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Abstract
Two families of bivariate discrete Poisson–Lindley distributions are introduced. The
first is derived by mixing the common parameter in a bivariate Poisson distribution by
differentmodels of univariate continuous Lindley distributions. The second is obtained
by generalizing a bivariate binomial distribution with respect to its exponent when it
follows any of five different univariate discrete Poisson–Lindley distributions with one
or two parameters. The use of probability-generating functions is mainly employed to
derive some general properties for both families and specific characteristics for each
one of their members. We obtain expressions for probabilities, moments, conditional
distributions, regression functions, as well as characterizations for certain bivariate
models and their marginals. An attractive property of all bivariate individual models is
that they contain only two or three parameters, and one of them is readily estimated by
simple ratios of their sample means. This feature, and since all marginal distributions
are over-dispersed, strongly suggests their potential use to describe bivariate dependent
count data in many different areas.

Keywords Poisson–Lindley distribution · Poisson mixtures · generalized binomial

1 Introduction

Availability of count data, the number of occurrences of an event within a fixed period
of time, is rapidly increasing in all areas of human activity. Modeling these data
becomes an important issue in medicine, biology, ecology, economics, demography
and other sciences.
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Inmany real-life problems, the count represents two dependent variables. For exam-
ple, inmedical researchwe count coronavirus cases treated in a hospital and the number
of deaths recorded among them. In actuarial science, we count the number of traffic
accidents and the corresponding number of deaths or, in insurance claims, the count
variable often represents damage and bodily injury.

Consequently, for the statistical analysis of such data, the use of bivariate discrete
models may be appropriate.

Over several years, a large number of univariate discrete distributionswere extended
to the bivariate (multivariate) case and basic references are the books by Kocherlakota
and Kocherlakota [1], Johnson, Kotz and Balakrishnan [2] and the review paper by
Lai [3].

The one-parameter univariate Poisson–Lindley distribution was introduced by
Sankaran [4]. Since it is aPoissonmixture constructedbymixing thePoissonparameter
with a continuous Lindley model, this distribution is over-dispersed. Such a property
is often useful in describing count data. In addition, since it has only one parameter,
it has attracted the attention of several researchers. In the last decade, several univari-
ate Poisson–Lindley distributions with two or more parameters were introduced by
[5–9], among others. These distributions are Poisson mixtures derived by assuming
that the mixing variable follows a continuous Lindley distribution with two or more
parameters.

Bivariate (multivariate) extensions of the one-parameter Poisson–Lindley model
were considered by Gómez-Déniz et al. [10], and their usefulness was demonstrated
for bivariate count data sets. Their model was revisited by [11].

The main purpose of this paper is to introduce and study two families of bivariate
Poisson–Lindley distributions, each with five members, by extending the univariate
Poisson–Lindley models examined by [4–8] to the bivariate case. For this purpose,
we adopted two widely used procedures, namely the mixing and the generalizing
approach. The individual bivariatemodels examined can be useful in describing bivari-
ate count data, since their basic characteristic is that the number of their parameters is
limited to two or three. Furthermore, this assumption is further enhanced because one
of the parameters is readily estimated by simple ratios of the samplemeans. In addition,
in all marginal distributions the index of dispersion is greater than one. General prop-
erties of each class are derived mainly by employing the use of probability-generating
functions (p.g.f.’s), and these are customized for each of their members.

The rest of the paper is organized as follows. In Sect. 2, we document certain prop-
erties of various univariate Poisson–Lindley distributions appeared in the literature.
Additional characteristics are derived, including characterizations as special cases of
a result due to Cacoullos and Papageorgiou [12]. In Sect. 3, bivariate Poisson–Lindley
mixtures are derived by assuming that the common parameter in a bivariate Pois-
son distribution follows a univariate Lindley distribution with one or two parameters.
This procedure was used by [4–8] in the univariate case to derive their correspond-
ing Poisson–Lindley models. Furthermore, implementing a characterization theorem
proved by Cacoullos and Papageorgiou [13] relative characterizations are given for the
bivariate (X ,Y ) distribution. In Sect. 4, we generalize a bivariate binomial distribution
with respect to its exponent, when it follows one of the five univariate Poisson–Lindley
distributions derived by [4–8]. Finally, Sect. 5 concludes.
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2 Univariate PoissonMixtures and Poisson–Lindley Distributions

Let the parameter λ of a Poisson distribution be a continuous random variable (r.v.)
with probability density function (d.f.) F ′(λ) = f (λ) andmoment-generating function
(m.g.f.) MΛ(·). Then, if X is a nonnegative integer-valued r.v. with probability mass
function (p.f.) p(x) = P(X = x), a Poisson mixture is defined by

p(x) =
∫ ∞

0
e−λ λx

x ! dF(λ). (1)

Consequently, the p.g.f. of the r.v. X is

GX (s) = MΛ(s − 1). (2)

General properties of Poisson mixtures model were studied by Karlis and Xekalaki
[14]. In particular, they pointed out that the index of dispersion, that is, the variance-
to-the mean ratio for a mixed Poisson distribution is always greater than one.
Consequently, Poisson mixture models are over-dispersed. A simple characteriza-
tion of Poisson mixtures was indicated by Cacoullos and Papageorgiou [12], see also
[15], using the one-parameter Poisson–Lindley distribution as an illustrative example.
Their result is stated here as in Theorem 1, and a detailed proof is provided in the
Appendix.

