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Abstract
This article is an introduction to machine learning for financial forecasting, plan-
ning and analysis (FP&A). Machine learning appears well suited to support FP&A 
with the highly automated extraction of information from large amounts of data. 
However, because most traditional machine learning techniques focus on forecasting 
(prediction), we discuss the particular care that must be taken to avoid the pitfalls of 
using them for planning and resource allocation (causal inference). While the naive 
application of machine learning usually fails in this context, the recently developed 
double machine learning framework can address causal questions of interest. We 
review the current literature on machine learning in FP&A and illustrate in a simula-
tion study how machine learning can be used for both forecasting and planning. We 
also investigate how forecasting and planning improve as the number of data points 
increases.
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1  Introduction

Accurate financial forecasts and plans for effective and efficient resource allocation 
are core deliverables of the finance function in modern companies. Particularly, in 
volatile or fast-evolving market environments, fast and reliable forecasting and plan-
ning are crucial (Becker et al. 2016). High-quality forecasting is among the defining 
characteristics of strong finance functions (Roos et al. 2020). It is therefore hardly 
surprising that most larger companies have dedicated teams for financial planning 
and analysis (FP&A) within their finance function.

The increasing availability of big data, coupled with new analysis techniques, 
provides an opportunity for FP&A to generate more and better insights at a faster 
pace, generating more value for the company. Machine learning is a set of tech-
niques developed in computer science and statistics that appear particularly well 
suited to this context. The aim of our paper is to show how machine learning can 
be used for FP&A and which pitfalls can arise in the process. Machine learning has 
been applied successfully to a variety of predictive tasks, including fraud detec-
tion and financial forecasting. Planning and resource allocation, however, represent 
tasks of a different nature, because they require understanding the effect of an active 
intervention in a system, such as the market for a product. For this reason, they are 
causal problems, which are harder to model with machine learning. A large field 
within machine learning revolves around pattern recognition. Patterns in data, based 
on correlations, are learned and then used for predictions. In causal tasks, an under-
standing of the underlying (causal) mechanisms is important when evaluating the 
effects of interventions (e.g., the implementation of a new business strategy). The 
emerging field of causal machine learning uses machine learning algorithms for 
such questions. For instance, the recently developed double machine learning frame-
work reduces the impact of imperfect model specifications, which are hard to avoid 
in practice in the context of causal analysis.

We structure this paper as follows. In Sect. 2, we briefly review the role of FP&A. 
Section  3 provides a short, focused overview of machine learning. In particular, 
we highlight the pitfall of not distinguishing between forecasting and planning. In 
Sect. 4, we present the results of our literature review, which finds surprisingly few 
publications of machine learning applications in FP&A. In Sect.  5, we describe 
and provide the results from a simulation study. We compare a machine learn-
ing technique, the lasso, to a linear regression based on the ordinary least squares 
(OLS) method. In our analysis, we refer back to the distinction between forecasting 
and planning from Sect. 3, and show how the results differ between the lasso and 
OLS for both tasks. Finally, we also quantify the benefit of additional data in this 
simulation.
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2 � The role of FP&A

Given the importance of financial forecasting, planning and analysis (FP&A) in 
modern corporations, most larger companies have dedicated teams for these tasks 
within their finance function, even though the exact organizational design and nam-
ing of the department may vary.1

The overarching goal of FP&A is to inform and support decisions of management 
and the board of directors (Oesterreich et  al. 2019). FP&A pursues this goal via 
different routes, helping determine which projects in the company portfolio create 
value (and are consequently worth funding), and preparing company-wide forecasts 
and financial plans to ensure that the company can reach its financial goals in the 
short and long term (Roos et  al. 2019). Investments in research and development 
(R&D) or the expansion of production capacity are balanced with financial obliga-
tions to debt holders or equity investors and tax authorities (Brealey et  al. 2020). 
Financial plans are also an important step in the translation of a company’s strategic 
priorities into concrete operational actions. These actions contribute to focusing the 
organization and the deployed resources behind common goals.

Analyzing the business environment and business dynamics is an integral part 
of the work performed by FP&A. The insights generated through such analysis can 
inform the development of forecasts and plans and help in the assessment of how 
likely these plans are to succeed. During the the execution phase of plans, these 
insights allow FP&A to understand why actual results may deviate from the plan 
and to recommend corrective actions. This need for business acumen is likely to 
continue, even when advanced forecasting methods like those described in this arti-
cle are used (Möller et al. 2020).

The time horizons considered for financial forecasts and plans usually range from 
1 month to several years (Roos et al. 2019; Fischer 2009). The choice of time hori-
zon depends on company-specific circumstances and objectives; for instance, stock-
market listed companies typically put additional weight on quarterly figures. In prac-
tice, most companies create forecasts and plans for the next fiscal year (sometimes 
called a budget), which additionally can serve as a management control mechanism 
(Strauß and Zecher 2013). Rolling forecasts are another form of plan. These are 
characterized by regular updates, which are typically performed on a monthly or 
quarterly basis (Hansen 2011).

FP&A relies in large part on quantitative analysis to generate forecasts and plans. 
Accounting systems are a major internal data source for FP&A (Garrison et  al. 
2006; Gray and Alles 2015), covering items related to sales (turnover), expenses, 
and balance sheet positions, which are especially important for cash flow analysis. 
Other important internal sources of data include those related to human resources 
(employee numbers, wage costs), supply chain and production (manufacturing costs 

1  In some companies, the (short-term) plans formally expressed in budgets are prepared by controllers 
(management accountants) within the accounting department (Garrison et al. 2006), while the strategy 
department formulates the directional (long-term) plans.
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at various levels of granularity), and R&D (product development costs, success 
rates, timelines).

External data sources include market- or product-specific information, such as the 
size and development of the market and market shares. The exact nature and granu-
larity of these data depends largely on the product or question under analysis, as 
well as the investment required to access the relevant data (Gray and Alles 2015). 
For instance, it is not uncommon in the consumer goods industry to have access to 
transaction-level data (Taddy 2019), covering one’s own and competitor products. 
However, information at this level of specificity is typically used by the marketing 
and sales department for product-specific tactics. In contrast, FP&A often uses mac-
roeconomic indicators, including GDP, inflation and currency rates.

The development and spread of comprehensive, company-wide IT systems in 
recent decades has increased the amount and variety of data readily available to 
FP&A. Increasing digitalization will further accentuate this development, with big 
data as the crystallizing term. The “Three V’s”, a common framework to define big 
data (Laney 2001), allow us to look at the different dimensions that drive this devel-
opment. First, the amount of information generated, captured and thus accessible 
for FP&A activities is growing (volume). Second, the speed of information crea-
tion and its accessibility is accelerating (velocity); as a consequence, the speed at 
which information must be analyzed and acted upon increases, too. This calls for 
automated, real-time analytics and evidence-based planning (Gandomi and Haider 
2015). Third, more and more types of information are being gathered or generated 
and can be analyzed (variety); for instance, stock-market analysts apply sentiment 
analysis to extract information relevant to stock prices from text documents.

In addition, other dimensions of big data have been proposed (Gandomi and 
Haider 2015). In the context of FP&A, the additional dimensions of veracity and 
complexity appear especially relevant. Thanks to the more widespread use of digital 
tools, the need for data transparency and scrutiny within many companies is increas-
ing, as well. In turn, the need to ensure data quality and reliability is growing (verac-
ity). Moreover, (big) data are generated through multiple sources, both from inside 
and outside the company. This requires data cleaning, data matching and, ideally 
centralized storage, which facilitates accessibility (complexity).

As mentioned above, a key output of FP&A is financial forecasts and plans. For 
data that are more numerous, available more quickly, and are more diverse and of 
better quality than in the past, FP&A needs to choose adequate tools, such as those 
provided by machine learning.

3 � Introduction to machine learning

While there is no uniform definition of machine learning, it can be described as 
a collection of methods that automatically build predictions from complex data 
(Taddy 2019). In essence, machine learning deploys a function-fitting strategy 
aiming to find a useful approximation of the function that underlies the predictive 
relationship between input and output data (Hastie et  al. 2009). In this search for 
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patterns in data (Bishop et al. 2006), which, to a large extent, is executed autono-
mously, machine learning draws on statistical tools and algorithmic approaches from 
computer science. In particular, machine learning aims to cope with the situation of 
high-dimensional data. High dimensionality occurs when the number of input vari-
ables (independent variables, features) used to predict the output (dependent) vari-
able is large compared to the number of observations available. Classical statistical 
techniques do not work in this setting (Taddy 2019).

