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Abstract
The main intention of the present work is to outline the concept of equivariance and
invariance in the design of experiments for generalized linear models and to demon-
strate its usefulness. In contrast with linear models, pairs of transformations have to
be employed for generalized linear models. These transformations act simultaneously
on the experimental settings and on the location parameters in the linear component.
Then, the concept of equivariance provides a tool to transfer locally optimal designs
from one experimental region to another when the nominal values of the parameters
are changed accordingly. The stronger concept of invariance requires a whole group
of equivariant transformations. It can be used to characterize optimal designs which
reflect the symmetries resulting from the group actions. The general concepts are illus-
trated by models with gamma distributed response and a canonical link. There, for a
given transformation of the experimental settings, the transformation of the parameters
is not unique and may be chosen to be nonlinear in order to fully exploit the model
structure. In this case, we can derive invariant maximin efficient designs for the D-
and the IMSE-criterion.
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1 Introduction

Generalized linear models are a powerful tool to analyze data for which the standard
linearmodel approach is not adequate. The idea of generalized linearmodels goes back
to Nelder andWedderburn [28], and their concept is comprehensively presented in the
monograph by McCullagh and Nelder [27]. The statistical analysis is well developed
in generalized linear models, and there is also a considerable amount of literature on
optimal design in this situation (see, e.g., Atkinson and Woods [3] and the literature
cited therein).

In generalized linear models, the performance of a design depends not only on
the experimental settings but, in contrast with linear models, also on the values of
the underlying parameters. Even more crucially, the solutions for optimal designs
also depend on the parameters. As those are commonly unknown at the design step,
nominal values of these parameters have to be specified prior to the experiment which
leads to the concept of locally optimal designs (see Chernoff [5]). This approach has
been frequently employed (see [1,13,14,36,41–43] among others), and it provides at
least a benchmark for the quality of a design.

To overcome the parameter dependence, robust criteria have been proposed which
either impose a prior weight on the parameters (Bayesian design, see, e.g., Atkinson
et al. [2], ch. 18) or choose a minimax approach over a parameter region of interest
(maximin efficiency, see, e.g., [8,10,17,22]).

The construction of optimal designs for generalized linear models is difficult, and
often numerical algorithms are employed to find a solution. To reduce the complexity
of the search for a good design, one can make use of symmetries (“invariance”) in
the design problem which can be described by transformations of the experimental
settings and the location parameters in the linear component. The concept of invari-
ance or, more specifically, equivariance with respect to transformations has been used
for long in statistical analysis and dates back to Pitman [30] (see, e.g., Lehmann [24,
ch. 6], for a comprehensive description). The underlying idea of transformationswhich
are conformable with the model (“reparameterization”) has been successfully adapted
to optimal design theory in linear models. In contrast with equivariance in statistical
analysis, the parameter values do not play a role in optimal designs for linear models.
Therefore, only transformations of the experimental settings have to be considered
there. With these transformations, optimal designs may be first determined on a stan-
dardized experimental region and then transferred to more general regions as long as
the transformation is order preserving with respect to the design criterion (see, e.g.,
Heiligers and Schneider [19]). This covers, for example, the situation of D-optimal
designs for polynomial regression on an arbitrary (multivariate) interval.

The stronger concept of invariance requires a whole group of equivariant trans-
formations. In linear models, invariance has been widely used to characterize optimal
designs which reflect the symmetries resulting from the group actions (see Pukelsheim
[33, ch. 5], or Schwabe [38, ch. 3]). These groups of transformations may cover reflec-
tions and rotations for quantitative variables as well as permutations of levels and
factors for categorical variables and combinations thereof. In the context of general-
ized linear models, however, the concept of invariance is not well established. This
seems to be mainly due to the fact that local optimality criteria lack symmetries, in
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general, because they depend on the parameter values. Therefore, we have to account
for this dependence by also transforming the parameters similar to the situation in
statistical analysis.

For the underlying concept of equivariance, we thus need a pair of transformations
which acts simultaneously on the experimental settings and on the parameter values.
The most famous representative of this concept is known as the canonical transforma-
tion defined in Ford et al. [13]. But the motivation there is different from our approach
exhibited in Radloff and Schwabe [34]. The canonical transformation starts with a
standardization of the nominal value of the parameters. This standardization is com-
pensated by an associated transformation of the experimental settings which leaves
the value of the linear component unchanged. In contrast with that, we start with a
transformation of the experimental settings as in linear models. This transformation is
conformable (“linearly equivariant,” see Schwabe [38, ch. 3]) with the regression func-
tions in the sense that it results in a linear reparameterization of the linear component.
This linear reparameterization might be the associated action on the parameter values
as in the canonical transformation, but we allow for more general, even nonlinear,
transformations of the parameters. Moreover, in its standard formulation, the canon-
ical transformation deals with one quantitative explanatory variable with a straight
line relationship for the linear component. A generalization of the canonical trans-
formation to multiple explanatory variables is given in Sitter and Torsney [40]. In
our approach, there is no restriction on the number of explanatory variables, on their
impact on the linear component described by the regression functions, or on whether
they are quantitative or categorical.

For the concept of invariance in generalized linear models, symmetries are also
required in the parameters which concur with the symmetries in the experimental
settings. This requirement is hardly met in the case of local optimality, but Bayesian
or maximin efficiency criteria can incorporate symmetries in their prior or in their
parameter region of interest (see Radloff and Schwabe [34]).

Based on this approach, we develop in the following the concept of equivariance
and invariance in generalized linear models and their application to optimal designs
step-by-step and illustrate each step by a running example of gamma models with
canonical link functions. This kind of gamma model is chosen because it exhibits
an additional scaling property which provides a more complex, nonlinear symmetry
structure.

The paper is organized as follows. In Sect. 2, we introduce the model assump-
tions and the design criteria. In Sect. 3, we discuss the concept of equivariance under
standard linear transformations of the parameters and show how optimal designs can
be transferred from one experimental region to another. In Sect. 4, the concept of
equivariance is extended to nonlinear transformations of the parameters. In Sect. 5,
the general concept of invariance is introduced and optimal designs are obtained for
various situations. Finally, Sect. 6 concludes the paper with a short discussion and an
outlook.
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2 Basics: Model Specification, Information, and Design

We consider a response variable Y for which the dependence on a (potentially multi-
dimensional) covariate x can be described by a generalized linear model. This means
that the distribution of Y comes from a given exponential family and the mean μ =
E(Y ) is related to the linear component f(x)Tβ = ∑p−1

j=0 β j f j (x) by a one-to-one link

function. In the linear component, f(x) = ( f0(x), . . . , f p−1(x))T is a p-dimensional
vector of given regression functions f0(x), . . . , f p−1(x) and β = (β0, . . . , βp−1)

T

is a p-dimensional vector of parameters β0, . . . , βp−1 to be estimated. Traditionally
the link function maps the mean to the linear component (see McCullagh and Nelder
[27, ch. 2]). For analytical purposes, however, it is more convenient to describe the
dependence of the mean on the linear component,

μ = μ(x;β) = η(f(x)Tβ), (1)

where η is the inverse of the link function. For example, for the log link η is the
exponential and for the inverse link η is the reciprocal function.

As a particular case and for illustrative purposes, we consider gammamodels. Such
models are frequently used in engineering applications. For example, in Dette et al.
[9] a gamma model is considered in a thermal spraying process. Further applications
in the fields of ecology, medicine, and psychology can be found in Gea-Izquierdo
and Cañellas [15], Grover et al. [18], and Ng and Cribbie [29]. In a gamma model,
the response Y is gamma distributed. One possibility to parameterize its density is
given by fY (y) = yκ−1 exp(−y/θ)/(θκ�(κ)), where κ > 0 and θ > 0 denote the
shape and scale parameters, respectively. In this case, the expectation of Y is given by
μ = κθ . In order to end up with a one-parametric exponential family, we suppose that
the shape parameter κ is a fixed nuisance parameter (see Atkinson and Woods [3]).
For example, κ = 1 gives the family of exponential distributions, or for fixed integer
κ one obtains a family of certain Erlang distributions.

For the link function, we assume the inverse link κ/μ = f(x)Tβ. Alternatively, the
log link is frequently used in gamma models (see, e.g., Ford et al. [13]). However,
the inverse link appears to be more suitable for illustrative purposes. Moreover, the
inverse link is equal to the canonical link −κ/μ = f(x)Tβ up to the minus sign (see
McCullagh and Nelder [27, ch. 3]). This means that all subsequent results will also be
valid for the canonical link, and the minus sign is suppressed for notational reasons.

The inverse η of the inverse link is given by

η(z) = κ/z, (2)

which itself is equal to the inverse −κ/z of the canonical link up to the minus sign.
Then, the responses Yi of a sample Y1, . . . ,Yn with covariates x1, . . . , xn are gamma
distributed with means μi = η(f(xi )Tβ) and common shape parameter κ .

In an experimental design setup, the covariates xi may be chosen by the experi-
menter from an experimental region X over which the model under consideration is
assumed to be valid. For gamma distributed responses, as an additional side condition,
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the means μi have to be positive (μ(xi ;β) > 0). This implies the natural restriction
on the parameter region B of potential values for the parameter vector β that for every
β ∈ B the linear component has to be positive (f(x)Tβ > 0) for all x ∈ X . Further
note that for reasons of parameter identifiability the regression functions f0, . . . , f p−1
are assumed to be linearly independent on the experimental region X .

The aim of experimental designs is to optimize the performance of statistical anal-
ysis. The contribution of an observation Yi to the performance is measured in terms
of its information. In the present generalized linear models framework, for a single
observation at an experimental setting x the elemental information matrix is given by

M(x;β) = λ(f(x)Tβ) f(x) f(x)T (3)

(see Fedorov and Leonov [12] or Atkinson andWoods [3]) where λ is a positive valued
function which is called the intensity function. Note that through the intensity function
the elemental information depends on the parameter vector β.

