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Abstract
Determining and minimizing risk exposure pose one of the biggest challenges in the 
financial industry as an environment with multiple factors that affect (non-)identi-
fied risks and the corresponding decisions. Various estimation metrics are utilized 
towards robust and efficient risk management frameworks, with the most preva-
lent among them being the Value at Risk (VaR). VaR is a valuable risk-assessment 
approach, which offers traders, investors, and financial institutions information 
regarding risk estimations and potential investment insights. VaR has been adopted 
by the financial industry for decades, but the generated predictions lack efficiency in 
times of economic turmoil such as the 2008 global financial crisis and the COVID-
19 pandemic, which in turn affects the respective decisions. To address this chal-
lenge, a variety of well-established variations of VaR models are exploited by the 
financial community, including data-driven and data analytics models. In this con-
text, this paper introduces a probabilistic deep learning approach, leveraging time-
series forecasting techniques with high potential of monitoring the risk of a given 
portfolio in a quite efficient way. The proposed approach has been evaluated and 
compared to the most prominent methods of VaR calculation, yielding promising 
results for VaR 99% for forex-based portfolios.
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1  Introduction

Risk assessment in the financial sector has drawn considerable attention in recent 
years, as the extensive use of Value at Risk (VaR) among other risk management 
models proved to be inefficient in measuring the financial risk during recession 
periods, such as at the latest global financial crisis of 2008 and the 2020 COVID-
19 pandemic. VaR, being originally designed for internal use in financial insti-
tutions, has become a key factor in determining capital requirements and con-
ducting risk assessment, especially after the introduction of the Basel II Accord 
(De Waal et al. 2013). As a result of stricter regulations regarding capital man-
agement, alongside technological advances utilized in the financial sector, many 
institutions are actively exploring and promoting more accurate methods of moni-
toring and assessing the exposure to different risks (Elsinger et  al. 2006; Zhao 
2020).

Although VaR has caused high controversy throughout the years, it is consid-
ered to be a widely used internationally instituted financial risk model among 
several other financial tools and both quantitative analysts and regulatory authori-
ties started paying more attention to VaR, since its standardization as a risk 
measure in 1996 by RiskMetrics (Longerstaey and Spencer 1996). The core of 
the criticism for VaR models derives from their simplistic assumptions and their 
insufficient results during periods of crises (Abad et  al. 2014). The controversy 
raised over the VaR model can be summed in the indicative phrase of Einhorn 
and Brown in 2008, where VaR is compared to “an airbag that works all the time, 
except when you have a car accident” (Einhorn and Brown 2008).

The notion of VaR reflects the maximum expected loss of a portfolio over a 
given time horizon, at a predefined confidence level. Given the fact that VaR, 
besides its extensive use in the financial sector, has also been extensively studied 
in the academic literature, this paper does not further elaborate on the VaR defini-
tion. However, as several variants of VaR are emerging from the financial engi-
neering and digital finance literature, we focus on the three major VaR categories, 
namely the non-parametric, the parametric, and the semi-parametric.

In the non-parametric models, assumptions regarding the distribution of the 
returns of the underlying portfolios are not required. The main advantage of this 
type of method is the low computational complexity. The Historical Simulation 
(HS) is the main representative of this category, where the empirical distribution 
of past portfolio returns is used to calculate VaR. The latter can be obtained by 
taking the required quantile of this distribution for a given history-window. The 
main disadvantage of this method is that it fails to capture unseen fluctuations 
that are not present in the utilized history-window (Chang et al. 2003).

Contrastingly, in parametric approaches, a valid model of the portfolio returns 
and their distribution should be theoretically defined prior to VaR estimation. 
On the one hand, most of the parametric models are simple in terms of imple-
mentation when Gaussian or Student-t distribution is assumed (Abad et  al. 
2014). On the other hand, this assumption does not hold for most of the finan-
cial time-series data. Some well-known methods falling in this category are the 
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Variance–Covariance method (VC) and many GARCH-variants methods. For 
example, when VC method is applied assuming Gaussian distribution, a proper 
history-window should be defined, and the variance–covariance matrix of returns 
should be calculated, then the VaR can be obtained by Eq. 1

where a, z, and w are the confidence probability of VaR (i.e., 99%), the z-score, and 
the portfolio weights, respectively.

Finally, the semi-parametric VaR models are produced by combining the two 
aforementioned methods, where some assumptions are made either about the “error” 
distributions, its extremes, or the model dynamics. The Monte Carlo method (MC) 
is the main semi-parametric method, where scenarios are randomly generated for 
future returns of the portfolio, based on some non-linear pricing models. MC is 
more reliable comparing to historical and parametric approaches when dealing with 
complex portfolios and complicated risk factors. Its core assumption is that the risk 
factor has a known probability distribution, i.e., that market factors follow certain 
stochastic processes, which are used to estimate future returns (Abad et al. 2014).

Based on pertinent literature (Angelidis and Degiannakis 2018; Yamai and 
Yoshiba 2002), most of the existing VaR methods are facing various challenges. The 
most critical challenge is the severe VaR violations during which the portfolio real-
izes a loss exceeding the VaR value due to dependencies between the VaR predic-
tions, especially for 99% confidence level. This is often the case when high market 
downturns occur. In addition, the high excess loss, beyond the VaR threshold that 
happens due to the fat tails of the financial time-series distribution and the leverage 
effect, is rarely taken into account. It should be also noted that despite the fact that 
there are several approaches providing a risk assessment management framework, 
the majority of related published literature examines single asset “portfolios” (i.e., 
S&P index). These drawbacks of the VaR methods reflect additional motivations for 
the approach presented in this paper.

The financial institutions started using VaR as a risk estimation metric to ensure 
their survival during catastrophic events, after the stock market crash on Wall Street 
in October 1987. The fact that the 2008 financial crisis resulted in an overall loss of 
$3.4 trillion among all major financial institutions over the world according to the 
International Monetary Fund (IMF) (Dattels and Miyajima 2009) is an example of 
the need of an efficient (innovative) VaR prediction methodology. Thus, it is crucial 
now that the COVID-19 pandemic has affected the global economy to a great extent 
(Das et al. 2021) to revise the risk-assessment tools and address their methodologi-
cal limitations.

To this end, the research should be conducted in the context of portfolios con-
sisted of certain type of financial assets (i.e., forex, bonds, and stocks). Given that 
VaR is independent of the type of assets comprising the portfolio and that there is 
abundance of open-source data for the majority of the forex (FX) instruments, port-
folios based on FX assets were opted for.

(1)VaRa = z1−a

√
WT

∑
W,
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This paper introduces a data-driven framework that predicts portfolios’ VaR, 
addressing the above-mentioned challenges with the following key innovations: 

1.	 Integrates a continuous learning approach that considers the latest market prices 
avoiding clustered VaR violations and thus addressing the dynamic nature of 
financial data.