The three broad categories of machine learning are supervised learning, unsuper-
vised learning and reinforcement learning. Supervised learning is concerned with 
predicting the value of an output variable based on the values of a set of input vari-
ables. For this, supervised learning relies on a set of input and output variables that 
are jointly observed for each data point (Hastie et  al. 2009). A practical example 
is to predict the sales of a product using input variables such as time of the year, 
price level, advertising expenditures and availability of competitor products. In con-
trast, unsupervised learning consists only of a set of input observations for which 
the joint distribution is known. However, there is no observed output (response). 
The goal is to directly infer the properties of these observations (Hastie et al. 2009). 
Classifying customers into (previously unknown) customer archetypes based on 
their observed characteristics such as buying behavior, age, gender and socio-eco-
nomic status is an example of unsupervised learning. In reinforcement learning, the 
algorithm performs a trial-and-error search to maximize a numeric reward signal, 
in direct interaction with its environment (Sutton and Barto 2018). By interacting 
with its environment, the algorithm creates its own data from which it can learn. 
Games such as checkers, chess and go are classical examples in which reinforcement 
learning is applied. Sometimes cited as a fourth category, semi-supervised learning 
falls between supervised and unsupervised learning, combining a small amount of 
fully labeled data as in supervised learning and a large amount of unlabeled data as 
in unsupervised learning. The objective is to improve supervised learning in situa-
tions in which labeled data are scarce (Zhu and Goldberg 2009). For the purposes 
of FP&A objectives, which mostly revolve around producing forecasts from a set of 
inputs and assumptions, the predominant choice is typically supervised methods.

Machine learning methods appear especially suitable for the core FP&A task of 
forecasting because of their focus on predictive performance. These methods man-
age to identify generalizable patterns that work well on new data, i.e., data out-
side of the training sample (Mullainathan and Spiess 2017). Through their ability 
to identify complex structures that have not been specified in advance, they lend 
themselves to support a high degree of automation in the generation of forecasts. 
This flexibility has the additional advantage that many off-the-shelf algorithms per-
form surprisingly well on a variety of tasks. In addition, a large selection of machine 
learning algorithms are available and are technically easy to use (Mullainathan and 
Spiess 2017), making them attractive for practitioners.

Besides forecasting, the second core task of FP&A is to provide recommenda-
tions for the design of financial plans and for potential corrective actions when 
deviations from plans occur. In statistical terminology, this requires causal infer-
ence techniques, which are fundamentally different from forecasting. Consider the 
trivial example of hotel occupancy rates and room prices (Athey 2018). High room 
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prices coincide with high occupancy rates. Thus, price variations are strongly pre-
dictive of hotel occupancy. If the goal is to make a forecast, we do not need to be 
concerned with understanding why occupancy was high. However, if we want to 
recommend an action to increase the occupancy rate (an intervention) or imagine in 
retrospect what the occupancy rate would have been if the room rates had been dif-
ferent [“counterfactual” (Pearl and Mackenzie 2018) or “potential outcome” (Rubin 
2005)], FP&A requires a causal understanding of the business dynamics. To con-
clude with this example, a plan consisting of a room price increase will not lead to 
higher occupancy. Most likely, prices have increased in the past in reaction to high 
demand, which was stimulated by other factors (e.g., the holiday season). While this 
trivial example seems obvious, it illustrates a major pitfall: many companies strug-
gle in practice to identify truly causal measures for the effectiveness of their promo-
tional activities. Blake et al. (2015) discuss this phenomenon in the context of large-
scale field experiments conducted at the e-commerce platform eBay.

For interventional and counterfactual analysis, data-driven approaches need to 
produce reliable estimates for the parameters that govern the relationship between 
input and output variables. Machine learning algorithms are typically not built for 
this purpose. Historically, the machine learning community has pursued the goal of 
maximizing predictive performance as opposed to understanding model parameters 
(Taddy 2019); however, using a tool built for forecasting and assuming that it also 
possesses the properties required for causal inference in economic applications can 
be misleading (Mullainathan and Spiess 2017). Maximizing the predictive power of 
a model to use it for interventional analysis represents a major trap. Indeed, it may 
even be necessary to sacrifice predictive accuracy to arrive at a correct understand-
ing of the relationships that are relevant for making decisions about interventions 
(Athey 2018). The current lack of understanding of cause–effect connections is even 
cited as a fundamental obstacle for machine learning by some authors (Pearl 2019). 
Nevertheless, many inference procedures include prediction tasks as an important 
step (Mullainathan and Spiess 2017). Machine learning is especially suited for this 
step in high-dimensional settings (Belloni et al. 2014b). The double machine learn-
ing framework (Chernozhukov et al. 2017), which we will apply in Sect. 5, allows 
us to take advantage of the predictive performance of machine learning algorithms 
when seeking solutions for causal problems.

4 � Literature review

We conducted a search of the literature across Google, Google Scholar and finance 
journals on the use of machine learning in FP&A. The use of quantitative meth-
ods in the broad field of finance has been studied intensively for close to 40 years 
(Ozbayoglu et  al. 2020), in part because of the general availability of data in this 
field, the existence of many areas of implementation and the substantial economic 
impact of financial decisions. Our search yielded surprisingly few recent publica-
tions on the use of machine learning explicitly in FP&A and related fields. The key 
thrust of machine learning in finance is directed towards various applications ulti-
mately linked to forecasting and trading financial instruments such as stocks, bonds, 
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currencies and derivatives. Credit scoring and fraud detection are other major areas. 
Examples of recent surveys include Ozbayoglu et  al. (2020) and Henrique et  al. 
(2019).

We see two possible reasons for the apparent scarcity of publications on machine 
learning in FP&A. First, time-series forecasting has been thoroughly covered and 
researched for many years (De Gooijer et al. 2006). A large variety of tools for this 
purpose have been developed, both from an academic and theoretical perspective, as 
well as from the perspective of practitioners, including easy to use off-the-shelf soft-
ware (Küsters et al. 2006). From a practical FP&A perspective, these tools, together 
with the domain knowledge of the experts working in the FP&A function, allow 
practitioners to arrive at results that—by and large—serve sufficiently well to meet 
the objective of developing financial plans. Especially, practitioners may therefore 
perceive machine learning as a “so-so” technology (Acemoglu and Restrepo 2018), 
which is not (yet) quite worth their (full) attention. Thus, the intrinsic urge to look 
for new tools, including machine learning, in FP&A is still less pronounced than it 
is, for instance, in stock-market forecasting, where even a relatively small improve-
ment in forecasting accuracy can yield significant economic payoff. We believe that 
this will change with the further deployment of digitalization and the consequent 
increase in data availability as described above. Besides improving the precision of 
financial forecasts, automated forecasts driven by machine learning can also lead to 
a substantial reduction in costs and to increased flexibility given that the traditional 
process is quite labor- and time-intensive.

Second, we hypothesize the following reason for the limited number of publi-
cations on machine learning in FP&A. The initial development of artificial intel-
ligence and machine learning methods was driven mostly by academia. Because 
these methods are highly relevant for industrial applications, companies (in particu-
lar in the tech field) have shown strong interest in applying and developing them 
further. Indeed, some of the large tech companies host their own dedicated research 
teams. However, the limited availability of skilled professionals represents a hurdle 
to fast diffusion in all corporate functions of a company. Therefore, the application 
of machine learning for FP&A is still rare in the finance function, even though a 
host of machine learning publications by the industry has already appeared in other 
functional areas.2 Management consultancies have also discovered the benefit of 
machine learning for finance and FP&A. However, their publications remain gen-
eral and directional in nature (see, for instance, Balakrishnan et al. 2020; Roos et al. 
2020; Tucker et al. 2017; Chandra et al. 2018).

One company that has made public its use of machine learning in FP&A in scien-
tific papers is Microsoft Corporation. In the past several years, Microsoft appears to 
have followed an innovative approach with machine learning in FP&A as witnessed 
by three publications from its employees. One paper (Gajewar et al. 2016) compares 
the performance of random forests to that of traditional time-series methods such 
as autoregressive integrated moving average (ARIMA), error trend and seasonality 

2  For instance, www.​bosch.​com/​de/​forsc​hung/​know-​how/​publi​katio​nen (accessed Feb 23, 2021) contains 
a collection by Robert Bosch GmbH.

http://www.bosch.com/de/forschung/know-how/publikationen
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(ETS, a variant of exponential smoothing) and seasonal-trend decomposition using 
loess (STL, another variant of smoothing) for forecasting quarterly revenues by 
major geographic region and at the global level up to 1 year into the future. Based 
on their exploratory analysis, the random forest model with a restricted number of 
features outperformed the traditional time-series methods and the forecasts gener-
ated by the domain experts in the Microsoft FP&A department.

A second paper (Barker et  al. 2018) describes a machine learning-based solu-
tion that forecasts revenue on a quarterly basis, including individual forecasts for 
30 products in three different business segments. Specifically, the machine learning 
forecast used an elastic net, a random forest, a K-nearest-neighbor and a support 
vector machine. The winner model was then selected via back-testing. The fore-
casts generated in this way proved to be more accurate than the traditional forecasts 
generated by FP&A in approximately 70% of the cases. The paper cites the abil-
ity to incorporate external information (e.g., temperature as a driver for electricity 
demand) in regression frameworks as an advantage of these over pure (standard) 
time-series models. While classical time-series are good at capturing trends and sea-
sonality, they often struggle to incorporate external data. In particular, they gener-
ally lack a regularization mechanism, leading to low out-of-sample accuracy for new 
forecasts, especially in high-dimensional settings. Many machine learning methods 
include by design mechanisms to avoid overfitting (e.g., regularization for ridge, 
lasso and elastic net).

