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Abstract
Extreme events, such as earthquakes, tsunamis, and market crashes, can have sub-
stantial impact on social and ecological systems. Quantile regression can be used for
predicting these extreme events, making it an important problem that has applications
in many fields. Estimating high conditional quantiles is a difficult problem. Regular
linear quantile regression uses an L1 loss function [Koenker in Quantile regression,
Cambridge University Press, Cambridge, 2005], and the optimal solution of linear
programming for estimating coefficients of regression. A problem with linear quantile
regression is that the estimated curves for different quantiles can cross, a result that
is logically inconsistent. To overcome the curves crossing problem, and to improve
high quantile estimation in the nonlinear case, this paper proposes a nonparametric
quantile regression method to estimate high conditional quantiles. A three-step com-
putational algorithm is given, and the asymptotic properties of the proposed estimator
are derived. Monte Carlo simulations show that the proposed method is more efficient
than linear quantile regression method. Furthermore, this paper investigates COVID-
19 and blood pressure real-world examples of extreme events by using the proposed
method.
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1 Introduction

Extreme events are rare, unusual occurrences such as earthquakes, tsunamis, and mar-
ket crashes. These events usually have the potential to substantially impact social,
and ecological systems. Therefore, understanding and predicting extreme events is
of interest in many fields such as earth sciences, traffic prediction, survival analy-
sis and financial markets. To estimating such events’ probability requires a model
that focuses on the high conditional quantile of heavy-tailed distribution [7]. There-
fore, more sophisticated quantile regression methods are used instead of traditional
mean regression. Linear quantile regression uses the least absolute deviation (L1) loss
function, and optimization of this loss function is done using linear programming
methods. With quantile regression, we can obtain the relationship between variables
in high conditional quantiles.

The linear mean regression model is used to estimate the conditional mean of
random variable y based on given x � (1, x1, x2, ..., xk)T .

μ(y|x) � E(y|x1, x2, ..., xk) � xT β � β0 + β1x1 + β2x2 + ... + βk xk , (1)

where β � (β0, β1, β2, ..., βk) ∈ R p, p � k + 1.
Let yi , i � 1, 2, ..., n, be the response variable from a continuous distribution,

which is explained by p-dimensional design vector xi . Then β can be estimated from
a random sample {(yi , xi ), i � 1, 2, ..., n} by applying the method of least squares.
Byminimizing its L2-squared distance, we can obtain the least-square (LS) estimators
̂βL S . This can be represented by the following equation

̂βL S � arg min
β∈R p

n
∑

i�1

(yi − xT
i β)2. (2)

When the response variable is normally distributed, this model has appealing
attributes such as computational tractability and accurate conditional mean estimation.
However, the measurement of the central location would be significantly affected if
there are outliers in the data. Moreover, for extreme events, the response variable usu-
ally has a heavy-tailed distribution such as the extreme value distribution [6], and the
focus is on the high quantile curves rather than central location. In this circumstance,
the mean regression model is inefficient at capturing the critical information required
to predict extreme events. Research results show that quantile regression methods are
better to apply.

A real-valued random variable y has right-continuous cumulative distribution func-
tion (CDF) Fy(y). The τ th quantile of such y is given by

Q(τ ) � F−1(τ ) � inf{y : F(y) ≥ τ }, 0 < τ < 1.
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If a random univariate y can be explained by x � (1, x1, x2, . . . , xk)
T ∈ R p. The

conditional τ th quantile of y given x is defined as

Qy(τ |x) � F−1(τ |x) � inf{y : F(y|x) ≥ τ }. (3)

Then the regular τ th quantile linear regression (QR) of y is defined as [20].

Q R(τ |x) � β0(τ ) + β1(τ )x1 + β2(τ )x2 + ... + βk(τ )xk , 0 < τ < 1, (4)

where β(τ ) � (β0(τ ), β1(τ ), β2(τ ), ..., βk(τ ))T . Its estimator ̂β(τ ) is obtained by
solving the following equation

̂β(τ ) � arg min
β(τ )∈R p

n
∑

i�1

ρτ

(

yi − xT
i β(τ )

)

, 0 < τ < 1, (5)

where ρτ is a quantile-weighted L1-loss function which is not differentiable,

ρτ (u) � u(τ − I (u < 0)) �
{

u(τ − 1), if u < 0;
uτ , if u ≥ 0.

(6)

In otherwords,minimizing the expected loss to obtain estimator̂β(τ ). Furthermore,
the quantile regression problem can be reformulated as a linear program

min
(β(τ ), u, v)∈R×R2n

+

{

τ1T
n u + (1 − τ)1T

n v|Xβ(τ ) + u − v � y
}

, (7)

where X is an n × p regression design matrix and u, v are two n × 1 vectors with
elements of ui , vi respectively.

In the literature, there are other quantile regression methods. Bayesian approaches
provide convenient alternative inference tools for quantile regression. A working like-
lihood is needed to carry out Bayesian analysis [21]. It is interesting to explore the
Bayesian quantile regression methods. In Sect. 7.2, we compare a type of Bayesian
quantile regression with this paper which proposes direct nonparametric quantile
regression.

In this paper, two real-world datasets are analyzed using linear mean regression,
linear quantile regression and nonparametric quantile regression. The first dataset is a
tri-variate example based on the status of COVID-19 cases in Ontario that comes from
the Ontario Government. The second example’s data comes from National Health and
Nutrition Examination Survey (NHANES) about systolic blood pressures.

1.1 Example 1. Number of Hospitalized COVID-19 Patients in Ontario, Canada
(April 19, 2020–June 30, 2021)

COVID-19, the coronavirus is a contagious disease spread worldwide and causing
the current ongoing pandemic. Based on United States Centers for Disease Control
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and Prevention (CDC)’s report in March 2020, COVID-19 has already done more
damage to the world than the SARS pandemic [4], which appeared in 2002. COVID-
19’s average mortality rate is estimated to be around 3.4% by the WHO. However, in
WashingtonStateUSA, 67%of critically ill patients died [25]. Furthermore, since there
are no specific coronavirus treatments right now [16]. People with severe COVID-19
symptoms must be hospitalized. Ensuring sufficient human and physical resources is
essential to minimize the mortality rate.

The virus was confirmed in Canada on January 27, 2020, and in March 2020,
as cases of community transmission were confirmed, all of Canada’s provinces and
territories declared states of emergency. Provinces and territories have, to varying
degrees, implemented school and daycare closures, prohibitions on gatherings, clo-
sures of non-essential businesses and restrictions on entry. By mid to late summer
of 2020, the country saw a steady decline in active cases until the beginning of late
summer. Through autumn, the country saw a resurgence of cases in all provinces
and territories. On September 23, 2020, Canada declared a “second wave” of the
virus. Nation-wide cases, hospitalizations and deaths spiked preceding and following
December 2020 and January 2021. Following Health Canada’s approval of the Pfiz-
er–BioNTech, mRNA-1273 and the Oxford–AstraZeneca vaccine for use, and on
March 5, 2021, they additionally approved the Janssen COVID-19 vaccine for a total
of four approved vaccines in the nation [14].