In generalized linear models, the intensity is given by

λ(f(x)Tβ) = η′(f(x)Tβ)2/Var(Y ). (4)

In the case of a canonical link, we have Var(Y ) = η′(f(x)Tβ) and the intensity reduces
to the variance. In particular, in the gamma model with inverse link the intensity
function is

λ(z) = κ/z2, (5)

because the minus sign in the inverse of the link function does not affect the intensity
(cf. Gaffke et al. [14]). The (per experiment) Fisher information of n independent
observations Yi at experimental settings xi is then given by

M(x1, . . . , xn;β) =
n∑

i=1

M(xi ;β) =
n∑

i=1

λ(f(xi )Tβ) f(xi ) f(xi )T . (6)

The aimoffinding an exact optimal designx∗
1, . . . , x

∗
n is to optimize theFisher informa-

tion in a certain sense because the inverse is proportional to the asymptotic covariance
matrix of the maximum likelihood estimator for β (see Fahrmeir and Kaufmann [11]).

As this discrete optimization problem is too difficult, in general, we will deal with
approximate (continuous) designs ξ in the spirit of Kiefer [23] (see also Silvey [39,
p. 15]) throughout the remainder of the present paper. An approximate design ξ is
defined on the experimental region X by mutually distinct support points x1, . . . , xm
and corresponding weights w1, . . . , wm > 0 such that

∑m
i=1 wi = 1. In terms of an

exact design, the support points xi may be interpreted as the distinct experimental
settings and the weights wi as their corresponding relative frequencies in the sample.
The relaxation of an approximate design is then that the weights wi may be chosen
continuously and need not be multiples of 1/n. The standardized (per observation)
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information matrix of a design ξ is defined by

M(ξ ;β) =
m∑

i=1

wiM(xi ;β) =
m∑

i=1

wiλ(f(xi )Tβ) f(xi ) f(xi )T . (7)

Design optimization is now concernedwith finding an approximate design ξ∗ which
minimizes a convex real-valued criterion function	 of the Fisher informationM(ξ ;β)

of the design ξ . A design ξ∗ will then be called 	-optimal when it minimizes 	(ξ),
	(ξ∗) = min	(ξ). As the information matrix depends on the parameter vector β,
the obtained design ξ∗ is locally 	-optimal at a given parameter value β [5] and
may change with β. To avoid the parameter dependence, so-called robust versions
of the criteria can be considered like “Bayesian” criteria which involve a weighting
measure (“prior”) on the parameters (see Atkinson et al. [2, ch. 18]) or “minimax”
criteria which aim at minimizing the worst case scenario for the parameter settings
(see the “standardized minimax” criteria in [8]). In the following, we will focus on the
local D- and IMSE-criteria and the corresponding maximin efficiency (“standardized
maximin”) criteria.

The D-criterion is the most commonly used design criterion. It is related to the
estimation of the model parameters β and aims at minimizing the determinant of the
asymptotic covariance matrix, 	(M) = det(M−1) for positive definite information
matrixM, and	(M) = ∞ for singularM. A design ξ∗ is then called locallyD-optimal
at β when det(M(ξ∗;β)−1) = min det(M(ξ ;β)−1). TheD-criterion can bemotivated
by the fact that it measures the (squared) volume of the asymptotic confidence ellipsoid
of the maximum likelihood estimator for β. However, its popularity predominantly
stems from its nice analytic properties.

Note that in the present situation the property of M(ξ ;β) being nonsingular does
not depend on the value of the parameter vector β because the intensity λ(f(x)Tβ) is
greater than zero for all x ∈ X and all β ∈ B.

The definition of the IMSE-criterion (alternatively, also called I-,V - orQ-optimality
in the literature) is based on the estimation (prediction) of the mean response μ(x;β).
It aims at minimizing the average asymptotic variance of the predicted mean response
μ̂(x) = μ(x; β̂), where averaging is taken with respect to a standardized measure ν on
X (see Li and Deng [25,26]). For a generalized linear model, the asymptotic variance
is given by

asVar(μ̂(x); ξ,β) = η′(f(x)Tβ)2f(x)TM(ξ ;β)−1f(x), (8)

for all x ∈ X . For a canonical link, we have λ = η′ and hence

asVar(μ̂(x); ξ,β) = λ(f(x)Tβ)2f(x)TM(ξ ;β)−1f(x). (9)
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The integrated mean-squared error (IMSE) is then defined as the average prediction
variance

IMSE(ξ ;β, ν) =
∫

asVar(μ̂(x); ξ,β) ν(dx)

=
∫

λ(f(x)Tβ)2f(x)TM(ξ ;β)−1f(x) ν(dx) (10)

with respect to a given standardized measure ν on the experimental regionX (ν(X ) =
1).

By a standard method to express the IMSE-criterion (see, e.g., Li and Deng [26]),
the asymptotic variance can be rewritten as

asVar(μ̂(x); ξ,β) = trace(λ(f(x)Tβ)2f(x)f(x)TM(ξ ;β)−1). (11)

Hence, the IMSE is given by

IMSE(ξ ;β, ν) = trace(V(β; ν)M(ξ ;β)−1), (12)

where

V(β; ν) =
∫

λ(f(x)Tβ)2f(x)f(x)T ν(dx) (13)

denotes a weighted “moment” matrix with respect to the measure ν. Note that the
leading term under the integral in V(β; ν) differs from that in the virtual informa-
tion matrix M(ν;β) by replacing the intensity λ by λ2. Moreover, in contrast with
the D-criterion, the IMSE-criterion does not solely depend on the information matrix
M(ξ ;β), but also depends through the weighting matrix V(β; ν) explicitly on the
parameter vector β and additionally on the measure ν as a supplementary argu-
ment. The IMSE-criterion is thus defined by 	(M;β, ν) = trace(V(β; ν)M−1).
A design ξ∗ is then called locally IMSE-optimal with respect to ν at β when
trace(V(β; ν)M(ξ∗;β)−1) = min trace(V(β; ν)M(ξ ;β)−1).

To avoid the parameter dependence of an optimal design under local criteria, we
will also consider as a “robust” alternatives maximin efficiency criteria which are also
called standardized optimality criteria (see Dette et al. [10]). For this, we first have
to introduce the concept of efficiency. Let the local criterion 	β at β depend homo-
geneously on the information matrix, i.e., 	β(ξ) = φ(M(ξ ;β)) for some function φ

on the set of positive definite matrices satisfying φ(cM) = c−1φ(M) for c > 0 (cf
Pukelsheim [33], ch. 5, for the related concept of information functions). Then, the
efficiency of a design ξ (locally at β) is defined by

eff(ξ ;β) = 	β(ξ∗
β )

	β(ξ)
,

where ξ∗
β is the 	-optimal design (locally at β). Maximin efficiency then aims at

maximizing the worst efficiency infβ∈B′ eff	(ξ ;β) over a given subset B′ of interest
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of the parameter region B. In order to arrive at a minimization problem, we define the
maximin efficiency criterion by the inverse relation

	(ξ) = sup
β∈B′

	β(ξ)

	β(ξ∗
β )

. (14)

Note that 	 is convex if, for all β, the local criteria 	β are convex.
For maximin D-efficiency, we have to choose the homogeneous version 	β(ξ) =

(det(M(ξ ;β)))−1/p of the local D-criterion (see [33, ch. 6]) to get the maximin D-
efficiency criterion

	D-ME(ξ) = sup
β∈B′

(
det(M(ξ ;β))

det(M(ξ∗
β ;β))

)−1/p

,

where ξ∗
β denotes the locally D-optimal design at β. The D-efficiency can then be

interpreted as the proportion of observations required under the D-optimal design ξ∗
β

to obtain the same value of the determinant as for design ξ . For example, an efficiency
of 0.5 means that with aD-optimum design ξ∗

β only half as many observations as for ξ
are necessary to get the same precision. A design ξ∗ is then called maximinD-efficient
on B′ when 	D-ME(ξ∗) = min	D-ME(ξ).

The local IMSE-criterion is already homogeneous because it is a linear criterion.
Thus, the maximin IMSE-efficiency criterion can be defined directly as

	IMSE-ME(ξ ; ν) = sup
β∈B′

IMSE(ξ,β, ν)

IMSE(ξ∗
β ,β, ν)

,

where ξ∗
β denotes the locally IMSE-optimal design at β. A design ξ∗ is then

called maximin IMSE-efficient with respect to ν on B′ when 	IMSE-ME(ξ∗; ν) =
min	IMSE-ME(ξ ; ν).

In particular, for the gamma model with inverse link we have λ(z) = κ/z2 (see (5))
which implies that

M(ξ ;β) =
m∑

i=1

wiκ(f(xi )Tβ)−2 f(xi ) f(xi )T (15)

and

V(β; ν) =
∫

κ2(f(x)Tβ)−4f(x)f(x)T ν(dx). (16)

Hence, in both the D- and the IMSE-criterion the shape parameter κ occurs only as a
factor which does not affect the optimization problem. Without loss of generality, we
may thus assume κ = 1 in the remainder of the text.
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3 Equivariance

Invariance and equivariance play an important role for optimal design in linearmodels.
However, these concepts can also be applied in the context of generalized linearmodels
as established in Radloff and Schwabe [34].

The essential idea of equivariance in the design setup is to transfer an already known
optimal design on a given (standardized) experimental region to another experimental
region of interest by a suitable transformation while keeping the model structure
unchanged. The most prominent approach of this kind is the method of canonical
transformation propagated by Ford et al. [13].

Throughout we accompany each conceptual step by a simple running example
(Example 1). We start with a one-to-one transformation g : X → Z which maps the
experimental region X onto a potentially different region Z .

Example 1 Let X = [0, 1] be the one-dimensional standard unit interval and Z =
[a, b] another non-degenerate interval, b > a. Then, the shift and scale transformation
g(x) = a + cx , where c = b − a, maps X onto Z . ��

The next ingredient connects the transformation g with the vector of regression
functions: f is said to be linearly equivariant with respect to g if there exists a (nonsin-
gular) matrix Qg such that f(g(x)) = Qgf(x) for all x ∈ X , which will be assumed
to hold throughout the remainder of this text.

