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Abstract

This is a brief overview of the methodology around exponential family PCA. We
revisit classic PCA methodology, and we focus on exponential family PCA due to
its applicability on a number of distributions and hence a wide variety of problems.
We discuss the applicability of these methods to text data analysis due to the high-
dimensional and sparse nature of these data.

Keywords Dimension reduction - Exponential family - Poisson distribution -
Gaussian distribution - Text data analysis

1 Introduction

In the era of high-performance computing, researchers across several fields are able
to collect massive amount of high-dimensional data. The most challenging part
is probably to efficiently analyze and make inference on these high-dimensional
datasets. Unfortunately, most statistical methods were developed with small and low-
dimensional datasets in mind. Thus, it is rather difficult to extrapolate their use to
massive or high-dimensional data, due to the enormous amount of computational time
needed for most of these algorithms if the dataset has large number of observations,
as well as the singularities that appear in many methods in large p small n problems.
To handle the issue of high-dimensional data, researchers have proposed the use of
dimension reduction techniques either by means of feature selection or feature extrac-
tion. By reducing the dimension of the data, they can bring them to an appropriate
dimension and size which can be analyzed efficiently and accurately using classic
statistical techniques. Most of these dimension reduction techniques were developed
under the assumption that our data follow Gaussian distribution and a lot of work has
been done in this framework.
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One of the research areas that have emerged the last few years, with the explosion
of social media as well as due to the digitalization of a lot of sources which record
documents, is text data analysis. For example, many websites are based on reviews
of customers. If one is interested for a product, a restaurant, a plumber, a hotel or
a travel destination, there are dedicated websites that contain the necessary reviews
from previous customers who used that product/service/agency, for them to consider
before making final decisions. Moreover, text data analytics can be used to analyze
documents to identify whether they were written from the same author, whether they
discuss a specific topic etc.

The difficulty with text data analysis arises by the fact they are not numeric data. A
lot of research has been devoted into quantifying text data. One of the most frequently
used methods is to enumerate the number of times a word appears in a document,
creating an n X p matrix where n is the number of observations (might be whole
documents, may be paragraphs or even just sentences) being analyzed and p the
number of unique words in all » documents. This matrix is known as the term matrix.
The term matrix is used as the numerical representation of a collection of documents.
This numerical representation is mostly filled with small counts, and so it makes
sense for someone to model each word/variable using a Poisson distribution. This is
obviously very high-dimensional as there is a column for each word even if it is used
in only one of the documents in our dataset. This is the reason why the term matrix
is usually sparse as there is a limited number of words that appear in each document
which implies that most of the words will appear only in some documents/observations
and therefore the term matrix will have a lot of 0’s.

With the text data analysis in mind and the format of the term matrix, in this paper we
focus on exponential family distribution algorithms for principal component analysis.
Given the high-dimensional nature of the problems we encounter in text data analysis,
it is also sensible to discuss some sparse techniques for dimension reduction in this
setting. The rest of the paper is organized as follows: In Sect. 2, we discuss the classic
PCA and other important extensions, and in Sect. 3, we discuss other PCA algorithms
in the Gaussian setting. In Sect. 4, we discuss exponential family PCA methods with a
focus on the Poisson distribution, and in Sect. 5, we discuss sparse extensions. Finally,
we close with a discussion section.

2 Principal Component Analysis (PCA)
In this section, we introduce the classic PCA algorithm and then we discuss sparse

extensions of it. We use also this section to define some notation we use throughout
the paper.

2.1 History of PCA
Principal component analysis (PCA) is probably one of the most well-known tech-

niques for dimension reduction. The idea is to find orthogonal projection of the data
which maximize the observed variation. Although they were mathematically formu-
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lated in [25], they were also discussed in [39]. Most researchers agree that these two
papers are the first to formulate PCA as we know them today, but an interesting histor-
ical overview in [10] claims that principal components were discussed by researchers
back in the nineteenth century.

If we assume that we have a collection of n p-dimensional vectors x1,...x,,
with mean ¥ and variance matrix § = (1/N) Y./, (x; — ¥)(x; — X)7, then the
orthogonal projections that maximize the variance on the projected space are the g
eigenvectors associated with the largest g eigenvalues of S. There are many data-driven
methods to decide the value of g. One of the most popular choices is to select the first
q components which explain cumulatively at least 80% of the variation. Another
common choice is the use of the scree plot, where we plot the eigenvalues and try to
identify the point the eigenvalues flatten. (See [28] for a detailed approach to this).

