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Abstract
In crossover designs, each subject receives a series of treatments, one after the other in
p consecutive periods. There is concern that the measurement of a subject at a given
period might be influenced not only by the direct effect of the current treatment but
also by a carryover effect of the treatment applied in the preceding period. Sometimes,
the periods of a crossover design are arranged in a circular structure. Before the first
period of the experiment itself, there is a run-in period, in which each subject receives
the treatment it will receive again in the last period. Nomeasurements are taken during
the run-in period.We consider the estimate for direct effects of treatments which is not
corrected for carryover effects. If there are carryover effects, this uncorrected estimate
will be biased. In that situation, the quality of the estimate can bemeasured by themean
square error, the sum of the squared bias and the variance.We determineMSE-optimal
designs, that is, designs for which the mean square error is as small as possible. Since
the optimal design will in general depend on the size of the carryover effects, we also
determine the efficiency of some designs compared to the locally optimal design. It
turns out that circular neighbour-balanced designs are highly efficient.
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1 Introduction

In a crossover design, the effects of t treatments are compared by giving each of n
subjects a series of treatments in p consecutive periods. The response of each unit
in each period is measured and used to estimate the so-called direct effects of the
treatments. Usually, for experiments of this kind, there is concern that a treatment
given in period i , 1 ≤ i ≤ p, in addition to its direct effect will also have a carryover
effect that influences the measurement in period i + 1. An important application of
crossover designs is in sensory experiments, where each assessor evaluates a number
of products, one after the other. Here, a carryover effect may for instance be caused
by a lingering taste of a product.

There are two options to deal with carryover effects. One possibility is to explicitly
include carryover effects in the model and use an estimate that corrects for carryover
effects. There is a vast literature on designs for the corrected estimate, see, e.g. [3].

Another approach is to neglect the carryover effect and use an uncorrected estimate
which does not correct for carryover effects. In sensory experiments, the analysis is
usually done with the uncorrected estimate. In most cases, the experimenter then uses
technical measures like, e.g. washout with a neutral taste to reduce carryover.

To deal with the, hopefully small, carryover effects whichmay be present in spite of
washout, some authors recommend using neighbour-balanced designs as a precaution
to minimize the effects of carryover, see, e.g. [11, p. 189]. Neumann and Kunert [12]
have formally shown that the use of neighbour-balanced designs can minimize the
mean square error of the uncorrected estimate.

In a circular crossover design, there is a run-in period where each unit receives a
treatment but no measurement is made. During the run-in period of a circular design,
each unit receives the treatment which it will receive again in the last period. Hence,
there is a carryover effect in each period. Circular designs were introduced to the area
of crossover designs by Magda [10]. There are some results on optimal designs for
estimators taking account of the carryover effects, e.g. by Kunert [7], Druilhet [5] and
Bailey and Cameron [2].

Azaïs [1] has shown that for circular designs and the uncorrected estimate, there is a
randomization which preserves the neighbour structure but validates an analysis with
the simple block model. This makes circular designs appealing for the uncorrected
estimate.

Thepresent paper extends the results of [12] to the class of circular designs. Since the
mean square error depends on the size of the carryover effects, we determine locally
optimal designs. If the number of periods is larger than the number of treatments,
however, it turns out that there are designsminimizing themean square error regardless
of the size of the carryover effects. If the number of periods is less or equal to the
number of treatments, the optimal design varies with the size of the carryover effects.
As long as the carryover effects are small, no experimental unit in the optimal design
receives the same treatment twice. When the carryover effects get larger, some units
will receive the same treatment twice in consecutive periods. The proportion of units
receiving the same treatment twice increases with increasing carryover effects. These
results remain correct whether there is a period effect in the model or not.
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2 Calculating theMSE

Define �t,n,p as the set of all circular crossover designs with t treatments, n units
(subjects) and p periods. We assume that the j-th observation on unit i can be written
as

yi j = αi + τd(i, j) + ρd(i, j−1) + εi j .

