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Abstract
Estimating of population and domain means based on model-design approaches is
considered in this paper. Population elements randomly belong to domains. A joint
distribution of the variable under study and an auxiliary variable is assumed. Data
are observed in a sample selected from a fixed population. The partition of the sam-
ple elements into domains of the population is also known. Outside of the sample,
values of the auxiliary variable are known but their partition among the domains is
not known. The domain means are estimated based on the likelihood function of the
data observed in the sample and outside of it. The maximum likelihood estimation
method provides regression-type estimators of domain means of the variable under
study. They are dependent on posterior probabilities that observations of the auxiliary
variable belong to particular domains. Moreover, the weighted means of the domain
averages estimators are used to estimation of the population mean. The accuracy of
the evaluated estimators and the ordinary estimator is compared using a simulation
analysis. The results of this paper could be useful in economic, demographic and
sociological surveys.

Keywords Domain mean · Maximum likelihood estimation · Regression estimator ·
Ratio estimator · Posterior probability

1 Introduction

Domains are usually treated as fixed and mutually disjoint subsets of the population.
We consider the case when a population element belong to a domain with some
probability. Therefore, the size of the domain is random. Our problem is estimation
domain means and the population mean of a variable under study y on the basis of a

B Janusz L. Wywiał
janusz.wywial@ue.katowice.pl

1 Department of Statistics, Econometrics and Mathematics, University of Economics in Katowice,
Katowice, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s42519-023-00337-4&domain=pdf
http://orcid.org/0000-0002-3392-1688


40 Page 2 of 19 Journal of Statistical Theory and Practice (2023) 17 :40

random sample selected from a whole population. In the population all values of an
auxiliary variable x are known, while values of y are observed only in the sample.
In the sample domains are identifiable, while outside of the population they are not.
Under the outlined assumptions let us consider the followingmotivation examples. Let
us consider the population of firms that have taken out bank loans for investments. The
values of granted loans are observations of the variable y, while the observations of
the variable x are the values of companies’ capital. Any company with the probability
ph , h = 1, . . . , H may default on its loan. The h index identifies the domain consisted
of companies classified approximately at the same credit risk. The total distribution
of x, y variables in the population will be treated as a mixture of the distributions of
these variables in domains weighted by the probabilities ph . The empirical Sect. 3.2
of the article presents other examples.

Ża̧dło [14] assumed that population elements randomly belong to domains. He
presented several examples. For instance, he considered the estimation of the income
of different enterprises when they randomly belonged to different investment intervals.
Elections are another example of domains. In this case a domain consists of peoplewho
vote for a specific party. Often, the selection of a particular party is random because
a lot of voters are not committed to voting for any particular party. The model for
generating an accounting error (see [13]) can also exemplify domains. An observed
value of an accounting document is treated as the outcome of the random variable,
which is a mixture of two distribution functions. One of these distribution functions
generates the true accounting amount, and the second generates an accounting amount
contaminated with an error. Documents without errors belong to the first domain
and documents polluted with accounting errors belong to the second domain. Hence,
documents randomly belong to the domains. This idea, which is based on distribution
mixtures, is developed in this paper.

Many auxiliary variables are usually observed during national censuses. Moreover,
variables under study (observed during a census) can be used as auxiliary variables in
survey sampling on a subsequent occasion. Therefore, we can expect these variables
to be highly correlated. Let us note that apart from the above examples, there are many
populations where all values of the auxiliary variable are observed. These can be found
in economic, demographic, agricultural and other official registers.

In this paper, the model or model-randomization approaches are taken into account
(see, e.g., [8] or [9]. Estimating domain means is usually better, when the estimation
is supported by data on auxiliary variables observed outside the sample but usually
under the assumption that their distribution among domains is known (see several
monographs on Small Area Sampling and, e.g., [10]). The models formulated in this
paper are close to those considered byChambers andSkinner [2]. Estimators of domain
averages are derived by means of the maximum pseudo-likelihood method. More
precisely, a variant of the likelihood method of estimation based on incomplete data of
the variable under study is adopted to estimate distribution mixture parameters. Our
analysis is mainly supported by monographs [4, 6, 7].
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The most important results of the paper are as follows:

– The pseudo-likelihood function is formulated for estimation of the mixture dis-
tribution parameters in the case when data are observed in the sample selected
according various inclusion probabilities (Sect. 2.2).

– On the basis of this function, the regression and ratio type estimators of domain
means are derived in the case of bivariate normal components of the distribution
mixture (Sect. 3.1 and Appendix).

– These results are generalized into the case of a multidimensional auxiliary variable
(Sect. 3.1).

– The linear combination of the regression (ratio) estimators is used to estimation
the population mean (Sect. 3.1).

– Examples of the simulation analysis of the estimation accuracy are prepared
(Sect. 3.2).

2 General Results

2.1 Model-Design Approach

Let us denote byU a population of size N partitioned into H mutually disjoint domains
denoted by Uh , h = 1, . . . , H , 1 < H < N . Let [yk, xk, zk∗] be the k-th observation
of the variable under study, an auxiliary variable vector, and a vector identifying
domains where xk = [xk,1 . . . xk,m], 1 ≤ m < N and zk∗ = [zk,1 . . . zk,h . . . zk,H ],
k = 1, . . . , N . Let z(h) be a row vector, in which all H elements are equal to zero
except the h-th element, which is equal to one, and this identifies the h-th domain.
When zk∗ = z(h), then the k-the population element is in the h-th domain.