Example (Example 1 continued) Let f(x) = (1, x)T be the vector of regression func-
tions for a simple one-dimensional linear regression, p = 2, such that the linear
component is f(x)Tβ = β0 +β1x . Then, for g(x) = a+cx the transformation matrix
Qg is given by

Qg =
(
1 0
a c

)

.

��
In contrast with the situation in linear models, additionally a transformation g̃ :

B → B̃ of the parameter vector β is required in the present setup of generalized linear
models. This approach of equivariance with respect to a pair (g, g̃) of transformations
of the settings x and the parameters β, respectively, is in accordance with the general
concept of equivariance in statistical analysis (see, e.g., Lehmann [24, ch. 6]).

A natural choice for the transformation g̃ is a reparameterization which leaves the
value of the linear component unchanged, f(g(x))T g̃(β) = f(x)Tβ for all x ∈ X .
This is accomplished by setting g̃(β) = Q−T

g β, where “·−T ” denotes the inverse

of a transposed matrix, and B̃ = g̃(B). For convenience, we denote g̃(β) by β̃ =
(β̃0, . . . , β̃p−1)

T .

Example (Example 1 continued) For g(x) = a + cx and simple linear regression
f(x) = (1, x)T , the transformation matrix for the parameter vector is

Q−T
g =

(
1 −a/c
0 1/c

)

,
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and the transformation g̃(β) = Q−T
g β results in β̃0 = β0 − aβ1/c and β̃1 = β1/c.

If for given value of β = (β0, β1)
T , the pair (g, g̃) is chosen in such a way that

β̃ = (0, 1)T , i.e., c = β1 and a = β0, then g represents essentially the canonical
transformation used in Ford et al. [13].

For the gammamodel, the parameter regionB is restricted by the constraint that the
linear component f(x)Tβ = β0 + β1x is positive for all x ∈ X = [0, 1]. Hence, the
maximal parameter region isB = {β; β0 > 0, β1 > −β0}which is displayed in Fig. 2
in Sect. 4. The transformed parameter region is then B̃ = g̃(B) = {β̃; β̃0 + β̃1a >

0, β̃0 + β̃1b > 0}. In particular, to obtain the symmetric unit interval Z = [−1, 1] as
secondary experimental region, the transformation g(x) = 2x−1 is to be chosen with
a = −1 and c = 2, and the transformed parameter region becomes B̃ = {β̃; |β̃1| <

β̃0}. ��
Note that for each pair (g, g̃) of transformations themean response and the intensity

remain unchanged, μ(g(x); g̃(β)) = μ(x;β) and λ(f(g(x))T g̃(β)) = λ(f(x)Tβ).
Having this in mind, we study how these transformations act on a design and its
information matrix: For a design ξ with support points xi and corresponding weights
wi , i = 1, . . . ,m, we denote by ξ g its image under the transformation g, i.e., ξ g has
support points zi = g(xi ) with weights wi , i = 1, . . . ,m, respectively, and is hence a
design on Z . Then, for the associated information matrices we obtain

M(ξ g; g̃(β)) =
m∑

i=1

wiλ(f(g(xi ))T g̃(β))f(g(xi ))f(g(xi ))T

=
m∑

i=1

wiλ(f(xi )Tβ)Qgf(xi )f(xi )TQT
g

= Qg

(
m∑

i=1

wiλ(f(xi )Tβ)f(xi )f(xi )T
)

QT
g = QgM(ξ ;β)QT

g

(17)

(see Radloff and Schwabe [34]). In short, the pair (g, g̃) of simultaneous transfor-
mations induces the transformation M(ξ ;β) → QgM(ξ ;β)QT

g of the information
matrix.

Example (Example 1 continued) Let ξ be supported on the endpoints x1 = 0 and
x2 = 1 of the experimental region X = [0, 1] with corresponding weights w1 =
1−w and w2 = w, respectively. For the gamma model with simple linear regression,
f(x) = (1, x)T , denote by λ0 = λ(β0) and λ1 = λ(β0 + β1) the intensities at the
support points 0 and 1. The information matrix of ξ is given by

M(ξ ;β) =
(

(1 − w)λ0 + wλ1 wλ1
wλ1 wλ1

)

.

For g(x) = a + cx , the induced design ξ g is supported on the endpoints z1 = a and
z2 = b of the induced experimental region Z = [a, b] with weights 1− w at a and w
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at b. Under β̃ = g̃(β), the intensities at a and b are λ0 and λ1, respectively, and the
information matrix of ξ g is

M(ξ g; g̃(β)) =
(

(1 − w)λ0 + wλ1 (1 − w)λ0a + wλ1b
(1 − w)λ0a + wλ1b (1 − w)λ0a2 + wλ1b2

)

= QgM(ξ ;β)QT
g .

��
The final step is the equivariance of the criterion 	. In analogy to the terminology

in Heiligers and Schneider [19] for linear models, we will call a convex optimality
criterion 	 equivariant with respect to a transformation g, if 	 preserves the ordering
under the transformation g, i.e., for any two designs ξ1 and ξ2 the relation 	(ξ1) ≤
	(ξ2) implies 	(ξ

g
1 ) ≤ 	(ξ

g
2 ).

In the present situation of generalized linear models, more care has to be taken,
since in addition the parameter vectorβ and eventually some supplementary arguments
have to be changed in the criterion during the transformation. We therefore introduce
a second criterion function 	′ = 	g,g̃ for the designs on Z which may depend on
the transformations g and g̃. Then, we will call a pair of criteria 	 and 	′ equivariant
with respect to the pair (g, g̃) of transformations, when the ordering is preserved, i.e.,
the relation 	(ξ1) ≤ 	(ξ2) implies 	′(ξ g1 ) ≤ 	′(ξ g2 ).

With these definitions, we obtain the following result that in the case of equivariance
the optimality of designs is preserved under transformations.

Theorem 1 Let the pair of criteria 	 and 	′ be equivariant with respect to the pair
(g, g̃) of transformations. If ξ∗ is 	-optimal, then its image (ξ∗)g is 	′-optimal.

We will now establish that the D- and IMSE-criteria are equivariant, if simultane-
ously the parameter vector β and potential supplementary arguments are transformed.
By (17), we obtain for the D-criterion

det(M(ξ g; g̃(β))−1) = det(Qg)
−2 det(M(ξ ;β)−1). (18)

Let 	 be the local D-criterion at β and 	′ be the local D-criterion at g̃(β), then the
D-criterion is equivariant under simultaneous transformation of β, and by Theorem 1
the locally D-optimal design can be transferred.

Corollary 1 If ξ∗ is locally D-optimal on X at β, then (ξ∗)g is locally D-optimal on
Z at β̃ = g̃(β).

Example (Example 1 continued) For the gamma model with simple linear regression,
f(x) = (1, x)T , the locally D-optimal design ξ∗ on the unit interval X = [0, 1] is
supported by the endpoints x1 = 0 and x2 = 1 and assigns equal weights w∗ = 1/2
to these endpoints for any value of the parameter vector β ∈ B (see Gaffke et al. [14]).
Then, for any other interval Z = [a, b] as the experimental region we may consider
the transformation g(x) = a + cx , c = b − a, together with g̃(β) = Q−T

g β. By
Corollary 1, the design (ξ∗)g which assigns equal weights w∗ = 1/2 to the endpoints
z1 = a and z2 = b of the experimental region Z is locally D-optimal for any value of
the parameter vector β̃ = g̃(β) ∈ B̃ = g̃(B). ��

123



93 Page 12 of 32 Journal of Statistical Theory and Practice (2021) 15 :93

In the situation of Example 1, the locally D-optimal design does not depend on the
parameter β. This will typically not hold true, if the underlying model for the linear
component becomes more complex.

Example 2 We consider the gamma model with the linear component f(x)Tβ = β0 +
β1x1+β2x2, that is multiple linear regression of two covariates, x = (x1, x2)T , where
f(x) = (1, x1, x2)T , p = 3, with the unit square X = [0, 1]2 as the experimental
region. Denote by x1 = (0, 0)T , x2 = (1, 0)T , x3 = (0, 1)T and x4 = (1, 1)T

the vertices of X . The parameter region B is the set of all parameter vectors β =
(β0, β1, β2)

T such that the linear component at x1, . . . , x4 is positive, i.e., β0 > 0,
β0 + β1 > 0, β0 + β2 > 0, and β0 + β1 + β2 > 0. This region, depicted in the left
panel of Fig. 1, constitutes a cone in the three-dimensional Euclidean space.

According to Burridge and Sebastiani [4], theminimally supported design ξ∗ which
assigns equal weights w∗

i = 1/3 to the support points xi , i = 1, 2, 3, is locally D-
optimal at β, when β satisfies β2

0 −β1β2 ≤ 0. The subset B1 of these β in B is shown
in the right panel of Fig. 1.

Now equivariance can be used to findD-optimal designs for other parameter values
different from those inB1. For this,weuse transformationswhichmap the experimental
region onto itself, Z = X :

g2(x) = (1 − x1, 1 − x2)
T , g3(x) = (1 − x1, x2)

T and g4(x) = (x1, 1 − x2)
T .

(19)

Here g3 and g4 represent the reflection with respect to the first and second covariate
x1 and x2, respectively, and g2 is the simultaneous reflection with respect to both
covariates. Alternatively, g2 can also be described as a rotation by 180 degree. We also
introduce g1 = id as the identity mapping.

The regression function f(x) = (1, x1, x2)T is linearly equivariant with respect to
these transformations with corresponding matrices

Qg2 =
⎛

⎝
1 0 0
1 −1 0
1 0 −1

⎞

⎠ , Qg3 =
⎛

⎝
1 0 0
1 −1 0
0 0 1

⎞

⎠ , Qg4 =
⎛

⎝
1 0 0
0 1 0
1 0 −1

⎞

⎠ .