2.	 Is able to capture rare market events with very short training time by utilizing 
probabilistic forecasting based on auto-regressive recurrent neural networks in 
the context of VaR.

3.	 Goes beyond single-asset pre-trade/what-if analysis (i.e., asset-level) to portfolio 
pre-trade/what-if analysis (i.e., portfolio-level). It should be noted that this is 
achieved in (near) real time by eliminating the need to re-train the neural network 
model.

Even though considerable emphasis is given on portfolios composed of FX assets 
and daily VaR, the proposed approach is also applicable to other types of financial 
instruments and different time horizons, since it could be applied and optimized for 
various types of time-series. Moreover, the proposed framework has been evaluated 
with several loss functions and two different coverage tests.

This paper is structured as follows: Sect. 2 presents the related work in the rel-
evant fields of study, while Sect. 3 describes the proposed methodological approach 
delivering details regarding the data and the evaluation scheme utilized. Sections 4 
and 5 present the results of the back-testing to demonstrate and evaluate the per-
formance and effectiveness of the proposed mechanisms. Finally, Sect. 6 closes the 
paper with recommendations on future research and further potentials of the current 
study.

2 � Related work

The foundations of VaR in finance as a risk-assessment approach were introduced in 
1996 by Morgan and Reuters (Longerstaey and Spencer 1996). This parametric method 
became dominant in the financial sector and has been extensively utilized under the 
name “RiskMetrics model”, despite the fact it suffers from unrealistic assumptions such 
as the normally, independently, and identically distributed financial returns.

The aforementioned limitations, combined with the highly competitive and 
demanding nature of the financial markets, moved the research from the paramet-
ric method, to alternative independent directions. There are various studies compar-
ing/back-testing different VaR approaches, with the one presented in Kuester et al. 
(2006) standing out. Summarizing its results, all the unconditional models produce 
clustered VaR violations, yet some may still pass as acceptable when considering 
only the (unconditional) violation frequencies. Though, this conclusion depends 
to some extent on the chosen window size, with less-parameterized models hav-
ing an advantage as history-window size decreases from 1000 to 250. On the other 
hand, conditional VaR models lead to much more volatile VaR predictions and may 
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arguably cause problems in allocating capital for trading purposes. Additionally, as 
discussed in Abad et  al. (2014), most of the researchers focused on the family of 
GARCH models, arguing also that asymmetric GARCH models yield better results, 
but without statistically significant difference. Equally effective are many VaR 
applications, that utilize the Extreme Value Theory (EVT) approach. The key-char-
acteristic of EVT is that it focuses on limiting the distribution of extreme returns 
observed over a long time-period, which is essentially independent of the distribu-
tion of the returns. There is an indicative comparative evaluation of the predictive 
performance of various VaR models, emphasizing on the two EVT-based method-
ologies, Peak Over Threshold model (POT) (Novak 2011), and block maxima model 
(BM) (Mcneil 1998). Its results demonstrated that, although some traditional meth-
ods might yield comparable results at the conventional confidence levels, the EVT 
methodology produces the most accurate forecasts of extreme losses for high confi-
dence levels (Bekiros and Georgoutsos 2005).

Despite the widespread use of various econometric models regarding VaR esti-
mation and modeling of financial returns, the rise of machine learning and deep 
learning models offered an improved toolkit to financial firms, introducing innova-
tive and more effective approaches and automating many financial tasks. In the last 
few years, several studies have been carried out, such as (Lim and Zohren 2020; 
Sen et al. 2019), analyzing how some of the most prominent deep learning architec-
tures [such as Recurrent Neural Networks (RNNs) and Long Short-Term Memory 
(LSTM) (Gers et  al. 2000)] can be used for time-series forecasting. Such models 
have been widely applied across different domains, due to their ability to model non-
linear temporal patterns. For instance, in Neuneier (1996) and Xiong et al. (2018), 
a neural network-based reinforcement learning model is used to perform portfolio 
management. In Weng et al. (2017), an ensemble model of machine learning algo-
rithms has been utilized to predict stock market movement, proving that an LSTM 
neural network has a high potential for predicting financial time-series. Moreover, a 
Generative Adversarial Networks (GAN)-based model (Goodfellow et al. 2014) has 
been proposed to generate synthetic representative financial data sets, demonstrat-
ing that the synthetic distributions share similar characteristics with the real data 
(Pfenninger et al. 2021). Finally, a combination of wavelet analysis and an LSTM 
neural network enables to capture the complex features of financial time-series, such 
as non-linearity, non-stationarity, and sequence correlation (Yan and Ouyang 2018).

As far as the VaR estimation is concerned, two key challenges arise from the rela-
tive literature: (i) The first one refers to the excess loss of VaR violations, which 
is rarely taken into account. For instance, in Hendricks (1996), the authors argued 
that, although a 99% risk measure may sound as if it is capturing essentially all of 
the relevant events, the other 1% of events can in extreme cases entail losses sub-
stantially in excess of the risk measures generated on a daily basis. (ii) The second 
challenge is that most of VaR 99% models produce more violations than the nominal 
confidence probability, with limited back-testing regarding the coverage and inde-
pendence of VaR estimations. Moreover, most of the related research papers focus 
on certain financial indexes (i.e., S&P) as a univariate time-series, without taking 
into account the correlations among the assets that comprise the examined portfolio.
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Based on the above, the main contribution of the current research is twofold. First, 
a novel probabilistic approach for VaR prediction is proposed based on DeepAR, 
providing the full predictive distribution and allowing decision-makers to optimize 
their actions. This approach is performing better in VaR 99% than the most preva-
lent VaR estimation methods. Second, evaluation/back-testing procedures based not 
only on univariate assets but also on portfolios are presented. Furthermore, various 
evaluation metrics and statistical tests were utilized to illustrate the efficiency of the 
proposed approach.

3 � Proposed approach

An innovative framework for portfolio VaR estimation is proposed, utilizing proba-
bilistic deep neural networks (Mohebali et al. 2020). However, regularized datasets 
are not available, as hardly any hedge fund or individual trader is willing to disclose 
proprietary information of their portfolios, while in most of the relevant studies only 
a univariate index (like S&P) is leveraged as a portfolio. In our approach, the VaR of 
each asset ( VaRi ) is initially calculated, then the portfolio’s VaR ( VaRp ) is derived 
from the combination of VaRi , taking into account their correlations and their cor-
responding weights. Several random portfolios have been created to evaluate our 
results for different cases and scenarios.

Furthermore, to evaluate the proposed model, five different VaR methods were 
explored, namely, GARCH, RiskMetrics (RM), HS, BiGAN, and MC. The evalua-
tion was based on several loss metrics, such as the number of VaR violations, quad-
ratic loss and firm loss, and coverage tests described in Sect. 3.2.3.