Let us assume that [ykxkzk∗] is an observation of a random vector [YkXkZk∗]
attached to a k-th population element, where Xk = [Xk,1 . . . Xk,m] and Zk∗ =
[Zk,1 . . . Zk,H ]. The random vectors [YkXkZk∗], k ∈ U , are independent, and each of
them has the same probability distribution. Let P(Zk∗ = z(h)) = ph , h = 1, . . . , H ,∑H

h=1 ph = 1. Random variable Zk∗ has multinomial distribution with parameters
(1, p1, . . . , pH ) (see, e.g., [7]). Event {Yk < yk,Xk < xk} with specific feature
{Zk∗ = z(h)} written as {Yk < yk,Xk < xk,Zk∗ = z(h)} concerns the h-th domain
and

{Yk < yk,Xk < xk} =
H⋃

h=1

{Yk < yk,Xk < xk,Zk∗ = z(h)}.

The events {Yk < yk,Xk < xk,Zk∗ = z(h)} and {Yk < yk,Xk < xk,Zk∗ = z(t)}
are mutually exclusive for all h �= t and h = 1, . . . , H , t = 1, . . . , H . This and the
total probability theorem lets us write the following:

F(yk, xk) = P(Yk < yk,Xk < xk) =
H∑

h=1

F(yk, xk |Zk∗ = z(h))ph
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where F(yk, xk |Zk∗ = z(h)) is the conditional distribution function. In the case where
variables [YkXk] are continuous, we have:

f (yk, xk) =
H∑

h=1

f (yk, xk |Zk∗ = z(h))ph

where f (yk, xk |Zk∗ = z(h)), h = 1, . . . ,G, k ∈ U , are density functions. This
leads to the conclusion that our model defines the following distribution function:
F(y, x) = ∏

k∈U F(yk, xk) or density function f (y, x) = ∏
k∈U f (yk, xk).

According to the assumptions of this model, the random variable
∑N

k=1 Zk∗ has
multinomial probability distribution with parameters [N , p1, . . . , pH ]. Moreover, the
column vector Z∗h = [Z1,h . . . ZN ,h]T identifies the h-th domain of size Nh =∑

k∈U Zk,h where 0 ≤ Nh ≤ N and the expected domains sizes are E(Nh) = Nph ,
h = 1, . . . , H because Nh has binomial distribution with parameters (N , ph). Let us
note that the introduced definitions lead to the conclusion that the sizes and consis-
tencies of the domains are random. Hence, the multinomial probability model leads
to partitions of the population into disjoint subsets called domains. Therefore, each
outcome of partitioning the population into domains could be different.

Our main aim is to estimate the expected (domain mean) value μh = E(Yk |Zk∗ =
z(h)) and the probabilities ph , h = 1, . . . , H . Additionally, estimators of the expected
value (population mean) μ = ∑H

h=1 phμh are proposed.
In order to do this, sample s of size n ≤ N is selected from populationU according

to a sampling design denoted by P(s) ≥ 0, s ∈ S , where S is sampling space
and

∑
s∈S P(s) = 1. Inclusion probabilities of the sampling design are defined by

πk = ∑
{s:k∈s,s∈S } P(s), k = 1, . . . , N . Let s = U − s be the complement of s inU .

Moreover, let s = ⋃H
h=1 sh , where sh ⊆ Uh , nh is the size of sh , n = ∑H

h=1 nh is size
of s. We assume that 1 < nh ≤ Nh for h = 1, . . . H . If s = U , then s is the empty set.

2.2 Maximum Likelihood Estimation

Identifying a domain is possible after observation of variable Zk∗ in sample s. The
density function of the conditional distribution of [YkXkZk∗] providedZk∗ = z(h) will
be denoted by fh(yk, xk, θh), h = 1, . . . , H where θh = [θh,1 . . . θh,m], θh ⊆ Rm ,
θ = [θ1 · · · θh · · · θH ]. Therefore, the observed values of the variables in the whole
population are defined by the following distribution mixture:

f (yk, xk,�) =
H∑

h=1

ph fh(yk, xk, θh), k ∈ U (1)

where � = {p∪ θ}, p = [p1 . . . pH ]. We assume that only values x1, . . . , xk, . . . , xN
are observed in the whole population before selecting a sample. The marginal

123



Journal of Statistical Theory and Practice (2023) 17 :40 Page 5 of 19 40

distribution of Xk is as follows:

g(xk,�x ) =
∫

R
f (yk, xk,�)dyk =

H∑

h=1

phgh(xk, θx,h), k ∈ U

where gh(xk, θx,h) = ∫
R fh(yk, xk, θh)dyk , θx,h ⊆ θh and �x ⊆ �. Moreover, let:

θx = [θx,1 · · · θx,H ], �x = {θx ,p}.
The sample contains the following data on variable values: [ykxk, zk∗] of random

variables (YkXk,Zk∗), k ∈ s. Let ds = {[yk xk∗ zk∗], k ∈ s} and xs = {xk∗, k ∈ s}.
Hence, the sample contains complete data on the distribution mixture, while outside
of the sample, the data are incomplete.