For each gk , k = 2, 3, 4, the corresponding parameter transformation is given by
g̃k(β) = QT

gkβ. Because gk maps the experimental region X onto itself, also the

related transformation g̃k maps the parameter regions onto itself, B̃ = B.
Starting from the parameter subregionB1, where the design ξ∗ is locallyD-optimal,

we can define parameter subregions Bk = g̃k(B1) induced by the transformations gk ,
k = 2, 3, 4. These subregions are characterized explicitly in Table 1 by the inequalities
in the last column, and they are also shown in the right panel of Fig. 1. All these
subregions constitute cones. Now by equivariance we can conclude that the designs
ξ∗
k = (ξ∗)gk are locally D-optimal at β for β ∈ Bk . The results are explicitly stated in
Table 1.

Note that the same optimal designs have been obtained before in Idais [20] by a
straightforward application of the celebrated Kiefer–Wolfowitz equivalence theorem
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Fig. 1 Parameter region B in the two-factor gamma model on [0, 1]2 (left panel); subregions B1, . . . ,B4
of parameters for minimally supported locally D-optimal designs ξ∗

1 , . . . , ξ
∗
4 (right panel)

(see, e.g., Silvey [39]). Further note that the interior region shown in the right panel
of Fig. 1 contains those values for the parameter vector β for which locallyD-optimal
designs are supported on all four vertices and the corresponding weights depend on
the values of β (see Idais [20]). ��

Next we investigate equivariance for the IMSE-criterion. There also the supple-
mentary argument of the weighting measure ν has to be transformed. Similar to the
information matrix in (17), the weighting matrix V is equivariant under the transfor-
mations g and g̃,

V(g̃(β); νg) =
∫

λ(f(z)T g̃(β))2f(z)f(z)T νg(dz)

=
∫

λ(f(g(x))T g̃(β))2f(g(x))f(g(x))T ν(dx)

=
∫

λ(f(g(x))T g̃(β))2Qgf(x)f(x)TQT
g ν(dx)

= Qg

(∫

λ(f(g(x))T g̃(β))2f(x)f(x)T ν(dx)
)

QT
g = QgV(β; ν)QT

g ,

(20)

in the case of a generalized linear model with canonical link. This implies

IMSE(ξ g; g̃(β), νg) = trace(QgV(β; ν)QT
g (QgM(ξ ;β)QT

g )−1)

= trace(V(β; ν)M(ξ ;β)−1) = IMSE(ξ ;β, ν). (21)

Let 	 be the local IMSE-criterion at β with respect to ν and 	′ be the local IMSE-
criterion at g̃(β) with respect to νg , then the IMSE-criterion is equivariant under
simultaneous transformation of β and the supplementary argument ν, and by Theo-
rem 1 the locally IMSE-optimal design can be transferred.

Corollary 2 If ξ∗ is locally IMSE-optimal on X at β with respect to ν, then (ξ∗)g is
locally IMSE-optimal on Z at β̃ = g̃(β) with respect to νg.
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Note that the results of Corollaries 1 and 2 hold not only for any generalized linear
model, but also,more generally, for allmodels,where the elemental informationmatrix
is of the form (3) (see, e.g., Schmidt and Schwabe [37], for further examples).

Example (Example 1 continued) In order to apply the equivariance result ofCorollary 2
to the gamma model with simple linear regression, f(x) = (1, x)T , the locally IMSE-
optimal design ξ∗ on the unit interval X = [0, 1] has to be determined first.

Proposition 1 For the one-factor gamma model with simple linear regression
f(x)Tβ = β0 + β1x on the experimental region X = [0, 1] locally IMSE-optimal
designs can be found which are supported on the endpoints 0 and 1 of the experimen-
tal region.

Locally optimal weights 1 − w∗ at 0 and w∗ at 1, respectively, are given by

(a) 1 − w∗ = w∗ = 1/2 for ν the uniform (Lebesgue) measure on the interval [0, 1],
(b) 1 − w∗ = (β0 + β1)/(2β0 + β1) and w∗ = β0/(2β0 + β1) for ν the (discrete)

uniform measure on the endpoints {0, 1}, and
(c) 1 − w∗ = β0/(2β0 + β1) and w∗ = (β0 + β1)/(2β0 + β1) for ν the one-point

measure on the midpoint 1/2 of the design region.

The proof of Proposition 1 is given in “Appendix.” Note that in Proposition 1 the
locally optimalweightsmay depend on theweightingmeasure ν used. In particular, for
the two measures in Proposition 1 (b) and (c) which are concentrated on the endpoints
and the midpoint, respectively, the locally optimal weights at 0 and 1 are interchanged.
For the continuous uniformmeasure (Proposition 1 (a)), equal weights,w∗ = 1/2, are
assigned to both endpoints, and the (locally) IMSE-optimal design does not depend
on the value of the parameter vector β.

Now equivariance can be employed to obtain locally IMSE-optimal designs for any
other interval Z = [a, b] as the experimental region. We again use the transformation
g(x) = a + cx , c = b − a, together with g̃(β) = Q−T

g β. Let ξ∗ be the locally
IMSE-optimal design of Proposition 1 at β with respect to one of the given weighting
measures ν. Then, by Corollary 2, the design (ξ∗)g is the locally IMSE-optimal design
at β̃ = g̃(β) with respect to νg . ��

In order to obtain locally optimal designs at a given value of β̃ on the transformed
design region Z , the inverse transformations g−1(z) = Q−1

g z and g̃−1(β̃) = Qgβ̃ of
g and g̃, respectively, have to be used. We give this general result only for the case of
the D- and the IMSE-criterion.

Corollary 3 Let the equivariance conditions be fulfilled.

(a) The design (ξ∗)g is locally D-optimal on Z at β̃ if ξ∗ is locally D-optimal on X
at β = g̃−1(β̃).

(b) The design (ξ∗)g is locally IMSE-optimal on Z at β̃ with respect to ν if ξ∗ is
locally IMSE-optimal on X at β = g̃−1(β̃) with respect to νg

−1
.

Example (Example 1 continued) By Corollary 3, we can obtain locally IMSE-optimal
designs for the one-factor gamma model with simple linear regression f(x)T β̃ =
β̃0 + β̃1x on a given interval Z = [a, b] with respect to suitably specified weighting
measures νZ . The inversely transformed parameter vector β = g̃−1(β̃) is given by
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β = (β̃0 + aβ̃1, (b − a)β̃1)
T . By Corollary 3 and Proposition 1, the optimal designs

are supported on the endpoints a and b of the interval and the optimal weights 1−w∗
at a and w∗ at b, respectively, can be obtained as

(a) 1−w∗ = w∗ = 1/2 for νZ the uniform (Lebesgue) measure on the interval [a, b],
(b) 1 − w∗ = (β̃0 + bβ̃1)/(2β̃0 + (a + b)β̃1) = f(b)T β̃/(f(a)T β̃ + f(b)T β̃) and

w∗ = (β̃0 + aβ̃1)/(2β̃0 + (a + b)β̃1) = f(a)T β̃/(f(a)T β̃ + f(b)T β̃) for νZ the
(discrete) uniform measure on the endpoints {a, b}, and

(c) 1 − w∗ = (β̃0 + aβ̃1)/(2β̃0 + (a + b)β̃1) = f(a)T β̃/(f(a)T β̃ + f(b)T β̃) and
w∗ = (β̃0 + bβ̃1)/(2β̃0 + (a + b)β̃1) = f(b)T β̃/(f(a)T β̃ + f(b)T β̃) for νZ the

one-point measure on the midpoint (a + b)/2 of the experimental region.

The continuous uniform measure in (a) is the common choice for the IMSE-
criterion. The discrete uniformmeasure in (b) lays equal interest in the extreme values
of the experimental region and may also be applied for the restricted experimental
region X = {a, b} which can be used to describe two groups “a” and “b.” In that
case, the IMSE-optimal weights are inverse proportional to the standard deviations
λx = 1/(f(x)T β̃)2, x = a, b, in the groups in accordance with known results on A-
optimality for groupmeans. The one-pointmeasure in (c) coincideswith the c-criterion
for estimating the mean response at the midpoint of the interval. ��

Note that the D- and IMSE-criteria are equivariant with respect to any transfor-
mation g of x for which the regression function f is linearly equivariant, f(g(x)) =
Qgf(x), and the corresponding transformation g̃(β) = Q−T

g β of β. For other crite-
ria, additional requirements may have to be fulfilled by the transformations to obtain
equivariance results. For example, in the case of Kiefer’s class of 	q -criteria (includ-
ing the A-criterion) the transformation matrix Qg should be orthogonal or, at least,
satisfy that QT

gQg is a multiple of the p × p identity matrix.
For the equivariance of maximin efficiency criteria, we require additionally that the

underlying local criteria are multiplicatively equivariant with respect to (g, g̃), which
means that for every β ∈ B′ there is a constant c > 0 such that 	g̃(β)(ξ

g) = c	β(ξ)

uniformly in ξ . Then, for the corresponding maximin efficiency criterion we get

	(ξ g) = sup
β̃∈g̃(B′)

	
β̃
(ξ g)

	
β̃
(ξ∗

β̃
)

= sup
β∈B′

	g̃(β)(ξ
g)

	g̃(β)((ξ
∗
β )g)

= sup
β∈B′

c	β(ξ)

c	β(ξ∗
β )

= 	(ξ), (22)

where in the second equality it is used that by Theorem 1 the image of the locally
optimal design at β under g is locally optimal at g̃(β). Hence, the resulting maximin
efficiency criterion 	 is equivariant.

