our domain for two reasons: 
first, to our knowledge there are no datasets of crypto-related public articles that 
have been annotated with sentiment labels, and second, we did not want to under-
take this task as it would require manually annotating more than 3000 articles, 
which places such a process out of our research scope. On the contrary, we want 
to illustrate: (i) that our approach needs a lot less annotating, i.e. only for the 
domain dictionary construction, (ii) contrary to computationally expensive neu-
ral models which may capture an unclear concept of sentiment, our method is 
efficient and offers interpretable and informative results, and (iii) the problem of 
domain mismatch and lack of generalisation of such models in specialised areas, 
despite the fact that generalisation is one of the main arguments in their favour.

The selected BERT model returns a categorical sentiment score of five levels 
(0–4), corresponding to the “star rating” of a review: 0 for very negative and 4 for 
very positive. We again used a daily median filter to construct the sentiment index 
based on BERT:

(45)BERT_index(�) = median(BERT(si,� ),… , BERT(si+k,� )) ∈ {0, 1, 2, 3, 4},

https://huggingface.co/nlptown/
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where {si,� ,… , si+k,�} are sentences from articles written on the same calendar day � 
and BERT(⋅) is the output of the BERT model on a sentence.

As discussed, in the current case study, in addition to the custom entropy sen-
timent time series, we also will be employing sentiment time series constructed 
using the BERT and VADER models. The time series for BERT and VADER 
will be constructed following the same procedure of Sect. 4.3, where instead of 
n-grams, we will be assembling sentences from articles on the same day. We plot 
the sentiment indices constructed based on BERT and VADER in Fig. 4 for BTC, 
where we indicate polarity with a different choice of color, namely green for posi-
tive and red for negative. The corresponding plots for ETH are in the Supplemen-
tary Appendix, Section B.

6.1.1 � Analysis of entropy based sentiment time‑series versus instrumental variable 
construction from BERT and VADER indices

In this section, we investigate whether the sentiment indices constructed from the 
BERT and VADER models can be used as explanatory variables for our entropy 
sentiment index. For this purpose, we fit distributed lag time-series regression 
models where the BERT and VADER indices are in the set of regressors, whereas 
the dependent variable is each of the following Entropy Sentiment indices: abso-
lute sentiment strength, negative sentiment and positive sentiment. Subsequently, 
the significance of the model parameters relevant to the BERT and VADER 
covariates is assessed. The model structure we adopt is the following:

where �t ∼ N(0, �2), 𝛽j = [𝛽B
j

𝛽V
j
]T, X⃗t = [XB

t
XV
t
]T and the superscripts B, V stand 

for BERT and VADER respectively.
We draw attention to the fact that our goal with this model structure is not to 

develop a predictive model for our sentiment index Yt but rather to investigate if 
the covariates from BERT and VADER have any explanatory power for Yt, given 
our novel Entropy Sentiment time-series model. We add an autoregressive com-
ponent in the covariates to account for potential serial dependence in the depend-
ent variable. If we do not account for that, we risk being mislead by the output of 
the regression: if Yt has serial dependence then the BERT and VADER covariates 
can appear to be significant for the dependence structure but that would not mean 
that they are explanatory for Yt—it would be an artefact of the chosen model 
structure.

To obtain a parsimonious representation of the model and thus reduce the number 
of parameters we have to estimate, we need to find a suitable functional expression 
for the coefficients 𝛽. As discussed in more detail in Sect. 2.1, 𝛽j must form an L2 
sequence so that the sum of the corresponding term is square summable (provided 
Xt have finite moments) and the process converges, and one option for the functional 

(46)Yt = 𝛽0 +

p∑
i=1

𝛾iYt−i +

+∞∑
j=0

𝛽T
j
X⃗t−j + 𝜖t,
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expression of 𝛽j is to make them a geometric sequence Hill et  al. (2001). This is 
convenient as we can use the generator form of such sequences which has only two 
parameters to estimate:

for each covariate correspondingly. The final form of our model then becomes:

If our analysis using this model shows that Yt is conditionally independent, or only 
weakly dependent on the covariates of BERT and VADER, then our sentiment index 
captures different information to these alternative models. In that case, it may be 
valuable, for example, to consider all indices together as components in a multi-
modal sentiment index model, where modality would correspond to the source, 
namely underlying model, of each component that captures a different sentiment 
aspect. Or, as we demonstrate in Case Study II, one can use the BERT and VADER 
sentiment signals combined as an Instrumental Variable for estimation of a model 
using our Entropy Sentiment signal that has infinite lag structure transformed by 
a Koyck transform method. We fit the model in Eq.  (48) in rolling windows with 
a length of three months with an one-month overlap, where the regressors are the 
average-smoothed, z-scaled BERT and VADER indices.