When the sample is selected according to preassigned inclusion probabilities, the
pseudo-likelihood approach (see, [3, 8, 12]) leads to the following function:

l(ds, xs) = l1(ds) + l2(xs) (2)

where the complete and incomplete log-likelihood functions are as follows, respec-
tively:

{
l1(ds) = ∑H

h=1 ln(ph)
∑

k∈sh
1
πk

+ ∑H
h=1

∑
k∈sh

ln( fh(yk ,xk ,θh))
πk

,

l2(xs) = ∑
k∈s

ln(g(xk ,�x ))
1−πk

.
(3)

where nh is the size of sh ⊆ Uh , which is the sub-sample of s = ⋃H
h=1 sh , Nh ≥ nh >

1, n = ∑H
h=1 nh . We can easy show that EP (l1(ds)) = l1(dU ) and EP (l2(xs)) =

l2(xU ) where

l1(dU ) =
H∑

h=1

Nh ln(ph) +
H∑

h=1

Nh ln( fh(yk, xk, θh)), l2(xU ) =
∑

k∈U
ln(g(xk,�x )).

This means that the sample log-likelihood functions l1(ds) and l2(xs) are design-
unbiased estimators of the population log-likelihood functions l1(dU ) and l2(xU ),
respectively.

Usually, looking for the maximum of the log-likelihood function l(ds, xs) is very
complex and not exact. An approximation method has to be applied to solve the
problem. Therefore, we use the more simple iteration method known as the EM-
algorithm (see [4, 6, 7]). According to this method, function l(ds, xs) is replaced with
the following:

l(t)(ds, xs) = l1(ds) + l(t)2 (xs) (4)

where

l(t)2 (xs) =
H∑

h=1

τ
(t)
h ln(ph) +

H∑

h=1

∑

k∈s

τ
(t)
h,k ln(gh(xk, θx,h))

1 − πk
, (5)
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⎧
⎨

⎩

τ̂
(t)
h = τ̂h(�̂

(t)
x ) = ∑

k∈s
τ

(t)
h,k

1−πk
,

τ
(t)
h,k = τh(xk, �̂

(t)
x ) = phgh(xk ,θ̂

(t)
x )

g(xk ,�̂
(t)
x )

,
(6)

∑H
h=1 τ

(t)
h,k = 1 and τ̂

(t)
h,k is the posterior probability that the k-element (k ∈ s) belongs

to the h-th domain.Moreover, τ̂ (t)
h is the estimator of the expected size of the h-domain

in the set s. The Appendix provides outline of how to get optimal values of parameters
�̂

(t+1)
x and the following estimators of probabilities ph :

p̂(t+1)
h = N̂h + τ̂

(t)
h

N̂ + τ̂ (t)
, h = 1, . . . , H . (7)

where

N̂h =
∑

k∈sh

1

πk
, N̂ =

H∑

h=1

N̂h =
∑

k∈s

1

πk
, τ̂ (t) =

H∑

h=1

τ̂
(t)
h .

Statistics N̂ and τ̂ (t) are estimators of N . In general, estimators of �̂(t+1) could
be obtained as roots of the first subsystem of the equation system (21). Moreover,
Ñ (t)
h = N p̂(t)

h is the estimator of the expected values of the domain size Nph . The

initial values of �̂(t) and p̂(t)
h are equal to the roots of system

∂l(t)(ds ,xs )
∂ ph

= 0 and

p̂(t)
h = N̂h

N̂
, h = 1, . . . , H .

When πk , k ∈ U depend on variables from X, the likelihood function under the
condition that X = x needs to be consider. Several aspects of this problem were
discussed by Pfeffermann [8] on the basis of large literature. Therefore, in order to
simplify our considerations, we assume that the inclusion probabilities πk , k ∈ U as
well as ph , h = 1, . . . , H could depend on the non-random auxiliary variable that is
different from observations of variables from X.

The simple random sample drawn without replacement does not depend on the
auxiliary variables. In this case πk = n

N for k ∈ U , and the estimator expressed by (7)
simplifies to the following form:

p̂(t+1)
h = 1

2
( p̄h + τ̄h), p̄h = nh

n
, τ̄

(t)
h = 1

N − n

∑

k∈s
τ

(t)
h,k, h = 1, . . . , H . (8)

3 Estimation for a Bivariate Normal Model

3.1 Estimators

Weassume that the components of the distributionmixture are two dimensional normal
components with parameters: N (μy,h, μx,h, σ

2
y,h, , σ

2
x,h, ρh), h = 1, . . . , H .
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In the Appendix, we evaluate estimators of domain means μy,h and the fraction of
the population elements in domains ph , h = 1, . . . , H according to the EM estimation
algorithm and expressions (4)–(8). From Expressions (6) and (7), let us write for
t = 0, 1, 2, . . . the following:

⎧
⎪⎨

⎪⎩

τ
(t)
h = ∑

k∈s
τ

(t)
h,k

1−πk
,

τ
(t)
h,k = p̂(t)

h gh(xk ,x̂
(t)
h ,σ

2(t)
x,s,h)

∑H
i=1 p̂(t)

i gi (xk ,x̂
(t)
i ,σ

2(t)
x,s,i )

, τ
(0)
h,k = p̄h gh(xk ,x̄sh ,σ 2

x,sh
)

∑H
i=1 p̄i gi (xk ,x̄si ,σ

2
x,si

)
.