By (18), the homogeneous version 	β(ξ) = (det(M(ξ ;β)))−1/p of the local D-
criterion is multiplicatively equivariant with c = det(Qg)

−2/p > 0. Accordingly, the
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local IMSE-criterion is multiplicatively equivariant with c = 1 by (21). Hence, both
the maximin D-efficiency criterion and the maximin IMSE-efficiency criterion retain
their value under the transformation and are thus equivariant.

Corollary 4 (a) If ξ∗ is maximin D-efficient on B′, then (ξ∗)g is maximin D-efficient
on B̃′ = g̃(B′).

(b) If ξ∗ is maximin IMSE-efficient with respect to ν on B′, then (ξ∗)g is maximin
IMSE-efficient with respect to νg on B̃′ = g̃(B′).

Example (Example 1 continued) In the gamma model with simple linear regression
on [0, 1] the design ξ∗ which assigns equal weights 1/2 to both endpoints 0 and 1
is both locally D-optimal and by Proposition 1 locally IMSE-optimal with respect to
the uniform measure ν on [0, 1] for any β ∈ B. Hence, ξ∗ is obviously both maximin
D-efficient and maximin IMSE-efficient with respect to ν on B on [0, 1]. Then, with
g(x) = a+cx , c = b−a, by Corollary 4 the design (ξ∗)g which assigns equal weights
1/2 to a and b is maximin D-efficient and maximin IMSE-efficient with respect to the
uniform measure νg on B̃ = g̃(B) on [a, b]. ��

Further maximin D- and IMSE-efficient designs are derived in Sect. 5.

4 Extended Equivariance

The concept of equivariance can be extended when the structure of the intensity func-
tion is compatible with some transformation of the parameters. More specifically, we
will consider situations where the intensity function λ is multiplicatively equivariant
with respect to a transformation g̃0 of β, i.e., there exists a constant c0 > 0 such that
λ(f(x)T g̃0(β)) = c0λ(f(x)Tβ) for all x ∈ X .

For example, in the gamma model with inverse link we have λ(f(x)T c̃β) =
c̃−2λ(f(x)Tβ) for any scaling factor c̃ (see Idais and Schwabe [21], for some specific
models). Hence, the intensity function is multiplicatively equivariant with respect
to any transformation g̃0(β) = c̃β which scales all components of the parameter
vector β simultaneously by the same factor c̃ > 0, and the multiplicative factor is
c0 = c̃−2 > 0. Note that the scaling g̃0 retains the positivity of the linear component
f(x)T g̃0(β) = c̃f(x)Tβ > 0 for the scaled vector g̃0(β) = c̃β, c̃ > 0. Thus, the
maximal region B of parameter values β such that the linear component f(x)Tβ is
positive constitutes a cone in the p-dimensional Euclidean space, i.e., for each vector
β ∈ B and every positive scale factor c̃ > 0 the scaled vector c̃β lies also in B.

Another, more basic example arises in Poisson regression with canonical log link
when the value β0 of the intercept parameter is changed to β̃0. The corresponding
transformation of β can be described by the (affine) linear mapping g̃0(β) = β +
(β̃0 − β0)e1, where e1 denotes the first unit vector of appropriate length p. Then, the
intensity function λ(z) = exp(z) is multiplicatively equivariant with respect to g̃0 with
multiplicative factor c0 = exp(β̃0 − β0) > 0. This has been implicitly applied in the
literature when concluding that optimal designs do not depend on the value β0 of the
intercept parameter (see, e.g., Russell et al. [36]).
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To embed these transformations g̃0 into the concept of equivariance of Sect. 3,
we combine them with the identity mapping g = id on the experimental region X .
Then, the multiplicative equivariance obviously carries over from the intensity to the
information matrix.

Lemma 1 If the intensity function λ is multiplicatively equivariant with respect to g̃0
with multiplicative factor c0 > 0, then the information matrix is (multiplicatively)
equivariant with respect to g = id and g̃0,M(ξ ; g̃0(β)) = c0M(ξ ;β).

To transfer optimal designs by Theorem 1, it remains to show that the criteria
under consideration are order preserving with respect to transformations which act
multiplicatively on the intensity. By Lemma 1, we directly get det(M(ξ ; g̃0(β))) =
cp0 det(M(ξ ;β)) and, hence, the equivariance of the D-criterion.

For the IMSE-criterion, we additionally require multiplicative equivariance of the
function η′, i.e., η′(f(x)T g̃0(β)) = cηη

′(f(x)Tβ) uniformly in x for some constant

cη > 0. This condition is fulfilled for generalized linear models with canonical link
because of η′ = λ. Then, the equivariance property V(g̃0(β); ν) = c2ηV(β; ν) of the

weighting matrix yields equivariance, IMSE(ξ ; g̃(β), ν) = c−1
0 c2ηIMSE(ξ ;β, ν).

Corollary 5 If the intensity function λ is multiplicatively equivariant with respect to
g̃0, then

(a) A locally D-optimal design ξ∗ at β is also locally D-optimal at β̃ = g̃0(β),
(b) If additionally η′ is multiplicatively equivariant, a locally IMSE-optimal design

ξ∗ at β with respect to ν is also locally IMSE-optimal at β̃ = g̃0(β) with respect
to ν.

When a whole family of such transformations g̃0 is available, as scaling by c̃ > 0
in the gamma model with inverse link or shifting the intercept in Poisson regression,
then we can use the result of Corollary 5 to reduce the number of parameters in
the optimization problem. Therefore, we first solve the optimization problem for a
standardized parameter setting and then transfer the obtained optimal design to a
general parameter vector by a suitable choice of the transformation g̃0. For example,
in the gamma model one component of the parameter vector can be set equal to 1 for
standardization. Then, a general parameter vector can be obtained by choosing c̃ equal
to the nominal value of the component of the parameter vector used for standardization.
Similarly, in Poisson regression, we can first set the intercept parameter equal to 0 and
then transfer the optimal design to the parameter vector with given nominal value β0.

Example (Example 1 continued) For the one-factor gamma model with simple linear
regression f(x)Tβ = β0 + β1x on X = [0, 1], the locally IMSE-optimal design at
(1, γ )T with respect to the discrete uniform weighting measure ν on the endpoints
{0, 1} assigns weights 1 − w∗ = 1/(2 + γ ) and w∗ = (1 + γ )/(2 + γ ) to 0 and 1,
respectively. Under scaling with c̃ = β0 > 0, these weights remain locally optimal
for any parameter vector β = (β0, β1)

T with β1/β0 = γ by Corollary 5. The cor-
responding reduced parameter region for γ is given by C = {γ ; γ > −1} which is
displayed in Fig. 2 as the vertical dashed line at β0 = 1. There the diagonal dotted line
represents one ray {β; β1 = γβ0} of values of β which are reduced to one specific
value of γ indicated by the intersection of the ray with the vertical line at β0 = 1. ��
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Fig. 2 Parameter region B for the one-factor gamma model on [0, 1]; reduced parameter region C (vertical
dashed line); values of β reduced to γ = 1 (diagonal dotted line)

Fig. 3 Scaled parameter region of the two-factor gamma model on [0, 1]2; the diagonal dashed line repre-
sents γ1 = γ2

Example (Example 2 continued) Similarly, in the two-factor gamma model on [0, 1]2,
the three-dimensional parameter vector β = (β0, β1, β2)

T can be reduced to β̃ =
(1, γ1, γ2)T , where γ1 = β1/β0 and γ2 = β2/β0, by setting the value of the intercept
parameter β0 equal to 1. As a consequence, the three-dimensional parameter region B
in Fig. 1 is reduced to the two-dimensional region C for γ = (γ1, γ2)

T in Fig. 3 which
is characterized by the linear constraints γ1 > −1, γ2 > −1, and γ1 + γ2 > −1. The
optimality regions Bk , k = 1, . . . , 4 of Table 1 can now be described in terms of the
ratios γ j = β j/β0, j = 1, 2, resulting in B1 ≡ 1− γ1γ2 ≤ 0, B2 ≡ (1+ γ1 + γ2)

2 −
γ1γ2 ≤ 0, B3 ≡ (1 + γ1)

2 + γ1γ2 ≤ 0 and B4 ≡ (1 + γ2)
2 + γ1γ2 ≤ 0, as exhibited

in Fig. 3. The scaling property explains why the subregions in Fig. 1 constitute cones
in the three-dimensional Euclidean space. ��

By combination of the transformation g̃0 with the linear transformations of the
preceding Sect. 3, we get an extension of Corollaries 1 and 2 by Theorem 1.
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Corollary 6 If the intensity function λ is multiplicatively equivariant with respect to
g̃0, then:

(a) If ξ∗ is locally D-optimal on X at β, then (ξ∗)g is locally D-optimal on Z at
β̃ = g̃0(Q−T

g β),
(b) If ξ∗ is locally IMSE-optimal on X at β with respect to ν and if, additionally,

η′ is multiplicatively equivariant, then (ξ∗)g is locally IMSE-optimal on Z at
β̃ = g̃0(Q−T

g β) with respect to νg.

This result indicates that for a given transformation g of x the associated trans-
formation g̃(β) = g̃0(Q−T

g β) of β needs not be unique. Moreover, we may let the
transformation g̃0 = g̃0,β depend on the parameter vector β, where the intensity
function λ is multiplicatively equivariant with respect to g̃0,β for any β. Then, also
the multiplicative factor c0 = c0,β will depend on β so that λ(f(x)T g̃0,β(β)) =
c0,βλ(f(x)Tβ). In combination with the linear transformation of Sect. 3, this leads to
a nonlinear transformation g̃(β) = g̃0,β(Q−T

g β) of the parameter vector β so that the
information matrix is equivariant with respect to the pair (g, g̃) of transformations.
For the gamma model with inverse link, this can be accomplished by choosing the
scaling factor c̃ = c̃β in dependence on β.