We denote the eigenvectors with wy, ..., w,, and the principal axes are calculated
using z; = WT(xg — x) where W = (wy,...,wy) a p X ¢ matrix and z; € RY
fori = 1,...,n. It was [39] who identified that the principal component projection

minimizes the squared loss

n n
Yol =il =) Ixi — Wz — )| (1)
i=1

i=1

This formulation of PCA was used also by researchers later in different extensions.
See, for example, [30].

In [25] the principal component terminology is introduces and principal component
is presented as a variance maximization algorithm. The topic has since expanded in a
number of directions making it one of the most well-known feature extraction methods
to practitioners.

2.2 Sparse PCA

With the appearance of high-dimensional datasets, there was a bigger need for sparse
feature extraction and a number of ideas have appeared in the literature. For example,
[53] proposed the use of the L1 (LASSO which stands for Least Absolute Shrinkage
and Selection Operator—[47]) penalty as well as the elastic net penalty (combination
of LASSO and SCAD which stands for Smoothly Clipped Absolute Deviation—
see [52]). Many other methods were also proposed to improve the computational
complexity of the algorithm. For example, [11] used semidefinite programming to find
sparse PCA and [51] proposed nonnegative sparse PCA, where sparsity is introduced
by the use of nonnegative coefficients of the original variables. Finally, in [5] the
authors proposed an algorithm to reduce the sparse PCA into a high-dimensional
multivariate regression problem. These algorithms enabled the use of PCA to achieve
dimension reduction in high-dimensional settings, and it also allowed for the expansion
of the scope of PCA (and other dimension reduction techniques) in a number of other
areas where high-dimensional data are frequently collected.
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2.3 Kernel PCA

Kernel PCA [43], extracted nonlinear features of the predictors by mapping the
p-dimensional vectors x 1, . .., X, to a higher-dimensional feature space, using a map-
ping ¢ : R? — R™ where m is the dimension of the feature space and m > p. Since in
most cases ¢ is an unknown function, this is achieved by utilizing the “kernel” trick,
a well-known procedure in the nonlinear statistical setting where the inner product
between two realizations of the function ¢ can be replaced by the kernel matrix, i.e.,
K(x;, x ]) = (¢(x;), ¢ (x;)). Inkernel PCA, the authors assumed the features ¢ (x ;),

J=1,..., p,tobe centered around 0 and proposed the eigenvalue decomposition of
the covariance matrix of the mapped features: c=1 Z 1P (x)o(x j)T This was
shown to be equivalent to finding the solution to the followmg eigenvalue problem:

nia = Ko where A is one of the nonzero eigenvalues and o = («y, ..., otn)T. The
coefficients in & are then used to construct the eigenvectors V = Z?:l ai¢p(x;) and
the principal directions (V, ¢(x)) = Y7 eip(x)p(x) = Y1) i K (x;, x).

2.4 Spherical PCA

In [34], the authors recognized that using projections based on distance-based measure-
ment might not be the best option in some application, like information retrieval and
signal processing. In those cases, it is considered more appropriate to use similarity-
based measurements such as angle distance. To address this, they introduce some
constraints in the optimization problem as follows:

m1n||X VUT||F—Z(XIJ (VU;)?
ij

under the constraints UTU = I and lvjll =1forevery j =1,...,q where X is
an n x p where each row is an observation x;, U is a p x ¢ matrix of the principal
directions on each column, and V is an n x ¢ matrix giving the scores of the principal
directions. Also, note that || - || denotes the /2 norm for vectors and the spectral norm
for matrices. The optimization here is nonconvex, and the major contribution of [34]
is the use of the proximal approach to approximate a solution.

3 Likelihood-Based PCA in the Gaussian Setting
Inrecent years, there was an abundance of papers which discussed PCA from a different

angle than the squared loss discussed in [39]. These papers derived likelihood-based
PCA algorithms. In this section, we will discuss some of these methods.

3.1 Probabilistic PCA

In [48], we find an alternative approach to PCA. Although the authors did not discuss
exponential family PCA, their work is considered the first toward this direction, as

@ Springer



Journal of Statistical Theory and Practice (2022) 16:14 Page50f19 14

they suggested the use of maximum likelihood estimator to estimate the principal axes
in a PCA setting. Their work is focused on the Gaussian distribution, but it can be
extended to other distributions. (It was extended in the literature by [9].) The method
is called probabilistic PCA (or PPCA) to emphasize the probabilistic nature of the
algorithm.

In [48], it is assumed that the latent variables z; ~ N, (0, I). Then, we have the
conditional distribution x|z ~ N,(Wz; + u, o?I). By marginalization, we have that
x ~ Ny(u, WWT + 621). Probabilistic PCA essentially estimates W and u in the
model using an EM algorithm. Classical PCA algorithms solve the case when o2 — 0.