Theorem 1 Let X be a Poisson mixture defined by Eq. (1) and Λ > 0 a continuous
r.v. with density function F ′(λ) = f (λ). Then, the regression function of Λ on X

E[Λ|X = x] = (x + 1)
p(x + 1)

p(x)
(3)

determines uniquely both the distributions of Λ and X.

Poisson–Lindley distributions are obtained by allowing the parameterλ of a Poisson
distribution to follow a Lindley distribution with one or more parameters.

In this section, we document some basic properties of various univariate Poisson–
Lindley distributions already introduced in the literature. Additional useful character-
istics are also derived.

2.1 One-Parameter Poisson–Lindley Distribution

This distribution was introduced by Sankaran [4] by mixing (compounding) the Pois-
son parameter using a distribution given by Lindley [16] with m.g.f.

MΛ(s) = θ2

θ + 1

θ − s + 1

(θ − s)2
, with λ, θ > 0. (4)
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Then, the p.g.f. of the corresponding Poisson–Lindley r.v. X is

GX (s) = θ2

θ + 1

θ − s + 2

(θ − s + 1)2
. (5)

Since

∂xG(s)

∂sx
= x ! θ2

θ + 1

θ − s + x + 2

(θ − s + 1)x+2 , (6)

we immediately derive the p.f.

p(x; θ) = θ2

θ + 1

θ + x + 2

(θ + 1)x+2 , x = 0, 1, 2, . . . (7)

and the factorial moments

μ[τ ]:X = τ ! 1
θτ

θ + τ + 1

θ + 1
, r = 1, 2, . . . , (8)

where

μ[τ ]:X = E(X (τ )) and X (τ ) = X(X − 1) . . . (X − τ + 1).

2.2 A Two-Parameter Poisson–Lindley Distribution

A two-parameter Lindley distribution was introduced by [17] with m.g.f.

MΛ(s) = θ2

αθ + 1

α(θ − s) + 1

(θ − s)2
, with λ, θ, α > 0. (9)

By assuming that the Poisson parameter λ in Eq. (2) follows a distribution with
m.g.f. given by Eq. (9), Shanker and Mishra [5] obtained a two-parameter Poisson–
Lindley distribution with p.g.f.

GX (s) = θ2

αθ + 1

α(θ − s + 1) + 1

(θ − s + 1)2
. (10)

Since

∂xG(s)

∂sx
= x ! θ2

αθ + 1

α(θ − s + 1) + x + 1

(θ − s + 1)x+2 , (11)

we derive

p(x; θ, α) = θ2

αθ + 1

α(θ + 1) + x + 1

(θ + 1)x+2 , x = 0, 1, 2, 3 . . . (12)
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and a simple relation for the factorial moments

μ[τ ]:X = τ ! 1
θτ

αθ + τ + 1

αθ + 1
, r = 1, 2, 3 . . . . (13)

Finally, from Theorem 1, the two-parameter Lindley and the two-parameter Poisson–
Lindley distributions are determined uniquely, if

E[Λ|X = x] = x + 1

θ + 1

α(θ + 1) + x + 2

α(θ + 1) + x + 1
.

2.3 A New Generalized Poisson–Lindley Distribution

A slightly different two-parameter Lindley distribution from the one introduced by
[17] was suggested by [18] with m.g.f.

MΛ(s) = θ2

θ + α

θ − s + α

(θ − s)2
, with λ, θ, α > 0. (14)

Based on (14), a new generalized Poisson–Lindley distribution was proposed by Bhati
et al. [6] with p.g.f.

GX (s) = θ2

θ + α

θ − s + α + 1

(θ − s + 1)2
. (15)

Since

∂xG(s)

∂sx
= x ! θ2

θ + α

θ − s + 1 + α(x + 1)

(θ − s + 1)x+2 , (16)

we have

p(x; θ, α) = θ2

θ + α

θ + 1 + α(x + 1)

(θ + 1)x+2 , x = 0, 1, 2, . . . (17)

and

μ[τ ]:X = τ !θ + α(τ + 1)

θτ (θ + α)
, r = 1, 2, . . . . (18)

Finally, from Theorem 1

E[Λ|X = x] = x + 1

θ + 1

(θ + 1) + α(x + 2)

(θ + 1) + α(x + 1)
.
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2.4 A Generalized Poisson–Lindley Distribution

A generalized Lindley distribution with m.g.f.