Example (Example 1 continued) For the one-factor gamma model with simple linear
regression on the unit interval [0, 1], consider the reflection g(x) = 1 − x that maps
[0, 1] onto itself. The corresponding linear transformation of the parameter vector β =
(β0, β1)

T is given by Q−T
g β = (β0 + β1, −β1)

T . In particular, for a scaled reduced
parameter vector β = (1, γ )T , γ = β1/β0, we haveQ−T

g β = (1+γ, −γ )T . In order

to obtain a transformed parameter vector β̃ = g̃(β) in reduced form, β̃0 = 1 the linear
transformation has to be rescaled by c̃β = 1/(1 + γ ). This results in the nonlinear
transformation g̃((1, γ )T ) = (1, −γ /(1 + γ ))T . Note that this transformation is a
one-to-one mapping of the maximal region C = (−1,∞) for the reduced parameter
γ .

For general values of the first entry β0 in the parameter vector β, the value of β0
can be preserved by the nonlinear transformation g̃(β) = β0/(β0 + β1)QT

g β, where
the scaling factor c̃β = β0/(β0 + β1) = 1/(1 + γ ) only depends on γ = β1/β0. ��

The result of Corollary 6 carries over directly also for the nonlinear transformation,
when g̃0 is replaced by g̃0,β .

Example (Example 1 continued) For the one-factor gamma model with simple linear
regression on [0, 1] and reflection g(x) = 1−x , the weighting measures ν specified in
Proposition 1 are all invariant with respect to g, i.e., νg = ν. The corresponding locally
IMSE-optimal designs ξ∗ on [0, 1] with respect to ν are supported by the endpoints
with optimal weights 1− w∗ and w∗ at 0 and 1, respectively. Then, the designs (ξ∗)g
which assign the interchanged weights w∗ to 0 and 1 − w∗ to 1 are locally IMSE-
optimal on [0, 1] with respect to ν at β̃ = c̃βQ−T

g β = (β0, −β1/(1 + γ ))T .

The standardization with respect to the intercept can be extended to more complex
models.
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Example (Example 2 continued)In the two-factor gamma model on [0, 1]2, we con-
sider the transformation g2(x) = (1 − x1, 1 − x2)T of simultaneous reflection of
both explanatory variables and the corresponding rescaled transformation g̃2(β) =
c̃βQ−T

g2 β of β which leaves the intercept β0 unchanged, i.e., c̃β = β0/(β0 + β1 + β2)

and, hence, g̃2(β) = β0(β0,−β1,−β2)
T /(β0 + β1 + β2). The scaling factor c̃β =

1/(1 + γ1 + γ2) only depends on the reduced parameters γ j = β j/β0. j = 1, 2,
so that the one-to-one transformation γ → −(1/(1 + γ1 + γ2))γ is induced on the
reduced parameter region C onto itself. Hence, if a design ξ∗ is locally D-optimal
at γ which assigns weights w∗

i to xi , i = 1, . . . , 4, then the design (ξ∗)g2 which
assigns weights w∗

4 , w
∗
3 , w

∗
2 and w∗

1 to x1, . . . , x4, respectively, is locally D-optimal
at −(1/(1 + γ1 + γ2))γ .

Similar results hold for IMSE-optimality. ��
For maximin efficiency criteria, we additionally allow here that the multiplica-

tive factor in the equivariance of the underlying local criteria may depend on the
parameter β, c = cβ . This does not affect the arguments in (22), and hence, the
resulting maximin efficiency criteria remain equivariant. The homogeneous version
of the local D-criterion and the local IMSE-criterion is multiplicatively equivariant
with cβ = c−1

0,β det(Qg)
−2/p > 0 and cβ = c0,β > 0, respectively. Hence, for both the

maximin D-efficiency and the maximin IMSE-efficiency criterion their value is not
changed under the transformation. These criteria are thus equivariant, and the result
of Corollary 4 remains valid so that maximin efficient designs can be transferred also
for nonlinear transformations g̃(β) = g̃0,β(Q−T

g β) when the intensity function is
multiplicatively equivariant with respect to g̃0,β for all β.

5 Invariance

While equivariance can be used to transfer optimal designs, the concept of invariance
allows reduction in the complexity of finding optimal designs by exploiting symmetries
(see, e.g., Schwabe [38, ch. 3], in the case of linear models). As in linear models, we
need a (finite) group G of transformations g which map the experimental region
X onto itself. For each of these transformations g, the regression functions f are
assumed to be linearly equivariant, f(g(x)) = Qgf(x). For generalized linear models,
we require additionally that the corresponding transformations g̃ of β also constitute
a group G̃ such that the set (G, G̃) of pairs (g, g̃) of transformations shares the group
structure. This requirement is automatically fulfilled for the linear transformations
g̃(β) = Q−T

g β, because the transformation matrices Qg , g ∈ G, constitute a group
with respect to matrix multiplication. For extended equivariance (Sect. 4), also the
factor c0,β has to share the group property. This holds in the gammamodel for rescaling
by c̃β which leaves the value for the standardized component of the parameter vector
unchanged. Similarly, for Poisson regression, standardization of the intercept to 0
preserves the group structure.

Example (Example 1 continued) For the one-factor gamma model with simple lin-
ear regression on [0, 1], the reflection g(x) = 1 − x maps [0, 1] onto itself and
is self-inverse, i.e., g−1 = g. Hence, g together with the identity id constitute a
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group G = {id, g} of transformations. For g the associated transformation of the
parameter vector β is g̃(β) = Q−T

g β = (β0 + β1, −β1)
T in the linear case and

g̃(β) = c̃βQ−T
g β = (β0, −β0β1/(β0 + β1))

T in the extended case. As always, the
identity onB is associated with the identity id onX . Because of c̃g̃(β) = 1+γ = 1/c̃β

also g̃ is self-inverse, and the group structure is retained. ��
The final ingredient for invariance is that the optimality criterion 	 is invariant

with respect to the group G of transformations, i.e., 	(ξ g) = 	(ξ) for all g ∈ G and
any design ξ . Then, we can make use of convexity arguments to improve designs by
symmetrization. For this, define by ξ̄ = (1/|G|)∑

g∈G ξ g the symmetrized version
of a design ξ with respect to the group G, where |G| denotes the number of elements
in the (finite) group G. Note that ξ̄ is itself a design and that ξ̄ is invariant with respect
to G, i.e., ξ̄ g = ξ̄ for all g ∈ G. If 	 is invariant and convex, we obtain

	(ξ̄) ≤ 1

|G|
∑

g∈G
	(ξ g) = 	(ξ), (23)

where the inequality follows from convexity and the equation from invariance. From
this majorization property, we can conclude that the designs which are invariant with
respect to G constitute an essentially complete class with regard to	. This means that
we can confine the search for a 	-optimal design to the class of invariant designs.

Theorem 2 If 	 is invariant (with respect to G) and convex, then there exists an
invariant design ξ∗ (with respect to G) which is 	-optimal over all designs.

The class of invariant designs is often much smaller than the class of all designs,
and optimization can be simplified. Invariant designs are uniform on orbits Ox =
{g(x); g ∈ G} ⊂ X , i.e., all x in the same orbit have the same weight. In particular,
for an invariant design, either all x in an orbit O are included with weight wO or the
whole orbit is not in the support of the design. For optimization in the class of invariant
designs, it remains to find the optimal orbits and the corresponding optimal weights
which is often a much easier task than to optimize over all possible designs.

Example (Example 1 continued) For the reflection group G = {id, g}, g(x) = 1 − x
on [0, 1], the orbits are all of the form {x, 1 − x} for x < 1/2 and {1/2} for x = 1/2,
respectively. In the one-factor gammamodel with simple linear regression, it is known
that the optimal designs are supported at the endpoints 0 and 1 (see Gaffke et al. [14]).
Thus, the only remaining orbit for an optimal design is {0, 1}, and hence, there is only
one invariant design which assigns equal weights 1/2 to each endpoint. This design
is optimal with respect to each convex invariant criterion. ��

In the case of local optimality criteria, the requirement of invariance is rather restric-
tive. In particular, the local parameter β has to be invariant under all transformations,
i.e., g̃(β) = β for all g ∈ G. This condition typically holds only for a few values of
β.

Example (Example 1 continued) For the one-factor gamma model with simple linear
regression under the reflection g(x) = 1 − x , the parameter β is only invariant if
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β1 = 0, i.e., there is no effect of the covariate x . The invariant design which assigns
equal weights 1/2 to the endpoints is locally optimal at β for β1 = 0.

Example (Example 2 continued) For the two-factor gamma model with multiple lin-
ear regression on [0, 1]2, the reflections g2, g3, and g4 are all self-inverse and the
composition of any two reflections yields the third one. Together with the identity
g1 = id, the reflections constitute a group G = {g1, g2, g3, g4} of transformations.
Locally optimal designs are supported at the vertices of [0, 1]2 (see Gaffke et al. [14]).
The vertices lie all on one orbit, and hence, the unique invariant design on the vertices
assigns equal weights 1/4 to each of the vertices. Under the group G, the parameter
vector β is only invariant if β1 = β2 = 0, i.e., there is no effect for both covariates x1
and x2. Thus, the invariant design which assigns equal weights 1/4 to the vertices is
locally optimal at β only in the case β1 = β2 = 0. ��

Note that in both examples above locally optimal designs are obtained for the
situation of constant intensity λ. In that case, the information matrix is proportional
to that in the corresponding linear model with the same linear component. Hence, the
locally optimal design coincides with the optimal design in the linear model (see Cox
[6, Section 4]).

Inmore complex situations, however, invariancemay be helpful for local optimality
at certain parameter values which are invariant with respect to g̃ for all g ∈ G. To this
end, first note that in the case of a finite groupG of transformations g the corresponding
transformation matrices Qg are unimodal, i.e., | det(Qg)| = 1 (see Schwabe [38,
ch. 3]). For the IMSE-criterion, we additionally require that the weighting measure ν

is invariant with respect to G, i.e., νg = ν for all g ∈ G.

Corollary 7 If g̃(β) = β for all g ∈ G, then there exists a locally D-optimal design
ξ∗ at β which is invariant with respect to G.