To begin with, we regress the Entropy Sentiment Yt against its 1,… , p lags with 
an AR(p) model and obtain the raw residuals which we denote as Ẽy in what follows 
next.

Model I: BERT covariate for Yt, IV regression with BERT
We construct the IV as follows:

We perform a t-test on the regression parameters and compute the IV Ẽy
t−1 using 

only those that are statistically significant. Then we conduct the following OLS 
regression for Ey

t :

At this stage, we want first to evaluate the quality of the IV and then the quality of 
the fit with respect to XB. To evaluate the instrumental variable we test for auto-
correlation in the error terms; if they are not autocorrelated then we have success-
fully constructed an IV that is not correlated with the errors and the use of OLS was 
appropriate. We test for error autocorrelation using the Breusch–Godfrey test (LM 

(47)
𝛽B
j
= 𝛽B𝜙

j

B
, 0 < 𝜙B < 1

𝛽V
j
= 𝛽V𝜙

j

V
, 0 < 𝜙V < 1

(48)

Yt = � +

p∑
i=1

�iYt−i +

+∞∑
j=0

�B
j
XB
t−j

+

+∞∑
j=0

�V
j
XV
t−j

+ �t

= � +

p∑
i=1

�iYt−i + �B
+∞∑
j=0

�
j

B
XB
t−j

+ �V
+∞∑
j=0

�
j

V
XV
t−j

+ �t.

(49)Ẽy
t−1 = 𝜇̃0 + 𝜇̃1X

B
t−1

+ 𝜖t−1.

(50)E
y

t = 𝛼(1 − 𝜙) + 𝜙Ẽy
t−1 + 𝛽BXB

t
+ 𝜖t − 𝜙𝜖t−1.



329

1 3

Digital Finance (2023) 5:295–365	

test for autocorrelation, Breusch, 1978), for which the null hypothesis is the lack of 
serial correlation of any order up to p. If we have evidence to accept the null then 
we proceed to test the parameters for statistical significance, otherwise we consider 
this fit invalid—we would need to construct a different IV, for example by adding 
more structure to the corresponding model. If they are significant, we next assess the 
model by means of the AIC.

The procedure just described for Model I is followed for all subsequent models, 
therefore we will next present only the different model structures we used.

Model II: VADER covariate for Yt, IV regression with VADER
IV regression:

E
y

t  regression:

Model III: BERT and VADER covariates for Yt, IV regression with BERT
IV regression:

E
y

t  regression:

Model IV: BERT and VADER covariates for Yt, IV regression with VADER
IV regression:

E
y

t  regression:

Model V: BERT and VADER covariates for Yt, IV regression with BERT and VADER
IV regression:

E
y

t  regression:

Finally, we compare the AIC results for the appropriate models and choose the best 
among those.

(51)Ẽy
t−1 = 𝜇̃0 + 𝜇̃1X

V
t−1

+ 𝜖t−1.

(52)E
y

t = 𝛼(1 − 𝜙) + 𝜙Ẽy
t−1 + 𝛽VXV

t
+ 𝜖t − 𝜙𝜖t−1.

(53)Ẽy
t−1 = 𝜇̃0 + 𝜇̃1X

B
t−1

+ 𝜖t−1.

(54)E
y

t = 𝛼(1 − 𝜙) + 𝜙Ẽy
t−1 + 𝛽BXB

t
+ 𝛽VXV

t
+ 𝜖t − 𝜙𝜖t−1.

(55)Ẽy
t−1 = 𝜇̃0 + 𝜇̃1X

V
t−1

+ 𝜖t−1.

(56)E
y

t = 𝛼(1 − 𝜙) + 𝜙Ẽy
t−1 + 𝛽BXB

t
+ 𝛽VXV

t
+ 𝜖t − 𝜙𝜖t−1.

(57)Ẽy
t−1 = 𝜇̃0 + 𝜇̃1X

B
t−1

+ 𝜇̃2X
V
t−1

+ 𝜖t−1.