In our approach, both VaR and Profit and Loss (PnL) are expressed in log-return terms, 
while the terms PnL and portfolio returns r are used interchangeably in the remainder of 
this paper. Mathematically, let PnLt = rt = log

Pt

Pt−1

 be the log-returns, and Pt is the close 
price of the financial instrument on day t. The 1-day VaR on day t is defined as

As shown in Eq. 2, VaR is expressed in return terms, thus given a distribution of 
return, VaR can then be determined and expressed in terms of a percentile of the 
return distribution (Christoffersen et al. 2001). Specifically, if q� is the �-th percen-
tile of the continuously compounded return, then VaR can be expressed as

3.1 � DeepVaR

The approach presented in this paper exploits deep neural networks and probabilis-
tic forecasting. Having tested different probabilistic time-series forecasting models, 
DeepAR Estimator as described in Salinas et al. (2020) has been selected as the core 
of the proposed framework, the so-called DeepVaR.

(2)P(rt ≤ VaR�

t
) = 1 − �.

(3)VaRa = q1−a.
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DeepAR is based on an auto-regressive recurrent neural network model, spe-
cifically designed for multivariate time-series modeling producing accurate proba-
bilistic forecasts. It models the conditional distribution P(zi,t0∶T ∣ zi,1∶t0−1) of the 
time-series zi for future time-steps from t0 to T given the past values of the zi from 
time-step 1 to t0 − 1 . It is assumed that the model distribution Q�(zi,t0∶T ∣ zi,1∶t0−1) 
consists of a product of likelihood factors. The latter are maximized to train a deep 
neural network (RNN) that learns the distributions’ parameters. Several samples can 
be easily generated from the estimated distribution in an MC fashion. Moreover, this 
algorithm can be trained with several similar time-series simultaneously, enabling 
cross-learning between them.

This algorithm has been applied successfully in several business sectors and real-
life scenarios, such as food safety (Makridis et al. 2020), where a set of probabilistic 
techniques were introduced to provide insights regarding potential food recalls, in 
retail sector predicting the number of sales per product (Khan et  al. 2020) and in 
industry estimating electricity demand (Wu et al. 2020). This innovative algorithm 
has been complemented with additional features as part of the overall framework 
presented in this paper. These features (such as the portfolio-level predictions and 
the continuous learning) were deemed essential to successfully utilize DeepVaR in 
the finance sector. The framework predicts VaR of FX portfolios, where the indi-
vidual time-series share similar dependencies and the overall goal is to draw the 
portfolio’s returns distribution.

Furthermore, DeepVaR proposes a continuous learning approach instead of a 
classical machine learning pipeline where the model is trained once and for several 
hours in a large dataset. Contrastingly, in DeepVaR, the model is retrained on the 
latest market data, addressing the dynamic nature of financial data while avoiding 
at the same time model bias and drift, serial correlation between VaR estimations 
and clustered VaR violations (Mehrabi et  al. 2021). To this end, DeepAR param-
eters were optimized to enable model training in a timely manner ( < 13 s), making it 
applicable even for intra-day VaR estimations.

As depicted in Fig. 1 and further analyzed in terms of sequence flows by Algo-
rithm  1, the DeepVaR framework performs estimations on asset-level (i.e., for a 

Fig. 1   Conceptual architecture of DeepVaR framework
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single VaR) at each time-step t. Historical market prices xi from t0 to t − 1 of mul-
tiple instruments i are ingested into the framework simultaneously. During the data 
preprocessing step, the input data are initially resampled to match the frequency 
of the selected VaR time horizon and then are transformed to log-returns ( ri,t ). For 
example, in the case of minute data and daily VaR selection, the input time-series is 
transformed to daily log-returns. The latter is used to train the DeepAR model and 
to estimate the distribution of each time-series (i.e., asset-level) for time-step t. With 
the distribution of the assets’ returns available, VaRi,t can be obtained from Eq. 3. In 
the last step, portfolio-level predictions, i.e., portfolio VaRp,t is estimated based on 
the returns variance–covariance matrix, VaRi,t and the input weight on each asset 
(see Sect. 5 for more details). It is also noted that the process of calculating VaRp 
from VaRi requires only matrices multiplications (see Eq. 15). Thus, no training is 
required and, therefore, the overall process is quite time-efficient. Thus, DeepVaR 
could be also used for what-if analysis comparing portfolios’ risk against the differ-
ent weights on input assets/instruments.
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Algorithm 1 VaR prediction using the DeepVaR framework
1: Input
2: X Historical Prices ∈ RT×N

3: w Portfolio weights ∈ R1×N

4: freq Time horizon of VaR
5: α VaR confidence probability
6: Output
7: V aRα

p Portfolio VaR estimation

8: Data Preprocessing
9: prices ⇐ resamble(X, freq)

10: returns ⇐ log(1 + pct change(prices))
11: returns ⇐ dropna(returns)
12: train ds ⇐ returns[−900 :, :] comment: training dataset
13: R ⇐ cov(train ds[−125 :, :]) comment: variance covariance matrix
14: Model training and forecasting
15: model ⇐ DeepAREstimator(predictionLength = 1,

contextLength = 15,
freq = freq,
numLayers = 2,
dropoutRrate = 0.1,
cellType = ”lstm”,
numCells = 50,
trainer = Trainer(epochs = 5, lr = 0.0001, numBatchesPerEpoch =
50))

16: estimator ⇐ train(model, train ds)
17: pred ⇐ predict(estimator, num samples = 1000)
18: Calculate portfolio V aRα

p

19: lower q ⇐ quantile(pred, q = 1− α, axis = 0)
20: upper q ⇐ quantile(pred, q = α, axis = 0)
21: V ⇐ Array([1, 4]) comment: initialize empty array
22: for i in Range(N) do
23: if w[i] < 0 then
24: V [i] ⇐ w[i]× lower q[i]
25: else
26: V [i] ⇐ w[i]× upper q[i]
27: end if
28: end for
29: V aRα

p ⇐ −Sqrt(V ×R× V T )

Additionally, due to noisy data, the initialization of the weights of the RNN 
model, which is random due to the stochastic nature of this optimization process, 
had quite an impact on the performance. This pitfall is common when noisy data 
are concerned as multiple local minima in the loss surface exist. This is quite chal-
lenging as the loss surfaces are generally non-convex and may have multiple saddle 
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points making it difficult to achieve model stability. To tackle this challenge, dif-
ferent models (10 in total) with different random seeds (i.e., initial weights) were 
trained and ensembled as a Bagging model, as proposed by Montavon et al. (2012). 
All these models share the same hyper-parameters such as 900 observations train-
ing set, 5 epochs, 1-day prediction length, and 15-day context length, and were 
fine-tuned using grid-search technique and intuition, as a fundamental step of the 
machine learning pipeline. Moreover, the selected model features the ADAM opti-
mizer (Kingma and Ba 2014) with the learning rate set to 0.0001, 2 LSTM layers 
with 50 cells each, and dropout 10%.