Ontario Canada, in late summer 2021, the province began preparing for a fourth
wave of the virus, which was largely affecting unvaccinated individuals. In January
2022, there were changes in the policy regarding testing, such that the reported number
of new positive cases no longer reflects the true number of new positive cases. In this
paper, we focus on data from April 19, 2020–June 30, 2021, Ontario COVID-19 cases
daily data collected for n∗ � 438 days [13]. We focus on high numbers of hospitalized
COVID-19 patient’s relationship with percent positive tests last day and the number
of new cases. Percent positive tests last day is the percent of COVID-19 tests that
were positive in the last day. The response variable is the number of hospitalized
COVID-19 patients. To focus on high numbers of hospitalized COVID-19 patients,
its upper quartile (75%) 1010 patients, will be used as a threshold. After applying the
threshold of 1010, the data was reduced to n � 103 days. Figure 1 is a chart plot
shows n∗ � 438 days of number of hospitalized COVID-19 patients. Table 1 shows
the top 5 daily number of hospitalized COVID-19 patients in Ontario, Canada.

We also note that there were three waves of COVID-19 during April 19, 2020–June
30, 2021. The top three values are 1043 patients on May-04-2020, 1674 patients on
Jan-13-2021, and 2360 patients on April 20, 2021. Our goal is to create a statistical
model to analyze the current Ontario hospitalized COVID-19 patients’ number and
predict future extreme events.

We are interested in the relationship between the response variable y (the number
of hospitalize COVID-19 patients) with x1 (percent positive test last day) and x2 (the
number of new cases). By employing a least-square mean regression model in (1), we
can model it using

μ(y|x) � E(y|x1, x2) � β0 + β1x1 + β2x2.
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Table 1 Top 5 daily data of the number hospitalized of COVID-19 patients in Ontario, Canada (April 19,
2020–June 30, 2021)

Date The number of hospitalized
COVID-19 patients y

Percent positive test last
day x1 (%)

The number of new
cases x2

2021-04-20 2360 10 3469

2021-04-22 2350 7.8 3682

2021-04-27 2336 10.2 3265

2021-04-21 2335 7.9 4212

2021-04-23 2287 8.8 4505

Using the least-square method to estimate β � (β0, β1, β2)
T . The least-square

plane function is

μ̂L S(x1, x2) � 650.2139 + 67.9667x1 + 0.1731x2.

The 0.95th quantile plane by the regular linear quantile regression (QR) in (5) is
given by

̂Q R(0.95|x1, x2) � ̂β0(0.95) + ̂β1(0.95)x1 + ̂β2(0.95)x2
� 640.5811 + 89.8649x1 + 0.2539x2.

Figure 2 is a 3D plot of the LSmean regression plane (inGreen) and a linear quantile
regression plane (in blue) which shows that there is a strong positive relation between
number of hospitalize COVID-19 patients and its regressors. The average number of
hospitalized patients increases as percent positive test last day increase. Similarly, the
average number of hospitalized patients increases as the number of new cases per day
increases.

Fig. 2 A 3D LS mean regression plane μ̂L S (x1, x2) (in green) and the 0.95th linear quantile regression
plane ̂Q R(0.95|x1, x2) (in blue) of the number of hospitalized COVID-19 patients y with a threshold of
1010 vs the percent positive test last day x1 and the number of new cases x2 (n � 103). Data are in black
dots. We note that about 95% data below the ̂Q R(0.95|x1, x2) plane
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For building a 2D relationship of y—the number of hospitalized COVID-19 patients
and x1—the percent positive test last day. We fix x2—the number of new cases. Let
x2 � 3442 which is the 0.75th quantile of x2. Then the least square mean regression
line and the 0.95th linear quantile regression line of y and x1 are

μ̂L S(x1)
∣

∣x2�3442 � 1246.1294 + 67.9667x1, when x2 � 3442 (the 0.75th quantile of x2).

̂Q R(0.95|x1)
∣

∣x2�3442 � 1514.521 + 89.8649x1, when x2 � 3442 (the 0.75th quantile of x2).

Figure 3a provides a scatter plot of x1—percent positive test last day versus y—the
number of hospitalized COVID-19 patients with its least-squares mean regression line
(in green) and 0.95th linear quantile regression line (in blue).

Similarly, for building a 2D relationship of y—the number of hospitalized COVID-
19 patients and x2—the number of new cases. We fix x1—the percent positive test
last day. Let x1 � 7.8(%) which is the 0.75th quantile of x1. We have the least square
mean regression line and the 0.95th linear quantile regression line of line of y and x2
are

μ̂L S(x2)
∣

∣x1�7.8 � 1180.3541 + 0.1731x2, when x1 � 7.8 (the 0.75th quantile of x1).

̂Q R(0.95|x2)
∣

∣x1�7.8 � 1341.5277 + 0.2539x2, when x1 � 7.8 (the 0.75th quantile of x1).

Figure 3b provides a 2D plots of scatter plot of x2—the number of new cases
versus the y—number of hospitalized COVID-19 patients with its least-squares mean
regression lines (in green) and 0.95th linear quantile regression lines (in blue).

FromFigs. 2 and3,weobserved that the least-squaresmean estimator μ̂L S estimates
the average number of hospitalized COVID-19 patients in Ontario, but it does not
represent the extreme high values of the patients in hospital data pattern. It can not
estimate the critical situation when the hospitals are crowded with patients. The 0.95th
linear Quantile regression ̂Q R(0.95|x1, x2) indicates the 95% number of hospitalized
COVID-19 patients in Ontario under the plane or lines. But we note that this model
does not capture nonlinear patterns in the high quantiles. In this paper, we proposed
a new quantile regression estimator to improve estimating the high quantile plane
for extreme values of numbers of hospitalized COVID-19 patients. We will use new
quantile regression model to analysis this example in Sect. 6.

1.2 Example 2: Systolic Blood Pressures (January 2017–December 2018)

Blood pressure is expressed as a measurement with two numbers: systolic blood pres-
sure and diastolic blood pressure. The systolic blood pressure refers to the amount
of pressure the blood exerts against the artery walls during the heart contraction. The
diastolic blood pressure represents the pressure when the heart rests between beats.
High blood pressure, also referred to as hypertension, is blood pressure that is higher
than normal. Hypertension may cause complications such as heart attack, stroke, and
aneurysm [5, 23].
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Table 2 Classification of blood
pressure, Centers for Disease
Control and Prevention, 2020,
USA

BP Classification SBP (mmHg) DBP (mmHg)

Normal Between 90–120 Between 60–80

Prehypertension 120–139 or 80–89

Stage 1 hypertension 140–159 or 90–99

Stage 2 hypertension ≥ 160 or ≥ 100

Based on existing studies, high systolic pressures pose a greater risk of heart disease
than elevated diastolic pressure. As a result, the response variable of this example is
systolic blood pressure (SBP). The CDC is the national public agency of the United
States. The CDC categorizes blood pressure in adults into 4 groups: normal, elevated
(prehypertension), hypertension stage 1, and hypertension stage 2 [15]. These classifi-
cations are given in Table 2. A millimeter of mercury is a manometric unit of pressure,
formerly defined as the extra pressure generated by a column of mercury one millime-
ter high and currently defined as exactly 133.322387415 pascals. It is denoted mmHg.