MΛ(s) = θα+1

θ + 1

θ − s + 1

(θ − s)α+1 , with λ, θ, α > 0 (19)

was obtained by [19].
A generalized Poisson–Lindley distribution utilizing Eq. (19) was introduced by

Mahmoudi and Zakerzadeh [7] with p.g.f.

GX (s) = θα+1

θ + 1

θ − s + 2

(θ − s + 1)α+1 . (20)

From

∂xG(s)

∂sx
= Γ (x + α)

Γ (α + 1)

θα+1

θ + 1

α(θ − s + 1) + x + α

(θ − s + 1)x+α+1 , (21)

the following properties are derived:

p(x; θ, α) = Γ (x + α)

x !Γ (α + 1)

θα+1

θ + 1

α(θ + 1) + x + α

(θ + 1)x+α+1 , x = 0, 1, 2, . . . (22)

and

μ[τ ]:X = Γ (τ + α)

Γ (α + 1)

α(θ + 1) + τ

θτ (θ + 1)
, r = 1, 2, . . . . (23)

Another illustration of Theorem 1 is the following characterization. If

E[Λ|X = x] = x + α

θ + 1

α(θ + 1) + x + α + 1

α(θ + 1) + x + α
,

then the distributions of the generalized Lindley and the generalized Poisson–Lindley
distributions are uniquely determined.

2.5 A NewTwo-Parameter Poisson-Generalized Lindley Distribution

This distribution was recently introduced by Altun [8] and is a Poisson mixture when
the Poisson parameter λ follows the new generalized Lindley distribution studied by
[20] with m.g.f.

MΛ(s) = θ2

θ + 1

(θ − s)α−1 + θα−2

(θ − s)α
, with λ, θ, α > 0. (24)

123



Journal of Statistical Theory and Practice (2022) 16 :30 Page 7 of 23 30

Some properties of this distribution are:

GX (s) = θ2

θ + 1

(θ − s + 1)α−1 + θα−2

(θ − s + 1)α
(25)

∂xG(s)

∂sx
= θ2

θ + 1

x !Γ (α)(θ − s + 1)α−1 + Γ (x + α)θα−2

Γ (α)(θ − s + 1)x+α
(26)

p(x; θ, α) = θ2

θ + 1

x !Γ (α)(θ + 1)α−1 + Γ (x + α)θα−2

x !Γ (α)(θ + 1)x+α
, x = 0, 1, 2, . . . , (27)

μ[τ ]:X = τ !Γ (α)θ + Γ (τ + α)

θτ (θ + 1)Γ (α)
, r = 1, 2, . . . . (28)

2.6 Another Two-Parameter Poisson–Lindley Distribution

All previous models were based on the assumption that in a Poisson mixture model
the Poisson parameter λ varies according to a Lindley distribution.

Let us now suppose that in a Poisson mixture the Poisson parameter is of the form
ϕλ, where ϕ is a positive constant and λ is a continuous r.v. with m.g.f. MΛ(·).

Then, if Y is a nonnegative integer-valued r.v. with p.g.f. GY (t) the corresponding
Poisson mixture model is defined as

GY (t) = MΛ(ϕ(t − 1)). (29)

A two-parameter Poisson–Lindley distribution was derived by [10], assuming that the
m.g.f. of the r.v. Λ in Eq. (29) is given by expression (4) corresponding to the m.g.f.
of the one-parameter Lindley distribution. The p.g.f. of this distribution is

GY (t) = θ2

θ + 1

θ + ϕ − ϕt + 1

(θ + ϕ − ϕt)2
(30)

and p.f.

p(y; θ, ϕ) = ϕy θ2

θ + 1

θ + ϕ + y + 1

(θ + ϕ)y+2 , y = 0, 1, 2, . . . . (31)

In addition, they obtained

μ[τ ]:Y = τ !
(

ϕ

θ

)τ
θ + τ + 1

θ + 1
, r = 1, 2, . . . . (32)

3 Mixed (Compounded) Bivariate Poisson Distributions

Ageneral class of compounded bivariate Poisson distributions was extensively studied
by [[1], chapter 8] and Kocherlakota [21]. They considered the class of distributions
(X ,Y ) with p.g.f.
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GX ,Y (s, t |λ) = exp{λ[ϕ1(s − 1) + ϕ2(t − 1) + ϕ12(st − 1)]}

where ϕ1, ϕ2, ϕ12 are constants and λ is a r.v. with m.g.f. MΛ(·). They proved that

GX ,Y (s, t) = MΛ[ϕ1(s − 1) + ϕ2(t − 1) + ϕ12(st − 1)] (33)

and this representation enabled them to derive various general properties.

3.1 A Bivariate Poisson–Lindley Distribution

Let us now consider a simpler form of Eq. (33), that has p.g.f.

GX ,Y (s, t) = MΛ[ϕ1(s − 1) + ϕ2(t − 1)]

Gómez-Déniz et al. [10], by assuming that λ follows the one-parameter Poisson–
Lindley distribution with m.g.f. given by Eq. (4), derived a bivariate Poisson–Lindley
distribution with p.g.f.