To derive the MLEs of W and u, we use the following log-likelihood function:

—g{p InQ27) +In C + tr(C™' )}

where C = WW' 4+ 21 and S the sample covariance matrix. This will give the
maximum likelihood estimators as follows:

° WML =U(A - 621)1/2R, where A is the ¢ x g diagonal matrix with the eigen-
values A1 > ... > A, on the diagonal, U is a p x g matrix that has as columns the
eigenvectors of S corresponding to the largest ¢ eigenvalues, and R is an arbitrary
g X q orthogonal rotation matrix, and

® OML = %q {7: g+ A; which can be interpreted as the lost variance in the direc-

tions beﬁlg dropped.

3.2 Bayesian PCA

Bayesian PCA (BPCA) was proposed by [3] as an extension to the Probabilistic PCA
idea. Due to the inability of the PPCA to effectively estimate the dimension of the latent
space (that is, the reduced dimensional space) and the intractability of the problem
in cases where we allowed mixtures of probabilistic PCA with different latent space
dimensions, the Bayesian paradigm was used by the authors. This idea addressed both
problems as it allowed for direct estimation of the latent space dimension and made
the problem tractable in more complex cases. To achieve this, the author proposed the
use of a prior distribution on the parameters of the data, denoted by p(u, W, 02) and
a posterior of the form p(, W, o%|x). Motivated by the work on automatic relevance
determination (ARD) by [37], they also use the idea of a normal conditional prior on
W, thatis, p(W|a) = f:ll (aj ) 2m))P/2e=A/Daillwill where o = (ay, .. ., ag) are
the variances of each direction and w; is the i™ column of W. It is this relationship
with ARD that allows BPCA to determine the latent space dimensionality by using
the number of nonzero elements of the «. The authors proposed the use of a simplified
version of the algorithm used by [37] which utilizes the EM algorithm to estimate all
the parameters.

@ Springer



14 Page60f19 Journal of Statistical Theory and Practice (2022) 16:14

4 Exponential Family PCA

In this section, we will discuss some of the most well-known exponential family PCA
algorithms. The notation is kept similar to the previous section unless otherwise noted.
Before giving more details, we give the definition of an exponential family distribution.

Definition 1 In an exponential family, the distribution of the data x given a parameter
vector @ takes the form:

log P(x|0) = log Py(x) +x60 — G(6)

where 6 is called the vector of natural parameters of the distribution and G (@) is a
function to ensure that the distribution function integrates to 1.

It is important to note that we first discuss extensions to the exponential family
of the methods discussed in the previous section in the Gaussian setting. Those are
known as the likelihood-based methods. These extensions allow for the generalization
of the Gaussian assumption to any distribution that can be written as an exponential
family distribution. Since exponential family PCA is the primary focus of this literature
review, we discuss more methods in this section, including semiparametric exponential
family PCA and supervised exponential family PCA among others.

4.1 Likelihood-Based Exponential Family PCA

As was mentioned earlier, the first set of methods are primarily extensions of the
methodology introduced in earlier sections on the Probabilistic PCA framework for
Gaussian data. The main idea behind this methodology is to extend it to allow for data
from different distributions and more specifically from distributions that belong to the
exponential family.

If we denote X the domain of x, one can show that G(@) = log er)( Po(x)exo
and itis the form of this function that changes between different exponential family dis-
tribution functions. (Note that if we have a continuous exponential family distribution,
the sum can be replaced with an integral.) For example, for the one-dimensional Gaus-
sian distribution with mean 6 and variance 1, G(0) = 92 /2, while for the Bernoulli
distribution G (0) = log(l—}-ee) for6 = log(p/(1—p)). Also, note that Py(x) depends
only on x and can be treated as constant when optimal values are being sought. Also,
note that we denote with g(@) the derivative of G ().

4.1.1 Exponential PCA

In [9], the authors noticed that the work by [48] can be further extended to accom-
modate any distribution in the exponential family. Actually, their proposal on using
exponential family allowed for different attributes in the data to be modeled using
different exponential family distribution. To make things clear of what [9] suggest,
we give the definition of Bregman distance. Let F : A — R be a differentiable and
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strictly convex function defined on a closed and convex set B € R. Then, fora, b € B
one can define the Bregman distance associated with F as follows:

Bp(allb) = F(a) — F(b) — f(b)(a —b)

where f(x) is the derivative of F'(x). One can show that the negative log likelihood
can be written as a function of Bregman distances:

—log p(x]0) = —log p(xo) — F(x) + Br(xlg(6))

Having defined some important details, we can now discuss the idea of [9] on
exponential family PCA. Let vy, .. ., v, be a basis in R?, and therefore, each #; can be
represented as a linear combination of the vi’s (k = 1, ..., q), thatis, 0; = Zk ajx V.
Define now the matrix X to be the n x p matrix with x; on the i™ row, V the ¢ x p
matrix with v; on the i row and A an n x g matrix with entries a;jx. Then, @ = AV
is the matrix with 8; on the i row.