NHANES or the National Health and Nutrition Examination Survey, is a program
by the CDC that aims to assess the health and nutritional status of adults and children
in the USA. We will examine NHANES’s 2017–2018 data which consists of n* �
6240 subjects between weights 18.6 kg to 219.6 kg [5]. For this study, a threshold
of 160 mmHg is applied since people with SBP higher than 160 mmHg are at high
risk for coronary heart disease, which can lead to a heart attack or stroke [3]. After
omitting subjects with SBP less than 160 mmHg, the data is reduced to n ∗ ∗ � 261
subjects.

One common cause of hypertension is obesity. Being overweight increases the
chance of developing high blood pressure [29]. We set response variable y – SBP
(mmHg) vs regressor x – weight (kg). We treat 12 subjects whose weight x > 215 kg
as outliers, leaving the n � 249 subjects with weight between 18.6–125 kg, Table 3
shows the top 5 data of SBP. Figure 4 presents the SBP for the n � 249 subjects,
and a threshold of 160 mmHg is indicated. Let the response variable y be SPB and
explanatory variable x be the subject’s weight. Then, we can employ a least-squares
mean regression model to estimate the conditional mean of SBP mmHg (y) given
subject’s weight kg (x).

Table 3 Top 5 data for SBP of
subjects in USA (January
2017–December 2018) with
weight between 18.6 and 125 kg

Subject ID SBP (mmHg) y Weight (kg) x

100,389 224 78.7

96,586 216 84.4

96,003 216 73.5

101,273 216 66.1

96,234 210 121.2
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Fig. 4 Systolic blood pressures (SBP mmHg) of subjects (n* � 6240) tested by the Centers for Disease
Control and Prevention between Month, United States of American, January 2017—December 2018. The
number of subjects who have SBP over 160 mmHg is n** � 261

Similar as Example 1, we obtained the least-squares liner regression line and the
0.95th liner quantile regression line as (see Fig. 5)

μ̂L S(x) � 173.9923 + 0.0191x and ̂Q R(0.95|x) � 188.2925 + 0.1791x .

Figure 5 shows that the least-squares mean line μ̂L S(x) can only estimate the mean
values of systolic blood pressure relate to theweight.Also, Fig. 5 also shows about 95%
subjects with systolic blood pressure data under line of the 0.95th quantile regression
̂Q R(0.95|x). However, both μ̂L S(x) and ̂Q R(0.95|x) lines do not catch the relation
well between very high values of systolic blood pressures related to weight. This
paper, we propose a new direct nonparametric quantile regression method with 3
steps computational algorithm in Sect. 3, and we will discuss Example 2 by using the
proposed new quantile regression method in Sect. 6.

In this paper, notation is introduced in Sect. 2. We propose a direct nonparametric
quantile regression method with a three-step computer algorithm in Sect. 3. Section 4
gives asymptotic properties of proposed direct nonparametric quantile regression. The
results of Monte Carlo simulation are in Sect. 5. Section 6 compares the proposed
direct nonparametric quantile regressionwith the regular quantile regression andmean
regression for two examples. Finally, Sect. 7 gives conclusions and discussions..
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Fig. 5 Data are black dotes, n � 249. The μ̂L S (x) line and the ̂Q R(0.95|x) line for Systolic blood pressures
(SBP mmHg) y versus weight x for subject with SBP greater than 160 mmHg and weight between 18.6 and
125 kg

2 Notation

2.1 ExtremeValue Distribution

Extreme value theory (EVT) is used to study the probability of extreme observations
especially from heavy-tailed probability distributions. It helps us find possible limit
distribution for sample maxima/minima of independent and identically distributed
(i.i.d.) random variables. [7] deHaan&Ferreira (2006) and [24] etc. developed theory;
experts also applied extreme value models to many fields, i.e. [6, 9, 17] and [19].

Let X1, X2, ..., Xn be i.i.d. random variables. Extreme value theory finds
the possible limiting distribution of the sample extreme max(X1, X2, ..., Xn) or
min(X1, X2, ..., Xn) as n → ∞.

Definition 1 (Fisher & Tippett, 1928; Gnedenko, 1943) The c.d.f. of any extreme value
distribution is denoted by G γ (ax + b) for any constants a > 0, b ∈ R,

Gγ (x) �
{

exp
(

−(1 + γ x)
− 1

γ

)

, 1 + γ x > 0 and γ �� 0 :

exp
(−e−x

)

, γ � 0, x > 0.
(8)

where the real parameter γ is called the extreme value index.
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In this work, we are interested in predicting extreme events by estimating the high
conditional quantile curves of heavy-tailed distributions (γ > 0).

2.2 Generalized Pareto Distribution

Aconditional extremevalue distribution exceeding a threshold has a generalizedPareto
distribution (GPD) ([24] Pickands, 1975, and [8]).

Definition 2 The c.d.f. Hγ (x) of the two parameter GPD(γ , σ ) with shape parameter
γ , location parameter μ and scale parameter σ for random variable X is given by

Hγ (x) � 1 −
(

1 + γ
(x − μ)

σ

)−1/γ

, γ �� 0, 0 < μ < ∞, σ > 0, μ < x < ∞. (9)

3 New EstimationMethod Proposed: A Direct Nonparametric
Quantile Regression

This paper proposes a new direct nonparametric quantile regression method. We will
ignore the idea of the linear model (4) for generality. Instead, a direct estimator of the
true conditional quantile

̂Qy(τ |x) � ̂Qy(τ |x1, x2, ..., xk) � ̂F−1(τ |x),

will be obtained by using local conditional quantile estimator ξi (τ |x) � ̂Qy(τ |xi )

based on the i th point of given random sample, {(yi , xi ), i � 1, ..., n}, for xi �
(x1i , x2i , ..., xdi )

T , i � 1,2,…,n..
This direct nonparametric quantile regression algorithm has three steps shown as

follows:

Step 1 Estimate Conditional c.d.f.

First estimate the conditional c.d.f. F(y|x) of y for given x� (x1, x2, ..., xd ) using
kernel estimation method [26, 27]

̂F(y|x) �
1
n

∑n
i�1 I (Yi ≤ y)K

{

x−X i
h

}

ĝ(x)
, (10)

where the I (Yi ≤ y) is an indicator function and ĝ(x) is an estimator of the marginal
density of x.

To estimate the marginal density of x, we use a kernel density estimator. Consider
a d-dimensional random sample X i � (x1i , x2i , ..., xdi ), i � 1, 2, ..., n from a
population x � (x1, x2, ..., xd ) with density g(x). The kernel density estimator for
g(x) is given by
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ĝ(x) � 1

nhd

n
∑

i�1

K

{

x − X i

h

}

,

where h > 0 is the bandwidth and the kernel function K (x) is a function defined for
d-dimensional x� (x1, x2, ..., xd ) which satisfies

∫

Rd K (x)dx � 1, [11] suggested
using

ĝ(x) � (det S)−1/2

nhd

n
∑

i�1

k

{

(x − X i )
T S−1(x − X i )

h2

}

,

where S is the sample covariance matrix of the data, and the function k is

k(u) �
(

1

2π

)d/2

exp
(

−u

2

)

, k(xT x) � K (x) � (2π )−d/2 exp

(

−1

2
xT x

)

.

