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Abstract
In this paper, hybrid censoring mechanisms are applied to minimal repair and record
data. Based on the derivation of the joint distribution of such data under hybrid cen-
soring, likelihood inference is discussed. For illustration, Type-I and Type-II hybrid
censoring schemes are considered for exponential distributions. In particular, the exact
(conditional) distribution of themaximum likelihood estimator is obtained for an expo-
nential distribution. This result is used to construct exact (conditional) confidence
intervals using the method of pivoting the cumulative distribution function. Finally,
the results are illustrated using two data sets taken from the literature onminimal repair
models. Although the discussion of the results is in terms of minimal repair models,
the results can be applied directly to record value data. By utilizing a connection of
minimal repair times to occurrence times of non-homogeneous Poisson processes, a
nonparametric estimate for the intensity rate of the process and the underlying lifetime
distribution under hybrid censoring is also proposed. The paper is supplemented by
simulational results.

Keywords Minimal repair data · Record values · Hybrid censoring · Maximum
likelihood estimation · Non-homogeneous Poisson process · Stochastic
monotonicity · Exponential distribution

1 Introduction

The notion of minimal repair has been considered in the literature as a concept where
a repairable item is repaired with minimal effort so that the item continues to function
at the same level of wear and tear as before the repair. Repairs are usually assumed
to be performed without time loss, since the repair time is usually supposed relatively
short compared to the expected operating time of the item. A simple example of such
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a situation is the replacement of a broken V-belt in a car engine since the age of the
engine can be considered the same after the repair. Minimal repair models have been
discussed in various ways in the literature and many extensions have been provided.
For instance, Barlow and Hunter [13] considered minimal repair in connection with
maintenance strategies. In Ascher [6], the model has been discussed in terms of a bad-
as-old concept. Ascher [4] commented on models for reliability of repaired equipment
whereas Ascher and Feingold [5] focused on repairable systems reliability. Further
results, extensions, and connections are presented in Block et al. [17] and Gupta and
Kirmani [39]. Aven and Jensen [7] discussed a general minimal repair model in terms
of point processes. A survey of results and models can be found in Tadj et al. [51].

Gupta and Kirmani [39] established a connection of the standard minimal repair
model to record values and non-homogeneous Poisson processes (NHPP) (see also
Pfeifer [50], Cramer [23]). This connection is quite useful in the statistical analysis of
such data since it points out that record values from a common cumulative distribution
function (cdf) F , minimal repair times with lifetime cdf F , as well as jump times of
a NHPP with cumulative intensity rate � = − log F can be treated identically in a
probabilistic sense. In this respect, the results presented in the following can also be
applied to the hybrid censored data that are generated by these models.

In this paper,we combineminimal repairmodels (or recorddata)with hybrid censor-
ing strategies. A recent survey of hybrid censoring models and respective inferential
results has been provided by Balakrishnan et al. [10] who mainly focus on models
based on (progressively Type-II censored) order statistics (see also Balakrishnan and
Kundu [12], Balakrishnan and Cramer [8]). These models have been entitled as non-
replacement cases of truncated life tests. In addition to the above-mentioned reviews,
the following works, among others, are of importance for the case of an exponential
distribution mainly dealt with in this article: Chen and Bhattacharyya [21], Gupta and
Kundu [40], Childs et al. [22], Chandrasekar et al. [20], Balakrishnan and Iliopoulos
[11], Cramer and Balakrishnan[25].

However, early publications like Epstein [34] considered also (Type-I) hybrid cen-
sored in a replacement scenario. This means that as soon as the item fails, it will
be replaced with an identical item of the same virtual age. Clearly, this can be inter-
preted as a minimal repair. This model has also been addressed in Ebrahimi [31]
(two-parameter exponential distributed lifetimes), Fairbanks et al. [35] (confidence
intervals), Draper and Guttman [29] (Bayesian inference), and Ebrahimi [32] (predic-
tion), but does not appear to have received further attention in the literature.

In this paper, we will take this idea and combine it with the censoring mechanisms
of hybrid censoring. In particular, we will use the structural approach proposed in
Cramer [24] to present a general approach to the statistical analysis of such data under
hybrid censoring. The approach is based on ordered data X(1) ≤ · · · ≤ X(m) which
is subject to hybrid censoring. In the following, these data will be generated from
the minimal repairs in a sample of exactly n items (for details see eq. 2). We will
illustrate the power of the approach using the basic models of Type-I and Type-II
hybrid censoring.

Thus, given minimal repair data X(1) ≤ X(2) ≤ X(3) ≤ · · · , a Type-I hybrid
censored sample with a desired number r of measurements and time threshold τ is
obtained by terminating the life test at
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WI = min{τ, X(r)} = τ ∧ X(r).

The corresponding sample is given themeasurements X(1) ≤ · · · ≤ X(MI) with random
sample size MI = ∑r

j=1 1(−∞,τ ](X( j)). Here, 1A : R → {0, 1} denotes the indicator
function, that is, 1A(x) = 1 ⇐⇒ x ∈ A. Clearly, the resulting data is bounded by
the threshold τ . The sample size MI is at most r but may be zero.

For Type-II hybrid censoring, the test duration is given by

WII = max{τ, X(r)} = τ ∨ X(r)

which ensures a minimum sample size of r . In particular, we get the measurements
X(1) ≤ · · · ≤ X(MII) with random sample size MII = r + ∑∞

j=r+1 1(−∞,τ ](X( j))

However, both the observed sample size MII and the test duration WII are unbounded.
Note that, in non-replacement models as discussed in detail in Balakrishnan et al. [10],
the sample size is always bounded.

In Sect. 2, we introduce the data and the model in detail. We derive the joint dis-
tribution of the ordered repair time data and of the random number of measurements
assuming a general life time distribution with cdf F . For subsequent use, we present
also the respective results for exponentially distributed lifetimes. In particular, we
establish the respective results for both Type-I and Type-II hybrid censoring. Sect. 3
addresses likelihood inference particularly in the exponential case for such data as
well as nonparametric estimation of the intensity rate when the data is understood
as occurrence times of a non-homogeneous Poisson process [see Sect. (2.2)]. After
establishing the maximum likelihood estimators for the mean θ of an exponential
distribution in terms of the total time on test, we derive their exact (conditional) cdf
using the modularization approach in the form presented in Balakrishnan et al. [10]
and Cramer [24]. Using the method of pivoting the cdf (see Balakrishnan et al. [9])
and illustrating its applicability, we show that it leads to exact (conditional) confidence
intervals. In Sect. 4, the results are illustrated by two data sets taken from Whitaker
and Samaniego [54] and Kumar and Klefsjö [44], respectively. For comparison, we
provide also confidence intervals due to Fairbanks et al. [35] under Type-I hybrid cen-
soring. The discussion is supplemented by some simulations illustrating the concepts
and results. Further directions of research are sketched in Sect. 5 (conclusions and
outlook).

Finally, we would like to emphasize that, although we consider the data to be
repair times, it is possible to interpret them as record values, too (see also Gupta and
Kirmani [39] and comments given above). This is not important for the derivation of
the presented statistical and probabilistic results. It is all a matter of interpretation.

2 Models and Distributional Results

Throughout, we assume that the initial life times X1, . . . , Xn are random variables
(r.v.s) having an absolutely continuous cdf F with continuous probability density
function (pdf) f . If exponential lifetimes are assumed, that is, X1 ∼ Exp(θ), the
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corresponding pdf is given by f (x) = θ−1e−x/θ , x ≥ 0. Thus, θ > 0 denotes the
mean lifetime of the items under study.

In the following, we study different minimal repair models with both a maximum
or minimum number of r observations as well as a time threshold τ . The design of the
hybrid censored life test is based on the time threshold τ which may be interpreted as
either a maximum test duration or a desired test duration. In order to avoid trivialities,
we assume that τ is included in the support of F , that is, 0 < F(τ ) < 1. In this regard,
the models can be considered as a (Type-I/Type-II) hybrid censoring of minimal repair
times or as Type-I/Type-II hybrid censored data with replacement.

As mentioned above the considered models are designed by performing Type-I and
Type-II censoring on a sequence of minimal repair times. Therefore, we introduce first
the underlying basic minimal repair model (see Model 2.1).