From the negative log likelihood, we have the loss function:

L(V.A)=—log P(X|A, V) =C+ > (—xijf;j + G#;)))
i

where C is a constant we will ignore and G (6;) can take different forms, i.e., log(1 +
¢%) if we have the Bernoulli distribution. Using the relationship between the negative
log likelihood and Bregman distance, one can show that

L(V,A) =) Br(xillg(:)

Therefore, the generalized PCA can be seen as a search for low-dimensional basis
from matrix V, which defines the surface that is close to all the data points. Thus, the
optimal value of V is given by argminy ) ; ming Br(x;|lq) where g is a member of
the set {g(aV)|a € R?}.

4.1.2 Bayesian Exponential PCA

In [38], the authors identified the limitation of BPCA ([3]) being defined only for
the Gaussian distribution, and they proposed the extension of the above algorithm
to the case exponential family of distributions. Their approach uses the same idea
as the work by [9] where we use the product @ = AV to represent the natural
parameters of the distribution over the data. Instead of using the maximization of
Bregman distances though, the authors suggest a completely probabilistic approach
where a prior distribution is used on all parameters. This prior distribution can be from
any exponential family distribution rather than just the Gaussian distribution, and all
of these parameters can be integrated out of the model using Markov chain Monte
Carlo (MCMC) methods. Also, the authors claim that their method is not prone to
data overfitting as the method proposal by [9].
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4.1.3 Simple Exponential PCA

Simple exponential PCA was proposed by [32], and the main idea is that their proposal
is a much simpler algorithm than the one proposed by [38]. The main benefit of
their proposal is that it uses the Bayesian formulation to automatically estimate the
dimension of the latent space. In a few words and as [32] put it simple exponential
PCA automatically determines g given observations X by using automatic relevance
determination (ARD—([37]) in a similar way [3] does it for Bayesian PCA. Therefore,
it finds g vectors of loadings and constructs matrix W and g principal component score
vectors and construct matrix Y. Using this, it creates @ = WY and each column of @
specifies the natural parameters of an exponential family distribution used to generate
the corresponding column of X. More specifically, the algorithm is as follows:

e Draw g scores as y; which is the lower-dimensional representation of x; from a
standard Gaussian prior y, ~ N, (0, I).

o Usinga vector of precision parameters & = (1, ..., ¢tg) draw w; ~ N, (0, aj_l I)
where w; denotes the j™ principal component. One can define then W to be the
matrix with w; as it’s j™ column.

e Using @, = Wy, one can get the distribution of x,|@,, to be from any exponential
family distribution with natural parameter 6,,.

This is a relatively simple process and hence the name of the algorithm. To accommo-
date for any exponential distribution to be used, the authors proposed an alternating
approach for inference of W and Y. They use an EM approach for inference of W and
a maximum a posteriori (MAP) approach for inference on Y.

4.1.4 Generalized PCA

[30] used a similar approach to the one identified by [39] and which we explained
in Sect. 2 [see Eq. (1)]. They tried to find the optimal projection matrix U which
minimizes the objective function:

n
Yo lxi = —UUT(xi — wpl? )
i=1

where u; € R”. Using the above formulation, the authors identified that the approxi-
mation of x; by u; — UU (x; — p;) is equivalent to looking for a deviance optimal
approximation to the saturated model parameters 8; with u; — UU T@,; — i;). Then,
one uses the following form to calculate deviance:

DW= 33" [b) (1 = QU@ — ) 5 (s — UG — )]
i=1 j=1

3)
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If (U*, u*) minimizes the deviance above, then the generalized PCA projection is
given by

(8(X) = 1" (uwHHU*
where g is the canonical link function and 1 is the vector with all entries equal to 1.

4.2 Semiparametric Approaches to Exponential Family PCA

In this section, we discuss semiparametric approaches and relevant methodology that
was introduced in exponential family distribution PCA. Although we have not dis-
cussed this earlier in the Gaussian setting, similar proposals to this methodology exist
in the Gaussian setting, but in the interest of space we will give just the references to
them in this section and we will focus in explaining the methodology for PCA in the
exponential family distribution setting.

4.2.1 Semiparametric Exponential Family PCA

In [41], the authors proposed a semiparametric approach to the problem. First, they
identify that in the PPCA by [48] it is assumed that there is a latent distribution model
which implies that we have a latent or mixing distribution P (#) and a conditional or
component distribution P (x|@). They also recognize the limitations that is introduced
by assuming this latent distribution to be Gaussian.