If additionally ν is invariant with respect to G, then there exists a locally IMSE-
optimal design ξ∗ at β with respect to ν which is invariant with respect to G.

Example (Example 2 continued) In the two-factor gamma model on [0, 1]2, we con-
sider nominal parameter values β with β1 = 0, i.e., where the first covariate x1 has no
effect. Such parameter vectors are invariant with respect to the linear transformation
g̃3(β) = (β0 + β1,−β1, β2)

T associated with the reflection g3(x) = (1 − x1, x2)T

of the first covariate x1. As the transformation g3 is self-inverse, together with the
identity id it constitutes a group G3 = {id, g3}. Then, the local D-criterion at such β

with β1 = 0 is invariant with respect to G3. By Corollary 7 a locallyD-optimal design
can be found in the class of designs which are invariant with respect to G3. Moreover,
here we can also restrict attention to designs supported by the vertices. With respect
to G3, the relevant orbits are then (x1, x2) and (x3, x4), and invariant designs on the
vertices have equal weights w at x1 and x2 and equal weights 1/2 − w at x3 and x4,
respectively. We will denote such designs by ξ̄w. The optimization problem for a local
D-optimal design reduces to finding the optimal weight w∗. Note that for β1 = 0
the intensities on the orbits are constant, i.e., λ1 = λ2 and λ3 = λ4, where again
λi denotes the intensity at xi . For the designs ξ̄w, the determinant of the information
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Fig. 4 Optimal weightsw∗ in the two-factor gammamodel when β1 = 0. The vertical dashed lines indicate
γ2 = 0 and γ2 = 2. The horizontal dashed line indicates w∗ = 0.25

matrix becomes

det(M(ξ̄w;β)) = 2(λ21λ3w
2(1/2 − w) + λ1λ

2
3w(1/2 − w)2)

in the case β1 = 0. The optimal weight w∗ can be determined by straightforward
computations as

w∗ =
3γ2 − 1 +

√
12γ 2

2 + 1

6γ2(γ2 + 2)
, (24)

for β2 �= 0, and w∗ = 1/4 for β2 = 0 or β2 = 2β0. The dependence of the optimal
weight w∗ on γ2 is shown in Fig. 4. The resulting invariant design ξ̄w∗ is locally
D-optimal at β with β1 = 0.

An analogous result holds for β2 = 0, when the reflection g4 of the second covariate
x2 is used instead of g3. ��

Example 3 In the two-factor gamma model on [0, 1]2, there are further symmetries
which can be employed. In particular, we may consider parameter vectors β with
equal slopes, i.e., β1 = β2 = β for some β when both covariates x1 and x2 have
an effect of the same size. These values for the parameter vector β are invariant
with respect to the linear transformation g̃5(β) = (β0, β2, β1)

T associated with the
permutation g5(x) = (x2, x1)T of the covariates. The transformation g5 is self-inverse
and constitutes together with the identity id a group G5 = {id, g5}. Because locally
optimal designs are supported by the vertices of [0, 1]2, there are only three relevant
orbits {x1}, {x2, x3}, and {x4}. Optimal invariant designs can thus be characterized
by two weights w∗

1 assigned to x1 and w∗
4 assigned to x4, while the remaining equal

weights w∗
2 = w∗

3 = (1 − w∗
1 − w∗

4)/2 are assigned to each of x2 and x3.
For the local D-criterion, optimal weights have been obtained (see Gaffke et al.

[14, Theorem 4.3]). There it was shown that minimally supported designs are locally
D-optimal at β with β1 = β2 = β for β > β0 or −β0/2 < β ≤ β0/3 with weights
w∗
2 = w∗

3 = 1/3 and w∗
1 = 1/3 or w∗

4 = 1/3, respectively. In the intermediate case
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Table 2 Locally IMSE-optimal
weights in the two-factor gamma
model on [0, 1]2

γ 0 1 2 3 10 −3/7

w∗
1 0.250 0.250 0.242 0.236 0.214 0.000

w∗
2 = w∗

3 0.250 0.300 0.362 0.382 0.393 0.382

w∗
4 0.250 0.150 0.034 0.000 0.000 0.236

−β0/3 < β ≤ β0 the locally D-optimal designs are supported on all four vertices
with weights

w∗
1 = 3γ + 1

4(2γ + 1)
, w∗

2 = w∗
3 = (γ + 1)2

4(2γ + 1)
and w∗

4 = 1 − γ

4
,

where γ = β/β0. In particular, uniform weights w∗
i = 1/4 are again seen to be

optimal in the case β = 0 of constant intensity, as indicated in Fig. 4 by the vertical
and horizontal dashed lines at γ2 = β2 = 0 and w∗ = 0.25, respectively.

Also for IMSE-optimality, the optimal weights depend only on γ = β/β0 by
the scaling property of Sect. 4. The locally optimal weights can only be determined
numerically. For selected values of γ , we present some numerical solutions in Table 2
in the case of the uniform weighting measure ν on [0, 1]2 which is invariant with
respect to g5. These results were obtained by the method of augmented Lagrange
multipliers implemented in the R package Rsolnp [35]. Similar to the D-criterion,
the locally IMSE-optimal designs are seen to be minimally supported on x1, x2, and x3
when the standardized effect γ = β/β0 is sufficiently large, but the optimal weights
vary in contrast to the local D-criterion. All four vertices are required for smaller
values of γ ≥ 0. Note that this parameter region is considerably larger here than
for the D-criterion. In the case γ = 0, the optimal weights are again uniform on all
vertices. Moreover, by the additional reflection g2(x) = (1− x1, 1− x2)T the optimal
weights can be transferred from γ > 0 to γ < 0 by the nonlinear transformation g̃2
described in Sect. 4. For example, in the last column of Table 2, the locally IMSE-
optimal design at β̃ = (1,−3/7,−3/7)T is obtained from the locally IMSE-optimal
design atβ = (1, 3, 3)T by g2 and the corresponding (nonlinear) transformation g̃2(β)

which results in γ̃ = −γ /(1 + 2γ ).

We now turn to maximin efficiency where invariance can become a powerful tool.
For this, we additionally require that the subregion B′ of interest is also invariant
with respect to the pair (g, g̃) of transformations, i.e., g̃(B′) = B′ for all g ∈ G.
As mentioned in Sect. 3, the homogeneous version of the D-criterion and the IMSE-
criterion is multiplicatively equivariant. Hence, by (22) both maximin D- and IMSE-
efficiency are invariant with respect to any group G of transformations satisfying the
conditions of this section.

Corollary 8 If g̃(B′) = B′ for all g ∈ G, then there exists a maximin D-efficient design
ξ∗ on B′ which is invariant with respect to G.

If additionally ν is invariant with respect to G, then there exists a maximin IMSE-
efficient design ξ∗ on B′ with respect to ν which is invariant with respect to G.
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Example (Example 1 continued) In the one-factor gamma model with simple linear
regression on [0, 1], the invariant design ξ̄ which assigns equal weights 1/2 to the
endpoints is both maximin D-efficient and maximin IMSE-efficient with respect to
the uniform measure ν on [0, 1] on B as has already been pointed out at the end of
Sect. 3.

However, in contrast with the local criteria, there is no general majorization argu-
ment available for maximin efficiency criteria which allows restriction of the support
of an optimal design to the extremal points of the experimental region. Therefore,
to keep argumentation simple and to concentrate on the concept of invariance, we
deliberately confine the support of the designs under consideration to these endpoints.
Then, with respect to reflection, g(x) = 1− x , the only invariant design which assigns
equal weights 1/2 to the endpoints is maximin efficient for any invariant criterion. In
particular, this design is maximin IMSE-efficient on B with respect to any invariant
weighting measure ν as specified in Proposition 1. ��

Although, generally, the determination of the efficiencies requires the knowledge of
all locally optimal designs, the maximin efficient design may be constructed without
this information as the above example shows. This result can be extended to more
complex models.

Example (Example 2 continued) In the two-factor gamma model on [0, 1]2 with mul-
tiple regression, we first consider maximin efficiency on the region B of all possible
values for the parameter vector. This region is invariant under the transformations
associated with the group G = {g1, . . . , g4} of reflections of the covariates. As in
the case of the one-factor gamma model, we deliberately confine the support of the
designs to the vertices x1, . . . , x4 of the experimental region to keep argumentation
simple. Then, there is only one orbit which contains all vertices, and the only invariant
design with respect to G is the uniform design ξ̄ on the vertices which assigns equal
weights 1/4 to each vertex. Hence, the design ξ̄ is maximin efficient on B for any
invariant criterion with respect to G.

This result carries over to any parameter subregion B′ which is invariant with
respect to G. For example, if the intercept β0 is restricted to a subset, β0 ∈ B0, of
its marginal region (0,∞) or, more specifically, set to a fixed value (B0 = {β0}),
while the slopes may vary across their corresponding (conditional) regions, then the
resulting subregion B′ = {β ∈ B; β0 ∈ B0} is invariant with respect to the rescaled
transformations g̃ associated with the transformations g ∈ G. Hence, the uniform
design ξ̄ is also maximin efficient on B′ for any invariant criterion with respect to G.
In particular, this holds for the reduced parameter region C displayed in Fig. 3 when
β0 = 1 is fixed. ��

Invariance can also be employed in cases where there are fewer symmetries, and
thus, there is more than one orbit, so that the weights of the orbits still have to be
optimized.

Example (Example 3 continued) In the two-factor gamma model on [0, 1]2, we are
now only interested in the parameter vectors β with equal slopes, i.e., β1 = β2 = β.
We thus consider the parameter subregion B′ = {(β0, β, β)T ; β > −β0/2, β0 > 0}.
In terms of the reduced parameter γ = (γ1, γ2)

T , γ j = β j/β0, the subset B′ reduces
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to C′ = {(γ, γ )T : γ > −1/2} which is exhibited in Fig. 3 by the diagonal dashed
line.