(58)E
y

t = 𝛼(1 − 𝜙) + 𝜙Ẽy
t−1 + 𝛽BXB

t
+ 𝛽VXV

t
+ 𝜖t − 𝜙𝜖t−1.
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6.1.2 � Stage 2: Model selection and calibration

We begin with an analysis of the fitting process for Stage 2 of Sect. 5. For fitting the 
Stage 2 model we performed a sequence of fits in rolling windows of seven months, 
overlapping by one month. Before each sequence of fits, we considered a range of 
different settings for the response sentiment signal and the model structure: 

1.	 we considered different smoothing options for the sentiment response; we applied 
a rolling median filter with window sizes of 1 week, 3 weeks, 3 months, and 
6 months;

2.	 we considered a range of lag structures for the autoregressive covariates, with lag 
order p = 1,… , 5.

We demonstrate here the results for the total sentiment—the remaining equivalent 
results for the polarity of positive and negative sentiment are available in Supple-
mentary Appendix, Section C.1.

For each configuration, we stored the successfully fitted models and ranked them 
according to the AIC score. In Fig. 5, we see the AIC of the best fitting model per 
window for all smoothing parametrisations. Informed by these traces, we focus on 
the best-performing model to continue our analysis. The next question we addressed 
was whether we would need to have a different lag structure per window to capture 
the sentiment signal’s variability. For this purpose, we plot the lag order per fitting 
window for the best-fitting model (Fig. 6, left panels), and in addition, we plot the 

Table 1   Percentage of windows that fail to reject the null hypothesis of the performed tests

Test Entropy Abs. 
strength-BTC

Entropy 
negative-
BTC

Entropy 
positive-
BTC

Entropy Abs. 
strength-ETH

Entropy 
negative-
ETH

Entropy 
positive-
ETH

1-Week smoothed signals
 KS 0.00 0.00 0.00 0.00 0.00 0.00
 VS 100.00 96.67 100.00 93.33 97.06 94.12
 KPSS 100.00 100.00 100.00 100.00 100.00 100.00

3-Week smoothed signals
 KS 0 0 0 0 0 0
 VS 91.18 97.06 97.06 93.75 90.91 97.06
 KPSS 100 100 100 100 100 100

3-Month smoothed signals
 KS 0 0 0 0 0 0
 VS 96.55 92.86 93.1 100 91.3 100
 KPSS 100 100 100 100 100 100

6-Month smoothed signals
 KS 0 0 0 0 0 0
 VS 95.83 92.31 100 77.27 100 86.21
 KPSS 100 100 100 100 100 100
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lag order per fitting window for the best fitting model after dropping the coefficients 
that were not statistically significant to any level up to 90% (Fig. 6 right panels). We 
also plot for comparison (in red trace) the worst performing model according to the 
AIC. We observe that the differences in model selection are significant when we 
ignore the coefficient significance level, and therefore we were correct in utilising a 
different lag structure per fitting window. When we also account for the significance 
level, we observe that for the absolute sentiment magnitude we still benefit from 
adapting the lag structure per window.

6.1.3 � Stage 3: Evaluation of model fit and quality of instrumental variable design

Having selected the best Stage  2 model per signal window, we then evaluate the 
quality of the fitting by performing a series of statistical tests on the residuals. Fur-
thermore, with this analysis we aim to verify our hypothesis of normality of the 
error distribution. We employ the widely used Kwiatkowski–Phillips–Schmidt–Shin 
(KPSS, Kwiatkowski et  al., 1992), the Kolmogorov–Smirnov (KS, Dimitrova 
et al., 2020), and the Vasicek–Song (VS, Lequesne & Regnault, 2020; Song, 2002; 
Vasicek, 1976) tests to investigate trend stationarity and normality of the error dis-
tribution. Table 1 shows the percentage of fitted windows that did not produce evi-
dence to reject the null hypothesis of the tests. The null hypothesis of the KPSS test 
is that the signal is trend stationary, whereas the null hypothesis of the KS, Vasicek 
and Song tests is that the tested signal follows a normal distribution. In our experi-
ments, we approximated the distribution of the null hypothesis of the Vasicek test 
via Monte Carlo sampling, which is the basic formulation of this test.