To formulate their semiparametric PCA (SP-PCA) method, they make no assump-
tions on the distribution of the latent random variable @. This allow for multimodality
to be preserved in the projection space. Therefore, in cases where the data form clus-
ters, this allows for simultaneous clustering and dimension reduction. Probably one of
the most impressive features of this algorithm is the fact that it uses the nonparametric
likelihood estimation by [33] which allows the use of one prior distribution which is
conjugate to all exponential family distributions. Therefore, this allows for a unified
approach for all exponential family distributions.

4.2.2 Copula PCA

[20], the authors proposed the use of a semiparametric model which can be applied to
data from the nonparanormal family. By definition of the nonparanormal family, these
are data that can be transformed through a possibly unknown monotone transformation
to Gaussian. Copula PCA is then proposed to estimate the leading eigenvectors of the
Gaussian distribution. To be more specific, copula PCA solves the following problem
to find &, the leading eigenvector of the covariance matrix X:

u = arg max u'Su, subject to u € SP7IN B, (Ry)
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where SP~! = {v € R” : ||v|| = 1} is the p-dimensional /> sphere, B, (Ry) = {v €
R : ||v||Z < Ry} is the [, ball, and S is the estimated Spearman’s rho covariance
coefficient matrix based on copulas.

4.3 Supervised Exponential Family PCA

In this section, we discuss a set of methods in the exponential family PCA which
are a bit different than classic PCA. It is well known that classic PCA is an unsu-
pervised dimension reduction method; that is, there is no response (or label) variable
involved in the process. There are methods though, which have been proposed within
the exponential family PCA framework and work in a supervised setting.

4.3.1 Supervised Exponential Probabilistic PCA

[50] proposed the supervised probabilistic PCA (SPPCA) approach, which incorpo-
rates label information into the projection. First, they assume that the data are modeled
as:

x=Wiz+pn,+e
y=f(z,0)+¢

which for x is similar to the PPCA model and then the model for y is added where
f(z, ©®) is a function that encodes n deterministic functions that depend on n differ-
ent parameters, i.e., f(z, ®) = (fi1(z,61), ..., fu(z,6,)). To incorporate the label
information into the projections, they use information on the inter-covariance between
input variables and output variables and also the intra-covariance matrix of both the
inputs and the outputs. These are incorporated through the use of an EM algorithm.
It is assumed in the paper that the latent distribution (for z) is Gaussian. In the same
work, the authors propose a semisupervised PCA (SSPCA) algorithm for the cases
where only part of the data are labeled. They demonstrate how their SPPCA approach
is a special case of a SSPCA algorithm as it can be seen as the case where the number
of unlabeled data is 0.

4.3.2 Supervised Exponential Family PCA Using Generalized Linear Models (GLMs)

[40] used a GLM approach to model exponentially distributed features and labels to
perform dimension reduction and prediction in a supervised framework. To achieve
this, they used an EM approach which maximizes a weighted linear function (auxil-
iary function) between both (features and labels) conditional likelihoods given latent
variables. Their method can be used both in regression and in classification.

Similar to this idea is the idea of [42] who used linear mixture models to achieve
dimension reduction in mixed types of data. To achieve this, they had a different
objective function which is the product of the conditional distribution of the labels
given the features, that is, ]_[:':l P(yilx;, ®). Their work mostly focused on the use
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of Gaussian distribution, but the use of any distribution in the exponential family is
discussed as well.

4.3.3 Supervised Exponential Family PCA via Convex Optimization

In [17], the authors extended the work by [50] by allowing the latent distribution to
be any exponential family distribution using convex optimization. In this algorithm,
both the labels and the data are assumed to be drawn from the latent variable based on
conditional exponential family distributions. One of the most important contributions
of this algorithm is the proposal of a sample-based approximation to the exponential
family models which allows for the kernelization of the method and therefore allows
for nonlinear feature extraction.

4.4 Other Approaches to PCA in Non-Gaussian Settings

There are many other non-Gaussian settings where PCA-like algorithms have been
proposed for unsupervised feature extraction. Here, we list a sample of them.

4.4.1 Transelliptical Component Analysis

In [21] the authors proposed a high-dimensional semiparametric scale-invariant PCA
type of analysis which they called transelliptical component analysis (TCA) which
was applicable to the transelliptical family of distributions. The following definition
was given by [21].

Definition 2 A random vector (X1, ... Xp)T is said to follow a transelliptical distri-
bution if and only if there exists a set of strictly monotone functions f = {f; ‘;: 1
and a latent continuous elliptically distributed random vector Z with mean 0 and
variance ¥ with ¥ € RP*P.Y = X7 diag(¥) = 1 and ¥ > O such that

(f1 (X1),.... fp (XI,))T 2 Z. We call such X a transelliptical random vector with
parameters (X; f1,... fp).