An estimator for the bandwidth h > 0 will be given by [27, p. 85].

̂hopt � A(K )n−1/(d+4),

where A(K ) � ( 4
d+1

)1/(d+4)
if a multivariate normal kernel is used for smoothing the

normal distribution data with unit variance.

Step 2 Estimate the Local Conditional Quantile Function

Ideally, one would like to estimate the conditional quantile function ξ(τ |x) of y
given x by inverting the estimated conditional c.d.f. in (10) from step 1

̂ξ(τ |x) � ̂Qy(τ |x) � inf
{

y : ̂F(y|x) ≥ τ
} � ̂F−1(τ |x).

However, since the kernel estimated conditional c.d.f. F̂(y|x) has many terms, it is
challenging to compute its global inverse function ξ̂ (τ |x). To bypass the computational
difficulties, we invert the estimated conditional c.d.f. (10) at the i th data point estimates
the local conditional quantile point̂ξi (τ |xi )

̂ξi (τ |xi ) � ̂Qy(τ |xi ) � inf
{

y : ̂F(y|xi ) ≥ τ
} � ̂F−1(τ |xi ), i � 1, 2, ..., n.

Step 3 Propose a Nonparametric Direct Quantile Regression

This paper proposes a direct nonparametric quantile regression estimator for the
τ th conditional quantile curve of x using Nadaraya-Watson (NW) nonparametric
regression estimator [28] on

(

xi , ̂ξi (τ |xi )
)

for i � 1, 2, ..., n. The proposed direct
nonparametric quantile regression is given by

̂QN (τ |x) �̂ξ(τ |x) �
∑n

i�1 Kh{x − X i }̂ξi (τ |xi )
∑n

j�1 K
{

x − X j
} �

n
∑

i�1

Whx (x, X i )̂ξi (τ |xi ), 0 < τ < 1

(11)
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where the equivalent kernel Whx (x, X i ) is

Whx (x, X i ) � Kh{x − X i }
n
∑

j�1
K

{

x − X j
}

, i � 1, 2, ..., n,

where

Kh{x − X i } � 1

nh1...hd

d
∏

j�1

K

(

x − xi j

h j

)

, i � 1, 2, ..., n,

where K is the kernel function and h j > 0 is the bandwidth for the j th dimension,
and h � (h1, h2, ..., hd).

We will use the standard normal kernel K for the kernel estimation. The optional
bandwidth will also be considered [27],

h j , opt �
{∫

t2K (t)dt

}−2/5{∫

K (t)2dt

}1/5{∫

(∇2(x)
)2

dx
}−1/5

n−1/5, j � 1, 2, ..., d,

where n is the sample size of the random sample.

4 Asymptotic Properties of the Propose Direct Nonparametric
Quantile Regression

In this section, we derive the asymptotic distribution of the proposed direct nonpara-
metric quantile regression estimator̂ξ(τ |x) in (11). Let the following conditions hold:

Condition 1 (C1). In (10both the estimated conditional c.d.f. ̂F(y|x) of y given x �
(x1, x2, ..., xd)T and p.d.f. g(x) of x have continuous second-order derivatives with
respect to x. Also, K (•) is a symmetric, bounded, and compactly supported probability
density function.
Condition 2 (C2). In (11), the product nh1...hd → ∞ as h j → ∞ for all j � 1, 2,
..., d.

Condition 3 (C3). The estimated conditional c.d.f. ̂F(y|x) of y given x �
(x1, x2, ..., xd)T in (8) has a conditional p.d.f. f (y|x) of y given x that is contin-
uous in R

d and f (ξ(τ |x)) > 0.

The main asymptotic result for̂ξ(τ |x) given in Theorem 1.

Theorem 1 Asymptotic properties of proposed direct nonparametric quantile regres-
sion, under Conditions C1, C2, and C3,

(nh1, h2, ..., hd )1/2

⎛

⎝̂ξ(τ |x) − ξ(τ |x) −
d

∑

j�1

h2j Bτ , j (x)

⎞

⎠

D−→ N (0, Vτ (x)), as n → ∞

(12)
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wherêξ(τ |x) is defined in (9), ξ(τ |x) is the true conditional quantile, and

Bτ , j � B j (y, x)

f (ξ(τ |x))
,

where

Bτ , j (x) � 1

2

∫

v2K (v)dv

[

F ′′
j j (y|x) +

2g′
j F ′

j (y|x)

g(x)

]

, j � 1, 2..., d.

Here, for a real function H(y, x), j � 1, 2..., d, H ′
j (y, x) and H ′′

j j (y, x) are the
first and second derivatives of H(y, x) with respect to x j , respectively. For j � 0,
H ′
0(y, x) and H ′′

00(y, x) are the first and second derivatives of H(y, x) with respect
to y, respectively. Also,

Vτ (x) �
τ

(

1 − τ
d
∏

j�1

[∫

K 2
(

v j
)

dv j
]

)

f 2(ξ(τ |x))g(ξ(τ |x))
.

Proof. It is similar to Theorem 2 in [18].

5 Computer Simulations

Monte Carlo Simulation is used in this Section to compare efficiencies of the new
proposed direct nonparametric quantile regression estimator ̂QN (τ |x) (QN) in (11)
against the regular linear quantile regression estimator̂Q R(τ |x) (QR) by using (4) and
(5). We generate m � 1000 random samples of size n � 200 from the Fisk distribution
(the Burr XII distribution) [10] for this simulation.

The Fisk distribution has the c.d.f. with γ as the tail index.

F(y, γ ) � 1

1 + y−1/ γ
, γ > 0, y > 0. (13)

Let X be a one-dimensional and uniformly distributed on [0, 1], and Y given X � x
has the Fisk distribution with the conditional c.d.f.

FFisk(y|x , γ (x)) � 1

1 + y−1/ γ (x)
, γ (x) > 0, 0 ≤ x ≤ 1, y > 0 (14)

and a conditional tail index given by

γFisk(x) � 3

100

(

120x2 − 90x + 17

15x2 − 15x + 4

)

, 0 ≤ x ≤ 1. (15)

The joint distribution of Fisk y and uniform x is given in Fig. 6. The true τ th
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Fig. 6 a The joint distribution of Fisk y and uniform x. b Fisk distributed y’s conditional quantile given x at
τ � 0.95, τ � 0.97 and τ � 0.99

conditional quantile function of y for given x is

QY Fisk(τ |x) � Qy(τ |x) �
(

τ

1 − τ

)γ (x)

, 0 ≤ x ≤ 1, γ (x) > 0, 0 < τ < 1.

(16)

Figure 6 shows the true conditional quantiles of Fisk distributed y given Uniform
x is not linear. We note that the traditional quantile regression has the assumption of
linear model, We expect that the proposed direct nonparametric quantile regression
estimator ̂QN (τ |x)(QN) should outperform the regular quantile linear regression esti-
mator ̂Q R(τ |x) (QR) because ̂QN (τ |x) does not have the linear model limitation. For
comparison, we will examine the average simulation plots, box plots, simulation mean
squared errors, and simulation efficiencies in the following section.