Model 2.1 (Minimal repair model in a sample of n items) Consider a life test with n
itemswhose lifetimes aremonitored. If the first failure occurs at the failure time X(n,1),
a minimal repair will be performed and the monitoring process will be continued. The
failure times of different items are supposed independent.

This procedure will be repeated unless the experiment is terminated and, thus,
results in an increasing sequence of failure/repair times

X(n,1) ≤ X(n,2) ≤ X(n,3) ≤ · · · , (2.1)

that is,
(
X(n,k)

)
k∈N.

In order to analyse the above data, one has to discuss the distribution of the observed
failure/repair times

(
X(n,k)

)
k∈N. Clearly, X(n,1) = min{X1, . . . , Xn}. But now, the

failed component is repaired which affects the distribution of its lifetimes so that the
resulting random variables are no longer identically distributed after the first repair.
However, the independence is preserved. Therefore, we will discuss first the joint dis-
tribution of the first k repair times X(n,1), . . . , X(n,k) generated according toModel 2.1.
To obtain a formal construction of the minimal repair model, we introduce the stan-
dard minimal repair model (SMR) and illustrate its relation to a NHPP. For brevity, we
introduce the notation tm = (t1, . . . , tm) ∈ R

m . The standard minimal repair model
corresponds to the case n = 1 ofModel 2.1, that is, we consider a life test with a single
object whose lifetime is monitored. If a failure occurs then it will be instantly repaired
in the sense ofminimal repair so that always one object is under study. The correspond-
ing sequence of failure/repair times is denoted by X(1,1) ≤ X(1,2) ≤ X(1,3) ≤ · · · or
by

(
X(1,k)

)
k∈N, respectively.

Block et al. [17] studied the standard minimal repair model under more general
assumptions and provided a formal construction. Furthermore,Gupta andKirmani [39]
identified the failure/repair times of the standard minimal repair model with the record
values of a sequence of i .i .d. r .v.s with common cdf F . In order to establish this result,
they considered the counting process generated by the corresponding failure/repair
times, which turns out to be a NHPP. The corresponding counting process (N (t))t≥0
is defined by
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Fig. 1 Illustration of generating of a minimal repair sample starting with n = 4 items

N (t) =
∞∑

j=1

1[0,t](X(1, j)), t ≥ 0. (2.2)

Hence, the extensively studied topic of record values (see, for example, Arnold et
al. [3], Nevzorov [49], David and Nagaraja [28]) can be applied to minimal repair
data. In particular, the failure times {X(1,n) | n ∈ N} from the SMR Model and the
(upper) records in a sequence of i.i.d. r.v.s (Yn)n∈N are identically distributed. This
follows immediately from Theorem 1 in Gupta and Kirmani s[39, Section 2]. Thus,
we have the following proposition.

Proposition 2.1 The repair times (X(1,n))n∈N in the SMRmodel and the (upper) record
values (YLn )n∈N in a sequence of i.i.d. r.v.s (Yn)n∈N with Y1 ∼ F are identically
distributed. (Ln)n∈N denotes the sequence of record times.

For fixed k ∈ N, the joint pdf f(1,...,k) of the r.v.s . X(1,1), . . . , X(1,k) is given by

f(1,...,k)(tk) =
{
f (tk)

∏k−1
i=1

f (ti )
F(ti )

, t1 < · · · < tk

0, otherwise
, (2.3)

where F denotes the survival function of F.

We will see that a slight modification of this approach can be utilized to gain a
similar identification for the Type-I/Type-II hybrid censored minimal repair models.

In a next step, we consider the minimal repair model 2.1. Note that if an object fails
then a minimal repair is conducted, so that immediately after the failure again n items
are under test. For illustration, the scenario including the repair times is depicted in
Fig. 1 for n = 4 items on test.
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The sequence of failures illustrated in Fig. 1 is given by

item 1: X (1)
(4,1)

item 2: X (2)
(4,1) X (2)

(4,2)

item 3: − − −
item 4: X (4)

(4,1) X (4)
(4,2)

(2.4)

leading to the ordered sample X (2)
(4,1) ≤ X (1)

(4,1) ≤ X (4)
(4,1) ≤ X (2)

(4,2) ≤ X (4)
(4,2). Hence,

the resulting data (ignoring the knowledge about the item that has failed) is given by
X(4,1) ≤ X(4,2) ≤ X(4,3) ≤ X(4,4) ≤ X(4,5).

Now, we are interested in the distribution of the failure/repair times given in (2.1).
Therefore we consider the above construction for an arbitrary n ∈ N. Clearly, the
failure/repair times X (i)

(n,1) ≤ X (i)
(n,2) ≤ X (i)

(n,3) ≤ . . . for object i ∈ {1, . . . , n} can
be interpreted as jump times of a NHPP (Ni (t))t≥0. Furthermore, these NHPPs are
independent by assumption.Therefore, the sequence of failure times X(n,1) ≤ X(n,2) ≤
X(n,3) ≤ X(n,4) ≤ X(n,5) ≤ . . . can be seen as the jump times of the process resulting
from the superposition of the n independent NHPPs (Ni (t))t≥0, 1 ≤ i ≤ n. It is well-
known that the superposition of independent NHPPs with the same intensity rates λ(·)
form a NHPP with intensity rate nλ(·) (see, e.g., Last and Penrose [45]). This means
that the baseline distribution can be seen as the distribution of the minimum of the
initial lifetimes, that is, F1:n = 1− (1− F)n leading to the pdf f1:n = n f (1− F)n−1.
Thus, we directly get the following result from Proposition 2.1.

Corollary 2.2 For fixed k ∈ N, the r.v.s X(n,1) ≤ X(n,2) ≤ X(n,3) ≤ · · · ≤ X(n,k)

generated from Model 2.1 have the joint pdf f(1,...,k;n) given by

f(1,...,k;n)(tk) =
{
nk f (tk)F

n−1
(tk)

∏k−1
i=1

f (ti )
F(ti )

, t1 < · · · < tk

0, otherwise
. (2.5)

Note that (2.5) equals the joint pdf of so-called n-record values (see, e.g., Dziub-
dziela and Kopociński [30], Kamps [43, Section 1.5], Arnold et al. [3]).

Remark 2.3 1. Corollary 2.2 shows that the situation can also be interpreted as fol-
lows. Insteadof considering an (initial) sample of sizen of i.i.d. r.v.s andperforming
minimal repairs to each item upon failure, one may consider a series systemwith n
i.i.d. components and conduct a minimal repair to the series system. The resulting
samples in both scenarios have the same distribution.

2. Notice that minimal repair times can be considered as particular sequential order
statistics. Therefore, Type-I hybrid censored minimal repair times can be seen as
a particular case of Type-I censored sequential order statistics which have been
discussed in Burkschat et al. [18].

3. In the preceding construction, the information about the failed (and repaired) item
has been ignored. If this information is available thenwe can handle the situation as
n independent samples with the same baseline distribution. Note that the stopping
rule for the observation process can now be set in two ways.

123



Journal of Statistical Theory and Practice (2023) 17 :53 Page 7 of 38 53

(a) The stopping is performed per sub-sample, that is, we require for each sub-
sample a specific hybrid censoring scheme. For instance, we can consider
Type-I hybrid censoring with a threshold τi and a maximum number mi for
the i-th sub-sample. Of course, one can choose τi = τ or mi = m if appro-
priate. This construction leads to n independent samples of hybrid censored
minimal repair times subject to possibly different hybrid censoring schemes.
In particular, the sample sizes MIi for each sub-sample are independent. Note
that, technically, these hybrid censoring schemes can be different for each sub-
sample. In case of progressively censored data, such multi-sample situations
have been considered in Górny and Cramer [38] (Type-I hybrid) and Jansen et
al. [42] (Type-II hybrid) which have led to explicit but messy results. It would
be interesting to see whether such results can also be established for hybrid
censored minimal repair data.

(b) A hybrid censoring scheme is applied jointly to all sub-samples. In case of
Type-I hybrid censoring, a threshold τ and a total number of observationsm is
fixed in advance leading to sample sizesMIi for each sub-sample. However, the
MIi ’s are dependent now since they depend on all sub-samples! This situation
can also be analysed in terms of a marked NHPP (resulting from the super-
position as above) which is subject to hybrid censoring. The marks are given
by the sub-sample number. For information on marked Poisson processes, see,
e.g., Møller and Waagepetersen [48], Last and Penrose [45].