Transelliptical distributions are considered extensions of meta-elliptical distributions
(see [14]).

The idea behind their proposal is first to estimate the latent correlation matrix X
with Kendall’s 7 correlation matrix (denoted with R) and then solving an optimization
problem similar to the PCA to find the vector # which maximizes u' Ru under the
constraint that it lies inside the unit sphere. As the authors claimed, that meant one
can plug Rto any sparse PCA algorithm in the literature. Furthermore, [22] proposed
a similar framework for sparse PCA in meta-elliptical distributions.

Finally, Han and Liu [23] proposed the exponential component analysis (ECA)
which follows a similar procedure in an effort to estimate directly the eigenvectors
of the covariance matrix X and not the eigenvectors of a correlation matrix (which
was the case with TCA). To achieve this, they approximated ¥ using a multivariate
Kendall’s 7 estimate. They also discussed sparse ECA as a method to obtain sparse
features.
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4.4.2 Variational Inference PCA

In [8] a variational inference approach to exponential family PCA was proposed. Varia-
tional inference is a tool used in [29] and [19] to model situations where the conditional
distribution of the scores given the data becomes intractable, for example, the Poisson
mixed model. In a bit more detail, the authors in [8] considered the model framework
used by Bishop and Tipping (1999) in the PPCA algorithm, and the idea is that in cases
where the conditional distribution of the scores given the data is intractable, then one
can find a lower bound of it using a tractable product distribution. This is done using
the Poisson lognormal distribution (PLN) proposed by Aitchinson and Ho (1989).

4.4.3 Exponential PCA (ePCA)

Exponential PCA (ePCA) was a recent proposal by [35] which proposed an algorithm
which took a different approach. They proposed the use of a different covariance
matrix estimator that is based on diagonally debiasing the sample covariance matrix.
Similarly, they proposed a method for homogenization, shrinkage and heterogenization
of the debiased matrix to make the procedure suitable for high-dimensional data.

4.4.4 Applying Discrete PCA in Data Analysis

In a slight different approach, [4] proposed a way to model discrete PCA and demon-
strated the equivalence to discrete independent component analysis (ICA) (see [27]).
Their approach specifically discussed a model for text data analysis which is our main
motivation for this literature review, but at the same time, they model them using a
multinomial distribution. This is because they consider that each document belongs to
a topic and they consider each topic a possible outcome of a multinomial distribution.

4.4.5 PCA of Binary Data via iterated SVD

In [12] the authors combined ideas from latent structure analysis (LSA), multiple
correspondence analysis (MCA) and PCA to propose a PCA method for binary data
by iterated singular value decomposition (SVD).

4.4.6 Sparse Logistic PCA for Binary data

In [31] a sparse logistic PCA algorithm for binary data was proposed. They achieved
this by looking at principal components from [39] perspective as was described in (1)
where principal components were the linear projections that minimized the distance of
the data points to their projections. They used also the likelihood approach, similar to
the one proposed in [48] . To handle binary data though, they did not use the Gaussian
distribution assumption as [48] (see also [44]), but instead they assumed a Bernoulli
distribution imposing a logistic approach to the PCA. For a sparse solution, they use
L1 penalization ([47] ).
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5 Sparse Exponential Family PCA

One of the biggest questions in feature extraction is whether one can obtain more
meaningful and interpretable results by finding sparse features. This is the case where
we try to force the loading vectors to contain a lot of 0’s. Thus, we replace a lot of
the small coefficients with O, to emphasize that the variables corresponding to the
zero coefficients have no real weighting in the reduced projections of the data. The
most common method to achieve sparsity is by introducing some form of penalization.
There has not been a lot of the literature for sparse methodology in this framework,
and only the last few years this was picked up. In this section, we will discuss a few
of the methods.

5.1 Sparse Probabilistic PCA

The authors in [18] introduced an L1 regularizer to the idea by [48] of probabilistic
PCA. This was achieved by introducing a Laplacian prior to each element W;; of the
transformation matrix W since it has been shown (see [49]) that the Laplace prior is
the L1 regularizer counterpart that was used in classic Sparse PCA ([53]) . They also
propose two other methods for sparsity

e First, they proposed the use of an inverse Gaussian prior, since it was shown by
[6] that it produces sparse models in the regression problem.

e Second they proposed the use of a Jeffreys’s prior as it was shown in the literature
([15]) that it produces sparse models in regression and classification settings.