We use two quantile regression methods are going to be used to estimate the true
conditional quantile of the Fisk distribution,

1. The regular linear quantile regression method (QR) ̂Q R(τ |x) based on (4),

̂Q R(τ |x) � ̂β0(τ ) + ̂β1(τ )x , 0 < τ < 1.

2. The proposed direct nonparametric quantile regression method (QN) ̂QN (τ |x)

based on (11)

̂QN (τ |x) �
n

∑

i�1

Whx (x , Xi )̂ξi (τ |xi ), 0 < τ < 1.
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For each method, we generate size n � 200, m � 1000 samples, ̂Q R , i (τ |x) and
̂QN , i (τ |x) are estimated from the i th sample, where i � 1, 2, ..., n.Thenwe compare
the ̂Q R(τ |x) and ̂QN (τ |x) with the true quantile computed base on function (16)
QY Fisk(τ |x) quantiles for τ � 0.95, 0.97, and 0.99.

5.1 Average Simulation Plots

The average of m � 1000, n � 200 estimated curves obtained by QR and QN
methods are compared with the true τ th conditional quantile Qy(τ |x) at τ � 0.95,
0.97, and 0.99 in Fig. 7. It shows that the proposed direct nonparametric quantile
regression estimator ̂QN (τ |x) in red curves follow the true QY Fisk(τ |x) in (16) in
black dash closer than the regular linear quantile regression estimator̂Q R(τ |x) straight
lines at high quantiles.

Figure 8 compares the box plots for the estimates for y given x � 0.4 of ̂Q R(τ |x)

and ̂QN (τ |x) at (a) τ � 0.95, (b) τ � 0.97 and (c) τ � 0.99. The result shows that
the ̂QN (τ |x) are more concentrated expected values and smaller variance to the true
conditional quantile values Qy(τ |x) in red straight lines. The proposed ̂QN (τ |x) has
a better performance than the regular linear quantile regression ̂Q R(τ |x).

5.2 SimulationMean Squared Errors and Simulation Efficiencies

The simulation mean squared error (SMSE) of the QR estimator and QN estimator
are defined as follows

SMSE
(

̂Q R(τ )
) � 1

m

m
∑

i�1

∫ 1

0

(

̂Q R , i (τ |x) − QY Fisk(τ |x)
)

2

dx ; (17)

SMSE
(

̂QN (τ )
) � 1

m

m
∑

i�1

∫ 1

0

(

̂QN , i (τ |x) − QY Fisk(τ |x)
)

2

dx , (18)

where the true τ th conditional quantile QY Fisk(τ |x) is computed base on function
(16), the ̂Q R , i (τ |x) and ̂QN , i (τ |x) are estimated from the i th sample, i � 1,2,…,n.
from (4) and (11) respectively.

Then the simulation efficiency (SEFF) of QN estimator relative to QR estimator is
defined as

SEFFQ R

(

̂QN (τ )
) � SMSE

(

̂Q R(τ )
)

SMSE
(

̂QN (τ )
) (19)

where the SMSE
(

̂Q R(τ )
)

and SMSE
(

̂QN (τ )
)

of the QR and QN estimator is given
above.

A summary of the SMSEs and SEFFs for the two estimation methods is provided
in Table 4.
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Table 4 Simulationmean squared errors (SMSE) and simulation efficiencies (SEFF) for estimating ̂Q R(τ |x)

and Q̂N (τ |x) using m � 1000 samples of size n � 200

τ 0.95 0.96 0.97 0.98 0.99

SMSE
(

̂Q R(τ )
)

0.509745 0.677769 1.015396 1.620814 3.750400

SMSE
(

Q̂N (τ )
)

0.441579 0.531421 0.760052 0.763920 1.507929

SEFFQ R

(

Q̂N (τ )
)

1.154370 1.275391 1.335956 2.121707 2.487120

Values on the last row are bold which means that SEFFQ R

(

Q̂N (τ )
)

> 1

The SMSE of ̂Q R(τ |x) and ̂QN (τ |x) are in Table 4. At each τ levels, the
SMSE

(

̂QN (τ )
)

value is smaller than SMSE
(

̂Q R(τ )
)

value, then the SEFF of ̂QN (τ |x)

estimator relative to ̂Q R(τ |x) estimator is greater than 1 at every τ levels. This indi-
cates that the proposed direct nonparametric quantile regression is more efficient than
the regular quantile regression for estimating high conditional quantiles of the Fisk
distribution QY Fisk(τ |x) in (16).

The SMSE for ̂Q R(τ |x) and proposed ̂QN (τ |x) at different τ levels are plot-
ted in Fig. 9a, which shows SMSE

(

̂Q R(τ )
)

> SMSE
(

̂QN (τ )
)

. Figure 9b shows that
SEFF

(

̂QN (τ )
)

> 1 relative to ̂Q R(τ ).

6 Applications

In this Section, we apply the proposed nonparametric QNmethods in (11) and regular
QR method in (4) to two real-world examples in Sect. 1.

Example 1. Hospitalized COVID-19 Patients in Ontario, Canada (April 19,
2020–June 30, 2021)

Let us recall the Example 1 in Sect. 1, the Ontario, Canada Hospitalized COVID-
19 patients’ example. The purpose of this example is to predict the high conditional
quantile curves of the number of hospitalized COVID-19 patients, extreme values
of which may cause significant strain on the health system. A threshold of 1010
(hospitalized patients) is applied. After the threshold is applied, n � 103 data are
retained.

Goodness-of-fit Tests for Heavy Tailed Distribution

We will determine if the reduced data set, n � 103, with greater than 1010 hospi-
talized COVID-19 patients is from a generalized Pareto distribution (GPD) [8], with
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Table 5 Test statistic values and
p-values of three goodness-of-fit
tests using MLE for the
y—number of hospitalized
COVID-19 patients

K-S A-D C-v-M

Test Statistic 0.1097 3.2526 0.3248

p-value 0.1495 0.0204 0.1152

probability density function (pdf.)

fγ ,μ, σ (x) � 1

σ

(

1 + γ
x − μ

σ

)− 1
γ

−1

, γ �� 0, σ > 0, 0 < μ < ∞, μ ≤ x < ∞,

(20)

where γ is the shape parameter, μ is a location parameter (this example takes μ �
threshold 1010 patients), and σ (σ > 0) is a scale parameter. When γ > 0, the GPD
describes a heavy tailed distribution which is what we are interested in. We would like
to fit the GPD given in (20) to the n � 103 data and the maximum likelihood estimates
are γ̂M L E � −0.6456, σ̂M L E � 912.7147.

Table 5 shows three Goodness-of-fit tests. the Kolmogorov–Smirnov test (K–S)
[22], Anderson–Darling (A-D) test [2], and Cramer-von-Mises test (C-v-M) [1], are
verified how well the estimated GPD model fits the data. All three tests showed no
evidence to reject hypothesis that the data is from a generalized Pareto distribution
at α � 0.01 significance level. This paper emphasizes that high conditional quantiles
estimation is important for heavy-tailed distribution since they are related to extremes.
In general, quantile regression method applies data with any distribution.