From Table  1 we first note that the windowed signal is trend stationary. Fur-
thermore, with regards to the error distribution, we observe that the KS test always 
rejects the null hypothesis of normality, but the Vasicek entropy test shows that 
for the majority of the fits the error normality assumption holds. This ambiguity is 
resolved if we consider that the KS test places equal weight on the median tendency 
of the error distribution and its tails. Therefore, if there is even a little skewness or 
kurtosis in the distribution, it may reject the null of normal distribution whilst this 
may not be true. This is the effect we see here, where the Vasicek test does not reject 
the null hypothesis as it places higher importance on the median tendency of the 
distribution.

To illustrate this point further and justify our choice of normal errors, we first 
construct the Q–Q plots of the residuals in a window of the absolute sentiment mag-
nitude for ETH, which we see in Table 1 that exhibits the lowest compliance with 
the normal error assumption. Figure  7 shows the Q–Q plots obtained for normal 
and t-Student distributions. We observe that there is evidence of heavier tails in the 
residuals than a normal distribution, and therefore we fit t-Student distributions of 
differing degrees of freedom to reflect different strengths of kurtosis that may be 
present; we illustrate this for three settings 3,10, and 15 degrees of freedom. In so 
doing, we note that the best fit is achieved for t distributions with many degrees 
of freedom (t = 15), which is close to a normal, and therefore the assumption of 
normal errors is adequate for our purposes. Next, in Fig. 8 we plot the density esti-
mate of the residuals in the same window, and in Fig. 9 we plot the residuals against 
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the fitted response to verify the absence of any uncaptured trend structure. Both the 
shape of the density estimates and the residual against fitted values scatterplot verify 
our assumption.

6.1.4 � Stage 3: Quantitative evaluation of the explanatory power of the BERT 
and VADER indices for instrumental variable design

Our goal is to quantify the explanatory power of the BERT and VADER covari-
ates for the sentiment response, after we have obtained an appropriate instrumental 
variable. Table  2 shows the results of the rolling window regressions for a selec-
tion of windows in which we have obtained an instrumental variable with one of 
the explored model structures. The quality of the instrumental variable was meas-
ured with the Breusch–Godfrey test (Breusch, 1978), and only windows that showed 
decorrelated errors ( 95% significance levels of the coefficients in the IV regression) 
were kept for the regression against sentiment.

First, we observe that there were very few periods over the course of almost 
4 years that the BERT and VADER models could explain part of our entropy senti-
ment index, for all polarities universally. Secondly, we note that the model structures 
most suitable for the IV regression were M3 and M5, where we used both covariates 
for the sentiment response, and either BERT only (M3) or BERT and VADER (M5) 
for the IV regression. Thirdly, it is interesting to see that BERT and VADER are 
more explanatory for BTC news sentiment rather than ETH, which may be attrib-
uted to Bitcoin’s popularity leading to simpler, less technical and, therefore, easier 
to understand language in the relevant articles. Fourthly, we observe that there are 
specific periods where the covariate significance was high (≥ 99%)∶ those starting 
March 3, 2018, April 8 2018, and 27 February 2020. March–October 2018 was a 
period of relatively low volatility in the Bitcoin price which culminated in Winter 
2018 and was sparking a lot of concern among retail investors at the time for fear 
of a price plunge. In Fig. 4, we see that BERT is negative all of the time during that 
period, and VADER shows some of its few negative sentiment indications at that 
time. Therefore, we would expect that both indices would help explain more of the 
negative sentiment content of our index at that time, as we see that is the case. This 
also applies to the 7-month window starting 8 April 2018 and extending to Novem-
ber of the same year, when the lack of volatility was more pronounced. The same, 

Fig. 9   Stage I residuals vs fit-
ted response values: 6-month 
window starting on 2020-04-27 
for ETH absolute sentiment 
strength
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but less pronounced and at a higher price level, phenomenon is also observed for the 
window starting 27 February 2020 and extending to September 2020.

Both of these observations explain why the BERT and VADER covariates appear 
to have some explanatory power for our negative sentiment index for BTC. How-
ever, it is still evident that our index captures different sentiment content than the 
state-of-the-art alternative approaches, which we will also demonstrate qualitatively 
next, before proceeding to show how to leverage our sentiment index in the crypto 
space.

6.1.5 � Stage 3: Qualitative evidence for the difference between the entropy index 
and the BERT and VADER indices

In the previous section, we statistically proved and quantified the difference in the 
content of the entropy-based sentiment index versus the indices based on BERT and 
VADER. In this section we provide visual evidence that illustrates the difference 
between the indices. In Fig.  10 we show the cumulative sentiment content of the 
different indices for BTC and ETH, each relativised with respect to the beginning of 
the time period we study.