In all three ideas, the author used a two-level hierarchy model. In this model, they
defined at the first level p(W;jlzij) ~ N(0,z;;) and then at the second level they
put a prior distribution on z;; depending on which of the three methods for imposing
sparsity is used. The first case used the Laplace, the second the inverse Gaussian and
the third the Jeffrey’s prior.

5.2 Sparse Exponential Family PCA

The work presented in [36] is the first to propose a general theory for sparse exponential
family PCA algorithms. They combined the idea of [9] with the regularizer in [44]
to propose a general framework for dimension reduction in the exponential family
distribution. More specifically, they propose the solution of the following optimization
problem:

min min Y " AWz, +b) — r(ZW' +161)X") + P(W.b)
Z:27Z=1 W.b -

where W is the p x ¢ principal loading matrix, Z is the n x ¢ principal component
score matrix with each row being z,, A is a semiorthonormal matrix and P(-) is the
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penalty term which the author suggests to be equal to

q
MIZWT +16TI2 + 3 a1 Wyl.
=1

where W, is the loadings of the g™ principal component. The authors explained that
the 12-norm ensures a stable reconstruction of principal components when X is not a
full rank matrix and the value of A, controls the sparsity of loading vectors.

5.3 Sparse Generalized PCA
In [45] a method for sparse exponential family PCA was derived, using the generalized

PCA idea of Landgraf and Lee (2015) and combining it with the L1 and SCAD
penalties. In particular, they minimized

LWU,pn)=DWU, p)+ r|U| + A2SCADU; a, 1) “4)

where D(U, p) is given in (3), A; (i = 1, 2) are tuning parameters which improves
the number of zeroes in the model, and SCAD(U; «, A) is the SCAD penalty which
is usually defined by its derivative :

ar—U

SCAD' (U; a, A) = AI(U < 1) + (U <))

a—1

where A and « are tuning parameters.

In order to solve the optimization problem, which is nonconvex, they used a
majorization—maximization (MM) algorithm. In a simulation study, they showed that
all considered penalties (the L1 penalty, the SCAD penalty, and a linear combination
of the two) had similar performance and so suggest using the L1 for its simplicity.
They focused more on PCA for Poisson distributed data due to their application in
analyzing text data.

5.4 Sparse Simple Poisson PCA

In [46] putthe authors used an adaptive L0 penalty due to [16] on the simple expo-
nential PCA algorithm. They place the penalty on W, the analogue of the loadings
matrix. The adaptive version of the L0 is chosen for its differentiability everywhere,
unlike the original version of the penalty, which allows for an efficient gradient-based
optimization method. Their alteration yields an optimization problem which needs
to be solved iteratively, as the adaptive penalty is calculated using values from the
previous iteration. To illustrate their variant of simple exponential PCA, they gave the
Poisson case and used examples drawn from text data.
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5.5 Choice of Regularization

To close this section, we will briefly discuss the choice of regularization. There is a
long discussion in the statistics community which regularization to choose between L0
and L 1. This is mostly due to the fact that L0 regularization seems the most logical as it
penalizes the number of nonzero coefficients, but at the same time a solution to the L0
regularization is NP-hard and therefore is computationally much more expensive than
the L1 regularization which is based on a convex objective function. In [7] previous
discussion on this topic by [2] and [24] was extended. They suggest that the choice of
regularization should be based on 3 aspects:

e The problem/dataset: The authors suggest that L0 should be preferred when the
cardinality of the model parameters is constrained and raise concerns over the use
of /1 regularization as a surrogate to the L0 objective function. This warning is due
to the tendency of L1 to favor zeroes, that is to overshrink the parameter estimates.

e Optimization aspect: Computationally L1 is convex and therefore easy to find a
solution. For the L0, a solution can be found through alternative approximations
appeared in the literature, but these algorithms offer no guarantee of finding an
optimal solution.

o Statistical aspect: When we are looking for an optimal solution based on stability
and replicability, we can make a different choice of regularizer based on the data
generating process as different data may prefer different results.

In the probabilistic framework we discuss in this paper, the choice of regularization
is driven by the choice of prior distribution. As was mentioned earlier in [18], it was
discussed for example that a Laplace prior is equivalent to having an L 1 regularization
in the probabilistic framework. They also suggested the use of inverse Gaussian as a
prior which can be adjusted (with a specific set of parameters) to approximate L2 reg-
ularization and noninformative Jeffrey’s prior which approximates L0 regularization.

6 Discussion

As we can see from the methods we reviewed in this manuscript, there are a number of
exponential family PCA algorithms available in the literature, as well as more specific
algorithms focusing on specific distributions, i.e., Gaussian, Poisson, binomial etc.
Each of these methods was discussed in a different framework and has been applied to
a variety of dataset. Although we do not claim that the list of methods in this literature
review is exhaustive, we believe that we have touched upon a number of different
methods and ideas, to give an overview of the existing methodology and to motivate
further research in this interesting topic.