Proposed Nonparametric Quantile Regression

In Sect. 1, we applied the least-squares mean regression and linear quantile regression
method to theCOVID-19 data. In this section,wewill use proposed quantile regression
method to estimate the high quantile planes of the extreme number of hospitalized
COVID-19 patients and compare with previous two models.

The QN method in (11) does not need the linear model assumption. Following
the steps in Sect. 3 to apply this method, we first use Gaussian kernel and obtain
bandwidths of h1 � 0.8744 and h2 � 498.5987 to estimate the conditional c.d.f. of y
given x. Then, we compute the estimated local conditional quantile function. Lastly,
we use a Gaussian kernel and bandwidth h1, h2 in the Nadaraya-Watson estimator to
estimate the quantile surfaces. The proposed nonparametric QN quantile regression
surfaces at τ � 0.95 and 0.99 are provided in Fig. 10.

Next, we will check the estimation quantile regression curves with the number of
new case number fixed at 3442 and then percent positive test last day fixed at 7.8%.

Regression of y on x1 when x2 � 3442 (the th Quantile of x2)

We substitute x2 � 3442 into ̂Q R(τ |x1) and ̂QN (τ |x1) surfaces to explore the high
conditional quantile curves. Figure 11 gives a scatter plot of the x1- percent positive
test last day vs. the y—number of hospitalized COVID-19 patients with μ̂L S(x1),
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Fig. 11 The2Dplots of the μ̂L S (x1) (green), ̂Q R(τ |x1) (blue) and Q̂N (τ |x1) (red) quantile curves at a τ �
0.95 and b τ � 0.99 for the x1- percent positive test last day versus the y—number of hospitalized COVID-
19 patients. Data is in black dots, n � 103

̂Q R(τ |x1) and ̂QN (τ |x1) curves for τ � 0.95 and 0.99. Table 6 gives the mean and
the conditional quantile estimates.

Figure 11 suggested that the ̂Q R(τ |x1) predicts the y—number of hospitalized
COVID-19 patients will increase indefinitely as the x1 percent positive test last day
increases. Conversely, the ̂QN (τ |x1) curve shows that there is maximum value of
number of hospitalized COVID-19 patients can reach. The ̂QN (τ |x1) predicts reveal
the reality that the available space in hospitals has a limit. Furthermore, the ̂QN (τ |x1)
curves seem to fit the data better than the ̂Q R(τ |x1) lines. Especially, at lower values
of x1.

FromTable 6we can see that ̂QN (τ |x1) predictions fit the data better than̂Q R(τ |x1)
predictions. ̂QN (τ |x1) predictions can capture when x1 < 7% the data y—number of
hospitalized COVID-19 patients slowly increases from a relative low value of x1.
̂QN (τ |x1) predicts also capture when x1 � 8%, the data y—number of hospitalized
patients is high. Also, since the ̂Q R(τ |x1) model is linear, it is over predicting the y
values, where resulted in the predictions made by ̂Q R(τ |x1) predicts are higher than
̂QN (τ |x1) predictions at x1 � 4 ~ 6%. On the other hand, the μ̂L S(x1) predicts can
only represent the mean value of the y—number of hospitalized COVID-19 patients.
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Table 6 The number of hospitalized COVID-19 patients (y) related to the % positive test last day (x1) when
the number of new cases x2 � 3442

x1- positive test last day (%) μ̂L S (x1) τ � 0.95 τ � 0.99

̂Q R(τ |x1) Q̂N (τ |x1) ̂Q R(τ |x1) Q̂N (τ |x1)

4 1518.00 1873.98 1535.69 2090.87 1650.52

5 1585.96 1963.85 1605.34 2147.06 1720.26

6 1653.93 2053.71 1702.08 2203.26 1824.84

7.8 (75% quartile) 1776.27 2215.47 2063.05 2304.42 2131.77

9 1857.83 2323.31 2016.54 2371.86 2095.37

Regression of y on x1 when x2 � 7.8 (the 0.75th Quantile of x1)

Substitute x1 � 7.8 into ̂Q R(τ |x2) and ̂QN (τ |x2) to explore the high conditional
quantile curves for percent positive test last day equals 7.8 (%). Figure 12 gives a
scatter plot of the number of new cases vs the number of hospitalized COVID-19
patients with μ̂L S(x2), ̂Q R(τ |x2) and ̂QN (τ |x2) curves for τ � 0.95 and 0.99. Table
7 gives the mean and the conditional quantile estimates.

At first, Table 7 shows that the QR method gives quantile curves crossing errors:
when x2 � 1250, ̂Q R(τ � 0.95|x2) � 1658.91 > ̂Q R(τ � 0.99|x2) � 1595.70 (bold
numbers), and when x2 � 1750, ̂Q R(τ � 0.95|x2) � 1785.86 > ̂Q R(τ � 0.99|x2) �
1757.36 (bold numbers). Thus, QR estimator gives not reasonable results. QNmethod
never has crossing error result since algorithm in Sect. 3 and ̂F(y|x) in (10) has
monotonicity which guarantee if τ1 < τ2 then ̂QN (τ1|x) < ̂QN (τ2|x) in (11) at same
x.

Based on Fig. 12 and Table 7, for τ � 0.95 and 0.99, the ̂QN (τ |x2) predictions
never exceed a value around 2400 hospitalized COVID-19 patients, consistent with the
reality that Ontario’s hospital resource are limited. Contrarily, the ̂Q R(τ |x2) predic-
tions increase indefinitely. Thus, the proposed ̂QN (τ |x2) predictions aremore realistic.
For example, we also observed that before the x2 � 1750 the data y—number of hos-
pitalized COVID-19 patients is not high. Accordingly, when the x2 � 1250, ̂QN (τ |x2)
prediction is lower than ̂Q R(τ |x2) predict. Similarly, around x2 � 2750 new cases,
data has a surge of the y—number of hospitalized COVID-19 patients. This time,
the ̂QN (τ |x2) predictions is higher than ̂Q R(τ |x2) predictions. Overall, the proposed
̂QN (τ |x2) predicts fit the data better than ̂Q R(τ |x2) predicts. At 75% quantile of the
number of new cases daily x2 � 3442, seems the ̂Q R(τ |x2) is over predicted.