GX ,Y (s, t) = θ2

θ + 1

θ + ϕ1 + ϕ2 − ϕ1s − ϕ2t + 1

(θ + ϕ1 + ϕ2 − ϕ1s − ϕ2t)2
. (34)

The marginals are two-parameter Poisson–Lindley distributions with p.g.f.’s of the
form given by expression (30).

Not only a detailed study of this bivariate distribution was presented by [10], but
also they considered multivariate extensions.

Remark Bivariate Poisson–Lindley distributions can also be derived by using an
approach suggested by David and Papageorgiou [22]. They examined the general
class of distributions with p.g.f.

GX ,Y (s, t |λ1, λ2) = exp{λ1[ϕ1(s − 1)] + λ2[ϕ2(t − 1)]}

where ϕ1 and ϕ2 are constants and (λ1, λ2) r.v.’s of the discrete or the continuous type,
with m.g.f. MΛ1,Λ2(·, ·). Then, since

GX ,Y (s, t) = MΛ1,Λ2 [ϕ1(s − 1) + ϕ2(t − 1)],

if (λ1, λ2) follows a bivariate Lindley distribution, the corresponding bivariate
Poisson–Lindley models can be constructed.

3.2 A Family of Mixed Bivariate Poisson–Lindley Distributions

A bivariate discrete model with the structure

Y = Y1 + Y2 + · · · + YX (35)
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where X follows a Poisson distributionwith parameterλ and theYi ’s are i.i.d. Bernoulli
r.v.’s with parameter p were studied by Leiter and Hamdan [23] and Cacoullos and
Papageorgiou [24] to express the joint distribution of the number of accidents and the
number of fatal accidents.

Its p.g.f. is given by the relation

GX ,Y (s, t) = exp{λ[(1 − p)(s − 1) + p(st − 1)]}. (36)

For other bivariate models with the structure given by relation (35), see, among oth-
ers, [25–27]. By assuming that λ follows a distribution with m.g.f. MΛ(·), Eq. (36)
becomes

GX ,Y (s, t) = MΛ[q(s − 1) + p(st − 1)] (37)

where q = 1 − p. Then,

GX (s) = MΛ(s − 1)

which is Eq. (2) and

GY (t) = MΛ(p(t − 1))

which is Eq. (29) with the parameter ϕ replaced by p.
Some general properties of this class of distributions can be easily derived. In

particular, since

μ[τ ]:Y = pτμ[τ ]:X (38)

and

E(XY ) = pE(X2)

we have

E(Y ) = pE(X) (39)

Var(Y ) = p[pVar(X) + qE(X)]

Cov(X ,Y ) = pVar(X) (40)

Var(Y ) ≤ Cov(X ,Y ) ≤ Var(X).

To derive the conditional p.g.f. GY |X=x (z) of the r.v. Y given X = x , we use the
following result due to Subrahmaniam [28]:
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For a bivariate discrete r.v. (X ,Y ) with p.g.f. GX ,Y (s, t), the conditional p.g.f.
GY |X=x (z) of Y on X is

GY |X=x (z) = G(x,0)(0, z)

G(x,0)(0, 1)
(41)

where

G(x,y)(u, v) = ∂x+yG(s, t)

∂sx∂t y

∣∣∣∣ s = u
t = v.

Hence, from Eqs. (37) and (41), we obtain

GY |X=x (z) = (q + pz)x , y = 0, 1, 2, . . . , x . (42)

This result facilitates the calculation of the joint p.f. of X and Y , as

P(X = x,Y = y) =
(
x

y

)
pyqx−y P(X = x) (43)

and, additionally, a characterization of the joint distribution of (X ,Y ) can be obtained
by using the following theorem derived by Cacoullos and Papageorgiou [13].

Theorem 2 For a bivariate discrete r.v. (X ,Y ), let

P(Y = y|X = x) =
(
x

y

)
pyqx−y, y = 0, 1, . . . , x (44)

and

E[X |Y = y] = y + q(y + 1)

p

P(Y = y + 1)

P(Y = y)
. (45)

Then, P(Y = y|X = x) and E[X |Y = y] together determine the distribution of
(X ,Y ).

Furthermore, from Eq. (39) the parameter p can be immediately estimated by the
ratio of the two marginal means, i.e.,

p̂ = Ȳ

X̄
y = 0, 1, 2, . . . , x .