3.2 � Evaluation approach

In this section, a brief description of the employed baseline models is initially given, 
and then, the utilized data along with the portfolio contraction procedure are ana-
lyzed. Considerable emphasis is also given on both the evaluation metrics and the 
statistical tests that enable the comparison between several VaR models.

3.2.1 � Baseline techniques

Towards evaluating the proposed DeepVaR framework, a comparison against the 
four most used VaR estimation techniques and one deep learning model was per-
formed. A short description of these techniques follows.

GARCH type models have been widely used for VaR estimation, producing con-
siderably well results in exchange rate data (So and Philip 2006). Such models can 
capture the time-varying volatility feature characterizing financial time-series. Thus, 
a GARCH model can be utilized to predict the future volatility of the returns. Since 
GARCH(1,1) model was found to be adequate to many financial time-series (Boller-
slev et al. 1992), we have chosen it as one of the three baseline models, which can be 
described as

Future returns rt+1 can be obtained by estimation of the parameters �, �, � in Eq. 6 
using the maximum-likelihood method. To have comparable results to the Deep-
VaR, the parameters of GARCH(1, 1) model are estimated over a sample of 900 
observations.

The second baseline technique refers to the RM model for VaR estimation. As 
proposed in Longerstaey and Spencer (1996), it is a GARCH(1,1) variant, modeling 

(4)rt =� + �t,

(5)�t =�tet, et ∼ N(0, 1),

(6)�2
t
=� + ��2

t−1
+ ��2

t−1
.
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the volatility of returns at the next time-step as exponential weighted moving aver-
age of the past volatilities �2

t
= ��2

t−1∣t−2
+ r2

t−1
(1 − �), � = 0.94 , while the mean of 

returns � considered is equal to zero. The value of the decay factor � implies that the 
effective historical data to forecast future volatility are approximately 74 days.

The third baseline technique, HS, uses a configurable number of past historical 
observations to calculate the portfolio’s the actual percentiles of this observation 
period as value-at-risk measures. For example, for an observation period of 1000 
days, the 99th percentile HS value-at-risk measure is the 11th largest loss observed 
in the sample of 1000 outcomes (because the 1 percent of the sample that should 
exceed the risk measure equates to 10 losses) (Hendricks 1996). The effective his-
torical window for the HS model was fine-tuned to 1000 days.

In addition, an MC-based VaR model has been employed to evaluate the perfor-
mance of the proposed solution, which also includes an MC procedure. The MC 
model produces random samples from the normal distribution to estimate the future 
distribution of the portfolio returns. The generated distribution is then used to calcu-
late VaR. The input parameters (i.e., �, �2 ) for the MC model have been calculated 
from the last 900 historical data that offered better performance in comparison to a 
lower number of historical observations.

Another baseline technique baseline technique leverages Bidirectional Generative 
Adversarial Networks (BiGAN) (Donahue et al. 2016) towards modeling the joint 
probability distribution of the portfolio returns without the need to specify their dis-
tribution explicitly. The BiGAN consists of three neural networks, a generator (G) 
that learns to produce realistic synthetic samples from the latent space z, an encoder 
(E) which learns to map data x to latent representations z, and a discriminator (D) 
distinguishing jointly real from synthetic samples and real from synthetic encod-
ings. After the BiGAN training, the generator is used to produce samples that will 
be close to the actual returns’ distribution, and based on them, VaR is obtained. The 
utilized BiGAN, based on the code available in GitHub,1 was evaluated following 
the continuous learning approach (i.e., retraining the model at each new data obser-
vation) introduced by the DeepVaR framework. To have comparable results to the 
DeepVaR, the selected training data size was set to 900 data points, while 75 epochs 
were required to calibrate the binary cross-entropy loss of BiGAN components.

3.2.2 � Dataset description

In the context of the evaluation of the proposed approach against the baseline tech-
niques, the four FX instruments (AUDUSD, GBPUSD, USDJPY, and EURUSD) 
with the highest liquidity among the rest have been chosen as the underly-
ing dataset. Specifically, the dataset consists of daily close prices, ranging from 
2007/01/01 to 2020/12/18, with the data being obtained from http://​www.​eatra​
dinga​cademy.​com. The daily prices, represented as time-series, were transformed 
to log-returns to make them stationary, while the VaR predictions are measured in 
this scale.

First, the 1-day VaR of each FX pair is calculated from 2018/01/01 to 2020/12/18 
in a rolling window prediction format with this time period serving also as test 
1  https://​github.​com/​hamaa​dshah/​market_​risk_​gan_​tenso​rflow.

http://www.eatradingacademy.com
http://www.eatradingacademy.com
https://github.com/hamaadshah/market_risk_gan_tensorflow
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dataset for the models’ evaluation. The training window, for the DeepVaR, BiGAN, 
and GARCH models, was set to 900 data points consisting of the latest 900 daily 
log-returns of each FX asset (see also Fig. 2). For the HS model, the historic win-
dow was fine-tuned to 900 days, contrary to RiskMetrics, where only the last 74 
days were taken into account.

Second, to increase the reliability of our results, 1000 portfolios have been cre-
ated reflecting the historical behavior of 1000 different traders. The asset alloca-
tion in each of these portfolios was generated randomly and expressed as different 
proportions of the four FX instruments. These portfolios may include both long 
and short positions (i.e., positive and negative weighting coefficients), while the 
sum of the absolute weights is equal to one. It should be mentioned that limita-
tions derived from Modern Portfolio Theory (Francis and Kim 2013) regarding 
the generation of the portfolios are out of the scope of this research as they do not 
affect its findings.

Finally, both the VaRp baseline models and the proposed approach were evaluated 
for the period from 2018-01-01 to 2020-12-18, applying an 1-day rolling window 
forecast. To this end, the previous 125 days were used to calculate the correlation 
between the VaRi’s, interpolating the latter to a VaRp.

Fig. 2   Training dataset for rolling window VaR estimation
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3.2.3 � Evaluation metrics

This section describes the evaluation metrics utilized to assess the proposed Deep-
VaR approach. These metrics are key towards interpreting the outcomes of the back-
testing, as each one highlights different aspects of the results.

To begin with, a common variable in most of evaluation metrics is the Hit Vari-
able associated with the ex-post observation of a VaR exception at time t is denoted 
as It where

Expected violations: are the maximum number of allowed exceedances (i.e. 
VaR > PnL ). It is defined by the confidence probability � of VaR and the number of 
the days in the examined period.