It will be interesting to analyse these models which will be subject of future
research.

For exponential distributions, we find the following result (see also Ahsanullah [1],
Arnold et al. [3]).

Corollary 2.4 ( Exponential distribution) Assuming exponentially distributed lifetimes,
the joint pdf in Corollary 2.2 for fixed k ∈ N reads

f(1,...,k;n)(tk) =
(n

θ

)k
e−ntk/θ , t1 < · · · < tk .

From Proposition 2.1, we find the marginal cdf of X(n,i) (see Arnold et al.[3, p.10]).

Theorem 2.5 The cdf of X(n,i), for i ∈ N, in Model 2.1 with common cdf F is given
by

F(n,i)(t) = P(X(n,i) ≤ t) = 1 − F
n
(t)

i−1∑

j=0

n j

j ! [− ln F(t)] j , t ∈ R. (2.6)
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X(n,1) X(n,2) X(n,3) X(n,4)
τ X(n,5)

repair 1 repair 2 repair 3 repair 4 repair 5stop

time

Stop at τ : WI = τ

X(n,1) X(n,2) X(n,3) X(n,4) X(n,5)
τ

repair 1 repair 2 repair 3 repair 4 repair 5 |stop

time

Stop at 5th repair time: WI = X(n,5)

Fig. 2 Possible data scenarios for the minimal repair model with time censoring at τ > 0 and maximum
number r = 5 of repairs (with different choices of X(n,5))

2.1 Type-I Hybrid Censored Data

For a given sequence of increasingly ordered r.v.s (Zk)k∈N as well as parameters r ∈ N

and τ > 0, the corresponding Type-I hybrid censored sample (Z (I )
k )k is defined by

Z1 ≤ · · · ≤ ZM∧r where M =
∞∑

i=1

1(−∞,τ ](Zi ). (2.7)

This procedure is applied to minimal repair data generated from Model 2.1, that is,
the life test is terminated when either the r -th repair occurs or the pre-determined
maximum test duration τ > 0 expires. This situation is depicted in Fig. 2 for r > 4
and some τ > 0. The experimental time of such a life testing experiment is given by

WI = min{X(n,r), τ } = X(n,r) ∧ τ.

Note that this is obtained from Model 2.1 by bounding the test duration by τ .
Denoting the number of repairs until τ by the random counter

M =
∞∑

i=1

1(−∞,τ ](X(n,i)), (2.8)

it is clear that M maybe zero (generally with positive probability). To be more precise,
this happens with probability

P(M = 0) = P(τ < X(n,1)) = P(τ < X1:n) = F
n
(τ ),
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which is positive since 0 < F(τ ) < 1 has been assumed. Therefore, the experimenter
is faced with the problem that the life test may terminate without observing a repair.
As a result, inference will be of conditional nature since we have to ensure to observe
at least one failure or repair. Thus, we will assume subsequently that M > 0. In the
Type-I hybrid censoring case, the sample size is given by

MI = M ∧ r ,

that is, the maximum number of observed failures is bounded by r . Notice that the
same problem is present for Type-I censoring and Type-I hybrid censoring without
replacement, respectively. The probability mass function (pmf) of M results from the
equivalence

M ≥ m ⇐⇒ X(n,m) ≤ τ

and the marginal cdf of X(n,m) which is given in Theorem 2.5.

Lemma 2.6 The pmf of the r.v. MI = M ∧ r = ∑r
i=1 1(−∞,τ ](X(n,i)) is given by

P(MI = m) =

⎧
⎪⎨

⎪⎩

F
n
(τ ), m = 0

nm
m! F

n
(τ )[− log F(τ )]m, m ∈ {1, . . . , r − 1}

F(n,r)(τ ), m = r

.

Note that {M > 0} = {MI > 0}. Further, the expectation of MI is given by

EMI = r F(n,r)(τ ) + [− ln(F
n
(τ )]F (n,r−1)(τ )

τ→∞−−−→ r .

Proof The pmf follows directly from Lemma 2.5. The expectation of MI is obtained
by writing

EMI =
r∑

i=1

P(X(n,i) ≤ τ) = r − F
n
(τ )

r∑

i=1

i−1∑

j=0

[− ln F
n
(τ )] j

j !

= r − F
n
(τ )

r−1∑

j=0

r∑

i= j+1

[− ln F
n
(τ )] j

j !
= r F(n,r)(τ ) + [− ln(F

n
(τ )]F (n,r−1)(τ ).

�
In the next step, we present an expression for the joint cdf of the Type-I hybrid

censored minimal repair times (see Fig. 3). It can be easily deduced from the general
results presented in Cramer [24] (see also Burkschat et al. [18]) and Lemma 2.6
provided that

P(X(n,i) ≤ ti , 1 ≤ i ≤ m, M = m), 1 ≤ m ≤ r , P(X(n,i) ≤ ti , 1 ≤ i ≤ r , M ≥ r)
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Fig. 3 Illustration of generating of a minimal repair sample starting with n = 4 items under Type-I hybrid
censoring

are available. However, proceeding by analogy with the case of order statistics dis-
cussed in Cramer and Balakrishnan [25], we find similar expressions so that we omit
the technical details. In particular, for m ∈ {1, . . . , r}, one has to replace the joint cdf
of the firstm order statistics by that one of the firstm minimal repair times, that is, by

F(1,...,m;n)(tm) =
∫ t1

−∞
. . .

∫ tm

xm−1

f(1,...,m;n)(xm) dxm . . . dx1, tm ∈ R
m, (2.9)

with f(1,...,m;n) given in (2.5). Furthermore, one has to take into account that the
following identity is true for 1 ≤ m ≤ r − 1:

F(1,...,m+1;n)(tm ∧ τ, τ ) = F(1,...,m;n)(tm ∧ τ) − nmF
n
(τ )H(1,...,m)(tm ∧ τ)

(2.10)

where

H(1,...,m)(vm) =
∫ v1

−∞
. . .

∫ vm

xm−1

m∏

i=1

f (xi )

F(xi )
dxm . . . dx1, vm ∈ R

m . (2.11)

This follows from (2.9) by evaluating the most inner integral. Thus, we find the fol-
lowing expressions for the cdf and pdf, respectively.

Theorem 2.7 Let (X(n,i))i∈N be the minimal repair times generated from Model 2.1.

Then, the joint cdf F (I ),MI>0
(1,...,r;n)

of the Type-I hybrid censored repair times X(n,1), . . . ,
X(n,MI) is given by
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F (I ),MI>0
(1,...,r;n)

(tr ) = P(X(n,i) ≤ ti , 1 ≤ i ≤ MI)

= F
n
(τ )

r−1∑

m=1

nmH(1,...,m)(tm ∧ τ)

r∏

j=m+1

1[τ,∞)(t j ) + F(1,...,r;n)(tr ∧ τ).

where F(1,...,k;n) denotes the joint cdf of X(n,1), . . . , X(n,k), k ∈ N, and H(1,...,m) is
given in (2.11).

For m ∈ {1, . . . , r}, the pdf f X(n,1),...,X(n,MI),MI of the Type-I hybrid censored repair
times X(n,1), . . . , X(n,MI) and the sample size MI is given by

f X(n,1),...,X(n,MI),MI(tm,m) =
{
nmF

n
(τ )

∏m
i=1

f (ti )
F(ti )

, t1 < · · · < tm ≤ τ, 0 < m < r

f(1,...,r;n)(tr ), t1 < · · · < tr ≤ τ,m = r
,

where f(1,...,r;n) denotes the joint pdf of X(n,1), . . . , X(n,r), r ∈ N.

Introducing the test duration w = tr ∧ τ , the pdf can be written as

f X(n,1),...,X(n,MI),MI(tm,m) = nmF
n
(w)

m∏

i=1

f (ti )

F(ti )
, t1 ≤ · · · ≤ tm ≤ τ, (2.12)

so that the case-by-case definition is not needed. For exponential distributions, the
situation simplifies considerably.