(9)

where p̂h and p(0)
h = p̄ are explained by expressions (7) and (8).

x̂ (t+1)
h = w(t) x̄sh + (1 − w

(t)
h )x̄ (t)

s,h, (10)

x̄ (t)
s,h = 1

τ
(t)
h

∑

k∈s
xk

τ
(t)
h,k

1 − πk
, w(t) = N̂h

N̂h + τ
(t)
h

, x̄ (0)
h = x̄sh ,

σx,sh = 1

N̂h

∑

k∈sh

(xk − x̄sh )
2

πk
, σy,sh = 1

N̂h

∑

k∈sh

(xk − ȳsh )
2

πk
,

σxy,sh = 1

N̂h

∑

k∈sh

(xk − x̄sh )(yk − ȳsh )

πk
, x̄sh = 1

N̂h

∑

k∈sh

xk
πk

, ȳsh = 1

N̂h

∑

k∈sh

yk
πk

.

(11)

The following regression-type estimators of μy,h are derived in the Appendix:

ŷ(t+1)
h = ȳsh − σxy,sh

σ̂
2(t+1)
x,h

(x̄sh − x̂ (t+1)
h ) or

ŷ(t+1)
h = ȳsh − (1 − w

(t)
h )

σxy,sh

σ̂
2(t+1)
x,h

(
x̄sh − x̄ (t)

s,h

)
, (12)

ỹ(t+1)
h = ȳsh − σxy,sh

σ 2
x,sh

(x̄sh − x̂ (t+1)
h ) or

ỹ(t+1)
h = ȳsh − (1 − w

(t)
h )

σxy,sh

σ 2
x,sh

(
x̄sh − x̄ (t)

s,h

)
, (13)

where t = 0, 1, 2, . . .,

σ̂
2(t+1)
x,h = w

(t)
h σ 2

x,sh + (1 − w
(t)
h )σ

2(t)
x,s,h, σ̂

2(0)
x,h = σ 2

x,sh , (14)

σ
2(t)
x,s,h = 1

τ
(t)
h

∑

k∈s

(xk − x̄ (t)
s,h)

2

1 − πk
τ

(t)
h,k, (15)
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When the constant of the linear regression y on x is approximately equal to zero,
we can use the following ratio-type estimator:

y̌(t+1)
h = ȳsh

x̂ (t+1)
h

x̄sh
= w

(t)
h ȳsh + (1 − w

(t)
h )ȳsh

x̄ (t)
s,h

x̄sh
, (16)

Particularly, in the case of a simple random sample drawn without replacement,
when πk = n

N for all k ∈ U , we have:

N̂h = N p̄h = N
nh
N

, τ
(t)
h = N τ̄

(t)
h , τ̄

(t)
h = 1

N − n

∑

k∈s
τ

(t)
h,k, w(t) = p̄h

p̄h + τ̄
(t)
h

,

x̄sh = 1

nh

∑

k∈sh
xk, ȳsh = 1

nh

∑

k∈sh
yk, σ 2

x,sh = σxx,sh , σ 2
y,sh = σyy,sh ,

σxy,sh = 1

nh

∑

k∈sh
(xk − x̄sh )(yk − x̄sh ),

x̄ (t)
s,h = 1

τ
(t)
h

∑

k∈s
xkτ

(t)
h,k, σ

2(t)
x,s,h = 1

τ
(t)
h

∑

k∈s
(xk − x̄ (t)

s,h)
2τ

(t)
h,k, (17)

Generalization of the proposed regression-type estimators into the case of a multi-
dimensional auxiliary variable is as follows. Let

x̂(t+1) = w(t)x̄sh + (1 − w(t))x̄(t)
s,h,

x̄sh = [x̄1sh . . . x̄ish . . . x̄msh ], x̄(t)
s,h = [x̄1sh . . . x̄ish . . . x̄msh],

x̄i,sh = 1

N̂h

∑

k∈sh

xk,i
πk

, x̄i,s,h = 1

τ
(t)
h

∑

k∈s

xk,iτ
(t)
h,k

1 − πk
, τ

(t)
h,k

=
p̂(t)
h gh

(
xk, x̂(t+1), 	̂

(t)
xxh

)

∑H
e=1 p̂

(t)
e ge

(
xk, x̂(t+1), 	̂

(t)
xxe

) .

Let Ia be the unit matrix of degree a and Ja be the a-element column vector which
all elements are equal to one. The rows of the matrix X could be rewritten in such a
way that

X =
[
Xs

Xs

]

, U =
[
Us

Us

]

, Us = MXs, M = IN−n − 1

N − n
JN−nJTN−n,

π =
[

π s

π s

]

, π = JN − π , D(π) = diag(π),

	̂
(t)
xx,h = w(t)	xx,sh + (1 − w(t))	̂

(t)
xx,s,h,
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	xx,sh = 1

N̂h

∑

k∈sh

(xk − x̄sh )
T (xk − x̄sh )
πk

, 	xy,sh = 1

N̂h

∑

k∈sh

(xk − x̄sh )
T (yk − ȳsh )

πk

	
(t)
xx,s,h = 1

τ
(t)
h

∑

k∈s

(xk − x̄s,h)T (xk − x̄s,h)

1 − πk
τ

(t)
h,k

= 1

N̂
UT
s Us D

−1(π s) = 1

N̂
XT
s MXs D

−1(π s)

These let us generalize the estimators defined by expressions (12) and (13) as follows:

ŷ(t+1)
h = ȳsh − 	̂−1

xx,h	
T
xy,sh (x̄sh − x̂(t+1)

h ) or

ŷ(t+1)
h = ȳsh − (1 − w

(t)
h )	̂−1

xx,h	
T
xy,sh (x̄sh − x̄(t)

s,h), (18)

ỹ(t+1)
h = ȳsh − 	−1

xx,sh	
T
xy,sh (x̄sh − x̂(t+1)

h ) or

ỹ(t+1)
h = ȳsh − (1 − w

(t)
h )	−1

xx,sh	
T
xy,sh (x̄sh − x̄(t)

s,h), (19)

where t = 0, 1, 2, . . . and x̄(0)
s,h = x̄sh , 	̂

(0)
xx,h = 	xx,sh .