The Expected Violations (E[v]) of VaR� are

Number of violations: the number of the VaR violations is denoted as Nviolations.

Violation rate: the ratio of the Number of Violations over the examined period. This 
number should be less than the 1 − � to have a VaRa model with good coverage.

Quadratic Loss ( lQL ): takes into account the quadratic magnitude of the exceedances

Smooth loss ( lQ ) (González-Rivera et  al. 2004): is a loss function that penalizes 
more heavily with weight (1–a) the observations for which PnL − VaR < 0 . Smaller 
lQ indicates a better goodness of fit

where d = 25 , m = PnLt − VaR�

t
.

Tick loss ( lT ): this loss penalizes exceedances with weight � and non-exceedances 
with weight 1 − � , meaning that more conservative VaR estimations are producing 
higher Tick Loss

(7)It =

{
1, if VaRt > PnLt

0, otherwise.

(8)E[v] = (1 − �)Ndays.

(9)Nviolations =

T∑
t=1

It.

(10)rViolations =
NViolations

Ndays

.

(11)lQL =

N∑
t=1

It(1 + (PnLt − VaRt)
2).

(12)lQ =
1

N

N∑
t=1

(� − (1 + edm)−1)m,
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Firm loss ( lF ) (Sarma et al. 2003): VaR is generally used by firms for internal risk 
management. However, there is a trade-off between the risk minimization and the 
profit maximization. A VaR estimator which reported ‘too high’ values of VaR 
would force the firm to hold ‘too much’ capital, imposing the opportunity cost of 
capital upon the firm

where a measures the opportunity cost of capital and it was set equal to 1.
Additionally, according to Christoffersen (1998), VaR forecasts are valid if and 

only if the violation process It satisfies the following two assumptions: (i) The 
unconditional coverage (UC) hypothesis: the unconditional probability of a violation 
must be equal to the � coverage rate. (ii) The independence (IND) hypothesis: VaR 
violations observed at two different dates must be independently distributed

In the frame of our research, validity of these assumptions is tested by exploiting 
both the Christoffersen conditional coverage test and the Dynamic Quantile (DQ) 
test proposed by Engle and Manganelli (2004). The former jointly examines whether 
the percentage of exceptions is statistically equal to the one expected and whether 
VaR violations are serially independent. This is achieved by an independence test, 
which aims to reject VaR models with clustered violations. The likelihood ratio 
statistic of the conditional coverage test is LRcc = LRuc + LRind , which is asymp-
totically distributed X2 , and the LRind statistic is the likelihood ratio statistic for the 
hypothesis of serial independence against the first-order Markov dependence. The 
latter examines whether the exception indicator It is uncorrelated with any variable 
that belongs to the information set Ωt−1 available when the VaR was calculated.

The main argument (hypothesis) of this work is that an RNN-based model is able 
to predict the future returns of the input time-series more accurately than well-estab-
lished econometric models. The second argument lies in the fact that the utilized 
DeepAR model is fed with all the input time-series simultaneously, enabling cross-
learning between them. As a result, changes in the dynamics of the one time-series 
may affect the predicted distributions of the other time-series.

(13)lT =

N∑
t=1

(� − It)(PnLt − VaR�

t
).

(14)lF =

{
(PnLt − VaRt)

2, if PnLt < VaRt

−aVaRt, otherwise,

Table 1   Mean running time to 
estimate VaR quantiles

Model 1 Asset (s) 4 Assets (s) Rel. Difference (%)

DeepAR 12.457834 12.533903 0.61
HS 0.000201 0.000398 98.01
RM 0.003418 0.013461 293.83
GARCH 0.009435 0.038732 310.51
BiGAN 20.467264 20.947305 2.35
MC 0.000567 0.002108 271.78
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Table 2   Performance of VaR99% models in AUDUSD series

Values in bold indicate the model(s) with the best performance per evaluation metric (column)

Model E[v] v rv lQL lQ lT lF

DeepVaR 9.28 5 0.00539 0.00539 − 0.00632 0.00020 0.02334
HS 9.28 15 0.01616 0.01617 −0.00519 0.00022 0.02923
RM 9.28 21 0.02263 0.02263 −0.00472 0.00021 0.03457
GARCH 9.28 17 0.01832 0.01832 −0.00488 0.00020 0.03059
BiGAN 9.28 20 0.02155 0.02155 −0.00502 0.00023 0.03403
MC 9.28 18 0.01940 0.01940 −0.00489 0.00022 0.03149

Table 3   Coverage and independence tests of VaR99% models in AUDUSD series

The p values are in brackets

Model LRuc LRind LRcc DQ

DeepVaR 2.386 [0.122] 0.054 [0.816] 2.441 [0.295] 2.158 [0.905]
HS 3.014 [0.083] 10.682∗∗ [0.001] 13.696∗∗ [0.001] 124.125∗∗ [0.0]
RM 11.036∗∗ [0.001] 2.931 [0.087] 13.966∗∗ [0.001] 31.907∗∗ [0.0]
GARCH 5.224∗ [0.022] 1.013 [0.314] 6.237∗ [0.044] 17.616∗∗ [0.007]
BiGAN 9.424∗∗ [0.002] 7.211∗∗ [0.007] 16.635∗∗ [0.0] 106.141∗∗ [0.0]
MC 6.512∗ [0.011] 8.445∗∗ [0.004] 14.957∗∗ [0.001] 108.176∗∗ [0.0]

Table 4   Performance of VaR99% models in GBPUSD series

Values in bold indicate the model(s) with the best performance per evaluation metric (column)

Model E[v] v rv lQL lQ lT lF

DeepVaR 9.28 7 0.00754 0.00754 − 0.00617 0.00019 0.02454
HS 9.28 8 0.00862 0.00862 −0.00557 0.00020 0.02280
RM 9.28 22 0.02371 0.02371 −0.00467 0.00021 0.03530
GARCH 9.28 14 0.01509 0.01509 −0.00485 0.00019 0.02710
BiGAN 9.28 16 0.01724 0.01724 −0.00502 0.00022 0.02969
MC 9.28 13 0.01401 0.01401 −0.00508 0.00021 0.02663

Table 5   Coverage and independence tests of VaR99% models in GBPUSD series

The p values are in brackets

Model LRuc LRind LRcc DQ

DeepVaR 0.613 [0.434] 4.258∗ [0.039] 4.871 [0.088] 27.815∗∗ [0.0]
HS 0.184 [0.668] 3.713 [0.054] 3.897 [0.142] 31.297∗∗ [0.0]
RM 12.745∗∗ [0.0] 0.366 [0.545] 13.11∗∗ [0.001] 36.725∗∗ [0.0]
GARCH 2.108 [0.147] 1.623 [0.203] 3.731 [0.155] 35.0∗∗ [0.0]
BiGAN 4.055∗ [0.044] 4.868∗ [0.027] 8.923∗ [0.012] 98.703∗∗ [0.0]
MC 1.347 [0.246] 6.491∗ [0.011] 7.838∗ [0.02] 77.377∗∗ [0.0]
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Table 6   Performance of VaR99% models in USDJPY series