Corollary 2.8 (Exponential distribution) Assuming exponentially distributed lifetimes,
the joint pdf in Theorem 2.7 reads

f X(n,1),...,X(n,MI),MI(tm,m) =
{( n

θ

)m
e−nτ/θ , t1 < · · · < tm ≤ τ, 0 < m < r

( n
θ

)r
e−ntr /θ , t1 < · · · < tr ≤ τ,m = r

.

It follows from (2.12) that the joint pdf depends only on the test durationw = tr ∧τ

so that we can write

f X(n,1),...,X(n,MI),MI(tm,m) =
(n

θ

)m
e−TTTr /θ . (2.13)

Note that TTTr = nw = n(tr ∧ τ) denotes the total time on test of the life test. This
observation will be very useful considering likelihood inference.

2.2 Type-II Hybrid Censored Data

For a given sequence of increasingly ordered r.v.s (Zk)k∈N as well as parameters r ∈ N

and τ > 0, the Type-II hybrid censored sample is defined by

Z1 ≤ · · · ≤ ZM∨r where M =
∞∑

i=1

1(−∞,τ ](Zi ).
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with M as in (2.7). Thus, MII = M ∨ r denotes the random sample size of the Type-II
hybrid censored sample. Clearly, we have MII ≥ r so that at least r measurements are
available. Moreover, since (Zk)k is a sequence of r.v.s , it may be possible that M is
infinite. In order to have a proper model, one may assume that

P(M < ∞) = 1.

Since, for any � ∈ N,

P(M = ∞) = P(Zi ≤ τ, i ∈ N) ≤ P(Z� ≤ τ),

this holds, when P(Z� ≤ τ)
�→∞−−−→ 0.

As above, we consider minimal repairs in a sample of n items. The life test is
terminated when both the r -th repair has occurred and the pre-determined maximum
test duration τ > 0 is expired.

Representing the repair times by X(n,1), X(n,2), X(n,3), . . . as in Fig. 3, the experi-
mental time of the life test is given by

WII = max{X(n,r), τ }.

Therefore, the test duration is bounded from below by τ which can be considered as
a minimal test duration in this setting. The number of observed failures is given by
MII = M ∨ r with M as in (2.8). By similarity with Lemma 2.6, we get the pmf of
MII. Note that we can write

MII = r +
∞∑

i=r+1

1(−∞,τ ](X(n,i)).

Lemma 2.9 The pmf of the r.v. MII = r + ∑∞
i=r+1 1(−∞,τ ](X(n,i)) is given by

P(MII = m) =

⎧
⎪⎨

⎪⎩

0, m < r

1 − F(n,r+1)(τ ), m = r
nm
m! F

n
(τ )[− log F(τ )]m, m > r

.

Furthermore, we have P(MII < ∞) = 1. The expectation of MII is given by

EMII = r F (n,r+1)(τ ) + [− ln(F
n
(τ )]F(n,r)(τ )

τ→∞−−−→ ∞.

Proof The representation of the pmf follows directly from the definition of MII and
the pmf of M . Since 0 < F(τ ) < 1 has been assumed throughout this paper, we get
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using the marginal distribution of the �-th minimal repair time (or record value) (see
Theorem 2.5)

P(X(n,�) ≤ τ) = 1 − F
n
(τ )

�−1∑

i=0

[−n log F(τ )]i
i !

�→∞−−−−→ 1 − F
n
(τ )

∞∑

i=0

[log F−n
(τ )]i

i ! = 0.

As mentioned above, this implies P(MII < ∞) = 1.
The expectation of MII is calculated by analogy with that of MI in Lemma 2.6. It

should be noted that it converges to ∞ when τ → ∞ since this implies F(τ ) → 1. �
Since MII is unbounded, we present in Theorem 2.10 the joint cdf of the data and

the counter M (which is more convenient than MII in that case). Notice that

{MII = k} = {M = k}, k > r , {MII ≤ r} = {M < r} ∪ {M = r},

where the cases {M < r}, {M = r} can be distinguished based on the observed
data, that is, the sample (X(n,i))1≤i≤MII , MII can be constructed from the sample
(X(n,i))1≤i≤M∨r , M and vice versa.

Theorem 2.10 Let (X(n,i))i∈N be the minimal repair times in a sample of size n.

Then, for m ≥ r , the cdf F (I I ),M
(1,...,r;n)

of the Type-II hybrid censored repair times
(X(n,i))1≤i≤M∨r and M is given by

F (I I ),M
(1,...,r;n)

(tm,m) = P(X(n,i) ≤ ti , 1 ≤ i ≤ m ∨ r , M = m)

= nmF
n
(τ )H(1,...,m)(tm ∧ τ)

m∏

j=r+1

1[τ,∞)(t j ),

where F(1,...,m;n) denotes the joint cdf of X(n,1), . . . , X(n,m), m ∈ N, and H(1,...,m) is
defined in (2.11). Furthermore,

F (I I ),M<r
(1,...,r;n)

(tr , r) = P(X(n,i) ≤ ti , 1 ≤ i ≤ r , M < r)

= F(1,...,r;n)(tr ) − F(1,...,r;n)(tr ∧ τ).

Proof LetM = m ≥ r . Then, P(X(n,i) ≤ ti , 1 ≤ i ≤ m, M = m) results immediately
from Theorem 2.7. In the case M < r , we obtain that

P(X(n,i) ≤ ti , 1 ≤ i ≤ r , M < r) = P(X(n,i) ≤ ti , 1 ≤ i ≤ r , M ≤ r − 1)

= P(X(n,i) ≤ ti , 1 ≤ i ≤ r , X(n,r) > τ)

= F(1,...,r;n)(tr ) − F(1,...,r;n)(tr ∧ τ).

Thus, we arrive at the given expression for the joint cdf. �
Since F is supposed absolutely continuous with pdf f , we get the following pdf

from Theorem 2.10.
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Corollary 2.11 Let (X(n,i))i∈N be the minimal repair times in a sample of size n. Then,
for m ∈ {r , r + 1, . . . }, the pdf f X(n,1),...,X(n,MII),MII of the Type-II hybrid censored
repair times X(n,1), . . . , X(n,MII) and the sample size MII is given by

f X(n,1),...,X(n,MII),MII(tm,m) = nmF
n
(τ )

m∏

i=1

f (ti )

F(ti )
, t1 < · · · < tm ≤ τ,

where f(1,...,k;n) denotes the joint pdf of X(n,1), . . . , X(n,k), k ∈ N. Furthermore,

f X(n,1),...,X(n,r),MII(tr , r) = f(1,...,r;n)(tr ), t1 < · · · < tr−1 < tr , τ < tr .

By analogy with (2.12), we can write the pdf in terms of the test durationw = tr ∨τ

as

f X(n,1),...,X(n,MII),MII(tm,m) = nmF
n
(w)

m∏

i=1

f (ti )

F(ti )
, t1 ≤ · · · ≤ tm . (2.14)

The expression in (2.14) simplifies considerably in case of exponentially distributed
life times. In particular, the pdf depends only on the data via the total time on test
TTTr = nw = n(tr ∨ τ).

Corollary 2.12 (Exponential distribution) Assuming exponentially distributed life-
times, the joint pdf in Corollary 2.11 reads

f X(n,1),...,X(n,MII),MII(tm,m) =
(n

θ

)m
e−TTTr /θ , t1 < · · · < tm,

Remark 2.13 Clearly, the preceding discussion can also be applied to other hybrid
censoring schemes following the ideas presented in Cramer [24]. Further details will
be provided in future research.

3 Likelihood Inference

In this section, we assume that the baseline cdf Fθ depends on some unknown parame-
ter θ ∈ � ⊆ R

p. First, we consider likelihood inference for Type-I and Type-II hybrid
censored data. From (2.12) and (2.14), we find that the likelihood function is given by

L(θ; x1, . . . , xm,m) = nmF
n
θ (w)

m∏

i=1

fθ (xi )

Fθ (xi )
(3.1)

for realizations x1, . . . , xm,m of X(n,1), . . . , X(n,MHCS), MHCS, where MHCS ∈
{MI, MII} and w denotes the observed test duration (that is, the realization of WHCS ∈
{WI,WII} as mentioned above).
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Remark 3.1 It follows from the results presented in Cramer [24] that the likelihood
function under any hybrid censoring scheme has the form given in (3.1) with appro-
priately chosen values ofm (observed sample size) andw (test duration) for the hybrid
censoring scheme under consideration.