Usually, the estimation process is stopped when the number of iterations t reaches
the preassigned level T . Some other stopping rules are discussed, e.g., in [6, 7]. These
works also considered several procedures which assess accuracy of estimators such
as bootstrap methods.

Finally, let us show that the estimators evaluated in the previous paragraph, which
are given by expressions (12)–(14), (16), (18), (19), (7) and (8), let us construct the
following estimators of the population mean:

ŷ(t+1)
h =

H∑

h=1

p̂(t+1)
h ŷ(t+1)

h , ỹ(t+1)
h =

H∑

h=1

p̂(t+1)
h ỹ(t+1)

h ,

y̌(t+1)
h =

H∑

h=1

p̂(t+1)
h y̌(t+1)

h . (20)

where t = 0, 1, 2, . . ..

3.2 Simulation Study

Let simple random samples {s j , j = 1, . . . , M} be independently drawn without
replacement from the whole population of size N . We assume that each of them is
partitioned between H -domains in such a way that s j = s1, j ∪ . . . ∪ sh, j ∪ . . . ∪ sH , j

and 2 ≤ nh ≤ n − 2(H − 1), h = 1, . . . , H . Values of relative efficiency coefficient
for estimator of the mean in the h-domain, h = 1, . . . , H , are defined as the following
ratio:

e(tsh ) = mse(tsh )

v(ȳsh )
100%, h = 1, . . . , H
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Fig. 1 Spread of the generated data

where mse(tsh ) = 1
M

∑M
j=1(tsh, j − ȳh)2, v(ȳsh ) = 1

M

∑M
j=1(ȳsh, j − ȳh)2, ȳh =

1
Nh

∑M
j=1 yk,i , h = 1, . . . , H . The relative bias of estimators is defined as follows:

b(tsh ) = |t̄sh − ȳh |
mse(tsh )

100%,

t̄sh = 1

M

M∑

j=1

tsh, j , h = 1, . . . , H .

We assume that M = 10000.

Example 1 Let us consider the following simple set of data on a two-dimensional
random variable generated according to two-dimensional normal distribution. The
set consists of three domains of the same size equal to 500. Hence, a population
of size 1500 is divided into three domains. The data in the h-domain are generated
according to normal distribution N (μx,h, μy,h, vx,h, vy,h, ρh). We will consider the
following population partitioned into domains. The domain parameters of the pop-
ulation are: N (8, 4, 1, 1, 0.5), N (14, 11.2, 1, 1, 0.8) and N (20, 19, 1, 1, 0.95). The
spread of artificially generated data is shown in Fig. 1.

The simple random sample (s = s1 ∪ s2 ∪ s3) is drawn without replacement from
the whole population of size N . We assume that the size of each sh, j is 2 ≤ nh ≤
n − 2(H − 1), h = 1, 2, 3, j = 1, . . . , M . In the second column of Table 1 , the
domains are identified by integers 1, 2 and 3. Columns 3–6 give the relative efficiency
coefficient values e(.) for the domains.

Estimators ȳsh , ỹ
(t)
h and y̌(t)

h are less accurate than ŷ(t)
h . In the second domain esti-

mators ỹ(t)
h and y̌(t)

h are more accurate than ȳsh and comparable with the accuracy of

ŷ(t)
h for n = 75, 150 and in the third domain for n = 150. All considered estimators

are practically unbiased because their relative biases (evaluated as the ratio of the bias
module by the square root of the mean square error of the estimator) are not larger
than 0.1%. Therefore, the biases are not shown in Table 1. Accuracy of the estima-
tors increases when the sample size also increases. When the correlation coefficient
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Table 1 Relative efficiency
coefficients. Source: Own
calculations

Tsh n 15 45 75 150

1 2 3 4 5 6

1 94.6 88.9 86.2 86.2

ŷ(t)
h 2 73.3 57.2 52.4 48.2

3 64.2 44.5 35.9 29.5

1 286 202 131 98.9

ỹ(t)
h 2 115 76.7 58.0 43.3

3 599 405 159 40.6

1 241 205 135 97.4

y̌(t)
h 2 107 76.0 57.4 47.8

3 569 406 158 40.7

1 101 33.3 31.9 21.3

p̂(t)
h 2 127 59.0 38.3 21.5

3 104 45.5 30.5 20.7

ŷ(t) 83.3 37.3 27.8 20.9

ỹ(t) 45.3 28.4 24.8 20.7

y̌(t) 41.7 26.7 24.6 20.6

The artificial population

between the auxiliary variable and the variable under study in a particular domain
increases, then the accuracy of the estimator also increases. Regression estimator ŷ(t)

h

is significantly more accurate than the ordinary sub-sample mean ȳsh . Statistic ŷ(t)
h

seems to be the most universal of the considered estimators and therefore should be
preferred.