We extend the measure error method [18] to compute the Relative RN (τ ) of
̂QN (τ |x) relative to ̂Q R(τ |x). It is measured by

Relative RN (τ ) � 1 − VN (τ )

VR(τ )
, 0 ≤ R(τ ) ≤ 1, where (21)
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Fig. 12 The 2Dplots of the μ̂L S (x2) (green), ̂Q R(τ |x2) (blue) and Q̂N (τ |x2) (red) quantile curves at aτ �
0.95 and b τ � 0.99 for the x2- number of new cases vs. the y—number of hospitalized COVID-19 patients.
Data is in black dots, n � 103

Table 7 The number of hospitalized COVID-19 patients (y) relative to the number of new cases (x2) when
the % positive test on last day x1 � 7.8(%)

x2- number of new cases μ̂L S (x2) τ � 0.95 τ � 0.99

̂Q R(τ |x2) Q̂N (τ |x2) ̂Q R(τ |x2) Q̂N (τ |x2)

1250 1396.77 1658.91 1315.33 1595.70 1430.16

1750 1483.33 1785.86 1541.83 1757.36 1657.57

2250 1569.90 1912.81 1634.02 1919.02 1766.55

2750 1656.46 2039.77 1998.27 2080.68 2102.94

3224 (75% quantile) 1857.83 2215.47 2095.45 2304.42 2167.54

Values of ̂Q R(τ |x2) at x � 1250 and 1760 are bold, which indicate there are crossing errors at τ � 0.95
and τ � 0.99
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Table 8 Relative RN (τ ) of Q̂N (τ |x) relative to ̂Q R(τ |x) for example 1, n � 103

τ 0.95 0.96 0.97 0.98 0.99

Relative RN (τ ) 0.3696 0.3545 0.3183 0.2644 0.1728

VR(τ ) �
n

∑

yi ≥xT
i
̂β(τ )

i�1

τ

n

∣

∣

∣yi − xT
i
̂β(τ )

∣

∣

∣ +
n

∑

yi ≥xT
i
̂β(τ )

i�1

1 − τ

n

∣

∣

∣yi − xT
i
̂β(τ )

∣

∣

∣ (22)

wherêβ(τ ) is obtained by Eq. (6) and

VN (τ ) �
n

∑

yi ≥̂QN (τ |xi )
i�1

τ

n

∣

∣yi − ̂QN (τ |xi )
∣

∣ +
n

∑

yi <̂QN (τ |xi )
i�1

1 − τ

n

∣

∣yi − ̂QN (τ |xi )
∣

∣,

(23)

where ̂QN (τ |xi ) is obtained by Eq. (11).
Relative RN (τ ) given by Eq. (21) computes one minus the ratio of error losses

between VN (τ ) and VR(τ ). If the value is greater than 0, it means the ̂QN (τ |xi )

model fits the data better than ̂Q R(τ |xi ) model. Table 8 provides the relative RN (τ )

values for quantiles τ ∈ [0.95, 0.99].
Based on the results in Table 8, all relative RN (τ ) of ̂QN (τ |x) relative to ̂Q R(τ |x)

values are greater than 0 for various high quantiles τ ∈ [0.95, 0.99].
Above study shows that the proposed ̂QN (τ |x) model fits the data better than

̂Q R(τ |x) model. The main conclusions for Example 1 analysis are:

1. The ̂QN (τ |x) predictions of extreme values of the number of hospitalized COVID-
19 patients aremore accurate and realistic than thêQ R(τ |xi )method’s predictions.

2. The ̂QN (τ |x) estimates surfaces fit the data better than the ̂Q R(τ |x) planes for
high conditional quantiles τ ∈ [0.95, 0.99].

This application of quantile regression for the y—number of hospitalized COVID-
19 patients can help the government of Ontario allocate scarce medical resources
during this pandemic to avoid overwhelming hospitals.

Example 2. Systolic Blood Pressures (January 2017–December 2018)

This section will revisit the NHANES 2017–2018 systolic blood pressures data from
Sect. 1. We study the high conditional quantile curves of extreme high systolic blood
pressures (SBP), using weight as regressor, as these variables have been closely
linked with coronary heart disease. Normal systolic blood pressure is between 90
and 120 mmHg. For this example, SBP higher than 160 mmHg threshold is set to
focus on subjects who are in stage 2 hypertension. These subjects have a high risk
of having a heart attack, heart disease, stroke, brain problems, and kidney disease
(Centers for Disease Control and Prevention, 2021).
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Table 9 Test statistics and
p-values of the goodness-of-fit
tests using MLE for the
y—systolic blood pressures data

K–S A-D C-v-M

Test Statistic 0.1023 2.631 0.3051

p-value 0.0101 0.0424 0.1308

In Sect. 1, Example 2, an estimation was made using the least-squares mean regres-
sion method. Figure 5 shows the scatter diagram that compares the SBP (mmHg) with
weight (kg) for the reduced data set of n � 249 subjects (after using a threshold of
160mmHgwith weights less than 125 kg). The least-squares regression line and linear
quantile regression line are limited by linearity assumptions. In this Section, we use
proposed new nonparametric quantile regression to study the relationship between the
extreme value of SBP and weight.

Similar as Example 1, we determine if the reduced data with SBP higher than
160 mmHg is from an extreme value distribution by checking whether it follows a
generalized Pareto distribution. We fit the three-parameter GPD as given in Eq. (20)
to the n � 249 data and use a threshold of 160 mmHg to obtain μ � 160. The
maximum likelihood estimates are γ̂M L E � −0.2279 and σ̂M L E � 19.0375. The
three tests are the Kolmogorov–Smirnov test (K–S), Anderson–Darling (A-D) test,
and Cramer-von-Mises test (C-v-M). Table 9 provide the test statistics and each tests’
p-value.

Table 9 shows the p-value of the three tests. All three tests showed no evidence to
reject hypothesis that the data is from a generalized Pareto distribution at α � 0.01
significance level. The response y data in example 2 likely follows an estimated heavy-
tailed GPD distribution. Thus, the high quantile regression is important for analysis
this example’s extremes.

The assumption of a linear model is not required for the proposed nonparametric
quantile regression method. Following steps given in Sect. 3, we first estimate the
conditional c.d.f.F(y|x). A Gaussian kernel and bandwidth of hopt � 8.5263 is used.
For the Nadaraya-Watson estimator, a Gaussian kernel and bandwidth h � 3.5821
is used. The proposed nonparametric ̂QN (τ |x) quantile regression curves at τ �
0.95 and 0.97 are provided in Fig. 13.

Figure 13 shows the LS lines μ̂L S(x), QR lines ̂Q R(τ |x) and QN curves ̂QN (τ |x)

at τ � 0.95 and 0.97. We observe that the high data pattern is followed closely by
the ̂QN (τ |x) curve. Thus, proposed ̂QN (τ |x) predictions fit the data better than the
̂Q R(τ |x) predictions. For example, subjects aroundweight x � 100 kg have a relatively
lower SBP than subjects with weight x � 90–20 kg. The ̂QN (τ |x) curves have a
concave around x � 100 kg to represent this fact. Contrarily, the linear ̂Q R(τ |x) lines
could not capture this scene and its predictions are higher than ̂QN (τ |x)’s predictions
at weight x � 100 kg.