The rates of change of the traces reveal whether the aggregation of sentiment is 
continuous or intermittent over time, and whether it is affected by sentiment polarity 
or not. We observe the linear growth of cumulative sentiment, and almost constant 
rate of change for the most period of time, which means that there is a smooth varia-
tion in the way information is captured: a growing amount of different information is 
accumulated over time, as opposed to certain abrupt rare events being the main driv-
ers of the index. The fact that the growth is linear for both assets is in part due to the 
fact that the information is rich, i.e. there are articles on Cryptodaily and Cryptoslate 
regarding BTC and ETH almost on a daily basis during the time period we focus on. 
Note that the linear pattern is not something dictated by any of the sentiment index 
models and may change if we study different news sources or assets.

From Fig. 10 we understand that BERT and VADER accumulate sentiment at dif-
ferent rates. VADER is slower at gathering information, and in addition gathers sen-
timent information that is different to any of the information captured by our entropy 
indices. This is because its rate of change is significantly lower than the rate of the 
entropy indices and almost constant for the case of BTC (Fig. 10, left panel). For 
ETH (Fig.  10, right panel), we note that at the beginning of the period, VADER 
is able to capture information at a higher rate, which however saturates around the 
middle of 2018, meaning it was unable to capture any significant information, and 
seems to slightly pick up again at the beginning of 2021. These findings, respec-
tively, are in agreement with the almost flat line we observe in the smoothed index 
of Fig. 4 (right, VADER) after mid 2018, and the also almost flat line for Ethereum 
(see Supplementary Appendix, Section B, Figure 2b) in early 2019. We can attribute 
this to the fact that VADER is trained on general online media content and there-
fore lacks the specificity required for the crypto domain. For the change of rate 
we observe in the case of Ethereum around early 2019, we remark that this may 
be indicative of a change in the language of the articles, namely before that period 
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authors wrote in a less technical and more similar way to the average social media 
user, which we know is the type of language VADER was trained on. On the con-
trary, we see that BERT’s growth rate is higher than the rest of the indices in the 
case of BTC and almost parallel to our positive polarity entropy sentiment index for 
ETH. For the latter, given that BERT has identified predominantly negative senti-
ment as we saw in Supplementary Appendix, Section B, Figure 3a we interpret this 
observation as a difference in the understanding of sentiment polarity between our 
positive entropy index and BERT, given that both are based on the same texts: what 
the entropy index perceives as positive sentiment, BERT sees as mostly negative.

In addition, we see that for BTC (Fig. 10, left), the negative index is almost iden-
tical to the absolute sentiment strength, which means that most of the time the neg-
ative index captures the same global sentiment tendency as the absolute strength 
index. However, for ETH (Fig.  10, right), even if the two indices appear to grow 
almost in parallel in terms of information, they intersect and deviate in mid 2021. 
This is consistent with the price boom that ETH experienced at the beginning of the 
second quarter of 2021, hence the negative sentiment would no longer dominate in 
the absolute sentiment strength.

Finally, in both plots of Fig. 10, and more evidently in the case of ETH (right), 
we can see that the rate of change is not constant all of the time—it is higher at the 
start of the period. This is more distinctly shown in the positive entropy index. This 
period follows the period of the ETH price peak of January 2018 and we can see that 
our positive sentiment index reacts more strongly to the resulting sentiment signal.

To further illustrate the difference between the signals captured by the examined 
sentiment constructions we construct the plots of Figs. 11, 12, 13 and 14 where we 
have summarised the sentiment content of the indices in yearly quarters. These fig-
ures are obtained by using the interquartile range (IQR) to summarise the sentiment 
content over each quarter, which would capture the volatility of the signal at each 
period.

In addition to demonstrating that the sentiment content of the indices is very dif-
ferent, these plots may also reveal significant information about the behaviour of 
the sentiment indices. We also provide comparative quarterly results for sentiment 
analysis of the median sentiment and the sentiment volatility under each polarity 
of sentiment signal. The median sentiment analysis is provided in Supplementary 
Appendix, Section  C.2. In Fig.  11, we can see that the IQR of the VADER and 
BERT indices did not significantly change in Q3 and Q4 of 2018. Given that dur-
ing those particular quarters Bitcoin was going through a very low volatility period 
followed by a price crash, hence the sentiment signal, due to mixed reporting about 
price speculation, was highly varying, it is evident that the BERT and VADER mod-
els were unable to capture this variation in sentiment. On the contrary, we observe 
that the proposed sentiment signals we developed based on Entropy indices are 
very reactive to the sentiment signal variation. In Q1–Q2 2019, when Bitcoin price 
started rising again, news reporting started becoming more positive capturing the 
investors regaining optimism.