3.1 MLEs for Exponentially Distributed Lifetime Distributions

Clearly, the expression in (3.1) has the same mathematical form as the likelihood
function for the first n record values so that the computation of the maximum likeli-
hood estimates uses the same methods and leads to the same expressions (see general
comments in Cramer [24]).

For illustration, we discuss the case of exponential distributions. In particular, the
MLE for exponentially distributed lifetimes with mean θ is given by

θ̂ = 1

MHCS
TTTMHCS =

{
n
MI

(X(MI) ∧ τ), Type-I hybrid censoring
n
MII

(X(MII) ∨ τ), Type-II hybrid censoring
(3.2)

provided it exists. Under Type-II hybrid censoring, this is always true. In case of Type-I
hybrid censored data, one has to assume that MI > 0.

Remark 3.2 According to the comments provided in Cramer [24], results on Bayesian
inference can also be easily established.

3.2 Nonparametric Estimates for the Intensity Rate and the Cumulative
Distribution Function

Since the model can also be considered in terms of superposed NHPPs, one can
consider estimation of the intensity rate λ(·). Using the parametric approach for expo-
nentially distributed lifetimes, we get

λ̂ = 1/θ̂ and F̂(t) = 1 − e−̂λt , t ≥ 0, (3.3)

as parametric estimates for the intensity and the underlying distribution function,
respectively.

First note that inferential results for a NHPP under hybrid censoring are not avail-
able so far. However, utilizing the previous results we can construct a nonparametric
estimator restricting the observation window of the test to the interval [0,WHCS). We
consider the superposed NHPP.

For illustration, we restrict the discussion to Type-I hybrid censoring. Other hybrid
censoring schemes, can be handled similar by suitable adaptions. A more detailed
analysis will be subject of future research. Let wI = xm ∧ τ and m I be the realizations
of WI and MI, respectively. Then, a piecewise-linear Nelson-Aalen type estimator of
the cumulative intensity function � = − ln(1 − F) under Type-I hybrid censoring is
constructed by

123



53 Page 16 of 38 Journal of Statistical Theory and Practice (2023) 17 :53

1. Type-I case, that is, wI = τ ≤ xm and m I = ∑∞
i=1 1(−∞,τ ](xi )(< m):

�̂n(t) = m I

m I + 1

⎧
⎨

⎩

i
n + t−xi

n(xi+1−xi )
, xi < t ≤ xi+1, i = 0, . . . ,m I − 1

m I
n + t−xmI

n(τ−xmI )
, xm I < t ≤ τ

, (3.4)

where x0 = 0, and, as above, and x1, . . . , xm are realizations of the ordered
occurrence times X(n,1), . . . , X(n,MI). As mentioned in Leemis [46], the factor
m I/(m I + 1) takes into account that stopping at the threshold τ leads to m I + 1
gaps.

2. Type-II case, that is, wI = xm < τ and m I = m:

�̂n(t) = i

n
+ t − xi

n(xi+1 − xi )
, xi < t ≤ xi+1, i = 0, . . . ,m I − 1. (3.5)

The corresponding estimate of the cumulative distribution function is given by
F̂∗
n (t) = 1 − e−�̂n(t), t ≥ 0. Note that a Type-I censored version of a NHPP has

also been discussed in Henderson [41] (see also Lewis and Shedler [47], Leemis
[46]). Furthermore, the intensity rate λ(·) of the NHPP is estimated by

(i) Type-I case:

λ̂n(t) =
⎧
⎨

⎩

m I
(m I+1)n(xi+1−xi )

, xi < t ≤ xi+1, i = 0, . . . ,m I − 1
m I

(m I+1)n(τ−xmI )
, xm I < t ≤ τ

. (3.6)

(ii) Type-II case:

λ̂n(t) = 1

n(xi+1 − xi )
, xi < t ≤ xi+1, i = 0, . . . ,m I − 1. (3.7)

Applications of these estimates to Type-I hybrid censored data are presented in Sect. 4.

3.3 Distribution of theMLE for Exponentially Distributed Lifetimes

As pointed out in (3.2), the MLE of θ can be written in terms of the total time on test
statistic. Thus, we get a quite similar expression as for hybrid censored order statistics’
data. Moreover, the distribution of the MLE can be found using the modularization
approach (see, e.g., Górny and Cramer [37], Balakrishnan et al. [10], Cramer [24]).
In case of Type-I hybrid censoring, the conditional cdf can be taken directly from
Burkschat et al. [18]. However, since the derivation is quite forward, we present a
direct proof which also yields a simpler representation of the conditional cdf. For
convenience, we denote by gm,θ and Gm,θ the pdf and cdf of a gamma distribution
with scale parameter θ > 0 and shape parameter m ∈ N, that is, gm,θ is defined by

gm,θ (t) = 1

(m − 1)!θm tm−1e−t/θ , t ≥ 0.
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Theorem 3.3 For x ≥ 0, the conditional cdf G I
r ,θ (· | M ≥ 1) of the MLE under Type-I

hybrid censoring is given by,

Pθ (θ̂ ≤ x | M ≥ 1) = G I
r ,θ (x | M ≥ 1)

= 1

1 − e−nτ/θ

{
Gr ,θ (r x), r x < nτ

Gk+1,θ (nτ), kx < nτ ≤ (k + 1)x, 0 ≤ k < r
.

(3.8)

Proof We get by the law of total probability (w.r.t. the random counter M) that

Pθ (θ̂ ≤ x, M ≥ 1) =
r−1∑

m=1

Pθ (θ̂ ≤ x, M = m) + Pθ (θ̂ ≤ x, M ≥ r)

=
r−1∑

m=1

Pθ (nX(n,r) ∧ τ ≤ mx, X(n,m) ≤ τ < X(n,m+1))

+ Pθ (X(n,m) ∧ τ ≤ r x/n, X(n,r) ≤ τ)

=
r−1∑

m=1

1(0,mx](nτ)Pθ (X(n,m) ≤ τ < X(n,m+1))

+ Pθ (X(n,r) ≤ r x/n, X(n,r) ≤ τ)

=
r−1∑

m=1

1(0,mx](nτ)[F(n,m)(τ ) − F(n,m+1)(τ )] + F(n,r)(r x/n ∧ τ)

From the pdf

f(n,m)(t) = f (t)F
n−1

(t)
nm

(r − 1)!
[ − ln F(t)

]m−1 = nm

(m − 1)!
tm−1

θm
e−nt/θ , t > 0,

we conclude that, for x ≥ 0,

F(n,m)

(
x

n

)

=
∫ x

n

0

nm

(m − 1)!
tm−1

θm
e−nt/θdt =

∫ x

0

um−1

(m − 1)!θm e−u/θdu = Gm,θ (x).

Hence, we get

Pθ (θ̂ ≤ x, M ≥ 1) =
r−1∑

m=1

1(0,mx](nτ)[Gm,θ (nτ) − Gm+1,θ (nτ)] + Gr ,θ (r x ∧ nτ).

Furthermore, by Theorem 2.5, we get

Gm,θ (nτ) − Gm+1,θ (nτ) = θgm+1,θ (nτ) = (nτ/θ)m

m! e−nτ/θ . (3.9)
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Fig. 4 Plots of (conditional) cdf of the maximum likelihood estimator θ̂ under Type-I and Type-II hybrid
censoring with n = 2, τ = 500, r = 10, θ = 100

Depending on the value of nτ , we can split this expression into the following cases

Pθ (θ̂ ≤ x, M ≥ 1)

=
{
Gr ,θ (r x), r x < nτ
∑r−1

m=k+1[Gm,θ (nτ) − Gm+1,θ (nτ)] + Gr ,θ (nτ), kx < nτ ≤ (k + 1)x, 0 ≤ k < r

=
{
Gr ,θ (r x), r x < nτ
∑r−1

m=k+1
(nτ/θ)m

m! e−nτ/θ + Gr ,θ (nτ), kx < nτ ≤ (k + 1)x, 0 ≤ k < r

=
{
Gr ,θ (r x), r x < nτ

Gk+1,θ (nτ), kx < nτ ≤ (k + 1)x, 0 ≤ k < r
.