This property facilitates the applicability of this class of distributions, since the
remaining parameters can be estimated by procedures suggested for univariate
Poisson–Lindley models.
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3.3 Examples

3.3.1 Bivariate Poisson–Lindley Distribution Defined by Relations (37) and (4)

The p.g.f. of this distribution is

GX ,Y (s, t) = θ2

θ + 1

θ − qs − pst + 2

(θ − qs − pst + 1)2
(46)

with marginals

GX (s) = θ2

θ + 1

θ − s + 2

(θ − s + 1)2
,

a univariate one-parameter Poisson–Lindley distribution discussed in Sect. 2.1, and

GY (t) = θ2

θ + 1

θ + p − pt + 1

(θ + p − pt)2
. (47)

This distribution has p.f.

p(y; θ, p) = py
θ2

θ + 1

θ + p + y + 1

(θ + p)y+2 , y = 0, 1, 2, . . . , (48)

which is Eq. (31) with the parameter ϕ replaced by p.
From Eqs. (43) and (7),

P(X = x,Y = y) = x !
y!(x − y)! p

yqx−y θ2

θ + 1

θ + x + 2

(θ + 1)x+2 , x = 0, 1, 2, . . . ,

y = 0, 1, 2, . . . , x .

Simple recurrences for probabilities can be obtained by using the ratios

P(X = x + 1,Y = y)

P(X = x,Y = y)
and

P(X = x,Y = y + 1)

P(X = x,Y = y)
.

In particular,

P(X = x + 1,Y = y) = (x + 1)

(x + 1 − y)

q

(θ + 1)

(θ + x + 3)

(θ + x + 2)
P(X = x,Y = y)

and

P(X = x,Y = y + 1) = (x − y)

(y + 1)

p

q
P(X = x,Y = y), x = 0, 1, 2, . . . ,

y = 0, 1, 2, . . . , x
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with

P(X = 0,Y = 0) = θ2(θ + 2)

(θ + 1)3

independent of the parameter p.
From expressions (40) and (8),

Cov(X ,Y ) = p
θ3 + 4θ2 + 6θ + 2

θ2(θ + 1)2
.

The conditional p.g.f. of GY |X=x (z) is given by Eq. (42).
Applying to Eq. (46) the general formula of [28] for the derivation of conditional

p.g.f.’s as indicated by Eq. (41), GX |Y=y(z) can be expressed as

GX |Y=y(z) = zy
Ay(θ, qz)

Ay(θ, q)
(49)

where

Ay(θ, qz) = θ − qz + y + 2

(θ − qz + 1)y+2 , (50)

i.e., it is a shifted Poisson–Lindley-type distribution.
From Eq. (49), we can derive the conditional expectation of X given Y = y as

E[X |Y = y] = y + q
y + 1

θ + p

θ + p + y + 2

θ + p + y + 1
. (51)

The conditional expectation of X given Y = y can also be obtained from expression
(45) given in Theorem 2 and Eq. (48).

Consequently, from Theorem 2, relations (44) and (51) characterize the joint dis-
tribution of (X ,Y ) with p.g.f. given by Eq. (46).

3.3.2 Bivariate Poisson–Lindley Distribution Defined by Relations (37) and (9)

The p.g.f. of this distribution is

GX ,Y (s, t) = θ2

αθ + 1

α(θ − qs − pst + 1) + 1

(θ − qs − pst + 1)2

with marginals

GX (s) = θ2

αθ + 1

α(θ − s + 1) + 1

(θ − s + 1)2
,
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which is a two-parameter Poisson–Lindley distribution discussed in Sect. 2.2, and

GY (t) = θ2

αθ + 1

α(θ + p − pt) + 1

(θ + p − pt)2
.

The p.f. of this distribution is

p(y; θ, p, α) = py
θ2

αθ + 1

α(θ + p) + y + 1

(θ + p)y+2 , y = 0, 1, 2, . . . , (52)

and its moments can be derived from Eq. (38).
Furthermore, from expressions (43) and (12)

P(X = x,Y = y) = x !
y!(x − y)! p

yqx−y θ2

αθ + 1

α(θ + 1) + x + 1

(θ + 1)x+2 ,

x = 0, 1, 2, . . ., y = 0, 1, 2, . . . , x .
Also, from Eqs. (40) and (13) an expression for Cov(X ,Y ) is obtained.

Finally, from Eqs. (45) and (52)

E[X |Y = y] = y + q
y + 1

θ + p

α(θ + p) + y + 2

α(θ + p) + y + 1
.

Consequently, from Theorem 2 a characterization of (X ,Y ) can be obtained.

3.3.3 Bivariate Poisson–Lindley Distributions Defined by Relations (37) and (14)

This distribution has p.g.f. given by

GX ,Y (s, t) = θ2

θ + α

θ − qs − pst + α + 1

(θ − qs − pst + 1)2

with marginals

GX (s) = θ2

θ + α

θ − s + α + 1

(θ − s + 1)2
,

which is a new generalized Poisson–Lindley distribution examined in Sect. 2.3, and

GY (t) = θ2

θ + α

θ + p − pt + α

(θ + p − pt)2
.