Barker et al. (2018) also highlight some requirements that arise from the intent to 
use the results of machine learning forecasts in a practical manner in a corporate set-
ting. Traditionally, FP&A works with a point estimate, coupled with an estimation of 
the risks and opportunities around this mid-point. Risks and opportunities typically 
consist of a list of items or events that will materially impact the business results if 
they do not turn out as assumed in the mid-point forecast (Conine and McDonald 
2017). Judgmental probability estimates provided by subject matter experts are often 
attached to these items, together with a quantification of the expected impact under 
the different scenarios.3 For forecasts generated by traditional statistical or machine 
learning models, prediction intervals are therefore an important element for FP&A 
practitioners to quantify the risk in the forecast. However, prediction intervals are 
not typically part of machine learning models. The solution proposed by Barker 
et  al. (2018) consists of creating intervals from out-of-sample error distributions 
obtained during back-testing. Other practical requirements in a corporate environ-
ment are the need for a mostly automated solution allowing for fast forecast genera-
tion as well as the need to ensure high security standards for data storage, processing 
and access. Financial data such as sales and profits are highly sensitive, and com-
panies are reluctant to release them into public cloud environments. Barker et  al. 
(2018) explain the details of their workflow automation and security controls, which 
revolve around the Microsoft Azure cloud-computing platform.

3  Other methods with a very similar intent exist. Examples are the quantification of a best and worst case 
in addition to the normal or base case, or sensitivity analysis with varying degrees of sophistication.
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The third publication (Koenecke and Gajewar 2020) evaluated deep neural net-
works traditionally used in natural language processing (encoder–decoder LSTMs) 
and computer vision (dilated convolutional neural networks) to forecast company 
revenues. The approach incorporated transfer and curriculum learning. For the prod-
ucts and time period under study in this publication, deep neural networks improved 
predictive accuracy compared to the company’s internal baseline, which combined 
traditional statistical and machine learning methods other than deep neural networks.

In another example of applied machine learning in the area of FP&A, Daimler 
Mobility used an undisclosed library of machine learning algorithms to generate 
a monthly forecast set, spanning the next 18 months and updated monthly (Unger 
and Rodt 2019). In this respect, the approach followed the concept of a rolling fore-
cast. The forecasted set of values comprised key financial performance indicators 
that were representative of Daimler Mobility’s car rental, leasing, financing and fleet 
management business. According to Unger and Rodt (2019), one of the key advan-
tages of this approach compared to the traditional way of forecasting and budgeting 
is the speed with which updated forecasts are available, allowing faster adoption of 
corrective action.

These papers all discuss modern machine learning methods for financial fore-
casting. In the next section, we will show that these approaches cannot be applied 
directly to inference problems and how the double machine learning framework 
overcomes this problem. A first example will illustrate the use of machine learning 
techniques in FP&A for forecasting. A second example will serve to illustrate the 
use of double machine learning for planning (inference). Finally, we will explore 
whether having additional data improves the results for both the forecasting and 
planning tasks.

5 � Simulation example

In this section, we provide the results of a small simulation study. The design of the 
simulation reflects the setting, types of data and questions that the FP&A depart-
ment in a large, multinational company could face. We will start with an example 
in which FP&A is predominantly interested in the accuracy of sales forecasting. 
We will then carry this example forward into a question related to planning. In this 
second example, FP&A is interested in assessing the effectiveness of promotional 
activities in generating sales; in other words, the question of interest relates to causal 
inference and the answer to this question can inform decisions about resource plan-
ning. Finally, we will investigate how the results change if the FP&A department 
obtains additional data points for their tasks.
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5.1 � Forecasting

Assume for our stylized simulation the following setting:4 for a given month n, the 
FP&A department would like to forecast the sales yn of a specific product or service. 
FP&A has collected monthly data over 5 years ( N = 60 ) for sales as well as a set 
of P = 40 factors or features that FP&A believes could be predictive of these sales. 
We represent these factors as xp,n and the corresponding sales with yn.5 In practice, 
there can be a wide range of factors depending on the product or service. Examples 
include weather conditions and various macroeconomic indicators, but also spe-
cific customer shipment patterns or the current competitive market situation. Note 
that the size of the feature set can easily reach 40 plausible predictors once an ini-
tial, smaller feature set is increased due to the inclusion of transformed and newly 
created features. This step, called feature engineering, can include the creation of 
lagged variables (e.g., when the effect of the economic situation affects sales several 
months later) or interaction effects (e.g., when a particular weather situation coin-
cides with a peak shipment date, nullifying or exacerbating the effect of the peak 
shipment date). A further example is the transformation of categorical variables into 
several binary values via the so-called one-hot encoding (e.g., when classifying the 
competitive market situation as “highly competitive”, “moderately competitive”, 
“not competitive” and the like).

In addition to developing a set of 40 features, FP&A measures the promotional 
activity carried out by the company for the product under investigation during the 
reference timeframe. We denote this promotional activity as dn . For the purpose of 
this illustrative simulation, we work with the assumption that the promotional activ-
ity can be measured using a single variable. In other words, we do not enter into 
promotional mix considerations with interaction effects among the different promo-
tional tools. In practice, this single variable could be a summary measure such as 
the amount of money spent on promotion and advertising; another possibility for 
a summary measure could be the number of customer calls or minutes of customer 
interaction. For forecasting and planning activities performed by FP&A at aggregate 
levels, such as the regional, divisional or group levels, an approach like this, based 
on a summary measure, is sometimes applied. Extending the analysis to include sev-
eral marketing variables is possible without any major changes.

Given the nature and intent of promotional activity, it appears natural for FP&A 
to include dn in the list of likely predictors for the sales forecasting model. Further-
more, estimating the effect of the promotional activity on sales represents an impor-
tant question for FP&A, which we will address in the second part of this section, 
dedicated to planning.

4  We have intentionally kept the simulation example simple. For instance, we have not added any time-
series-specific effects such as a trend component or serially correlated error terms. This allows us to 
focus on the key elements. For instance, the N = 60 data points could represent observations in different 
countries or sub-markets, which would warrant a cross-sectional approach to the analysis. The conclu-
sions presented in the simulation example will remain largely unchanged.
5  This is a case of supervised learning, because we have observations for both the input ( xp,n ) and the 
output ( yn).
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To evaluate the accuracy of the sales forecasts, we will follow an out-of-sam-
ple evaluation approach. Only the first four years (48 data points) are used to build 
and train the forecasting models. FP&A then compares the forecasts generated by 
the models to the actual values from the last year in the available dataset (12 data 
points). Note that these 12 data points have been intentionally excluded from the 
model creation phase. While more sophisticated training and evaluation strategies 
exist (e.g., rolling evaluation windows), the described approach is sufficient for the 
purpose of this simulation study, because the out-of-sample forecasting performance 
is evaluated separately for each simulation.

For our simulation, we generate the data as n = 1,… ,N independent and identi-
cally distributed (i.i.d.) draws from the following model:

and

with x ∼ N(0,Σ) where Σ is a p × p matrix with Σk,j = c|j−k| , � ∼ N(0, 2) and 
� ∼ N(0, 2).

The second equation captures confounding, i.e., variables that are simultaneously 
correlated with the outcome variable and the variable of interest. By setting � = 0 , 
we assume that the promotional activity undertaken by the company has no effect 
on sales, i.e., that the promotion efforts are, in reality, a waste of resources. With 
c = 0.3 , we include some moderate correlation6 between features, which can be 
expected if several features from the same general background (e.g., macroeconomic 
factors) are included in the model.

We set � = 0 , except for �39 and �40 , both of which we set equal to 1. Thus, out of 
the 40 features included in the analysis, only two are actually related to sales. Simi-
larly, we set � = 0 , except for �39 and �40 , both of which we also set equal to 1. The 
two features related to sales also determine the amount of promotional activity dn.7 
� and � are random error terms (so-called noise). We report results based on 1000 
simulation replications.