Consequently one gets the expression in (3.8) by dividing this formula by the proba-
bility Pθ (M ≥ 1) = 1 − Pθ (M = 0). �

Note that the corresponding distribution of theMLE θ̂ can be split into a continuous
part with support on [0, nτ/r ] and a discrete part with point masses at the points
nτ, nτ/2, . . . , nτ/(r − 1).

A plot of a density function (red curve) is depicted in Fig. 4 with n = 2, τ =
500, r = 10, θ = 100.The jumps are located at 1000, 500, 1000/3, 250, 200, 1000/6,
1000/7, 125, 1000/9.
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In order to construct exact conditional confidence intervals, we make use of the
method of pivoting the cdf. Therefore, we have to ensure that the (conditional) cdf of
theMLE is monotonic in θ > 0 and that the associated limits satisfy certain conditions
(see Balakrishnan et al. [9]). Fortunately, these conditions can be concluded again
from the results of Burkschat et al. [18] or by straightforward derivations using the
representations of the conditional cdf in Theorem 3.3. The stochastic monotonicity of
the MLE can alternatively be deduced from van Bentum and Cramer [14].

Theorem 3.4 For the conditional MLE θ̂ under Type-I hybrid censoring and arbitrary
nτ >x ≥ 0, Pθ (θ̂ > x | M ≥ 1) is a monotone increasing function in θ > 0 with

lim
θ→0+

Pθ (θ̂ > x | M ≥ 1) = 0

and

lim
θ→∞ Pθ (θ̂ > x | M ≥ 1) =

{
1 − x

nτ
, r = 1

1, r > 1
.

For x ≥ nτ , Pθ (θ̂ > x | M ≥ 1) = 0 for all θ > 0.

Therefore, we get the following result.

Theorem 3.5 Let k = �nτ/θ̂� − 1 with �z� = min{� ∈ Z | z ≤ �}. For fixed
α1, α2 > 0, with α1 + α2 = α ∈ (0, 1), a conditional 100(1 − α)% confidence
interval (θL , θU ) for θ is obtained by solving the following two non-linear equations.
In particular, if r θ̂ < nτ then one has to solve

α1(1 − e−nτ/θU ) = Gr ,θU (r θ̂ ) and (1 − α2)(1 − e−nτ/θL ) = Gr ,θL (r θ̂ )

else

α1(1 − e−nτ/θU ) = Gk+1,θU (nτ) and (1 − α2)(1 − e−nτ/θL ) = Gk+2,θL (nτ).

Theorem 3.5 follows directly from themethod of pivoting the cdf (see, for example,
Casella and Berger [19]) and Theorem 3.3.

Remark 3.6 (i) To utilize Theorem 3.5, one has to ensure the solvability of the
above equations. For r > 1, this is guaranteed by Theorem 3.4, while the given
equations do not have to have a solution in the case r = 1. Therefore, one
has to modify the bounds of the confidence interval in this case slightly (see
Balakrishnan et al. [9]). However, if possible, the problematic case r = 1 should
be excluded by the design of the experiment.

(ii) In order to apply the pivoting method, it is important to take into account that the
(conditional) distribution of the maximum likelihood estimator has point masses
under hybrid censoring. As pointed out in Casella and Berger [19, p. 434], these
point masses have to be considered in the sense that we do not consider the
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survival function but the probability Pθ (θ̂ ≥ x | M ≥ 1) to determine the lower
bound θL when the value θ̂obs of the maximum likelihood estimator satisfies
θ̂obs > nτ/r . This ensures the desired level which, due to the point masses, may
be somewhat higher than required.
Rewriting the gamma cdf in Theorem 3.5 as a cdf of a χ2-distribution, we
get G�,θ (x) = Fχ2(2�)(2x/θ) illustrating that the conditions are connected to
χ2(2�)-distributions. This shows the similarity to Fairbank’s construction of
confidence intervals (see Fairbanks et al. [35] and Remark 3.7).

(iii) In general, one has to calculate the interval bounds θL and θU numerically.
Examples are presented in Sect. 4.

Remark 3.7 Fairbanks et al. [35] proposed (1 − α)-confidence intervals for Type-I
hybrid censored data given the observed sample size MI. In particular, they gave the
following confidence intervals (written in our notation)

[
2nτ

χ2
1−α/2(2)

,∞
)

, if MI = 0,

[
2mθ̂

χ2
1−α/2(2m + 2)

,
2mθ̂

χ2
α/2(2m)

]

, if MI = m ∈ {1, . . . , r − 1},
[

2r θ̂

χ2
1−α/2(2r)

,
2r θ̂

χ2
α/2(2r)

]

, if MI = r .

A comparison to the confidence intervals constructed by the method of pivoting the
cdf is given in the data examples in Sect. 4.

In case of Type-II hybrid censoring, we get similar (but unconditional) results. First,
we present an explicit expression of the cdf of the MLE.

Theorem 3.8 For x ≥ 0, the cdf G II
r ,θ of the MLE θ̂ under Type-II hybrid censoring is

given by

Pθ (θ̂ ≤ x) = G II
r ,θ (x) =

{
Gr ,θ (r x), nτ ≤ r x

Gk+1,θ (nτ), kx < nτ ≤ (k + 1)x, k ≥ r
. (3.10)

Proof We get directly by using the law of total probability (w.r.t. the random counter
M), that

Pθ (θ̂ ≤ x) = Pθ (θ̂ ≤ x, M < r) +
∞∑

m=r
Pθ (θ̂ ≤ x, M = m)

= Pθ (X(n,r) ∨ τ ≤ r x/n, X(n,r) > τ)

+
∞∑

m=r
Pθ (nX(n,r) ∨ τ ≤ mx, X(n,m) ≤ τ < X(n,m+1))

= Pθ (X(n,r) ≤ r x/n, X(n,r) > τ) +
∞∑

m=r
Pθ (τ ≤ mx/n, X(n,m) ≤ τ < X(n,m+1))
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= [F(n,r)(r x/n) − F(n,r)(τ )]1(0,r x](nτ)

+
∞∑

m=r
1(0,mx](nτ)[F(n,m)(τ ) − F(n,m+1)(τ )]

Arguing as in the proof of Theorem 3.3, we obtain with the cdf of the gamma distri-
bution the following expression for the cdf of the MLE:

Pθ (θ̂ ≤ x) = [Gr ,θ (r x) − Gr ,θ (nτ)]1(0,r x](nτ)

+
∞∑

m=r

1(0,mx](nτ)[Gm,θ (nτ) − Gm+1,θ (nτ)].

Furthermore, using (3.9), we arrive at the desired representation of the cdf G II
r ,θ .

Depending on the value of nτ , we can split the above expression again into the fol-
lowing cases

Pθ (θ̂ ≤ x) =
{
Gr ,θ (r x), nτ ≤ r x
∑∞

m=k+1[Gm,θ (nτ) − Gm+1,θ (nτ)], kx < nτ ≤ (k + 1)x, k ≥ r

=
{
Gr ,θ (r x), nτ ≤ r x
∑∞

m=k+1
(nτ/θ)m

m! e−nτ/θ , kx < nτ ≤ (k + 1)x, k ≥ r

=
{
Gr ,θ (r x), nτ ≤ r x

Gk+1,θ (nτ), kx < nτ ≤ (k + 1)x, k ≥ r
.

Consequently one gets the expression in (3.10). �
Remark 3.9 The representation of the cdf in (3.10) shows that the MLE has both a
continuous part with support (nτ/r ,∞) and a discrete part with point masses at nτ/k,
k = r , r+1, . . . . Notice that the cdf has infinitelymany jumps in the interval [0, nτ/r ].
A plot of a density function (blue curve) is depicted in Fig. 4 with n = 2, τ = 500, r =
10, θ = 100. The jumps are located at 100, 1000/11, 1000/12, 1000/13, . . . .

It is worth mentioning that the situation is in some sense reflected to the Type-I
hybrid censoring scheme where one has a continuous part first followed by a finite
number of jumps.