Values in bold indicate the model(s) with the best performance per evaluation metric (column)

Model E[v] v rv lQL lQ lT lF

DeepVaR 9.28 8 0.00862 0.00862 − 0.00493 0.00015 0.02146
HS 9.28 11 0.01185 0.01185 −0.00489 0.00016 0.02387
RM 9.28 24 0.02586 0.02586 −0.00366 0.00015 0.03456
GARCH 9.28 13 0.01401 0.01401 −0.00396 0.00013 0.02351
BiGAN 9.28 12 0.01293 0.01293 −0.00439 0.00016 0.02354
MC 9.28 12 0.01293 0.01293 −0.00460 0.00016 0.02411

Table 7   Coverage and independence tests of VaR99% models in USDJPY series

The p values are in brackets

Model LRuc LRind LRcc DQ

DeepVaR 0.184 [0.668] 0.139 [0.709] 0.324 [0.851] 2.857 [0.827]
HS 0.308 [0.579] 2.477 [0.116] 2.785 [0.248] 49.276∗∗ [0.0]
RM 16.439∗∗ [0.0] 0.207 [0.649] 16.646∗∗ [0.0] 36.755∗∗ [0.0]
GARCH 1.347 [0.246] 0.37 [0.543] 1.717 [0.424] 8.448 [0.207]
BiGAN 0.743 [0.389] 7.143∗∗ [0.008] 7.886∗ [0.019] 81.484∗∗ [0.0]
MC 0.743 [0.389] 2.159 [0.142] 2.902 [0.234] 45.667∗∗ [0.0]

Table 8   Performance of VaR99% models in EURUSD series

Values in bold indicate the model(s) with the best performance per evaluation metric (column)

Model E[v] v rv lQL lQ lT lF

DeepVaR 9.28 2 0.00216 0.00216 − 0.00508 0.00014 0.01501
HS 9.28 4 0.00431 0.00431 −0.00459 0.00014 0.01539
RM 9.28 14 0.01509 0.01509 −0.00362 0.00013 0.02354
GARCH 9.28 5 0.00539 0.00539 −0.00404 0.00013 0.01494
BiGAN 9.28 8 0.00862 0.00862 −0.00404 0.00014 0.01814
MC 9.28 7 0.00754 0.00754 −0.00416 0.00014 0.01738

Table 9   Coverage and independence tests of VaR99% models in EURUSD series

The p values are in brackets

Model LRuc LRind LRcc DQ

DeepVaR 8.463∗∗ [0.004] 0.009 [0.926] 8.472∗ [0.014] 5.786 [0.448]
HS 3.846 [0.05] 0.035 [0.852] 3.881 [0.144] 29.349∗∗ [0.0]
RM 2.108 [0.147] 0.429 [0.512] 2.537 [0.281] 9.598 [0.143]
GARCH 2.386 [0.122] 0.054 [0.816] 2.441 [0.295] 22.326∗∗ [0.001]
BiGAN 0.184 [0.668] 0.139 [0.709] 0.324 [0.851] 26.285∗∗ [0.0]
MC 0.613 [0.434] 0.107 [0.744] 0.72 [0.698] 28.095∗∗ [0.0]
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The evaluation of the examined models in the following section proves that: (i) 
DeepVaR is able to capture (i.e., predict) the abrupt changes of the input time-series, 
and (ii) DeepVaR is the only model that avoids clustered VaR violations due to its 
non-linear nature, which also allows the proposed model to report uncorrelated VaR 
estimations.

3.2.4 � Experiment details

GluonTS Alexandrov et al. (2019), Tensorflow Abadi et al. (2015), and arch Shep-
pard (2020) python libraries were utilized for the development of DeepVaR, BiGAN, 
and GARCH models, respectively, with NumPy (Harris et  al. 2020) opted for the 
rest baseline models. Experiments are run on a desktop computer with an AMD 
Ryzen 5 5600x 6-Core CPU, 32GiB of RAM, and an NVIDIA GeForce RTX 3070 
GPU. However, neural network training is performed in the CPU, and thus, further 
improvement in DeepVaR training time is feasible. Table 1 summarizes the required 
mean time in seconds per model to obtain the quantiles (e.g., q1, q99 ) needed for 
the VaR estimation of both single and four assets portfolios. The fourth column of 

(a) DeepVaR (b) HS

(c) RM (d) GARCH

(e) BiGAN (f) MC

Fig. 3   AUDUSD: VaR99% performance per model. In each figure, the VaR estimation of each model 
(black line) is depicted against the true PnL (green and yellow dots, for positive and negative returns, 
respectively). The red dots represent the VaR violations
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the table indicates the relative difference in calculation time between the two differ-
ent input sizes. According to these findings, it is obvious that despite the fact that 
deep learning-based models require significantly more time to estimate VaR than 
the other models, that time ( ≈ 12.5s ) is very low, enabling VaR estimation even for 
intra-day trading applications. Moreover, the input size has a minimal effect on deep 
learning models’ training time which leverage matrices operations to parallelize 
computations. In contrast, estimation time in econometric models such as GARCH 
is linearly dependent on the number of the input time-series.

4 � Univariate VaR performance

In this section, initially, we present the VaR estimations for each FX asset sepa-
rately for the period 2018-01-01 to 2020-12-18, following the dataset descriptions 
Sect. 3.2.2. Tables 2, 3, 4, 5, 6, 7, 8, 9 and Figs. 3, 4, 5, 6 summarize the perfor-
mance of each model. In each figure, the VaR estimation of each model (black line) 
is depicted against the true portfolio returns (green and yellow dots, for positive 

(a) DeepVaR (b) HS

(c) RM (d) GARCH

(e) BiGAN (f) MC

Fig. 4   GBPUSD: VaR99% performance per model. In each figure, the VaR estimation of each model 
(black line) is depicted against the true PnL (green and yellow dots, for positive and negative returns, 
respectively). The red dots represent the VaR violations
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and negative returns, respectively). The red dots are the VaR violations. The com-
plementary tables following each model’s presentation contain the aforementioned 
evaluation metrics and statistical tests.