It is important to remind ourselves that the FP&A department naturally does not 
know any details about this data generation process. Only an oracle would know 
that, in reality, solely 2 of the 40 plausible predictors are linked to sales and that the 
coefficient in the data-generating process is 0 for the other 38 features. This situation 
characterizes sparse models. In such models, only a small number of many potential 

(5.1)yn = �dn + x�
n
�p + �n,

(5.2)dn = x�
n
�p + �n,

6  The value of c represents the correlation between immediate neighbor features (e.g., feature xp and 
feature xp+1 ). Due to the way Σ is constructed, the correlation decays quickly as the distance between fea-
tures increases (e.g., feature xp and xp+3 have only a correlation of c3 , which is 0.027 for c = 0.3).
7  A simple example can help clarify the intuition behind this setting. Ice cream sales on the beach are 
probably positively related to weather conditions (feature 1) and the day of the week (feature 2). At the 
same time, the ice cream salesperson may decide to run some promotional activity when weather condi-
tions are favorable on a weekend. Thus, the same features have an influence both on sales and on promo-
tional activity. We will revert to this illustrative example in the section on planning.
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predictors and/or control variables are actually relevant (Belloni et al. 2014a). Iden-
tifying them leads to a correct model specification and is the main challenge.8 Addi-
tionally, FP&A does not know that the promotional activity dn is correlated with 
the two features that have non-zero coefficients with respect to sales and that the 
promotional activity has no influence on sales ( � , the parameter of interest, is zero). 
We will come back to this point when we discuss inference.

We now provide results for two forecasting approaches. Both have in common 
that they rely—in this case correctly—on the typical assumption of a linear relation-
ship between the output variable Y (sales) and the full set of regressors X, which 
includes 40 presumably predictive features and one variable reflecting promotional 
activity

The first approach is a traditional linear regression based on the ordinary least 
squares (OLS) method. Formally, OLS optimizes the parameters in such a way as to 
minimize the mean squared error (MSE)

where x′
i
𝛽  corresponds to the predicted sales value.

The second approach, post-lasso, is a classic machine learning technique. To 
estimate the coefficients, lasso uses a regularization strategy that is suited to high-
dimensional problems in which the number of predictors exceeds or approaches the 
number of observations, as is the case in our simulation. In the first step, the lasso 
regression is performed. In the second (i.e., post-lasso) step, the method fits OLS on 
the coefficients selected in the first step. Formally, lasso optimizes the parameters to 
minimize MSE subject to a penalty for using parameters

where x′
i
𝛽  corresponds again to the predicted sales value.

The key difference between the lasso and OLS is that lasso minimizes a penal-
ized MSE, in which the penalty amount corresponds to the absolute amount of each 
parameter included in the model, scaled by the tuning- or hyperparameter �

(5.3)Y = X�� + �.

(5.4)𝛽OLS = arg min
𝛽∈ℝp

n∑

i=1

{yi − x�
i
𝛽}2,

(5.5)𝛽Lasso = arg min
𝛽∈ℝp

n∑

i=1

{yi − x�
i
𝛽}2 + 𝜆|𝛽|,

(5.6)PenaltyLasso = �|�|.

8  By construction, our simulation example is exactly sparse, with parameter values for all non-relevant 
features exactly equal to zero. For practical applications, a more realistic assumption is approximate spar-
sity, meaning that all or many features can have non-zero parameter values. Nevertheless, only a limited 
number of features are needed to approximate the true relationship with sufficient accuracy. We refer 
interested readers to Belloni et  al. (2010). Our simulation could easily be extended to such a setting. 
Results would remain largely unchanged.
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A detailed discussion of the theory behind regularization approaches would go 
beyond the scope of this article. Readers are referred, among many possible sources, 
to Hastie et al. (2009), Bühlmann and van de Geer (2011) and Taddy (2019). Taddy 
(2019) sees regularization as “the key to modern statistics” by virtue of its ability to 
prevent overfitting in high-dimensional settings. Instead, we will recall a few char-
acteristics of the lasso that are particularly relevant to our FP&A example and the 
corresponding simulation.

The full name of the lasso (“least absolute shrinkage and selection operator”) 
indicates two important characteristics. First, as we can see in the formula for 
PenaltyLasso , the absolute size of the coefficients included in the model represents 
a cost in the minimization of the MSE. Lasso will therefore shrink the coefficients 
towards zero. This makes the prediction system more stable and avoids overfit-
ting. Second, the lasso-specific penalty in the form of the absolute value of the 
coefficients has the property that some parameters will be exactly equal to zero. 
In other words, the lasso will fully exclude some variables from the model and 
therefore perform automatic variable selection.

As indicated above, the lasso can handle situations in which the number of pre-
dictors approaches or even exceeds the number of observations. In our case, the 
number of predictors (including the measure of promotional activity) is 41 and 
the number of observations is 48. Although OLS can still be calculated, we will 
see that its out-of-sample predictive accuracy becomes extremely unreliable. If 
we were to chose a simulation scenario with 48 or more predictors, OLS could no 
longer be computed. A second challenge for OLS in settings with many predictors 
is the increased risk of correlation among the predictors. If predictors are highly 
correlated among themselves, or if, in an extreme case, there is an exact linear 
relationship between two predictors (multicollinearity), OLS estimates become 
unstable. For instance, macroeconomic variables tend to be strongly correlated.

An important ingredient in the lasso is the size of the penalty, which depends 
on the tuning parameter � . � is not determined by the lasso itself, but needs to 
be selected. Intuitively, � plays a role in filtering the relevant variables. Several 
strategies to select � have been proposed in the literature and are used by practi-
tioners. The most common are cross-validation strategies and information criteria 
such as Akaike’s or Bayes’ information criterion. Our simulation study uses the 
data-dependent penalty level proposed by Belloni and Chernozhukov (2013). We 
refer interested readers to this source for details.

Compared to the standard lasso approach, which induces bias due to the 
shrinkage of coefficients, post-lasso has the advantage of a smaller bias, even 
if the model selected in the first step by lasso fails to include some of the true 

Table 1   Average RMSE of 
the hold-out-sample from 
1000 simulation runs for the 
forecasting task

RMSE In sample Out of sample

OLS 0.738 5.321
Post-lasso 1.991 2.162
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predictors. It also converges at a faster rate towards the true parameter values if 
the model selected by lasso correctly includes all true predictors (in addition to 
some irrelevant predictors). If lasso selects exactly (only) the true predictors, the 
post-lasso coefficient estimators are equal to the ones produced by an oracle that 
is aware of the underlying data-generating process (Belloni et al. 2012, 2014a).

Table 1 summarizes the results of 1000 simulation runs for the forecasting task, 
comparing OLS to post-lasso.

We report the forecast accuracy in terms of average root-mean-squared error 
(RMSE) over all simulation runs both on the in-sample and the out-of-sample data 
set. As outlined above, the in-sample data set consists of 48 data points, which 
are used to build and train the models. The out-of-sample data set consists of 12 
data points, which are intentionally not used in the model construction (“hold-out 
sample”), allowing the model to be evaluated on new, previously unseen data. The 
strong focus on forecasting performance on previously unseen data is a hallmark of 
the machine learning approach.

On the in-sample data, OLS produces a higher predictive accuracy than post-
lasso, with an RMSE of 0.738 which is nearly one-third that of the post-lasso RMSE 
of 1.991. However, the real interest of the FP&A department here is not to model 
past sales data. Rather, the predictive performance on new data is what matters 
to FP&A; this is why, the out-of-sample data have been set aside. Here, the OLS 
RMSE increases substantially to 5.321, more than twice as high as the post-lasso 
RMSE of 2.162.

We can draw two main conclusions from the simulation. First, the RMSE of 
standard OLS increases significantly between in-sample and out-of-sample data. 
With nearly as many features (regressors) as observations in the model, the resulting 
overfitting is immediately exposed when OLS is evaluated using previously unseen 
data. Second, the post-lasso RMSE is relatively stable between the in-sample and 
out-of-sample data. The in-sample performance is thus already indicative of the 
true predictive power when post-lasso is used on unseen data. Lasso achieves this 
through the regularization strategy described above, which leads to a very selec-
tive inclusion of features and thus parsimonious models. For reference, of the 40 
available features in the simulation, post-lasso retains an average of only 1.2 as rel-
evant and shrinks the coefficients of all the others to exactly zero. As a reminder, our 
simulation includes only two truly relevant features. The out-of-sample RMSE for 
post-lasso is thus slightly hihger than the perfect RMSE score of 2.0 (equal to the 
standard error that was selected for the noise parameter � ), which would be achieved 
by an oracle.

Figure  1 shows the distribution of the out-of-sample RMSE for the post-lasso 
forecast over the 1000 simulation runs. The distribution of the errors follows approx-
imately a normal distribution (overlaid as a red line). From a practical perspective, 
the risk of generating a highly incorrect lasso forecast is therefore limited. Further-
more, the right tail of the lasso errors ends before the mean of the OLS error. This 
provides additional reassurance when relying on lasso.
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5.2 � Planning

We will now discuss the use of machine learning in financial planning. To come 
back to our example, the task for the FP&A department consists of evaluating the 
effectiveness of promotional activity in generating sales; in statistical parlance, 
the task relates to statistical inference of the effect of a treatment or intervention 
(i.e., the promotional activity) on an outcome (i.e., sales). This estimate forms the 
basis for planning and optimizing marketing activities. In our simulation examples, 
evaluating the effectiveness of promotion equates to estimating the parameter � . As 
the parameter of interest, � corresponds to the effect of the promotional activity on 
sales, also called the “lift” in business applications. Let us remind ourselves that in 
our simulation, only two features are relevant for the sales forecast and that these 
two features also determine the amount of promotional activity. Thus, we are deal-
ing with confounders, because these two features are correlated with both the treat-
ment and the outcome. Moreover, we have set � to zero, which effectively means 
that the promotional activity does not have an impact on sales.