The stochastic monotonicity of theMLE follows directly from Bentum and Cramer
[14, Example 1] so that it remains to show that the limits of the cdf w.r.t. θ are 0 and
1, respectively. This follows directly from (3.10) by noticing

Gm,θ (z) = Gm,1(z/θ),

that is, θ is a scale parameter. Hence, limθ→0 Gm,1(z/θ) = 1, limθ→∞ Gm,1(z/θ) =
0. Then, considering the expression in (3.10) for a given x , the result follows immedi-
ately. Furthermore, it should be noted that the monotonicity in θ can also be directly
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Table 1 Repair times of the air conditioner data from a Boeing aircraft taken fromWhitaker and Samaniego
[54, Table 2]

Repair times

System 1 197 385 464 552 598 603 608 644 667

System 2 139 349 446 476 499 512 526

Table 2 Repair times of hydraulic subsystems of load-haul dump machines used in mining taken from
Kumar and Klefsjö [44] (for present selection of LHD machine repair times, see comments in Beutner and
Cramer [16])

Repair times

System 1 (LHD9) 249 461 665 847 963 993 1017 1049 1087 1097

System 2 (LHD11) 211 293 468 547 664 690 694 699 759 798 833

established from the representation of the cdf in Theorem 3.8 using properties of the
gamma distribution. Summarizing, we get the following theorem.

Theorem 3.10 For the MLE θ̂ under Type-II hybrid censoring and arbitrary x ≥ 0,
Pθ (θ̂ > x) is a monotone increasing function in θ > 0 with

lim
θ→0+

Pθ (θ̂ > x) = 0, lim
θ→∞ Pθ (θ̂ > x) = 1

Exact confidence intervals can be established by the method of pivoting the cdf
by replacing G I

r ,θ (· | M ≥ 1) by G II
r ,θ and a modification of the case distinction in

Theorem 3.5. Notice that the cdf of a gamma distribution is continuous in the scale
parameter. The results are illustrated in Sect. 4 by two data examples.

4 Illustration

4.1 Data Analysis

We illustrate the above procedures by two data sets given in Tables 1 and 2. These
data have been analysed by various authors.

According to our model, the two samples are considered as realizations of minimal
repair times from independent and exponentially distributed lifetimes. Furthermore,
the data is pooled so that we have a single increasing sequence of values. Pooling of
such data in a nonparametric prediction context has been discussed in Beutner and
Cramer [15] in case of two independent samples (for more than two samples, we refer
to Amini and Balakrishnan [2]).

In order to apply our methods to the data, we introduce several thresholds τ as well
as desired sample sizes r and compare the resulting estimates assuming exponential
life times. Note that the number of samples is given by n = 2 in both data sets. Thus,
the MLEs are given by (see (3.2))
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θ̂ =
{ 2

MI
(X(MI) ∧ τ), Type-I hybrid censoring

2
MII

(X(MII) ∨ τ), Type-II hybrid censoring

Example 4.1 (Air conditioner data) The ordered pooled sample of repair times taken
from Table 1 is given by

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
139 197 349 385 446 464 476 499 512 526 552 598 603 608 644 667

The resulting total time on tests, number of observed measurements (in brackets), and
maximum likelihood estimates for θ are summarized in Table 3. Notice that the MLE
for θ given the two (independent) samples is given by

θ̂c = 1

16
(667 + 526) = 74.5625

(see Cramer andKamps [26], Beutner and Cramer [16]). For exponential distributions,
an exact (1 − α)-confidence interval for θ is given by

[
32θ̂c

χ2
1−α/2(32)

,
32θ̂c

χ2
α/2(32)

]
α=.05=

[
32 × 74.5625

49.4804
,
32 × 74.5625

18.2908

]

= [48.2211, 130.4483].

Despite the rather small sample sizes present in the censored data, the results for
both estimates and conditional confidence intervals are quite reasonable compared to
the full available information without hybrid censoring, that is, the data taken from
Tables 1 and 2. The aspect is also discussed using simulations in Sect. 4.2. In particular,
the results improve as the desired sample size r and/or the time thresholds increase.
This is quite natural since this is associated with a larger observation window, so
that more information is available in the estimation process. Note that the results are
worse for small thresholds under Type-I hybrid censoring, i.e. for a shortmaximum test
duration, which usually results in few or nomeasurements. Furthermore, the results are
better under Type-II hybrid censoring which is also due to more information provided
by the sampling process. Finally, it turns out that the (conditional) confidence intervals
for Type-I hybrid censored data due to Fairbanks et al. [35] are close to our results.
For a larger threshold τ and larger values of r , they are almost identical.

Estimators of the intensity rate and the cumulative distribution function based on
Type-I hybrid censored data are depicted in Figs. 5 and 6. First, it should be noted that
the nonparametric piecewise-linear estimate of the distribution function and the para-
metric estimate basedon an exponential distribution assumption are quite close, despite
the small sample sizes. The parametric estimate of the distribution function majorizes
(in these examples) the nonparametric estimate so that early failures are somewhat
more likely assuming an exponential distribution. The nonparametric intensity rate
estimate is close to the constant estimate obtained from the exponential assumption.
However, at the end of the observation window it indicates an increase in the rate
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Fig. 5 Plots of intensity rate estimators (left) and corresponding estimated cumulative distribution function
(right) for air conditioner data under Type-I hybrid censoring with τ = 500 (leading to the Type-I censoring
case) and m = 10. The solid red line corresponds to the nonparametric estimation (see (3.4) and (3.6))
whereas the dashed blue line is obtained from the estimate given in (3.3). The corresponding distribution
function is estimated under an exponential assumption
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Fig. 6 Plots of intensity rate estimators (left) and corresponding estimated cumulative distribution function
(right) for air conditioner data under Type-I hybrid censoringwith τ = 750 (leading to the Type-II censoring
case) and m = 10. The solid red line corresponds to the nonparametric estimation (see (3.4) and (3.6))
whereas the dashed blue line is obtained from the estimate given in (3.3). The corresponding distribution
function is estimated under an exponential assumption

which, of course, can not be detected by the exponential model. This might indicate
an increasing failure rate in contrast to the constant rate assumed for exponentially
distributed lifetimes.

Example 4.2 (Load-haul dump machine data) Proceeding as in Example 4.1, we start
with the ordered pooled data generated from the two samples in Table 2.

1 2 3 4 5 6 7 8 9 10 11
211 249 293 461 468 547 664 665 690 694 699
12 13 14 15 16 17 18 19 20 21
759 798 833 847 963 993 1017 1049 1087 1097

The MLE for θ given the two (independent) samples is given by

θ̂c = 1

21
(1097 + 833) = 91.9048
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(see Cramer andKamps [26], Beutner and Cramer [16]). For exponential distributions,
an exact (1 − α)-confidence interval is given by

[
42θ̂c

χ2
1−α/2(42)

,
42θ̂c

χ2
α/2(42)

]
α=.05=

[
42 × 91.9048

61.7768
,
42 × 91.9048

25.9987

]

= [62.4830, 148.4692].

The conclusions drawn from Table 4 are very similar to those obtained for the data
analysed in Example 4.1 so that we do not provide further comments here.

Estimators of the intensity rate and the cumulative distribution function based on
Type-I hybrid censored data are depicted in Figs. 7 and 8. For both intensity rate
and cumulative distribution function, the behaviour of the estimates is similar to that
already described for the air conditioner data in Example 4.1. In particular, the impact
on the observation window caused by the thresholds τ = 500 and τ = 750 is more
evident in this example than in Example 4.1.

4.2 Simulations

In order to assess properties of the point estimator, we have conducted a simulation
study. For brevity, we restrict ourselves to the Type-I hybrid censoring scheme but, of
course, similar simulations can be performed for other hybrid censoring schemes. We
consider a situation similar to the load-haul dump machine data, that is, we assume

(i) maximum sample sizes m ∈ {1, 2, . . . , 25},
(ii) threshold τ ∈ {50, 60, . . . , 1200},
(iii) number of simulation runs N = 5000 for each combination of m and τ ,
(iv) a true parameter θ = 91.9048, and n = 2 (superposed) minimal repair samples.