For the transformation g2(x) = (1−x1, 1−x2)T of simultaneous reflection of both
explanatory variables, we use the rescaled transformation g̃2(β) = c̃βQ−T

g2 β of the
parameter vector β which leaves the intercept β0 unchanged, i.e., c̃β = β0/(β0+β1+
β2) = 1/(γ0 + γ1 + γ2) which specializes to c̃β = β0/(β0 + 2β) = 1/(1 + 2γ ) on
the subsets B′ and C′, respectively. In particular, the relevant reduced slope parameter
γ > −1/2 is mapped to −γ /(1+ 2γ ) > −1/2 as mentioned before. Obviously, both
B′ and C′ are invariant with respect to g̃2.

To make use of the symmetries with respect to the transformations g2 and g5
jointly, we consider the group G ′ = {id, g2, g5, g6} generated by them, where the
composition g6 of g2 and g5 is the reflection at the secondary diagonal of the unit
square X , g6(x) = (1− x2, 1− x1)T . We again restrict attention to the vertices of the
experimental region. Then there are just two orbits {x1, x4} and {x2, x3} of the group
G ′. The invariant designs ξ̄w can thus be characterized by the weight w assigned to
each of the settings x1 and x4 in the first orbit, 0 < w < 1/2, while weight 1/2 − w

is assigned to each of the settings x2 and x3 in the second orbit. Design optimization
is then reduced to determining the optimal weight w.

The determinant of the invariant design ξ̄w is given by

det(M(ξ̄w;β)) = w(1 − 2w)
(
(1 + γ )2 + γ 2(1 − 2w)

)

2β6
0 (1 + γ )4(1 + 2γ )2

locally at β = (β0, β, β)T , where γ = β/β0. To determine the maximin D-efficient
design over B′, we can confine the analysis to the reduced parameter region C′, i.e.,
γ > −1/2. For γ ≥ 1 the minimally supported design ξ∗

β with equal weights 1/3 on

x1, x2, and x3 is locally D-optimal and has det(M(ξ∗
β ;β)) = β6

0 (1 + γ )4/27. Hence,

for the D-efficiency of ξ̄w at γ ≥ 1, we get

effD(ξ̄w;β)3 = 27
w(1 − 2w)

(
(1 + γ )2 + γ 2(1 − 2w)

)

2(1 + 2γ )2
. (25)

The efficiency is decreasing in γ ≥ 1. Therefore, its infimum infγ≥1 effD(ξ̄w;β)3 =
27w(1−w)(1−2w)/4 is obtained when γ tends to∞. This expression is maximized
by w∗ = (3 − √

3)/6 = 0.2113, and the design ξ̄w∗ is maximin D-efficient over
γ ≥ 1within the class of invariant designs ξ̄w. This also holds for the parameter region
−1/2 < γ ≤ −1/3 by symmetry considerations with respect to the transformation
g2 (or g6). For the intermediate region (−1/3 < γ < 1), the efficiency has to be
computed numerically. The D-efficiency of ξ̄w∗ is displayed in Fig. 5. By inspection
of the plot, it can be concluded that ξ̄w∗ is maximin D-efficient on C′ and its minimal
D-efficiency 3(w∗(1 − w∗)(1 − 2w∗)/4)1/3 = 0.8660 is attained at the boundary of
the parameter region. This result carries over to the whole parameter regionB′ of equal
slopes as well as to subregions {β ∈ B′; β0 ∈ B0} with constraints on the intercept
β0.
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Fig. 5 D-efficiency of the maximinD-efficient design ξ̄w∗ (solid line) and the uniform design ξ̄1/4 (dashed
line); the vertical dashed lines indicate the lower bound (γ = −1/2) and the thresholds γ = −1/3 and
γ = 1 between the subregions

For comparison, theD-efficiency is also plotted in Fig. 5 for the uniform design ξ̄1/4
which is locally optimal at γ = 0. The maximin D-efficiency of ξ̄1/4 is also attained
at the boundary and can be computed to be 0.8585 by (25). Hence, the maximin
D-efficiency of ξ̄1/4 is slightly worse than for the maximin D-efficient design ξ̄w∗ . ��

6 Discussion

In this article, we present an outline of the concept of invariance and equivariance in
the design of experiments for generalized linear models. In contrast with the well-
known results in linear models, where only the experimental settings are transformed,
we have to consider pairs of transformations in generalized linear models which act
simultaneously on the experimental settings and on the location parameters in the lin-
ear component. We focus on local optimality and maximin efficiency for the common
D- and IMSE-criteriawhich allow awide range of transformations for the experimental
settings like scaling, permutations or reflections. As in linear models, the transforma-
tion of the experimental settings has to act in a linear way on the regression functions
of the linear component. The parameters can then be transformed linearly in such a
way that the value of the linear component and, hence, of the intensity is not changed
(see Radloff and Schwabe [34]). Besides this natural choice, nonlinear transforma-
tions of the parameters may also be employed, if additional properties of the intensity
function can be used. We illustrate this feature by the gamma model with inverse link
for which the intensity is only scaled by a multiplicative factor based on the parameter.
This scaling does not affect standardized design criteria like maximin efficiency, and
invariance can also be used here. In Table 3, we exhibit which concepts of equivariance
and invariance can be used under the model conditions of linear and generalized linear
models and, in particular, for the gamma model with canonical (inverse) link.

The general results on equivariance and invariance in generalized linear models
can be extended in a straightforward manner to other model specifications in which
the intensity depends only on the linear component, as in censoring (see Schmidt and

123



Journal of Statistical Theory and Practice (2021) 15 :93 Page 29 of 32 93

Table 3 Transformations for equivariance (Equiv.) and invariance (Inv.); “+” indicateswhether this property
is required / can be used

Transformation Linear model GLM Gamma (inverse link)
Equiv. Inv. Equiv. Inv. Equiv. Inv.

g X → Z X → X X → Z X → X X → Z X → X
f ◦ g = Qgf + + + + + +
Group G + + +
g̃ B → B̃ B → B B → B̃ B → B
Linear Q−T

g Q−T
g Q−T

g Q−T
g

Group (G, G̃) + +
Nonlinear c̃·Q−T

g c̃·Q−T
g

Schwabe [37], for examples). How far the results on nonlinear transformations can be
extended, however, depends on the structure of the intensity function.

For other optimality criteria, such as A-, E- or, more generally, Kiefer’s 	q -criteria
which are based on the eigenvalues of the information matrix, the use of equivariance
and invariance is limited, because additional structures of the transformations would
be required, like orthogonality of the transformation matrices Qg .

For the case of maximin efficiency in the gamma model, it would be also desirable
to obtain the majorization results as we have found for local optimality. These would
allow us to restrict the search for the optimal experimental settings to the extremal
points of the experimental region. However, the findings in Gaffke et al. [14] do
not carry over, because the arguments used there are of a local nature and do not
work uniformly on the parameter region. Alternatively, equivalence theorems could be
employed for establishing maximin efficiency (see Pronzato and Pázman [31, ch. 8]),
but in their formulation these theorems require that the minimal efficiency is attained
inside the parameter region which is violated in our examples. It thus remains an open
problem whether the restriction to the extremal points of the experimental region can
be justified.

The concepts of equivariance and invariance can further be extended tomodels with
random effects (see Graßhoff et al. [16] and Debusho and Haines [7] for the estimation
of population parameters, and Prus andSchwabe [32] for individual prediction in linear
mixed models).

Appendix

Proof of Proposition 1 First note that by themajorization argument in Gaffke et al. [14]
there is an optimal design of the form ξw which assigns weight w to 1 and weight
1 − w to 0. The information matrix for ξw and its inverse are

M(ξw;β) =
(

(1 − w)/a2 + w/b2 w/b2

w/b2 w/b2

)

and

M(ξw;β)−1 =
(

a2/(1 − w) −a2/(1 − w)

−a2/(1 − w) a2/(1 − w) + b2/w

)

,
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where a = β0 and b = β0 + β1 for simplification.
For givenmeasure ν, denote by vk = ∫

xk/(β0+β1x)4ν(dx), k = 0, 1, 2 the entries

in the weighting matrix V(β; ν) =
(

v0 v1
v1 v2

)

. Then, the IMSE-criterion becomes

IMSE(ξw;β, ν) = trace(V(β; ν)M(ξw;β)−1)

= (1/(1 − w))a2(v0 − 2v1 + v2) + (1/w)b2v2.

To obtain the vk , we introduce the auxiliary terms ck = ∫
1/(β0 + β1x)kν(dx),

k = 2, 3, 4. Then, the vk can be represented as

v0 = c4, v1 = (c3 − ac4)/(b − a) and v2 = (c2 − 2ac3 + a2c4)/(b − a)2,

if β1 = b − a �= 0. The case β1 = 0, when the intensity is constant, follows directly
from the corresponding linear model.

(a) For the (continuous) uniform measure ν on [0, 1] we have ck = (a−k+1 −
b−k+1)/((k − 1)(b − a)) and, hence,

v0 = a2 + ab + b2

3a3b3
, v1 = 2a + b

6a2b3
and v2 = 1

3ab3
.

From this, we get

IMSE(ξw;β, ν) = 1

3ab

(
1

w
+ 1

1 − w

)

which is optimized for w∗ = 1/2.
(b) For the (discrete) uniform measure ν on {0, 1}, we have ck = (a−k + b−k)/2 and,

hence,

v0 = (a−4 + b−4)/2, and v1 = v2 = b−4/2.

From this, we get

IMSE(ξw;β, ν) = 1

2

(
1

b2w
+ 1

a2(1 − w)

)

which is optimized for w∗ = a/(a + b).

(c) For the one-point measure ν at 1/2, we have ck = 2k

(a+b)k
and, hence, vk =

24−k/(a + b)4. From this, we get

IMSE(ξw;β, ν) = 4

(a + b)4

(
a2

1 − w
+ b2

w

)

which is optimized for w∗ = b/(a + b).
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