6.1 Implementation tools

Throughout this literature review on the exponential family PCA in this manuscript,
we refer a lot to some methods that are used for the implementation of the algorithms.
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In this section, we will briefly discuss some of these tools, which are very well-known
tools in the statistical literature.

6.1.1 Expectation—Maximization (EM) Algorithm

First, we present the EM algorithm which was around in a number of formats before
being formally introduced by [13] who laid out all the theoretical foundations of
the algorithm. The algorithm is mainly used in cases where we need to maximize a
complicated likelihood function which cannot be solved analytically. In many cases,
in addition to the parameters that are not known and need to be estimated there exist
unobserved latent variables Z which need to be approximated. The two steps are as
follows:

e Expectation Use the current estimate of the parameters, let’s denote them with
0 (at the first step this is an initial value for each parameter) and calculate the
expectation of the log likelihood with respect to the conditional distribution Z|X
and @, that is Ez|x ¢(log L(#; z, x)), where X are the known data, Z is the latent
variables, and L(-) is the likelihood

e Maximization Find the new value of the parameters @ that maximizes the expected
value in the previous step.

These two steps are repeated until we have arelatively stable estimate of the parameters
0.

The EM algorithm has been used extensively in a number of statistical methods
in the literature. A lot of the likelihood-based methods presented in this review are
implemented using EM algorithm.

6.1.2 Majorize/Maximize (MM) Algorithm

MM algorithm may stand for any combination of the words majorize/minorize—
maximize/minimize depending on whether we are trying to maximize or minimize
an objective function. Although as an idea it existed for some time, it was formally
conceptualized and better studied by [26] who applied it on quantile regression. The
main idea of the MM algorithm is to exploit the convexity of a function by using a
surrogate function in order to majorize (minorize) the objective function. By maximiz-
ing/minimizing the surrogate function, one tries to maximize/minimize the objective
function.

6.1.3 Maximum a posteriori (MAP) Estimation

As was discussed throughout the literature review, the methodology discussed in the
exponential family PCA framework is based on likelihood estimation with latent vari-
ables. This leads naturally to the use of a Bayesian approach to estimation. MAP
estimation is used to estimate essentially a quantity that represents the mode of the
posterior distribution we give to our parameter of interest (which we denote with ).
If we give a uniform prior distribution to @, then the MAP estimator coincides with
the maximum likelihood estimator (MLE). It is important to note that in general the
MAP estimator does not coincide with the Bayes estimator.
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6.1.4 Automatic Relevance Determination (ARD)

Automatic relevance determination is a way to reduce the number of features in
high-dimensional problems. It effectively prunes away redundant features by using
a parameterized data-dependent prior distribution. ARD (see [37]) has been extended
in a number of direction, and currently, it is considered a collection of algorithms that
achieve dimension reduction in different settings. For example, the sparse Bayesian
learning (SBL) method is considered a special case of the ARD algorithm. One of the
properties of ARD is that it usually gives better estimators than a MAP estimator in
selecting an optimal feature set.

6.2 Open Problems

There are a number of open topics that are obviously missing from the literature in
this based on how it presented in this review. We discuss below some of the more
interesting questions one may try to address:

1. One of the things we have not discussed extensively is nonlinear feature extrac-
tion (or nonlinear PCA) in the exponential family distribution framework. With a
number of recent developments in the kernel methods, including the development
in kernel PCA and the extensive list of applications kernel PCA has been used
one would have expected that there will be an equivalent list of the literature in
nonlinear PCA for exponential family distributions. To the best of our knowledge,
there is very little that has been done in this direction. It will also be interesting if
there was a unified framework.

2. Some of the exponential family distribution PCA algorithms presented here have
not been studied extensively and especially the more recent ones. For example,
methods like ePCA by [35] or the copula PCA by [20] and the transelliptical
component analysis by [21] have not been extended to include sparsity.

3. Other dimension reduction algorithms like canonical correlation or independent
component analysis have not been studied as extensively in the exponential family
framework. Although this methodology is not necessarily part of this literature
review, a quick search on the available literature for these reveals that there is
much less effort to extend those in the different directions on the exponential
family distribution framework than the effort the research community has put in
doing this for the PCA.

4. Finally, most of these methods have been presented in the literature and have
not been extensively used in practical problems, mainly due to the lack of a single
source of code that can help practitioners by giving them the option to run multiple
of these methods easily to compare their outputs. Therefore, we believe that one
can start writing a package in R/Python to implement as many of these methods in a
unified framework, which will allow practitioners to easily apply them in real data.
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