Similar results have been observed for other input parameters. The evaluations are
based on the same seeds for any m and τ . This enables us to study the impact of both
the sample size and the threshold on the estimates. A histogram and kernel density
estimate of the estimates θ̂I is presented in Fig. 9 for m = 20 and selected values of
τ . The plots clearly illustrate the point masses of the distribution. For comparison,
the density function of a scaled χ2-distribution is additionally provided. The degrees
of freedom df are taken as rounded values of 2m I where m I is computed as mean
sample size from the simulation (see also Table 5). Comparing the continuous kernel
density estimate and the plotted χ2-density function, it turns out that the curves are
somewhat close (particularly on the right tail), that is, the χ2-density function looks
like a smoothed version of the kernel density estimate. The difference gets smaller
for increasing τ which corresponds to less cases corresponding to Type-I censoring
(see Table 5, column 6). In fact, this might illustrate why Fairbanks’ construction of
confidence intervals works although it ignores the existence of point masses in the
distribution of the maximum likelihood estimator.

For a better visualization, the results are presented in termsof heatmaps generated by
the R package ’gplots’ (seeWarnes et al. [53]). In particular, we provide the proportion
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Fig. 7 Plots of intensity rate estimators (left) and corresponding estimated cumulative distribution function
(right) for load haul dump machine data under Type-I hybrid censoring with τ = 500 (leading to the Type-I
censoring case) and m = 10. The solid red line corresponds to the nonparametric estimation (see (3.4)
and (3.6)) whereas the dashed blue line is obtained from the estimate given in (3.3). The corresponding
distribution function is estimated under an exponential assumption
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Fig. 8 Plots of intensity rate estimators (left) and corresponding estimated cumulative distribution function
(right) for load haul dump machine data under Type-I hybrid censoring with τ = 750 (leading to the Type-
II censoring case) and m = 10. The solid red line corresponds to the nonparametric estimation (see (3.4)
and (3.6)) whereas the dashed blue line is obtained from the estimate given in (3.3). The corresponding
distribution function is estimated under an exponential assumption

of non-existing MLEs (Fig. 10) as well as bias (Fig. 11), standard deviation (Fig. 12),
and mean squared error (Fig. 13) of the maximum likelihood estimates, respectively.

It turns out that, as expected, the observed proportions of non-existingMLEs rapidly
decrease with an increasing threshold τ . In particular, the proportion is less than 5%
and 1% for τ ≥ 140 and τ ≥ 210, respectively. Its zero for τ ≥ 560. If τ = 100 which
is close to the true value of θ then the MLE does not exist in 11.42% of the simulation
runs. For early Type-I censoring (τ = 50), the MLE does not exist in 33.46% of the
runs. The heatmap in Fig. 11 clearly illustrates that the threshold has a huge impact
on the bias of the estimator. If τ is small (e.g., τ ≤ 140) then the MLE tends to
underestimate the true parameter. Interestingly, this seems to be rather independent
of the choice of m (at least if m ≥ 3). Then, the bias is increasing-decreasing (as a
function of τ ). Furthermore, it should be mentioned that, for larger τ , the maximum
likelihood estimates seem to have a lower bias for smaller m. The histogram provided
in the upper left corner of Fig. 11 supports these observations. Although the bias has
a wide range, most of the scenarios show a smaller bias.

For the deviation, the situation is slightly different (see Figs. 12 and 13). Except
for the case m = 1, where the deviation increases with τ , the deviation decreases
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Fig. 9 Histogram and kernel density estimate (solid red line) of the maximum likelihood estimates θ̂1 for
m = 20 and thresholds τ ∈ {100, 300, 500, 750, 1000, 1200, 1500, 2000}. The dot-dashed green curve
represents the density function of a χ2(df)-distribution. For better comparison, the domain is restricted to
the interval [0, 200] although estimates might be outside this range
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Fig. 10 Proportion of non-existing maximum likelihood estimates as a function of the threshold τ
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Fig. 11 Heatmap of bias of maximum likelihood estimates (true value θ = 91.9048; see beginning of
Sect. 4.2). The threshold is fixed in each column, whereas the desired sample size m is given in the rows.
Note that only cases are included where the MLE exists (see Fig. 10)
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Fig. 12 Heatmap of standard deviation of maximum likelihood estimates (true value θ = 91.9048; see
beginning of Sect. 4.2). The threshold is fixed in each column, whereas the desired sample size m is given
in the rows. Note that only cases are included where the MLE exists (see Fig. 10)

with increasing τ and m for the other cases. The heatmaps show also some ’column
structure’ which indicates that the deviation seems to be quite robust against the
desired sample sizem whereas the threshold seems to have a larger impact. Moreover,
the heatmap shows that the deviations do not generally improve for an increasing τ .
These patterns may be caused by the fact that the distribution of the MLE has point
masses at certain values. Hence, the relative position of the point masses and the
thresholds have a larger impact on the deviation.

In case of the confidence intervals, we provide the simulation results given in
Table 5. The results illustrate that the coverage probabilities are quite close to the
desired level and usually are larger so that the confidence intervals can be consid-
ered as conservative (as expected). Furthermore, the differences for the confidence
intervals based on the pivoting method and Fairbanks’ proposal are—at least for
larger thresholds—quite small. In particular, they yield (on average) the same bounds
in many cases. For smaller thresholds, the pivoting methods yields smaller average
length of the confidence interval with a comparable coverage probability. On the other
hand, Fairbanks’ approach yields one-sided unbounded confidence intervals when the
experiment is terminated without observing a minimal repair. In this case, the pivoting
method does not provide a confidence interval. Therefore, in this case, one should
use Fairbanks’ confidence interval. Finally, it should be mentioned that the lengths
of the confidence intervals decrease with both increasing desired sample size r and
increasing threshold τ .
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Fig. 13 Heatmap of mean squared error of maximum likelihood estimates (true value θ = 91.9048; see
beginning of Sect. 4.2). The threshold is fixed in each column, whereas the desired sample size m is given
in the rows. Note that only cases are included where the MLE exists (see Fig. 10)

5 Conclusions and Outlook

We have obtained results for hybrid censored minimal repair data (or, equivalently,
for hybrid censored record values or jump times of a NHPP). In particular, we have
shown how results established for Type-I and Type-II censored minimal repair time
data can be utilized under hybrid censoring. Specifically, we have illustrated the power
of the present approach assuming exponentially distributed life times. In this case, we
showed the stochastic monotonicity of the MLE. Using this property, we constructed
exact (conditional) confidence intervals for the mean of the life time with the method
of pivoting the cumulative distribution.

An obvious extension of the discussed model with exponentially distributed
lifetimes is the consideration of Weibull distributions, which also lead to explicit
representations for the maximum likelihood estimators of the distribution parame-
ters using results of Wang and Ye [52] (or, in terms of the power law process, see,
e.g., Crow [27], Finkelstein [36], Engelhardt and Bain [33]). To be more precise, for
Weibull distributed data with parameters θ > 0 and β > 0, the likelihood function is
given by

L(θ, β; x1, . . . , xm,m) =
(nβ

θβ

)m
e−nwβ/θβ

( m∏

i=1

xi
)β−1

. (5.1)
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From the presented results as well as the likelihood function in Wang and Ye [52,
eq. (2)], we find immediately the respective maximum likelihood estimators, that is,

β̂ = MHCS
∑MHCS

i=1 ln(WHCS/X(n,i))
, θ̂ = WHCS

( n

MHCS

)1/β̂

(provided MHCS ≥ 1). Related results for minimal repair/record data under hybrid
censoring for Weibull distributions will be studied in a future paper.

Another interesting direction of future research is the multi-sample case sketched
in Remark 2.3. Following the approaches presented in Górny and Cramer [38] and
Jansen et al.[42], it seems to be possible to establish corresponding results for minimal
repair/record data subject to hybrid censoring. Moreover, the case of joint hybrid
censoring seems to be of interest but, at a first glance, more challenging than the
multiple sample case with sample-wise hybrid censoring.

Furthermore, it would be interesting to study the nonparametric approach in more
detail. In particular, the derivation of asymptotic results for hybrid censoring schemes
will be worth to address. This will supplement studies already available for Type-I
and Type-II censored jump times of a NHPP (see, e.g., Henderson [41] and references
cited therein).

Finally, it would be of interest to study large sample results. This will be particu-
larly useful in the case where a larger number of measurements is available since the
construction of the exact confidence intervals is computationally expensive.
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