The p.f. of r.v. Y is

p(y; θ, p, α) = py
θ2

θ + α

θ + p + α(y + 1)

(θ + p)y+2 , y = 0, 1, 2, . . . ,
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and its moments can be obtained from Eq. (38). An expression for Cov(X ,Y ) is
derived from Eqs. (40) and (18).
Utilizing expressions (43) and (17), we obtain

P(X = x,Y = y) = x !
y!(x − y)! p

yqx−y θ2

(θ + α)

(θ + 1) + α(x + 1)

(θ + 1)x+2 ,

x = 0, 1, 2, . . ., y = 0, 1, 2, . . . , x .
Finally,

E[X |Y = y] = y + q
y + 1

θ + p

θ + p + α(y + 2)

θ + p + α(y + 1)
.

3.3.4 Bivariate Poisson–Lindley Distributions Defined by Relations (37) and (19)

The p.g.f. of this distribution is

GX ,Y (s, t) = θα+1

θ + 1

θ − qs − pst + 2

(θ − qs − pst + 1)α+1

with marginals

GX (s) = θα+1

θ + 1

θ − s + 2

(θ − s + 1)α+1 ,

given by Eq. (20), and

GY (s) = θα+1

θ + 1

θ + p − pt + 1

(θ + p − pt)α+1 .

The p.f. of the r.v. Y is

p(y; θ, p, α) = py

y!
Γ (y + α)

Γ (α + 1)

θα+1

θ + 1

α(θ + p) + y + α

(θ + p)y+α+1 , y = 0, 1, 2, . . . .

In addition,

E[X |Y = y] = y + q
y + α

θ + p

α(θ + p) + y + α + 1

α(θ + p) + y + α
.

3.3.5 Bivariate Poisson–Lindley Distributions Defined by Relations (37) and (24)

Some basic characteristics of the distribution are

GX ,Y (s, t) = θ2

θ + 1

(θ − qs − pst + 1)α−1 + θα−2

(θ − qs − pst + 1)α
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GX (s) = θ2

θ + 1

(θ − s + 1)α−1 + θα−2

(θ − s + 1)α

GY (t) = θ2

θ + 1

(θ + p − pt)α−1 + θα−2

(θ + p − pt)α

p(y; θ, p, α) = py

y!
θ2

θ + 1

y!Γ (α)(θ + p)α−1 + Γ (y + α)θα−2

Γ (α)(θ + p)y+α
, y = 0, 1, 2, . . .

E[X |Y = y] = y + q

θ + p

(y + 1)!Γ (α)(θ + p)α−1 + Γ (y + α + 1)θα−2

y!Γ (α)(θ + p)α−1 + Γ (y + α)θα−2 .

It should be noted that, as expected, for α = 1 all relations in Sects. 3.3.2–3.3.4
become their corresponding relations in Sect. 3.3.1. This result also holds for the
relations in Sect. 3.3.5 when α = 2.

4 Generalized Bivariate Binomial Models

Generalized (or countable mixtures of) bivariate binomial models with respect to their
index parameter(s) were studied by Papageorgiou and David [29], and illustrative
examples were given.

A bivariate binomial distribution with p.g.f.

E(sX tY |N = n) = (qs + pt)n 0 < p < 1, q = 1 − p

where N is a nonnegative integer-valued r.v. with p.g.f.

E(zN ) = hN (z)

was introduced by Rao et al. [30] in their effort to study the correlation between the
numbers of two types of children X and Y in a family where N is the family size
(sibship size).

Consequently, the joint distribution of X and Y is given by the p.g.f.

GX ,Y (s, t) = hN (qs + pt). (53)

Applications to actual set(s) of family size data were given by [29] and [30] when
N follows a negative binomial or Neyman type A distributions. In addition, when N
follows a “Short” distribution a corresponding bivariate model was fitted to accident
data by [31].

4.1 Properties

For distributions with p.g.f. given by Eq. (53), we can obtain various properties of the
marginal distributions of X and Y and the joint distribution of (X ,Y ), in terms of the
corresponding properties of the distribution of the r.v. N .
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In particular, since

GX (s) = hN (qs + p)

we have

P(X = x) = qx

x ! h
(x)
N (p)

and

μ[τ ]:X = qτμ[τ ]:N .

The joint p.f. is

P(X = x,Y = y) =
(
x + y

y

)
qx py P(N = x + y), x, y = 0, 1, 2, . . . (54)

and an expression for the factorial moments is

μ[τ,k] = qτ pkμ[τ+k]:N , τ, k = 0, 1, 2, . . . (55)

where

μ[τ,k] = E(X (τ )Y (k)).

Using Eq. (41), we can prove that the conditional p.g.f. of Y given X = x is

GY |X=x (z) = h(x)
N (pz)

h(x)
N (p)

. (56)

Consequently, the conditional probability function of Y given X = x is

P(Y = y|X = x) = py(x + y)!
y!

P(N = x + y)

h(x)
N (p)

(57)

and the related conditional factorial moments are

μ[τ |x] = pτh(x+τ)
N (p)

h(x)
N (p)

.