The relative biases of p̂(t)
h , h = 1, . . . , H , are not larger than 0.5%. Accuracies

of these also increase when the sample size increases. They are better than ordinary
sample frequencies p̄h for n ≥ 45. Hence, the considered procedure could also be used
to estimate of the probabilities ph , h = 1, . . . , H of distribution mixtures. The several
last rows of Table 1 let us say that all three estimators of the population average are
significantly better than the simple sample mean. Moreover, the ratio-type estimator
is the most accurate.

Example 2 The second population consists of data published in [11] about Swedich
municipalities. We consider data about three variables REV84 (real estate values from
1984), RMT85 (revenues from municipal taxation in 1985) and ME84 (municipal
employees in 1984). We take into account these data without the largest outliers. The
size of the considered population is 281. The population was partitioned into three
domains according to quantiles 30% and 70% of variable REV84. This provided the
following sizes of domains: N1 = 86, N2 = 109 and N3 = 86. Real estate valuation
depends on market fluctuations. Therefore, the same property today may be in the
first domain, but tomorrow it may be in a different domain. Therefore, belonging to a
domain can be treated as random.
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Fig. 2 Spread of logRMT85 and logME84

Table 2 Estimation accuracy of
population mean. Source: Own
calculations

n 8 14 28
1 2 3 4

e(.)

ŷ(t) 85.1 58.4 46.2

ỹ(t) 30.0 24.9 21.8

y̌(t) 49.0 43.0 43.9

b(.)

ŷ(t) 8.0 7.9 5.2

ỹ(t) 1.7 1.0 3.3

y̌(t) 31.6 18.0 9.4

The population of 281 Swedish municipal units

The distributions of variables RMT85 and ME84 have too much asymmetry on the
right side, and they differ too significantly from normal distribution. Therefore, we
considered their logarithmic transformation, and the spread of this is shown Fig. 2. The
domain mean values of logRMT85 were μ1 = 6.704, μ2 = 7.5.20 and μ3 = 8.528.
The simulation of estimation accuracywas based on the simple random samples drawn
without replacement. The sizes of the samples were: 8 (2.85% the population size),
14 (4.98%) and 28(2.96%). Table 2 shows only the accuracies of the estimation of
population mean because the estimators of the domain means were less accurate than
the simple randomsamplemean.Analysis ofTable 2 lets us say that all of the estimators
of the population mean that are taken into account, are more accurate than the simple
random sample mean. The accuracy of the second regression estimator is the best
among the considered ones, and similarly its relative bias is the smallest.

Example 3 Let us consider data about current and starting salaries of employees that
are available in the SPSS statistical packages as the example dataset. The set consists
of 474 observations. The two data domains are identified. The first domain of 390
observations is the set of clerks and the second one consists of 84managers. In general,
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Fig. 3 Spread of the data on starting and current salaries

Table 3 Estimation accuracy of
the population mean. Source:
Own calculations

n 15 24 48
1 2 3 4

e(.)

ŷ(t) 85.7 86.6 114

ỹ(t) 122 38.2 60.9

y̌(t) 41.3 36.0 32.3

b(.)

ŷ(t) 47.0 51.7 78.9

ỹ(t) 50.9 15.1 4.0

y̌(t) 20.0 10.3 10.5

Population of employees

an employee randomly belongs to one of these domains, because one day he could
be a manager and the next day he could be a clerk, and vice versa. The starting and
current salaries in the first domain (clerks) are $14164 and $28054, respectively. The
starting and current salaries in the second domain (managers) are $28091 and $63978,
respectively. The spread of the data partitioned into domains is shown in Fig. 3. The
following sizes of samples were taken into account: 15 (3.2%), 24 (5.1%) and 48
(10.1%). The results of the simulation are shown in Table 3. Similar to example 2, this
table shows only the accuracy of the estimation of the population mean because the
estimators of domain means were less accurate than the simple random sample mean.

Analysis of Table 3 leads to the conclusions that the all estimators aremore accurate
than the simple samplemean for sample size n > 24 except the ratio estimator because
its deff coefficients are less than 100% for all sample sizes. The accuracy of the
ratio estimator decreases when the sample size increases. The relative biases of the
estimators are quite large.

Analysis of all the tables and figures lets us say that estimation of domain means is
possible only when data observed in domains are well separated. The more optimistic
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conclusion is that the proposed estimators of population means are always more accu-
rate than the simple random sample in all considered cases, when the sample size is at
least 5% of the population size. Their biases are also rather acceptable. Of those esti-
mators of the population mean, the second regression estimator and the ratio estimator
are the best and could be used in practical research.

The presented simulation analyzes will be continued in a wider scope in the next
article. In particular, different mixtures of at least three-dimensional probability dis-
tributions will be considered. In addition, various modifications to the estimators used
herein will be proposed, leading to a more accurate estimation of the domain averages.

4 Conclusions

Three estimators of domain means use additional auxiliary data in order to improve
estimation accuracy. Properties of the maximum likelihood method let us to derive
new estimators of domain and populationmeans. The simulation analysis showswhich
is the best estimator for occasions when the domains are sufficiently well separated.
This separation may not to be very obvious when estimating the population mean.
In this case, all of the estimators of population means were better than the simple
random sample mean. The considered estimation method lets us also estimate the
probabilities of the distribution mixtures. Generalization of the regression estimators
for a multidimensional auxiliary variable was also shown.