Similarly, observing Figs.  13 and  14, we see that the positive Entropy index 
clearly shows an increase in volatility during Q3–Q4 2020 and Q1 2021, when Bit-
coin price was trending upwards, while in the second quarter of 2021, when there 
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was a price reversal, we remark that the variability of the negative sentiment index 
starts increasing to reflect the high volatility of the price at that time. Similarly, we 
observe that BERT reacts significantly to the sentiment signal change between end 
of 2020 and beginning of 2021, even though we know from Fig. 4 (left - BERT) that 
at that time BERT mostly identified negative sentiment. VADER on the other hand 
seemed unable to adapt to any change in sentiment after Q4 2020, showing only lit-
tle change in IQR.   

6.2 � Case study II: MIDAS‑Koyck transform calibration results

In the second case study, we are interested in exploring a regression relation between 
daily sentiment, as captured by our daily Entropy index, versus a technology-based 
time-series covariate given by daily hash rate, and the price signal given by intra-
daily asset price on an hourly time frame.

We focus on the intra-daily close price of Bitcoin, and extract the price and hash 
rate data from CoinMarketCap (https://​coinm​arket​cap.​com/) for the period of Sep-
tember 2017–May 2021.

6.2.1 � Model selection for finite‑lag ARDL‑MIDAS‑Transformer time‑series 
regressions

Before proceeding with the analysis, we investigate the fitting of a wide range of 
model parametrisations with respect to the autoregressive lags, the covariates and 
the parameters of the Almon weight functions, which, for this study, was the Expo-
nential Almon function.

We adopt in this section the framework of infinite-lags in the ARDL structure, 
where we apply the Koyck-MIDAS transform to obtain a reparametrised model fam-
ily as described in Eq. (16) using the instrumental variable of Eq. (30) constructed 
from BERT and VADER sentiment signals.

Informed by previous research (Chalkiadakis et  al., 2020), we explored the 
options for the lag structure that are included in Table 3. In addition, we used all 
three different types of sentiment polarity (absolute sentiment strength, positive, 
negative), and explored a number of optimisation routines from the R package 
optim. We assessed the models that fit successfully for the whole range of data 
using the AIC and Mean Squared Error (MSE) criterion and provide the top-4 fitting 
models in Table 4 according to these two model selection criteria. 

Table 3   The options that we explored for the lag structure in the regression covariates

Regression component Lag structure

Response autoregressive component 1–5 days, i.e. 1–5 daily lags
BTC high-frequency component 1–5 days, i.e. 24–120 hourly lags
Hash Rate low-frequency component 1–6 months, i.e. 30–180 daily lags

https://coinmarketcap.com/
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6.2.2 � Assessment of time‑series ARDL‑MIDAS‑Transformer regression model 
over time

Based on the model search of the previous section, we proceed to study the calibra-
tion of the best fitting model in a rolling window fashion, to study how the regres-
sion relationship between the response sentiment and the covariates evolves over 
time. We explore four window sizes, i.e. 720-, 900-, 1080-, and 1260-day rolling 
windows with a step size of 30 days, and conduct our analysis on the best fitting 
model according to the AIC (M1) and the MSE (M2).

In addition to the parametrisation of the models as presented in Table 4, we also 
perform the fitting after applying the Box–Cox transform on the sentiment response, 
as the initial fittings revealed heteroscedasticity in the residuals. The Box–Cox trans-
form (Box & Cox, 1964) aims to reduce that by transforming the response to resem-
ble a normal variable. The transform, in the case of a positive variable, which is our 
sentiment response, is given as follows:

where −5 ≤ � ≤ 5. In practice, we found a change in the regression performance for 
a small range of negative � values close to zero, and we therefore investigated only 
the values of � = −1, −0.5, 0.