Hence,

E[Y |X = x] = p
h(x+1)
N (p)

h(x)
N (p)

. (58)

123



Journal of Statistical Theory and Practice (2022) 16 :30 Page 17 of 23 30

The corresponding expressions for

GY (t), P(Y = y), μ[k]:Y , GX |Y=y(z), μ[k|y]

can be easily obtained.

4.2 Generalized Bivariate Poisson–Lindley Distributions

From Eq. (55) (see also [30]), we have

E(X) = qE(N ), E(Y ) = pE(N )

Var(X) = q[qV (N ) + pE(N )].

Consequently, the index of dispersion for the r.v. X denoted by DX is

DX = q(DN − 1) + 1

which is greater than one since in this section the r.v. N follows a Poisson–Lindley
distribution. A similar property also holds for DY .

In addition, an estimator of the parameter p can be easily obtained by using a simple
ratio of the marginal means. That is

p̂ = Ȳ

X̄ + Ȳ

and the remaining parameters in the bivariate Poisson–Lindley models can be esti-
mated by using procedures already employed in their univariate versions.

4.3 Examples

4.3.1 Bivariate Poisson–Lindley Distributions Defined by Relations (53) and (5)

The p.g.f. of this distribution is

GX ,Y (s, t) = θ2

θ + 1

θ − qs − pt + 2

(θ − qs − pt + 1)2
. (59)

Notice that Eq. (59) corresponds to Eq. (34) for ϕ1 = q and ϕ2 = p. The p.g.f. of the
X marginal is

GX (s) = θ2

θ + 1

θ + q − qs + 1

(θ + q − qs)2

while the p.g.f. of the Y marginal is given by Eq. (47).
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From Eqs. (55) and (8),

μ[τ,k] = qτ pk(τ + k)! 1

θτ+k

θ + τ + k + 1

θ + 1
.

Hence,

E(X) = q
θ + 2

θ(θ + 1)

E(XY ) = 2pq
(θ + 3)

θ2(θ + 1)

Cov(X ,Y ) = pq
θ2 + 4θ + 2

θ2(θ + 1)2
.

From Eqs. (54) and (7),

P(X = x,Y = y) = (x + y)!
x !y! qx py

θ2(θ + x + y + 2)

(θ + 1)x+y+3 , x, y = 0, 1, 2, . . . .

Simple recurrences for the probabilities are

P(X = x + 1,Y = y) = q

θ + 1

x + y + 1

x + 1

θ + x + y + 3

θ + x + y + 2
P(X = x,Y = y)

P(X = x,Y = y + 1) = p

θ + 1

x + y + 1

y + 1

θ + x + y + 3

θ + x + y + 2
P(X = x,Y = y),

x, y = 0, 1, 2, . . . ,

with

P(X = 0,Y = 0) = θ2(θ + 2)

(θ + 1)3

independent of p. From Eqs. (56) and (6),

GY |X=x (z) = Ax (θ, pz)

Ax (θ, p)

where Ax (θ, pz) can be obtained from Eq. (50).
From Eqs. (57), (6) and (7),

P(Y = y|X = x) = py
(x + y)!
x !y!

(θ + q)x+2

(θ + 1)

θ + x + y + 2

θ + q + x + 1
.

Finally, from Eqs. (58) and (6)

E[Y |X = x] = p
x + 1

θ + q

θ + q + x + 2

θ + q + x + 1
.
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4.3.2 Bivariate Poisson–Lindley Distributions Defined by Relations (53) and (10)

The p.g.f. of this distribution is

GX ,Y (s, t) = θ2

αθ + 1

α(θ − qs − pt + 1) + 1

(θ − qs − pt + 1)2
.

Some other properties of this distribution are

GX (s) = θ2

αθ + 1

α(θ + q − qs) + 1

(θ + q − qs)2

μ[τ,k] = qτ pk(τ + k)! 1

θτ+k

αθ + τ + k + 1

(αθ + 1)

E(X) = q
αθ + 2

θ(αθ + 1)

Cov(X , Y ) = pq
α2θ2 + 4αθ + 2

θ2(αθ + 1)2

P(X = x, Y = y) = (x + y)!
x !y! qx py

θ2

(αθ + 1)

α(θ + 1) + x + y + 1

(θ + 1)x+y+2 , x, y = 0, 1, 2, . . .

P(Y = y|X = x) = py
(x + y)!
x !y!

(θ + q)x+2

(θ + 1)x+y+2

α(θ + 1) + x + y + 1

α(θ + q) + x + 1

E[Y |X = x] = p
x + 1

θ + q

α(θ + q) + x + 2

α(θ + q) + x + 1
.

4.3.3 Bivariate Poisson–Lindley Distributions Defined by Relations (53) and (15)

This model has p.g.f. given by

GX ,Y (s, t) = θ2

θ + α

θ − qs − pt + α + 1

(θ − qs − pt + 1)2
.