In a business environment, this setting could correspond to an ice cream vendor 
at the beach who spends money on promotion whenever the weather is warm and 
sunny on the weekends. He ascribes the increased ice cream sales, or at least a part 
of them, to his promotional efforts, whereas in reality, it is the favorable weather on 
the weekend that makes people come to the beach and enjoy his ice cream. Simi-
lar to the forecasting exercise, the FP&A department is obviously not aware of the 
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Lasso out−of−sample RMSE for n = 48, p = 40 with centered normal distribution

Fig. 1   Distribution of the out-of-sample RMSE for the post-lasso forecast (bars), compared to the normal 
distribution (red line) (colour figure online)
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data-generating process governing the simulation and needs to find a way to esti-
mate �.

One approach to estimating the effect of promotion could be to use the parameter 
estimate for � from the lasso model employed in sales forecasting. However, lasso 
shrinks parameter estimates because of the penalty loading used in the regulariza-
tion process and therefore does not generate unbiased estimates of the parameter val-
ues, even though it allocates the least possible penalty amount to large signals while 
retaining the stable behavior of a convex penalty (Taddy 2019). Additionally, lasso 
estimates predictors sparingly insofar as it sets many parameter estimates to exactly 
zero. In many cases, the factor measuring promotional activity “may not make it” 
into the second step of the post-lasso procedure. It is therefore not meaningful to 
infer from the forecasting model the effectiveness of the promotional activities. We 
have previously highlighted the warning by Mullainathan and Spiess (2017) and 
Athey (2018) that using a tool built for forecasting and assuming that its parameters 
possess the properties required for inference can be misleading.

With the above in mind, one could decide to pursue a hybrid solution with the 
following approach. Because the lasso has identified the most relevant features 
for prediction, we carry these forward into the inference model. Additionally, we 
include in the model the variable of interest (the intervention), which in our example 
is the variable that represents promotional activity. In a sense, we force this variable 
of interest into the model. We then estimate the parameter values for all of these fea-
tures using OLS, which allows us to perform inference on the parameter estimates. 
In particular, we are able to interpret our parameter of interest � in this model. In 
our example, � will tell us the effectiveness of the promotional activities. Intuitively, 
a model that is constructed in this way can be understood as attempting to estimate 
the effect of promotional activity, while controlling for other factors with proven 
high predictive power from the forecasting model. For the ice cream vendor at the 
beach, this corresponds to controlling for the effect of the favorable weather dur-
ing the weekend and thus deriving an isolated estimate of the effect of promotional 
activity on sales. This approach can be represented as

with p ∗ corresponding to the subset of all p features for which 𝛽Lasso is non-zero.
We will see from the simulation results that this approach, which we will call 

“naive”, grossly fails to discover the true value of the parameter of interest, when 
modern machine learning methods are used in high-dimensional settings; still, it is 
widely used by practitioners and applied researchers. In our model, the promotional 
activity measure is correlated with the features that concomitantly and directly influ-
ence sales. In the presence of such confounders, the naive approach will fail.

In short, the naive approach will suffer from omitted variable bias. This is because 
machine learning methods capture the features correlated with the outcome variable 
and deliver good predictive performance but often miss variables that are correlated 
weakly with the outcome but correlated more strongly with the intervention vari-
able. Missing these variables does not harm predictive performance but biases the 
estimation of the intervention effect, leading to invalid post-selection inference.

(5.7)yn = �dn + x�
p∗,n

�p∗ + �n,
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For an approach to be valid, it must overcome this problem of imperfect model 
selection and related omitted variable bias. Double or debiased machine learning, 
as proposed by Chernozhukov et al. (2017), is one way to do so. The fundamental 
idea9 is to reduce, for the estimation of the parameter of interest (i.e., the interven-
tion variable), the sensitivity with respect to errors in selecting and estimating the 
nuisance parameters (i.e., the other predictors in the model). Technically, this can be 
achieved by regressing residuals on residuals. The first set of residuals is generated 
by regressing the outcome variable on the control features, notably using regular-
izing machine learning methods such as (post-)lasso, random forests, boosted trees 
or other methods suited for high-dimensional settings. The second set of residuals is 
generated by regressing the treatment variable on the control features, again using 
modern machine learning methods. This auxiliary step helps to control for the con-
founders that might lead to omitted variable bias. Finally, the first set of residuals 
is regressed on the second set of residuals. The parameter value obtained in this 
residuals-on-residuals regression represents the effect of the treatment variable on 
the outcome. This procedure is known as Frisch–Waugh–Lovell partialling out. In 
our simulation study, machine learning methods are used for partialling out. This 
approach allows for valid inference compared to the naive approach.

Translated into our stylized simulation, the first regression relates sales to the 40 
presumably predictive features; the differences between the predictions ŷn from this 
first regression and the actual outcomes (sales) y constitute the first set of residuals 
r1
n

The second regression relates the promotional activity score d to the 40 presumably 
predictive features; the differences between the predictions from this second regres-
sion d̂n and the actual outcomes (promotional activity) dn constitute the second set of 
residuals r2

n

Concretely, we will use a post-lasso approach in the regressions to derive both sets 
of residuals, but in principle, any other machine learning method could be used, 
such as random forests or support vector machines. Finally, we regress the residuals 
from the first regression onto the residuals from the second regression to obtain an 
estimate for the parameter of interest, � , which represents the impact of promotional 
activities on sales

(5.8)ŷn = x�
n
𝛽p,

(5.9)r1
n
= yn − ŷn.

(5.10)d̂n = x�
n
𝛾̂p,

(5.11)r2
n
= dn − d̂n.

9  Double machine learning also uses cross-fitting, an efficient way of data splitting. Interested readers 
are referred to Chernozhukov et al. (2017).
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This approach works well in practice, because the residuals-on-residuals approach 
makes the estimation of the treatment effect less sensitive to errors in the model 
specification. Athey (2018) provides an intuitive explanation: “[...] in high dimen-
sions, mistakes in estimating nuisance parameters are likely, but working with resid-
ualized variables makes the estimation of the average treatment effect orthogonal to 
errors in estimating nuisance parameters.” This is why the family of approaches that 
use this principle is also referred to as orthogonal machine learning (Taddy 2019). 
Interested readers are referred to the literature for an in-depth theoretical discussion, 
including underlying assumptions and formal proofs, which is beyond the scope 
of this paper. Key sources include Belloni et  al. (2014a) and Chernozhukov et  al. 
(2015, 2018). To implement our simulation, we use the partialling-out approach as 
defined by Chernozhukov et al. (2016) and report the corresponding results under 
this label.

Table  2 summarizes the results of the two approaches (i.e., “naive” and “par-
tialling out”) from 1000 simulation runs. We report the mean estimate for � , the 
standard deviation of the estimate and the corresponding t-statistic and p value for a 
two-sided test of whether the mean is different from zero. The rejection rate repre-
sents the proportion of individual simulation runs in which the ingoing assumption 
of � =0 has been rejected based on the t test (at the customary 5% significance level). 
In other words, these are the instances in which the model incorrectly suggests an 
effect (positive or negative) of promotional activity on sales.

The simulation results provide several insights. First, and this is the main point 
we seek to make, the naive approach grossly fails to discover the true value of � , 
because it suffers from significant bias. Put simply in the context of our simulation, 
this bias represents systematic over-estimation of � and thus over-estimation of the 
effectiveness of promotion. On average, the naive approach estimates a value for � 
of 0.1604, compared to a true value of zero. The partialling-out approach also yields 
an average positive value for � of 0.0081, but is much closer to the true value of 
zero. Relatively speaking, the bias of the naive approach is roughly 20 times higher 
than that of the partialling-out approach.

A second point is that the standard deviation of the estimates for � are similar for 
both approaches. Figures 2 (naive approach) and 3 (partialling-out approach) show 
the distribution of the estimates for � from the 1000 simulation runs compared to a 

(5.12)r1
n
= �r2

n
+ �n.