The results of the rolling window fits are presented in Table 5 in terms of the per-
centage of rolling widows where the covariates of the regression were statistically 
significant. The list is ordered with first key the total number of windows with statis-
tically significant covariates, and second and third keys the total number of windows 
where the hourly close price (BTC/h) and Hash Rate (HR) covariates, respectively, 
were significant. Based on the results of this analysis, we select the best window 
to employ in the following studies, which is a 1080-day window for the best fitting 
model according to MSE (M2 in Table  4), and a 1260-day window for the best-
fitting model according to AIC (M1 in Table 4).

Next, we provide details about the study of the Almon polynomial coefficients 
over time for the low- and high-frequency covariates. The majority of the details for 
the model studies showing dynamics of the Exponential-Almon lag structures for 
each covariate are provided in the accompanying Supplementary Appendix in Sec-
tion D, and here we present the results for Model M1 (best according to AIC) with 
the coefficients for the BTC hourly close price and the daily hash rate in Figs. 15 
and 16, when fitting the model without applying the Box–Cox transform and with 
Box–Cox applied with � = 0.

6.2.3 � Statistical significance of interactions between data at mixed frequencies

In this section, we continue to explore the results of model M1 by looking at the 
statistical significance of the coefficients of the autoregressive response covariate, as 

(59)y(�) =

{
y�−1

�
, if � ≠ 0;

log(y), otherwise,
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well as the low- and high-frequency covariates. In Fig. 17 we plot the p-values for 
the fitted M1 models in which the Distributed Lag MIDAS covariates were found to 
be statistically significant. For the corresponding plots for model M2, please refer 
to the Supplementary Appendix, Section D. In terms of performance, we observe 
in Fig. 18 that the models fit with a Box–Cox transform exhibit an improved perfor-
mance compared to the models without.

(a) No Box-Cox Transform Applied (b) No Box-Cox Transform Applied

(c) Box-Cox Transform Applied (λ = 0). (d) Box-Cox Transform Applied (λ = 0).

(e) Box-Cox Transform Applied (λ = −0.5). (f) Box-Cox Transform Applied (λ = −0.5).

(g) Box-Cox Transform Applied (λ = −1). (h) Box-Cox Transform Applied (λ = −1).

Fig. 17   M1: Left subplots: Hash Rate low-freq. covariate. Right subplots: BTC hourly close price high-
freq. covariate. p-values for the statistically significant Exponential Almon parameters (�1,�)
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Furthermore, in the Supplementary Appendix, Section D.1, we demonstrate the 
p-values on the significance of the AR lags of the MIDAS-Koyck transformed coef-
ficients in Eq. (16) for the cases of no Box–Cox transformation and a few cases of 
Box–Cox transformed fitted models, for models M1 and M2.

6.2.4 � Mixed‑data long memory structures

We now seek to explore how the weight function that we employ for the MIDAS 
coefficients affects the persistence properties of the high- and low-frequency 
covariates. To investigate, we estimate the Hurst exponent from the covariates, the 
response, and the residuals per fitting window and explore their relationship. We 
plot the estimated Hurst exponents of the response and the residuals in Figs. 19, 20, 
21, 22 and 23. Note that the Hurst exponent is a positive number upper-bounded by 
1—the small bias that is observed in some estimates is consistent with the behaviour 
of the estimator in large-scale synthetic studies that we performed when testing the 
behaviour of this estimator, before applying it in this real data case study.

We observe that the long memory strength in the response, as captured via the 
residuals, is attenuated compared to the long memory in the covariates as a result 
of the MIDAS structure in the model. Therefore, the long memory structure of the 
covariates is not trivially transferred to the response in such settings, which has to 
be considered if including the long memory is an important desired feature for the 
model.     

Note that should we wish to use Gegenbauer polynomial MIDAS weights, we 
could estimate the d and u parameters from the residuals. The long memory d is 
defined as d = H − 0.5, whilst, in this instance, we can estimate the cyclic fre-
quency u by observing the autocorrelation plots of the residuals per window, as 
we observed that the ACF exhibits almost no oscillation around the x axis, which 
means that u = 0, i.e. the long memory is coming from an ARFIMA-type process. 
We have provided a detailed analysis of the autocorrelation profiles of the regres-
sion for model M1 and model M2 with and without the Box–Cox transform in the 
Supplementary Appendix, Section D.2.