Table 10 provides those high conditional quantiles predictions for SBP (mmHg)
given weight x < 125 kg. We can see that ̂Q R(τ |x) gives higher SBP predictions than
̂QN (τ |x) predictions. Is ̂Q R(τ |x) over predicted? For subjects’ weight x > 90 kg, the
data shows lower SBP values, which leads us to think ̂QN (τ |x) SBP predicts are more
reasonable.
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Fig. 13 Plot of the μ̂L S (x) (green), ̂Q R(τ |x) (blue) and Q̂N (τ |x) (red) at a τ � 0.95 and b 0.97 for the
y—SBP (mmHg) versus the x—weight (kg) (< 125 kg) for SBP greater than (160 mmHg). Data is in black
dots, n � 249

Table 10 SBP y (mmHg) relative to weight x (kg) (< 125 kg) estimates μ̂L S , ̂Q R(τ |x) and Q̂N (τ |x)

x Weight (kg) μ̂L S τ � 0.95 τ � 0.97

̂Q R(τ |x) Q̂N (τ |x) ̂Q R(τ |x) Q̂N (τ |x)

60 175.14 199.04 193.52 205.34 196.11

70 175.33 200.83 193.63 206.21 196.63

80 175.52 202.62 203.56 207.08 206.69

90 175.71 204.41 189.35 207.95 191.47

100 175.90 206.20 192.37 208.82 194.56

Use function (21) to compute the Relative RN (τ ) of ̂QN (τ |x) relative to ̂Q R(τ |x)

for compare the nonparametric ̂QN (τ |x) and regular linear quantile regression
̂Q R(τ |x) methods. (see Table 11).

Base on the graphs provided in Fig. 13 and all Relative RN (τ ) of ̂QN (τ |x) relative
to ̂Q R(τ |x) in Table 11 values are all greater than 0 for various high quantiles τ ∈
[0.95, 0.99].We can conclude that the proposed ̂QN (τ |x)model fits the SystolicBlood
Pressures data with a threshold of 160 (mmHg) when weight x < 125 kg, n � 249
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Table 11 Relative RN (τ ) of Q̂N (τ |x) relative to ̂Q R(τ |x) for the systolic blood pressures data, n � 249

τ 0.95 0.96 0.97 0.98 0.99

Relative RN (τ ) 0.3228 0.3194 0.3125 0.3157 0.2968

data better than the regular ̂Q R(τ |x) linear quantile regression model. Following are
the main results for Example 2 analysis are:

1. Figure 13 shows that the ̂QN (τ |x) predictions fit the data better than ̂Q R(τ |x)

predictions as all the Relative RN (τ ) of ̂QN (τ |x) relative to ̂Q R(τ |x) are positive.
2. The proposed ̂QN (τ |x) predictions result captured the fact that there is a higher

chance for people whose weights are between 70 and 90 kg to have high SBPs.
On the other hand, the ̂Q R(τ |x) method assumes the relationship between weight
and SBP is linear. As a result, its model could not extract the same information.

This application of quantile regression for extreme SBP can be used to identify
patients with high risk to have stage 2 hypertension and prevent coronary heart disease.

7 Overall Conclusions and Discussion

7.1 Conclusions

When researchers are interested in extreme events and need to estimate high con-
ditional quantiles, the traditional least-squares estimator used for estimating the
conditional mean is not suitable since the extreme events usually follow the heavy-
tailed distribution. On the other hand, the quantile regression estimator uses a
quantile-weighted L1 - loss function and therefore can estimate the high quantiles.

The regular linear quantile regression method (QR) estimates high quantile curves
with a linear model. However, very often, the parametric conditions can not be met in
real-world data. In this situation, we should use the nonparametric quantile regression
methods to obtain better estimates. In this paper, we proposed a new direct nonpara-
metric quantile regression estimation method (QN). Three studies were performed to
compare the proposed method with the regular quantile regression method to check
the new method’s capability:

1. In Sect. 4, mathematical properties of the proposed direct nonparametric quantile
regression method (QN) were examined.

2. In Sect. 5, the Monte Carlo simulation was performed to compare the efficiencies
of the QN and QR. The QN had better simulation efficiencies than QR.

3. In Sect. 6, the QR and QNwere used in two applications. The QN had better fits to
the data than the QR. The QNmethod avoided the quantile curve crossing problem
of the QR method.

To conclude, the proposed direct nonparametric quantile regression estimator out-
performs the regular quantile regressionmethodwhen estimate high quantile curves of
heavy-tailed distributed data. Several recommendations for future research are given
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take different approach to estimate the c.d.f., use cross validation procedure to find
optimal smoothing parameters, and implement the program in other languages with
better algorithm and data structures to improve the program’s execution efficiency.

7.2 Discussions: Comparing with Other Quantile RegressionMethods

As we mention in Sect. 1. This Section will explore Bayesian quantile regression
(B-QR) method. At first, we explore the Laplace likelihood B-QR by using Markov
Chain Monte Carlo (MCMC) with Metropolis–Hastings algorithm. [12, 21, 30, 31].
We apply this MCMCmethod to Example 1 in this paper. We use [31] Yu andMoyeed
(2001) R package, the results are in Fig. 14.

Next, we do comparison ofMCMCB-QR results to the propose direct nonparamet-
ric quantile Regression method on Example 1 Hospitalised COVID-19 Hospitalized
Patients.

Bayesian Quantile regression by MCMC method in Fig. 14 is given by

̂Q B(0.95|x1, x2) � ̂β0(0.95) + ̂β1(0.95)x1 + ̂β2(0.95)x2 � 577.531 + 113.893x1 + 0.2190x2.

Figure 15 show comparisons of 2D B-QR with other quantile regression curves in
Example 1 Hospitalized COVID-19 Patients in Sect. 6 Figs. 11a and 12a results at
τ � 0.95 level, where

̂Q R(0.95|x1)
∣

∣x2�3442 � 1514.521 + 89.8649x1, when x2 � 3442 (the 0.75th quantile of x2)

̂Q B(0.95|x1)
∣

∣x2�3442 � 1331.329 + 113.893x1, when x2 � 3442 (the 0.75th quantile of x2)

̂Q R(0.95|x2)
∣

∣x1�7.8 � 1341.5277 + 0.2539x2, when x1 � 7.8 (the 0.75th quantile of x1)

̂Q B(0.95|x2)
∣

∣x1�7.8 � 1463.8964 + 0.2190x2, when x1 � 7.8 (the 0.75th quantile of x1)

Note that ̂QN (0.95|x1) and ̂QN (0.95|x2) are not linear, in a direct nonparametric
form.

We note that in Fig. 15, Bayesian ̂Q B(0.95|x1) and ̂Q B(0.95|x2) curves (in purple)
are close to ̂Q R(0.95|x1) and ̂Q R(0.95|x2) curves (in blue), respectively. These are
reasonable since they are set as linear parametric models. We may conclude that:

1. We notice that the Bayesian quantile regression using parametric Laplace like-
lihood by MCMC Metropolis-Hasting algorithm obtains the estimated quantile
regression to be linear which are close to the regular linear quantile regression
curves. The MCMC method heavily depends on the Markov chain stationary dis-
tribution and M–H algorithm proposal distribution. Further studies may need.

2. The proposed direct nonparametric quantile regression represents the data pat-
tern well. In the future, we may further study nonparametric Bayesian quantile
regression methods.

3. There are other developing quantile regression methods. We will continue to
explore and study them to improve current existing quantile regression methods.
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Fig. 15 MCMC Bayesian quantile regression curves in purple. a ̂Q B (0.95|x1). b ̂Q B (0.95|x2)
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