The first time-series under consideration is the AUDUSD currency pair which is 
characterized by very strong liquidity due to the large amount of Australian exports. 
As depicted in Table 2, the DeepVaR model outperforms the rest of the models in 
this time-series, having the lowest loss over all the examined loss metrics. Addition-
ally, according to Table 3, which presents the results of Christoffersen and DQ tests 
for 99% VaR estimation, all the models, except DeepVaR, have been rejected for not 
having the “correct unconditional coverage”. These outcomes can also be seen in 
Fig. 3. The advantage of the DeepVaR model emerges from the fact that it adapts to 
stricter VaR estimates as AUDUSD volatility increases, while classic VaR models 
suffer from clustered VaR violations (e.g., at the end of May 2021).  

The next examined FX instrument is GBPUSD associated with two of the largest 
western economies with very strong trading relationships. According to Table 4, the 
DeepVaR model has the lowest number of violations, quadratic, smooth, and tick 
loss, while the GARCH model shares similar performance to DeepVaR in terms of 

(a) DeepVaR (b) HS

(c) RM (d) GARCH

(e) BiGAN (f) MC

Fig. 5   USDJPY: VaR99% performance per model. In each figure, the VaR estimation of each model (black 
line) is depicted against the true PnL (green and yellow dots, for positive and negative returns, respec-
tively). The red dots represent the VaR violations
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tick loss, with the HS model illustrating the lowest firm loss. Figure 4 indicates that 
DeepVaR and HS fail to capture the negative returns almost at the same dates, while 
the other two models have more frequent VaR violations. Results in Table 5 denote 
that all the models, except from the RiskMetrics model, passed the Christoffersen’s 
test; however, all the examined models failed in the DQ test. Thus, the VaR viola-
tions of each model in GBPUSD time-series are serially dependent, although Fig. 4 
shows that this issue is more pronounced in the RM and GARCH models.

VaR is also estimated for the US Dollar to Japanese Yen currency pair (USD-
JPY) which is the second most commonly traded pair after EURUSD. Gen-
erally, USDJPY has very high liquidity; however, JPY can also be viewed as a 
‘safe haven’ currency during periods of global economic uncertainty. As shown 
in Table  6, DeepVaR model has the best overall performance, besides tick loss 
where the GARCH model performs better. As far as the coverage and independ-
ence tests illustrated in Table  7, both the DeepVaR and the GARCH models 
showcase promising results. However, only DeepVaR has less VaR violations 
than the nominal threshold. It is also noted that DeepVaR reports stricter VaR 
estimates than the rest of the models during the high volatility period in May 

(a) DeepVaR (b) HS

(c) RM (d) GARCH

(e) BiGAN (f) MC

Fig. 6   EURUSD: VaR99% performance per model. In each figure, the VaR estimation of each model 
(black line) is depicted against the true PnL (green and yellow dots, for positive and negative returns 
respectively). The red dots represent the VaR violations
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2020, as shown in Fig. 5. This is due to the shared dependencies between the four 
examined time-series during the training of the DeepAR algorithm.

The last utilized currency pair, EURUSD, is the most widely traded forex pair 
in the market as it comprises the currencies of two of the world’s biggest econo-
mies. The results of the various loss metrics are summarized in Table 8. Deep-
VaR presents the lowest quadratic and smooth loss, as well as the fewest VaR vio-
lations. GARCH model performed better than the other models in terms of tick 
and firm loss. In addition, Table  9 shows that all models passed Christoffersen 
coverage and independence test, but only DeepVaR and RM succeeded in the DQ 
test. Finally, Fig. 6 shows that DeepVaR is the only model that did not suffer any 
VaR violation during the EURUSD volatility shift in May 2020.

All the aforementioned results, for each of the FX time-series, could be 
explained by the individual characteristics of the examined models, with the 
adaptation of each model to the returns’ volatility being the most influential. The 
VaR models that fit closer to the true returns would potentially suffer from VaR 
breaches, while the ones that generalize better would produce a greater firm loss 
(Sect. 3.2.3).

More specifically, as stated in Sect. 3.2.1, the HS model uses the last 1000 his-
torical returns of the input time-series to estimate VaR. As a result, in order for 
the HS to alter to a stricter estimation, the most recent daily returns would have to 
be lower than the worst 10 (for 99% confidence interval) of the 1000-day histori-
cal window. Using such a large history, HS is able to capture most of the nega-
tive returns. However, in case of a sudden and permanent change in volatility, the 
adaptation of this model to the new inputs would be slow. This is also evident in 
Figs. 3, 4, 5 and 6 with HS being a straight line for long periods of time. Similar 
are the findings for the MC model as its input parameters (i.e., �, �2 ) have been 
derived from the last 900 historical data.

As for the BiGAN model, Figs. 3, 4, 5 and 6 illustrate that the estimated VaR 
oscillates heavily between a short range of values as the generated distributions 
slightly variate between each day of the testing period. However, BiGAN fails 
to capture the sudden negative returns, indicating that this model could not effi-
ciently predict VaR in the case of rare financial events.

On the other hand, the other two baseline models are both GARCH(1,1) type 
which are capable of capturing the time-varying volatility of returns. Although, 
their main difference is the historical data used to estimate their parameters. 
The effective historical data for the RM is set to 74 days, while for the GARCH 
model is 900 (Sect. 3.2.1) containing information from a quite larger informa-
tion set. This explains the fact that the RM prediction is closer to the true PnL 
than the GARCH and HS models, producing the most VaR violations, for all the 
examined time-series, among the utilized models.

This trade-off between VaR model validity and adaptation to time-series vari-
ance is mitigated by DeepVaR. The latter, being trained for a period of 900 days, 
predicts the parameters of the returns distribution based on the last 15 values 
(context length) of the input series. In such way, DeepVaR is able to both “mem-
orize” past information during training and optimally capture the time-series 
volatility using recent data for parameters’ estimation.
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5 � Multivariate VaR performance

Apart from the univariate evaluation of each VaR estimation method, the perfor-
mance of each model was evaluated in a realistic multivariate perspective, hence 
in the context of 1000 random portfolios. These portfolios were created randomly 
by producing both positive and negative positions on the aforementioned FX assets, 
with the absolute sum of the positions(weights) to be equal to one. It should be men-
tioned that these portfolios have not any “hold” position, which means that every 
time all available capital is allocated. This approach is not far from the real-life port-
folio management as it is a common strategy towards minimizing commission fees. 
In addition, no commission fees or extra charges were taken into consideration to 
simplify the evaluation schema, given that they could be modeled as a constant com-
mon term in every VaR model without affecting the results drastically. On the con-
trary, to compute the VaR of a portfolio, the correlation � among the FX instruments 
should be taken into account (Longerstaey and Spencer 1996). In this case, the VaR 
of a portfolio for a given day can be estimated by Eq. 15

where V is a vector of the weighted VaR estimates per instrument V = [w1VaR
�

1
,

w2VaR
�

2
,w3VaR

�

3
,w4VaR

�

4
] and R is the correlation matrix of FX assets’ daily 

returns, with the last 125 daily returns of the assets to be taken into account for the 
calculation of R matrix

Furthermore, for long positions ( wi > 0 ) VaR�

i
 is used, while for short positions 

( wi < 0 ) VaR1−�
i

 , where � the confidence probability of VaR estimation and i is the 
corresponding FX asset. The procedure of portfolio VaR estimation is summarized 
in Algorithm 2.