Other basic properties are

GX (s) = θ2

θ + α

θ + q − qs + α

(θ + q − qs)2

μ[τ,k] = qτ pk(τ + k)!θ + α(τ + k + 1)

θτ+k(θ + α)

E(X) = q
θ + 2α

θ(θ + α)

Cov(X , Y ) = pq
θ2 + 4αθ + 2α2

θ2(θ + α)2

P(X = x, Y = y) = (x + y)!
x !y! qx py

θ2

θ + α

θ + 1 + α(x + y + 1)

(θ + 1)x+y+2 , x, y = 0, 1, 2, . . .
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P(Y = y|X = x) = py
(x + y)!
x !y!

(θ + q)x+2

(θ + 1)x+y+2

θ + 1 + α(x + y + 1)

θ + q + α(x + 1)

E[Y |X = x] = p
x + 1

θ + q

θ + q + α(x + 2)

θ + q + α(x + 1)
.

4.3.4 Bivariate Poisson–Lindley Distributions Defined by Relations (53) and (20)

The p.g.f. of this distribution is

GX ,Y (s, t) = θα+1

θ + 1

θ − qs − pt + 2

(θ − qs − pt + 1)α+1 .

The p.g.f. of X is

GX (s) = θα+1

θ + 1

θ + q − qs + 1

(θ + q − qs)α+1 .

Some other properties are

μ[τ,k] = Γ (τ + k + α)

Γ (α + 1)
qτ pk

α(θ + 1) + τ + k

θτ+k(θ + 1)

E(X) = q
α(θ + 1) + 1

θ(θ + 1)

Cov(X ,Y ) = pq
α(θ + 1)2 + 2θ + 1

θ2(θ + 1)2
.

Expressions for P(X = x,Y = y) can be obtained from Eqs. (54) and (22) and for
P(Y = y|X = x) from Eqs. (57), (22) and (21).

Finally,

E[Y |X = x] = p
x + a

θ + q

α(θ + q) + x + α + 1

α(θ + q) + x + α
.

4.3.5 Bivariate Poisson–Lindley Distributions Defined by Relations (53) and (25)

The p.g.f. of this distribution is

GX ,Y (s, t) = θ2

θ + 1

(θ − qs − pt + 1)α−1 + θα−2

(θ − qs − pt + 1)α
.

123



Journal of Statistical Theory and Practice (2022) 16 :30 Page 21 of 23 30

Some characteristic properties of this distribution are

GX (s) = θ2

θ + 1

(θ + q − qs)α−1 + θα−2

(θ + q − qs)α

μ[τ,k] = qτ pk
(τ + k)!Γ (α)θ + Γ (τ + k + α)

θτ+k(θ + 1)Γ (α)

E(X) = q
θ + α

θ(θ + 1)

Cov(X ,Y ) = pq
θ2 + θα2 − θα + 2θ + α

θ2(θ + 1)2
.

Finally,

E[Y |X = x] = p

θ + q

(x + 1)! Γ (α)(θ + q)α−1 + Γ (x + α + 1)θα−2

x ! Γ (α)(θ + q)α−1 + Γ (x + α)θα−2 .

5 Conclusions

In this paper, two families of bivariate Poisson–Lindley distributions are introduced
either by mixing or by generalizing. Each family extends to the bivariate case five
univariate Poisson–Lindley models already appeared in the literature. We examined a
number of characteristics both for the families and for their individual members. We
also indicated that all bivariate models can be useful in analyzing count data because
they contain only two or three parameters. The models derived by the generalization
procedure also have the attractive property that Z = X + Y follows the same dis-
tribution with the generalizing variable a univariate Poisson–Lindley. As Kemp and
Papageorgiou [32] pointed out “this property is often required for consistency in acci-
dent models where the split into two time periods is entirely arbitrary.” Obviously,
more complicated bivariate Poisson–Lindley models can be derived, but their use may
be restricted because of their increased number of parameters.

Acknowledgements The authors would like to thank both referees for their comments and suggestions.

Appendix

Proof of Theorem 1 It is well known, Teicher [33], that a Poisson mixture as given by
(1) identifies F , i.e., if

∫ ∞

0
e−λ λx

x ! dF1(λ) =
∫ ∞

0
e−λ λx

x ! dF2(λ)

for x = 0, 1, 2, . . ., then F1 = F2. Hence, it is sufficient to determine only the
distribution of Λ.
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Denoting by

m(x) = E[Λ|X = x],

we have

m(x) =
∫ ∞

0
λp(λ|x)dλ

= (x + 1)

p(x)

∫ ∞

0
e−λ λx+1

(x + 1)! f (λ)dλ

= (x + 1)
p(x + 1)

p(x)
.

Hence,

p(x + 1) = m(x)

(x + 1)
p(x). (60)

Since this is a linear first-order difference equation in p(x), a unique solution exists
(see, for example, Goldberg [34], p. 61) and the assertion follows.

In fact, the explicit solution of (60) is

p(x) = p(0)
x−1∏
k=0

m(k)

k + 1

where p(0) is determined from the condition
∑
x
p(x) = 1. ��
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