Table 2   Results from 1000 
simulation runs for the planning/
inference task

The t-statistic and p value refer to the respective mean estimate

� Naive Partialling-out

Mean estimate 0.1604 0.0081
Std. dev. 0.1668 0.1326
t-statistic 30.422 1.934
p value 0.0000 0.0534
Rejection rate 46.1% 4.8%
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normal distribution curve. Visual inspection suggests that the shapes of both distri-
butions are well approximated by a normal distribution. Of course, the center of the 
distribution for the naive approach is clearly shifted to the right of zero. This rein-
forces the point made above that bias is induced by the naive approach.
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Empirical distribution of "naive" approach (non−orthogonal) for n = 48, p = 40 with centered normal distribution

Fig. 2   Distribution of estimator for � from the naive approach
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Empirical distribution of "partialling out" (orthogonal) for n = 48, p = 40 with centered normal distribution

Fig. 3   Distribution of estimator for � from the partialling-out approach
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Table 2 also reports the t-statistic and corresponding p value for a two-sided test 
of whether the mean estimate of � is zero. Under the naive approach, this hypothesis 
would be rejected with high confidence (t-statistic of 30), reinforcing the incorrect 
belief that the promotional efforts positively affect sales. Under the partialling-out 
approach, the hypothesis of no effect from promotional efforts would not be rejected 
at the customary 5% threshold level (t-statistic of 1.93). In practice, the FP&A 
department would of course not benefit from this kind of insight as they would not 
have access to repeated estimates for � . With the advantage of being able to run 
multiple simulations, we can use this information to support the point of significant 
bias in the naive approach. Nevertheless, the rejection rate, reported in the last line 
of Table 2, provides a good indication of how often FP&A would make an incor-
rect decision. For each individual run in the simulation, this metric records whether 
FP&A would (incorrectly) reject the assumption that � is zero at the typical 5% sig-
nificance level. Under the naive approach, this would happen 46% of the time. Put 
differently, a bit less than half of the time, FP&A would incorrectly assume that pro-
motional activity does have an effect on sales. With partialling-out, this error drops 
to slightly below 5%.10

In summary, by relying on the naive approach, the FP&A department (or the ice 
cream vendor) would substantially overestimate the causal effect of the promotional 
activity on sales. Consequently, this activity would probably be maintained or even 
increased for this product or service, even though in reality, it does not increase 
sales. Put differently, the company would draw up plans that allocate resources 
wastefully on this particular product or market. The impact from falling into this trap 
could multiply even further across the organization if the results of such an analysis 
were used as a benchmark for similar products, services or geographic markets. This 
might happen, for example, if data are not readily available for a particular product 
(for example, one that is being newly launched) and the decision is made to extrapo-
late from existing (and potentially wrong) information. Such a situation is even more 
likely when the existing information appears plausible and suitable11 and, in addi-
tion, is perceived as objective, unbiased (in the sense of free from human/cognitive 
bias) or even scientific, because it was generated using data-driven methods.

5.3 � The value of data

In 2017, “The Economist” (Economist, 2017) asserted in the title of its May 6 edi-
tion that data are now the world’s most valuable resource. Questions about the value 
of data as a resource and production factor have generated great interest in academia 
and policy institutes. One consideration within this vast topic is a (hypothesized) 
positive feedback loop: more data lead to more data-driven insights, allowing a com-
pany to serve its customers better, to attract more customers and, in turn, to collect 

10  Note that one would expect an error rate here of around 5% from a correct model, because the 5% sig-
nificance level corresponds to a 5% probability of rejecting the null hypothesis when it is, in reality, true.
11  Blake et al. (2015) highlight in their paper that “[...] the incentives faced by advertising firms, pub-
lishers, analytics consulting firms, and even marketing executives within companies, are all aligned with 
increasing advertising budgets.”
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even more data. Nevertheless, there seems to be a broad consensus that data are 
generally governed by decreasing returns to scale, like any other production factor 
(Varian 2018; Bajari et al. 2019).

In this paper, we will limit ourselves to a short discussion of how the number of 
observations affects the accuracy achieved by the forecasting and inference methods 
used by the FP&A department within the frame of our simulation. For empirical 
results, we refer interested readers to Bajari et al. (2019), which contains a study of 
the performance of Amazon’s retail forecasting system. The study finds performance 
gains in the time dimension (i.e., from longer data history), but not in the product 
dimension (i.e., panel data forecasts do not improve with more products within a 
category). An interesting finding is the overall improvement of forecasts over time 
(controlling for the length of data history and the number of products), suggesting 
positive effects from improved technology (e.g., new machine learning models, bet-
ter hardware or adaptation of organizational practices).

In our simulation, the hypothetical FP&A department uses a training set of 48 
observations, 40 predictive features and one variable of interest for inference (i.e., 
the measure of promotional activity). In many real-life applications relevant to FP&A 
departments, the number of observations available for analysis is typically limited. 
More observations may simply not exist; for instance, new products generate sales 
data starting only from their launch date. Even if data do exist, collecting, accessing 
and, if necessary, curating them come at a cost; for instance, companies may limit the 
amount of directly accessible data history due to system constraints, or data gener-
ated prior to the introduction of new software may be inaccessible, in full or in part.

Let us now explore simulation results assuming that the FP&A department has 
invested in expanding the training set of observations to 60, 72 or 96. The number 
of features (i.e., 40), the variable of interest (promotional activity measure) and the 
overall simulation set-up remain unchanged.12 We again run 1000 simulations. What 
is the return on accuracy of expanding the observation set?13

Table 3   Average RMSE from 1000 simulation runs for the forecasting task, 48 vs. 60, 72 and 96 training 
observations

“In-s.” and “Out-s.” refer to in-sample and out-of-sample, respectively

RMSE 48 training obs. 60 training obs. 72 training obs. 96 training obs.

In-s. Out-s. In-s. Out-s. In-s. Out-s In-s. Out-s.

OLS 0.738 5.321 1.101 3.491 1.309 2.983 1.507 2.561
Post-Lasso 1.991 2.162 1.978 2.107 1.988 2.085 1.975 2.015

12  We intentionally do not allow the number of features to grow with the sample size (see for instance 
Belloni et al. 2010) to isolate the effect of the additional observations clearly. In practice, a significant 
extension of the number of observations may require including additional control features.
13  The natural way to think about the expansion is to assume that the department “digs out” additional 
historical observations. However, from a theoretical standpoint, the department could also wait 1, 2 or 4 
years, respectively, and gather the additional data points over time. In this case, the change in forecasting 
accuracy could be mistaken for a technology or learning effect by an outside observer.
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Table 3 reports the forecasting results based on 60, 72 and 96 observations com-
pared to the previous simulation based on 48 observations. For OLS, the in-sample 
accuracy drops, as witnessed by the increase in RMSE to 1.507 (for 96 observa-
tions) from the initial RMSE of 0.738 with 48 observations. However, the out-of-
sample accuracy increases: the corresponding RMSE drops to 2.561 (for 96 obser-
vations) from the previous RMSE of 5.321 based on 48 observations. In fact, the 
additional observations reduce the extent of overfitting seen in the initial setting. 
With 40 features and (only) 48 observations, OLS was actually close to the point 
of failing. This point would have been reached if the number of features had been 
equal to or exceeded the number of observations. Intuitively, OLS moves further 
away from this point by expanding the set of observations (and keeping the number 
of features constant).

For post-lasso, the results based on 60, 72 and 96 observations are quite similar 
to those obtained with 48 observations. Neither the in-sample nor the out-of-sample 
RMSE change notably. As expected and unlike OLS, post-lasso already deals well 
with the initial situation in which the number of features is close to the number of 
observations and benefits only marginally from the increase in observations. Put 
differently, post-lasso does not require investing in the generation or acquisition of 
additional data. Our finding is consistent with standard stochastic theory.14

In summary, while having more data is generally beneficial, expanding the 
observation set for forecasting in our simulation study creates a tangible advantage 
only for OLS. If the FP&A department employs post-lasso, which is the preferable 
method in this setting, the gain in precision from expanding the observation set is 
very small and, for many practical applications, would not warrant the effort.

We will now look at inference, which entails estimating the (causal) effect of pro-
motional activities on sales. Table 4 reports the inference results for � based on 60, 
72 and 96 training observations compared to the previous simulation based on 48 

Table 4   Results from 1000 simulation runs for the planning/inference task, 48 vs. 60, 72 and 96 training 
observations

The t-statistics and p values refer to the respective mean estimates. “Part.-out” refers to partialling-out

� 48 training obs. 60 training obs. 72 training obs. 96 training obs.

Naive Part.-out Naive Part.-out Naive Part.-out Naive Part.-out

Mean estimate 0.1604 0.0081 0.1263 0.0055 0.0956 − 0.0008 0.0617 0.0042
Std. dev. 0.1668 0.1326 0.1708 0.1255 0.1694 0.1166 0.1471 0.0952
t-statistic 30.422 1.934 23.385 1.381 17.847 − 0.217 13.257 1.400
p value 0.0000 0.0534 0.0000 0.1675 0.0000 0.8279 0.0000 0.1619
Rejection rate 46.1% 4.8% 45.9% 5.9% 38.6% 6.4% 28.9% 4.8%

14  See, for instance, Bühlmann and van de Geer (2011) or Belloni and Chernozhukov (2013). Post-lasso 
converges towards the true parameter value at a rate of n−1∕4 , which is slower than the OLS rate of n−1∕2 . 
The value of additional data is thus generally smaller for post-lasso than for OLS.
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observations. Recall that the true value of � is zero. For OLS, as the number of 
observations increases, the mean estimate for � decreases to 0.0617 (for 96 observa-
tions) from the previous estimate of 0.1604 with 48 observations. However, based 
on a standard t test, this value is still significantly different from zero (t-statistic of 
13.257). In comparison, for the partialling-out approach, the mean estimate for � 
declines from 0.0081 with 48 observations to 0.0042 for 96 observations, with a 
minimum of − 0.0008 in the simulation run based on 72 observations. In all three 
additional scenarios, it is not statistically different from zero (t-statistic of 1.381, − 
0.217 and 1.400, respectively).