Someother generalization ormodifications of the estimation procedure are possible.
Auxiliary variables observed in censuses or in official registers can be used to improve
the efficiency of estimating means. We can consider distributions other than normal as
elements of the mixture. For instance, expenditures or incomes in domains could be
modeled bymeans of asymmetric distributions like lognormal or gamma distributions.
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Appendix

Derivation of parameters 2̂(t+1)
x

�̂
(t+1)
x maximize the log-likelihood function l(t)(ds, xs) [given by expression (4)]

provided
∑H

h=1 ph = 1. Equivalently �̂
(t+1)
x maximize the Lagrangian function:

ψ
(t)
x (�) = l(t)(ds, xs) + λ(1 − ∑H

h=1 ph). According to the pseudo-likelihood

approach (see, e.g., [8, 12]), �̂
(t+1)
x is the solution of the following pseudo-log-

likelihood estimation equation system:

⎧
⎨

⎩

∂ψ
(t)
x (�)
∂�

= ∂l1(ds )
∂�

+ ∂l(t)2 (xs )
∂�x

= 0,
∂l(t)(ds ,xs )

∂ ph
= λ, h = 1, . . . , H

(21)

where

{
∂l1(ds )

∂�
= ∑H

h=1
∑

k∈sh
∂ln( fh(yk ,xk ,�))

∂�
,

∂l(t)2 (xs )
∂�x

= ∑H
h=1

∑
k∈s

∂ln(gh(xk ,�x ))
∂�x

τ
(t)
h,k,

(22)

∂l(t)(ds, xs)

∂ ph
= ∂l1(ds)

∂ ph
+ ∂l(t)2 (xs)

∂ ph
, h = 1, . . . , H , (23)

∂l1(ds)
∂ ph

= N̂h

ph
,

∂l(t)2 (xs)

∂ ph
= τ̂

(t)
h

ph
. (24)

These equations let us write: N̂h + τ̂
(t)
h = λph for h = 1, . . . , H . This leads to

λ = ∑H
h=1(N̂h + τ̂

(t)
h ) and finally to the expression (7).

Derivation of estimators under an assumed normal distributionmixture

Under an assumed mixture of normal distribution, the components of the model
expressed by (1) become as follows:

fh(yk, xk, θh) = 1

2π
√

σ 2
x,hσ

2
y,h(1 − ρ2

h)
exp {Q(yk, xk, θh)} (25)

where θh = [μy,h μx,h σy,h σx,h σx,y,h], ρh = σxy,h
σx,hσy,h

and

Q(yk, xk, θh) = − 1

2(1 − ρ2
h)

(
(xk − μx,h)

2

σ 2
x,h

−2ρh
(xk − μx,h)(yk − μy,h)

√
σ 2
x,hσ

2
y,h

+ (yk − μy,h)
2

σ 2
y,h

⎞

⎠ ,
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g(xk,�x ) =
H∑

h=1

phgh(xk, θx,h), (26)

gh(xk, θx,h) = gh(xk, μx,h, σ
2
x,h) = 1√

2π
(σ 2

x,h)
− 1

2 exp

{

− (xk − μx,h)
2

2σ 2
x,h

}

.

The log-likelihood functions defined by expressions (3)–(6) take the following
forms:

l1(ds) =
H∑

h=1

N̂hln(ph) − N̂ ln(2π) +

−1

2

H∑

h=1

N̂h

(
ln(σ 2

x,h) + ln(σ 2
y,h) + ln(1 − ρ2

h)
)

+
H∑

h=1

Qsh (yk, xk, θh),

(27)

where

Qsh (yk , xk , θh) = − N̂h

2(1 − ρ2
h )

⎛

⎝
σ 2∗x,sh
σ 2
x,h

− 2ρh
σ∗xy,sh√
σ 2
x,hσ

2
y,h

+ σ 2∗y,sh
σ 2
y,h

⎞

⎠ ,

σ∗xy,sh = 1

N̂h

∑

k∈sh
(xk − μx,h)(yk − μy,h), σ 2∗x,sh = σ∗xx,sh , σ 2∗y,sh = σ∗yy,sh .

(28)

l(t)2 (xs) =
H∑

h=1

ln(ph)τ
(t)
h − 1

2

H∑

h=1

∑

k∈s

τ
(t)
h,k

1 − πk

(

ln(2π) + ln
(
σ 2
x,h

)
+ (xk − μx,h)

2

σ 2
x,h

)

=
H∑

h=1

ln(ph)τ
(t)
h − τ (t)

2
ln(2π) − 1

2

H∑

h=1

ln(σ 2
x,h)τ

(t)
h − 1

2

H∑

h=1

σ
2(t)
∗x,s,hτ

(t)
h

σ 2
x,h

,

(29)

σ
2(t)
∗x,s,h = 1

τ
(t)
h

∑

k∈s

(xk − μx,h)
2

1 − πk
τ

(t)
h,k . (30)

The first derivatives of the likelihood function expressed by (27) in the case of nor-
mal distribution, as given by (25), are evaluated as follows (see Kendall and Stuart [5],
page 57):

∂l1(ds)
∂μx,h

= N̂h

σx,h(1 − ρ2
h)

(
x̄sh − μx,h

σx,h
− ρh

ȳsh − μy,h

σy,h

)

, (31)

∂l1(ds)
∂μy,h

= N̂h

σy,h(1 − ρ2
h)

(
ȳsh − μy,h

σy,h
− ρh

x̄sh − μx,h

σx,h

)

, (32)

∂l1(ds)

∂σ 2
x,h

= − N̂h

2σ 2
x,h(1 − ρ2

h)

(

(1 − ρ2
h) − σ 2∗x,sh

σ 2
x,h

+ ρh
σ∗xy,sh
σx,hσy,h

)

, (33)
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∂l1(ds)

∂σ 2
y,h

= − N̂h

2σ 2
y,h(1 − ρ2

h)

(

(1 − ρ2
h) − σ 2∗y,sh

σ 2
y,h

+ ρh
σ∗xy,sh
σx,hσy,h

)

, (34)

∂l1(ds)
∂ρh

= N̂h

1 − ρ2
h

{

ρh − 1

1 − ρ2
h

[

ρh

(
σ 2∗x,sh
σ 2
x,h

+ σ 2∗y,sh
σ 2
y,h

)

− (1 + ρ2
h)

σ∗xy,sh
σx,hσy,h

]}

.