(15)VaR�

p
=

√
VRVT ,

R =

⎛
⎜⎜⎜⎝

1 �1,2 �1,2 �1,4
�2,1 1 �2,3 �2,4
�3,1 �3,2 1 �3,4
�4,1 �4,2 �4,3 1

⎞
⎟⎟⎟⎠
.

Table 10   Average performance of VaR99% models over the FX portfolios

Values in bold indicate the model(s) with the best performance per evaluation metric (column)

Model E[v] v rv lQL lQ lT lF

DeepVaR 9.28 2.90310 0.00319 0.00313 − 0.00427 0.00011 0.01351
HS 9.28 7.29 0.00784 0.00784 −0.00361 0.00011 0.01618
RM 9.28 12.14 0.01308 0.01308 −0.00305 0.00010 0.02002
GARCH 9.28 8.61 0.00928 0.00928 −0.00321 0.00010 0.01660
BiGAN 9.28 11.51 0.01240 0.01240 −0.00320 0.00011 0.01966
MC 9.28 10.31 0.01111 0.01111 −0.00327 0.00011 0.01854
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Table 11   Percentage of 
portfolios passed the coverage 
and independence tests of 
VaR99% per model in significant 
level 95%

Values in bold indicate the model(s) with the best performance per 
evaluation metric (column)

Model LRuc LRind LRcc DQ

DeepVaR 72.8 95.5 80.6 84.6
HS 76.9 72.0 59.5 36.7
RM 65.2 95.3 68.3 55.9
GARCH 76.5 92.9 77.5 63.0
BiGAN 64.3 71.5 53.5 26.1
MC 70.4 68 54.8 26.7

(a) Violation Rate (b) Quadratic Loss

(c) Smooth Loss (d) Tick Loss

(e) Firm Loss

Fig. 7   Box-plots of the VaR99% performance per model over 1000 random portfolios. Each sub-figure 
refers to a different loss function. a and b Show that DeepVaR is the only model having violation rate 
and quadratic loss lower than 1-� (i.e., 0.01) confidence probability over most of the random portfolios. 
In terms of Smooth Loss (c), the superiority of DeepVaR over the rest of the models is evident. Tick loss 
(d) is the only metric where DeepVaR under-performs compared to the rest of the models. e Presents the 
results of VaR estimation firm loss, with DeepVaR to be the winning model
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Algorithm 2 Portfolio VaR rolling window estimation

1: Generate random portfolio weights w ∈ R1×4

2: Set confidence probability a (i.e. α = 0.99) of V aR estimation
3: Set window tw = 125, for the calculation of returns correlation matrix

R ∈ R4×4

4: Split FX returns to train Rtrain ∈ R125×4 and test set Rtest ∈ R928×4

5: for test day t = 1 to T do
6: R ⇐ corr(Rtrain)
7: for m in models do
8: Initialize zero vector V ∈ R1×4

9: for i in w do
10: if wi < 0 then
11: Vi ⇐ wiV aR1−α

i,m,t

12: else
13: Vi ⇐ wiV aRα

i,m,t

14: end if
15: end for
16: V aRα

m,t ⇐ −
√
V RV T

17: end for
18: Append Rtest[t] to Rtrain

19: PnLt ⇐
∑4

i=1 wiRtrain,i[−1]
20: end for

Finally, the average performance of each model over the random portfolios is 
summarized in Table 10. As presented in this table, DeepVaR achieved by far the 
lowest loss in all loss functions included, besides tick loss. Table 11 illustrates the 
percentage of the random portfolios per model passed the coverage and independ-
ence tests, depicting that DeepVaR is by far the most valid model.

Moreover, the loss metrics are depicted in box-plots (Fig. 7) to provide a better 
overview of the VaR models’ performance over several random portfolios. Specifi-
cally, Fig. 7a shows that DeepVaR is the only model having a violation rate lower 
than 1 − � (i.e., 0.01) confidence probability over most of the portfolios. The vio-
lation rate of the other three models examined is highly dependent on the portfo-
lio composition, while in some cases, the violation rate is significantly higher than 
the nominal threshold. Similar findings are derived from Quadratic Loss function 
(Fig. 7b).

In terms of Smooth Loss, which penalizes more heavily VaR violations, the supe-
riority of DeepVaR over the rest of the models is evident (Fig. 7c). As far as the Tick 
Loss is concerned, this is the only metric where DeepVaR under-performs compared 
to the other models. However, DeepVaR has stable tick loss regardless of the port-
folio, while in the other models, this metric has higher volatility among the different 
portfolios.

The last examined loss function, Firm Loss, takes into account the opportunity 
cost of capital, where firms would unnecessarily reserve capital according to the 
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VaR estimates of their portfolios. Figure 7e presents the results of VaR estimation 
firm loss for all the portfolios, with DeepVaR to be again the winning model.

6 � Conclusions

This paper aims at addressing one of the main challenges in the financial sector, 
which is the constant search and development of more accurate risk estimation mod-
els. The utilization of Deep Neural Networks tools and techniques can introduce an 
innovative approach for VaR estimation, aiming towards a robust risk management 
framework.

To this direction, different parametric semi-parametric and non-parametric VaR 
estimation approaches were incorporated as baseline models, while an innovative 
framework based on a probabilistic Deep Neural Network was analyzed and com-
pared against the baseline ones. The proposed framework yields better results in 
terms of the utilized evaluation metrics. More specifically, it is more effective than 
the others in terms of VaR violations and excess loss beyond the VaR threshold, 
while at the same time, it permits financial institutions to reserve less capital on 
liquid assets compared to the classical approaches. Additionally, the framework has 
the capability to incorporate other VaR models through the framework’s modularity.

Future work will focus on improving the efficiency of the proposed probabilistic 
approach in terms of high-frequency trading. To achieve the latter, intra-day data 
should be leveraged along with parallel and distributed computing techniques. It 
should also be highlighted that the hyper-parameter tuning of any deep neural net-
work is a highly time-consuming task requiring extensive computational resources 
(Diaz et al. 2017). As a result, only a specific range of them, based on randomized 
grid search of the hyper-parameter space, was tested and evaluated in the context of 
our research, while further improvement of the model performance may be achieved 
through further hyper-parameters tuning. Finally, additional sources of complemen-
tary information could be integrated for improved results, such as sentiment analysis 
on texts (i.e., tweets and financial news) which may have an impact on the market 
movements.
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