The expanded set of observations reduces the bias of the naive approach. Intui-
tively, the risk of imperfect model selection described above becomes smaller. Still, 
the naive approach exhibits significant bias compared to the true value of � . For the 
partialling-out approach, the additional observations lead to a mean estimate for � 
that comes even closer to the true value. Depending on the required precision of the 
estimate, the FP&A department could benefit from the additional set of observations 
in its analysis. Again, our finding is consistent with standard theory on convergence 
rates (see, for instance, Bühlmann and van de Geer 2011 or Belloni and Chernozhu-
kov 2013). Whereas post-lasso converges for forecasting towards the true parameter 
value at a relatively slower rate of n−1∕4 , the double machine learning estimator of 
the treatment effect converges at the faster rate of n−1∕2 (i.e., the same rate as OLS).

6 � Conclusion

Digitalization, especially when it couples large amounts of data with appropriate 
tools for analysis, represents an important opportunity for the financial planning 
and analysis function. In this article, we have provided an introductory overview of 
machine learning in this context. By reviewing several relevant theoretical aspects 
of machine learning and discussing the results of a simulation study, we have dem-
onstrated how machine learning may prove useful for FP&A practitioners. We have 
paid special attention to explain the distinction between forecasting and planning 
tasks, the first of which involves prediction and the latter of which involves causal 
inference. We see the confusion of these two concepts as a major pitfall that prac-
titioners should strive to avoid. Specific approaches to causal machine learning 
have begun to gain traction, as awareness has increased that the naive application of 
machine learning can fail in applications that go beyond prediction. This applies to 
all modern machine learning methods in a high-dimensional setting.

Our article has several limitations. It was impossible to cover the vast number of 
machine learning techniques that exist. Depending on the causal question at hand, a 
range of econometric approaches (e.g., instrumental variables, synthetic controls or 
regression discontinuity designs) coupled with machine learning methods may be 
suitable. We intentionally used a simple data generation process in our simulation; 
additional elements such as trends or seasonal components or a real-life example 
could complement our simulation study. Despite these limitations, we believe that 
our article can be a valuable source of insights into the ways in which FP&A can 
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benefit from machine learning. With it, we hope to contribute to the adoption of 
machine learning in this area and help practitioners avoid common mistakes.

Acknowledgements  We thank the editor and two anonymous referees for their very helpful comments 
and suggestions.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Acemoglu, D., & Restrepo, P. (2018). Artificial intelligence, automation, and work. The economics of 
artificial intelligence: an agenda (pp. 197–236). University of Chicago Press. https://​doi.​org/​10.​
7208/​chica​go/​97802​26613​475.​001.​0001.

Athey, S. (2018). The impact of machine learning on economics. The economics of artificial intelli-
gence: an agenda (pp. 507–547). University of Chicago Press.

Bajari, P., Chernozhukov, V., Hortaçsu, A., & Suzuki, J. (2019). The impact of big data on firm per-
formance: an empirical investigation. AEA Papers and Proceedings, 109, 33–37. https://​doi.​org/​
10.​1257/​pandp.​20191​000.

Balakrishnan, T., Chui, M., Hall, B., & Henke, N. (2020). Global survey: the state of AI in 2020. 
McKinsey & Company. https://​www.​mckin​sey.​com/​busin​ess-​funct​ions/​mckin​sey-​analy​tics/​our-​
insig​hts/​global-​survey-​the-​state-​of-​ai-​in-​2020. Accessed 6 Dec 2020.

Barker, J., Gajewar, A., Golyaev, K., Bansal, G., & Conners, M. (2018). Secure and automated enter-
prise revenue forecasting. In AAAI, pp. 7657–7664.

Becker, S. D., Mahlendorf, M. D., Schäffer, U., & Thaten, M. (2016). Budgeting in times of economic 
crisis. Contemporary Accounting Research, 33, 1489–1517. https://​doi.​org/​10.​1111/​1911-​3846.​
12222.

Belloni, A., Chen, D., Chernozhukov, V., & Hansen, C. (2012). Sparse models and methods for opti-
mal instruments with an application to eminent domain. Econometrica, 80, 2369–2429. https://​
doi.​org/​10.​3982/​ECTA9​626.

Belloni, A., & Chernozhukov, V. (2013). Least squares after model selection in high-dimensional 
sparse models. Bernoulli, 19, 521–547. https://​doi.​org/​10.​3150/​11-​BEJ410.

Belloni, A., Chernozhukov, V., & Hansen, C. (2010). Inference for high-dimensional sparse econo-
metric models. In Advances in Economics and Econometrics. 10th World Congress of Econo-
metric Society, Aug 2010 III, pp. 245–295. ArXiv, 2011.

Belloni, A., Chernozhukov, V., & Hansen, C. (2014a). High-dimensional methods and inference on 
structural and treatment effects. Journal of Economic Perspectives, 28, 29–50. https://​doi.​org/​10.​
1257/​jep.​28.2.​29.

Belloni, A., Chernozukov, V., & Hansen, C. (2014b). Inference on treatment effects after selection 
among high-dimensional controls. The Review of Economic Studies, 81, 608–650.

Bishop, C. M. (2006). Pattern recognition and machine learning. Information science and statistics. 
Springer (Softcover published in 2016).

Blake, T., Nosko, C., & Tadelis, S. (2015). Consumer heterogeneity and paid search effectiveness: a 
large-scale field experiment. Econometrica, 83, 155–174. https://​doi.​org/​10.​3982/​ECTA1​2423.

Brealey, R. A., Myers, S. C., & Franklin, A. (2020). Principles of corporate finance (13th ed.). 
McGraw-Hill Education.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7208/chicago/9780226613475.001.0001
https://doi.org/10.7208/chicago/9780226613475.001.0001
https://doi.org/10.1257/pandp.20191000
https://doi.org/10.1257/pandp.20191000
https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/global-survey-the-state-of-ai-in-2020
https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/global-survey-the-state-of-ai-in-2020
https://doi.org/10.1111/1911-3846.12222
https://doi.org/10.1111/1911-3846.12222
https://doi.org/10.3982/ECTA9626
https://doi.org/10.3982/ECTA9626
https://doi.org/10.3150/11-BEJ410
https://doi.org/10.1257/jep.28.2.29
https://doi.org/10.1257/jep.28.2.29
https://doi.org/10.3982/ECTA12423


87

1 3

Digital Finance (2022) 4:63–88	

Bühlmann, P., & van de Geer, S. (2011). Statistics for high-dimensional data: methods, theory and 
applications. Springer series in statistics. Springer.

Chandra, K., Plaschke, F., & Seth, I. (2018). Memo to the CFO: get in front of digital finance - or get 
left back. McKinsey & Company. https://​www.​mckin​sey.​com/​busin​ess-​funct​ions/​strat​egy-​and-​
corpo​rate-​finan​ce/​our-​insig​hts/​memo-​to-​the-​cfo-​get-​in-​front-​of-​digit​al-​finan​ce-​or-​get-​left-​back. 
Accessed 10 Dec 2020.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., & Newey, W. (2017). Dou-
ble/debiased/neyman machine learning of treatment effects. American Economic Review, 107, 
261–65. https://​doi.​org/​10.​1257/​aer.​p2017​1038.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., & Robins, J. 
(2018). Double/debiased machine learning for treatment and structural parameters. The Econo-
metrics Journal, 21, C1–C68. https://​doi.​org/​10.​1111/​ectj.​12097.

Chernozhukov, V., Hansen, C., & Spindler, M. (2015). Valid post-selection and post-regularization 
inference: an elementary, general approach. Annual Review of Economics, 7, 649–688. https://​
doi.​org/​10.​1146/​annur​ev-​econo​mics-​012315-​015826.

Chernozhukov, V., Hansen, C., & Spindler, M. (2016). High-dimensional metrics in R. arXiv:​1603.​
01700​v2.

Conine, T. C., & McDonald, M. (2017). The application of variance analysis in FP&A organizations: 
survey evidence and recommendations for enhancement. Journal of Accounting and Finance, 17, 
54–70.

De Gooijer, J. G., & Hyndman, R. J. (2006). 25 years of time series forecasting. International Journal 
of Forecasting, 22, 443–473. https://​doi.​org/​10.​1016/j.​ijfor​ecast.​2006.​01.​001 (twenty five years of 
forecasting).

Economist (2017). The world’s most valuable resource is no longer oil, but data. https://​www.​econo​mist.​
com/​leade​rs/​2017/​05/​06/​the-​worlds-​most-​valua​ble-​resou​rce-​is-​no-​longer-​oil-​but-​data. Accessed 6 
Dec 2020.