(35)

The first derivatives of the likelihood function expressed by (29) in the case of
normal distribution are as follows:

∂l(t)2 (xs)

∂μx,h
=

∑

k∈s

(xh − μx,h)τ
(t)
h,k

σ 2
x,h

= (x̄ (t)
s,h − μx,h)τ

(t)
h

σ 2
x,h

, (36)

∂l(t)2 (xs)

∂σ 2
x,h

= − τ
(t)
h

2σ 2
x,h

(

1 − σ 2∗x,s,h
σ 2
x,h

)

(37)

where τ
(t)
h,k , τ

(t)
h , x̄ (t)

s,h and σ∗x,s,h are given by expressions (9), (11) and (30).

Equations ∂l(t)(xU )
∂μx,h

= ∂l1(ds )
∂μx,h

+ ∂l(t)2 (xs )
∂μx,h

= 0 and ∂l(t)(xU )
∂μy,h

= ∂l1(ds )
∂μy,h

= 0 are
equivalent to the following, respectively:

N̂h

σx,h(1 − ρ2
h)

(
x̄sh − μx,h

σx,h
− ρh

ȳsh − μy,h

σy,h

)

+ (x̄s,h − μx,h)τ
(t)
h

σ 2
x,h

= 0 (38)

and

ȳsh − μy,h

σy,h
= ρh

x̄sh − μx,h

σx,h
. (39)

When in (38) we replace
ȳsh−μy,h

σy,h
with the right side of equation (39), then, after

simplification, we have:

μx,h(N̂h + τ
(t)
h ) = N̂h x̄sh + τ

(t)
h x̄ (t)

s,h .

This leads to the iterative estimator x̂ (t+1)
s,h , given by (10) and (11).

Equation ∂l1(ds )
∂μy,h

= 0 is equivalent to the following:

μy,h = ȳsh − σxy,h

σ 2
x,h

(x̄sh − μx,h).

After replacing μx,h with x̂ (t+1)
x,h , we have:

μ̂
(t+1)
y,h = ȳsh − σxy,h

σ 2
x,h

(x̄sh − x̂ (t+1)
x,h ) = ȳsh − (1 − w

(t)
h )

σxy,h

σ 2
x,h

(x̄sh − x̄ (t)
s,h), (40)
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Now, when we replace σxy,h and σ 2
x,h with σxy,sh and σ 2

x,sh , respectively, we obtain

the estimator ỹ(t+1)
h expressed by (13).

Equations ∂l(t)(xU )

∂σ 2
y,h

= ∂l1(ds )
∂σ 2

y,h
= 0, ∂l(t)(xU )

∂σ 2
x,h

= ∂l1(ds )
∂σ 2

x,h
+ ∂l(t)2 (xs )

∂σ 2
x,h

= 0 are equivalent

to the following:

1 − ρ2
h = σ 2∗y,sh

σ 2
y,h

− ρh
σ∗xy,sh
σx,hσy,h

, (41)

1 − ρ2
h = σ 2∗x,sh

σ 2
x,h

− ρh
σ∗xy,sh
σx,hσy,h

+ (1 − ρ2
h)τ

(t)
h

nh

(
σ 2∗x,s,h
σ 2
x,h

− 1

)

(42)

and after multiplying ∂l1(ds )
∂ρh

= 0 [see equation (35)] by
1−ρ2

h
nhρh

we have:

1 − ρ2
h = σ 2∗y,sh

σ 2
y,h

+ σ 2∗x,sh
σ 2
x,h

− 1 + ρ2
h

ρh

σ∗xy,sh
σx,hσy,h

. (43)

Similar to Kendall and Stuart [5] pp. 57–58, let us add Eqs. (41) and (42). Next, after
subtracting Eq. (43) from this sum, we have:

1 − ρ2
h = 1 − ρ2

h

ρh

σ∗xy,sh
σx,hσy,h

+ (1 − ρ2
h)τ

(t)
h

nh

(
σ 2∗x,s,h
σ 2
x,h

− 1

)

.

The above equation is multiplied by
ρ2
h

1−ρ2
h
and simplified to the form:

ρh
σ∗xy,sh
σx,hσy,h

= ρ2
h

(

1 − τ
(t)
h

nh

(
σ 2∗x,s,h
σ 2
x,h

− 1

))

.

In Eq. (42) we replace ρh
σ∗xy,sh
σx,hσy,h

with the right side of the above equation. After some
simplification, this lets us write:

σ 2
x,h = w

(t)
h σ 2∗x,sh + (1 − w

(t)
h )σ

2(t)
∗x,s,h .

In expressions (28) and (30), meanμh is replaced by x̄sh and x̄
(t)
sh , respectively. This

leads to expression (14) and (12).
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