Fig. 18   M1: AIC for each roll-
ing window fit
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6.2.5 � Mixed‑data infinite‑lag Koyck regressions: estimation of 


In this section, we study the in-sample fitting performance of the ARDL-MIDAS 
model with the Koyck transform to obtain tractability with an infinite number of 
lags. We estimate the model with and without (see Sects.  6.2.1–6.2.4) the adjust-
ments dictated by the Koyck transform, and then, having obtained the regression 
coefficients for the autoregressive lags of Eq. (16) before and after the transforma-
tion, we can form a system of equations to solve for decay parameter � of the trans-
form under the constraint 0 < 𝛾 < 1.

We inform our selection for the autoregressive covariate in Eq.  (16) from our 
analysis in Case Study I, and use as instrumental variable a linear combination of 
the Entropy Sentiment and the BERT and VADER sentiment covariates, which 
decorrelate the sentiment response from the errors in this formulation as studied in 
Case Study I. Specifically, the IV in the current study is the difference between the 
Entropy Sentiment index, median-smoothed weekly in a rolling window fashion, 
and the average of the also weekly median-smoothed BERT and VADER sentiment 
signals.

6.2.6 � Trend forecasting and the effect of the infinite‑lag Koyck transform

We finalise the study with an analysis of how well the proposed infinite lag ARDL-
MIDAS-Transformer long memory time-series regression models perform on out-
of-sample forecasting of daily crypto sentiment. To assess the forecasting perfor-
mance of the fitted models, we use each model fitted on a rolling window to forecast 
one month ahead of the window. First, for the models without the infinite lag Koyck 
adjustment, we perform the fitting without applying the Box–Cox transform, and 
present the results in Fig. 24 and Table 6(a) and (b).

Second, we extend the estimated models with the Koyck adjustment of Eq. (16) 
for a range of values of � on a grid: 0.01, 0.05, 0.1,… , 0.95, where the step size after 

Table 6   Forecasting with rolling-window fitted models

(a) Performance of model M1 (best according to AIC)

 30-Day forecast start M1

2021-02-05 1.15E−01

2021-03-07 7.47E−02

2021-04-06 6.36E−02

(b) Performance of model M2 (best according to MSE)

 30-Day forecast start M2

2020-09-08 9.58E−02

2020-11-07 3.45E−02

2021-02-05 1.21E−02

2021-04-06 5.78E−02
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0.1 is 0.05. We evaluate the forecast performance in terms of MSE and illustrate 
the results in Fig. 25. We observe that the performance after the Koyck adjustment 
(left y-axis) is significantly diminished, which means that the geometric decay we 
adopted for the coefficients in the Koyck transform is not optimal in this setting.

7 � Conclusion

In this work, we have proposed a novel class of time-series regression models that 
incorporate several relevant interpretable features: infinite-lag ARDL regressions, 
Mixed Data Sampling (MIDAS) multiple time resolution regression structures, 
Deep Neural Network architectures for Instrumental Variable design for reducing 
the estimation bias in the ARDL-MIDAS-Transformer class of models, and, finally, 
fractional integration in the form of Gegenbauer long memory polynomials for the 
MIDAS configuration. Each of these model components is carefully explained and 
detailed and then a thorough real data statistical analysis is undertaken on cryptocur-
rency market sentiment constructed daily from news articles. The daily sentiment is 
then regressed against intra-daily hourly closing price dynamics and money supply, 
as captured by mining Hash Rate. Overall, in our study and application we see the 
advantage of the infinite lag ARDL-MIDAS-Transformer time-series regression mod-
els in the rigorous incorporation of sophisticated long-memory signal characteristics, 
interpretation capabilities for the interplay between multi-resolution covariates, as 
well as fitting and forecasting performance. These advances will make IV regressions 
with expressive neural network instruments more accessible to researchers with time-
series, econometrics familiarity, and will also assist with MIDAS model development 
and selection. The results of the real data studies demonstrated that end-of-day sen-
timent can be accurately forecast at any time point intra-daily, given the appropri-
ate time-series model structure, from the hybrid ARDL-MIDAS-Transformer class 
of models proposed in this manuscript. We are confident that the proposed model 
class will find interesting applications not only in cryptocurrencies but also in tradi-
tional financial markets, commodities markets, text and sentiment signals analysis. 
We leave the investigation of case studies in these research areas, as well as further 
informative extensions to the MIDAS polynomial structure to future work.

8 � Software and technical appendix

The reader is also referred to the supplementary Technical Appendix for additional 
results and analyses.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s42521-​023-​00079-9.
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