Fischer, E. O. (2009). Finanzwirtschaft für Anfänger. Lehr- und Handbücher zur entscheidungsorienti-
erten Betriebswirtschaft. Oldenbourg.

Gajewar, A., & Bansal, G. (2016). Revenue forecasting for enterprise products. arXiv:1701.06624.
Gandomi, A., & Haider, M. (2015). Beyond the hype: big data concepts, methods, and analytics. Interna-

tional Journal of Information Management, 35, 137–144. https://​doi.​org/​10.​1016/j.​ijinf​omgt.​2014.​
10.​007.

Garrison, R. H., Noreen, E. W., & Brewer, P. C. (2006). Managerial accounting. McGraw-Hill/Irwin.
Gray, G. L., & Alles, M. (2015). Data fracking strategy: why management accountants need it. Manage-

ment Accounting Quarterly, 16, 22–33.
Hansen, S. C. (2011). A theoretical analysis of the impact of adopting rolling budgets, activity-based 

budgeting and beyond budgeting. European Accounting Review, 20, 289–319. https://​doi.​org/​10.​
1080/​09638​180.​2010.​496260.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, infer-
ence, and prediction (2nd ed.). Springer-Verlag.

Henrique, B. M., Sobreiro, V. A., & Kimura, H. (2019). Literature review: machine learning techniques 
applied to financial market prediction. Expert Systems with Applications, 124, 226–251. https://​doi.​
org/​10.​1016/j.​eswa.​2019.​01.​012.

Koenecke, A., & Gajewar, A. (2020). Curriculum learning in deep neural networks for financial forecast-
ing. In V. Bitetta, I. Bordino, A. Ferretti, F. Gullo, S. Pascolutti, & G. Ponti (Eds.), Mining data for 
financial applications (pp. 16–31). Springer International Publishing.

Küsters, U., McCullough, B. D., & Bell, M. (2006). Forecasting software: past, present and future. Inter-
national Journal of Forecasting, 22, 599–615. https://​doi.​org/​10.​1016/j.​ijfor​ecast.​2006.​03.​004 
(twenty five years of forecasting).

Laney, D. (2001). 3-D data management: controlling data volume, velocity and variety. Application 
Delivery Strategies by META Group Inc., Gartner. https://​blogs.​gartn​er.​com/​doug-​laney/​files/​2012/​
01/​ad949-​3DData-​Manag​ement-​Contr​olling-​Data-​Volume-​Veloc​ity-​andVa​riety.​pdf. Accessed 30 
July 2020.

Möller, K., Schäffer, U., & Verbeeten, F. (2020). Digitalization in management accounting and control: 
an editorial. Journal of Management Control, 31, 1–8. https://​doi.​org/​10.​1007/​s00187-​020-​00300-5.

Mullainathan, S., & Spiess, J. (2017). Machine learning: an applied econometric approach. Journal of 
Economic Perspectives, 31, 87–106. https://​doi.​org/​10.​1257/​jep.​31.2.​87.

https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/memo-to-the-cfo-get-in-front-of-digital-finance-or-get-left-back
https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/memo-to-the-cfo-get-in-front-of-digital-finance-or-get-left-back
https://doi.org/10.1257/aer.p20171038
https://doi.org/10.1111/ectj.12097
https://doi.org/10.1146/annurev-economics-012315-015826
https://doi.org/10.1146/annurev-economics-012315-015826
https://arxiv.org/abs/1603.01700v2
https://arxiv.org/abs/1603.01700v2
https://doi.org/10.1016/j.ijforecast.2006.01.001
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://doi.org/10.1016/j.ijinfomgt.2014.10.007
https://doi.org/10.1016/j.ijinfomgt.2014.10.007
https://doi.org/10.1080/09638180.2010.496260
https://doi.org/10.1080/09638180.2010.496260
https://doi.org/10.1016/j.eswa.2019.01.012
https://doi.org/10.1016/j.eswa.2019.01.012
https://doi.org/10.1016/j.ijforecast.2006.03.004
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3DData-Management-Controlling-Data-Volume-Velocity-andVariety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3DData-Management-Controlling-Data-Volume-Velocity-andVariety.pdf
https://doi.org/10.1007/s00187-020-00300-5
https://doi.org/10.1257/jep.31.2.87


88	 Digital Finance (2022) 4:63–88

1 3

Oesterreich, T. D., Teuteberg, F., Bensberg, F., & Buscher, G. (2019). The controlling profession in the 
digital age: understanding the impact of digitisation on the controller’s job roles, skills and compe-
tences. International Journal of Accounting Information Systems. https://​doi.​org/​10.​1016/j.​accinf.​
2019.​100.

Ozbayoglu, A. M., Gudelek, M. U., & Sezer, O. B. (2020). Deep learning for financial applications: a sur-
vey. Applied Soft Computing, 93, 106384. https://​doi.​org/​10.​1016/j.​asoc.​2020.​106384.

Pearl, J. (2019). The seven tools of causal inference, with reflections on machine learning. Communica-
tions of the ACM, 62, 54–60. https://​doi.​org/​10.​1145/​32410​36.

Pearl, J., & Mackenzie, D. (2018). The book of why: the new science of cause and effect (1st ed.). Basic 
Books Inc.

Roos, A., Tucker, J., Rodt, M., Stange, S., Ego, P., Boudadi, A., & Sheth, H. (2020). Lessons from best-
in-class CFOs. Boston Consulting Group. https://​www.​bcg.​com/​publi​catio​ns/​2020/​lesso​ns-​best-​in-​
class-​cfos. Accessed 29 July 2020.

Ross, S. A., Westerfield, R. W., & Jordan, B. D. (2019). Fundamentals of corporate finance (12th ed.). 
McGraw-Hill Education.

Rubin, D. B. (2005). Causal inference using potential outcomes. Journal of the American Statistical 
Association, 100, 322–331. https://​doi.​org/​10.​1198/​01621​45040​00001​880.

Strauß, E., & Zecher, C. (2013). Management control systems: a review. Journal of Management Control, 
23, 233–268. https://​doi.​org/​10.​1007/​s00187-​012-​0158-7.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: an introduction. Adaptive computation and 
machine learning series. MIT Press.

Taddy, M. (2019). Business data science: combining machine learning and economics to optimize, auto-
mate, and accelerate business decisions. McGraw-Hill Education.

Tucker, J., Foldesy, J., Roos, A., & Rodt, M. (2017). How digital CFOs are transforming finance. Boston 
Consulting Group. https://​www.​bcg.​com/​publi​catio​ns/​2017/​funct​ion-​excel​lence-​how-​digit​al-​cfo-​
trans​formi​ng-​finan​ce. Accessed 10 Dec 2020.

Unger, G., & Rodt, M. (2019). The art of forward-looking steering: the power of algorithmic forecasting. 
Boston Consulting Group. https://​www.​bcg.​com/​publi​catio​ns/​2019/​power-​of-​algor​ithmic-​forec​ast-
ing. Accessed 30 Nov 2020.

Varian, H. (2018). Artificial intelligence, economics, and industrial organization. The economics of arti-
ficial intelligence: an agenda (pp. 399–419). University of Chicago Press. https://​doi.​org/​10.​7208/​
chica​go/​97802​26613​475.​001.​0001.

Zhu, X., & Goldberg, A. B. (2009). Introduction to semi-supervised learning. Synthesis Lectures on Arti-
ficial Intelligence and Machine Learning, 3, 1–130. https://​doi.​org/​10.​2200/​S0019​6ED1V​01Y20​
0906A​IM006.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1016/j.accinf.2019.100
https://doi.org/10.1016/j.accinf.2019.100
https://doi.org/10.1016/j.asoc.2020.106384
https://doi.org/10.1145/3241036
https://www.bcg.com/publications/2020/lessons-best-in-class-cfos
https://www.bcg.com/publications/2020/lessons-best-in-class-cfos
https://doi.org/10.1198/016214504000001880
https://doi.org/10.1007/s00187-012-0158-7
https://www.bcg.com/publications/2017/function-excellence-how-digital-cfo-transforming-finance
https://www.bcg.com/publications/2017/function-excellence-how-digital-cfo-transforming-finance
https://www.bcg.com/publications/2019/power-of-algorithmic-forecasting
https://www.bcg.com/publications/2019/power-of-algorithmic-forecasting
https://doi.org/10.7208/chicago/9780226613475.001.0001
https://doi.org/10.7208/chicago/9780226613475.001.0001
https://doi.org/10.2200/S00196ED1V01Y200906AIM006
https://doi.org/10.2200/S00196ED1V01Y200906AIM006

	Machine learning for financial forecasting, planning and analysis: recent developments and pitfalls
	Abstract
	1 Introduction
	2 The role of FP&A
	3 Introduction to machine learning
	4 Literature review
	5 Simulation example
	5.1 Forecasting
	5.2 Planning
	5.3 The value of data

	6 Conclusion
	Acknowledgements 
	References