Here, αi , 1 ≤ i ≤ n, is the effect of the i-th unit, τd(i, j) is the effect of the treatment
given to the i-th unit in the j-th period by the design d ∈ �t,n,p, ρd(i, j−1) is the
carryover effect of the treatment given to unit i in period ( j−1)with ρd(i,0) = ρd(i,p),
and εi j is the error. The errors are independent, identically distributed with expectation
0 and variance σ 2.

To continue, we need some notation. Denote by AT the transpose of the matrix
A. If It is the t × t-identity matrix and 1t the t-dimensional vector of ones, define
Ht = It − 1

t 1t1
T
t . For a matrix A ∈ R

(n,r) set ω⊥(A) = In − A(AT A)+AT , where
B+ denotes the Moore–Penrose generalized inverse of the matrix B.

In vector notation, our model then can be written as

y = Uα + Tdτ + Fdρ + ε. (1)

Here, y = [y11, . . . , y1p, y21, . . . , ynp]T and ε is the vector of the errors. Further,
α, τ and ρ are the vectors of the unit, direct and carryover effects, respectively. The
matrices U , Td and Fd are the corresponding design matrices.

We assume that the analysis of the data is donewith amodel neglecting the carryover
effects, i.e.

y = Uα + Tdτ + ε. (2)

If we define Md11 = T T
d ω⊥(U )Td , then Md11 is the information matrix for the esti-

mation of direct effects in model (2). Note that Md11 and, therefore, M
+
d11 have row-

and column-sums 0. Consequently, HtM
+
d11 = M+

d11 and τ̂ = M+
d11T

T
d ω⊥(U )y is the

Gauss–Markov estimate for Htτ in model (2).
If there are carryover effects, then the uncorrected estimate τ̂ is biased. More pre-

cisely,

E(τ̂ ) = Htτ + M+
d11T

T
d ω⊥(U )Fdρ.

As in [12], we try to determine a design that minimizes the mean square error (MSE)
as a performance measure combining bias and variance.

The joint information matrix of direct and carryover effects in model (1) can be
written as

Md =
[
Md11 Md12

MT
d12 Md22

]
,
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where Md11 is as before and

Md12 = T T
d ω⊥(U )Fd ,

Md22 = FT
d ω⊥(U )Fd ,

see [3, p. 15].
Analogous to [12], we calculate theMSE in the followingway:We restrict attention

to designs which allow estimation of all contrasts of direct effects in the model without
carryover effects.BecauseMd11 is the informationmatrix for direct effects in themodel
without carryover effects, this is the set of all designs for which rank(Md11) = t − 1.
In the model with carryover effects, the MSE of the uncorrected estimate τ̂i − τ j for
any pair (i, j), i �= j then is

E
(
τ̂i − τ j − (τi − τ j )

)2 = σ 2	Ti j M
+
d11	i j +

(
	Ti j M

+
d11Md12ρ

)2
,

where 	i j is a t-dimensional vector with +1 in position i , −1 in position j and all
other entries 0. With the calculations done in [12], we get that the average MSE over
all pairs equals

2

t − 1

(
σ 2tr

(
M+

d11

) + ρT
(
MT

d12M
+
d11M

+
d11Md12

)
ρ
)

,

where tr(M) denotes the trace of a matrix M . As in [12], we consider the worst case
for given ρT Htρ = ∑

(ρi − ρ̄)2 = δ, say. That is, we consider

max
ρT Htρ=δ

(
2

t − 1

(
σ 2tr

(
M+

d11

) + ρT
(
MT

d12M
+
d11M

+
d11Md12

)
ρ
))

= 2

t − 1

(
σ 2tr(M+

d11) + δλ1

(
MT

d12M
+
d11M

+
d11Md12

))
,

where λi (M) is the i-th largest eigenvalue of the symmetric matrix M .
Wemultiply this equation by t−1

2 and get the following definition for our optimality-
criterion. For any d ∈ �t,n,p, we define

MSE(d) = σ 2tr(M+
d11) + δλ1

(
MT

d12M
+
d11M

+
d11Md12

)
.

The advantage of this criterion is that the multivariate purpose of minimizing the
bias and maximizing the precision of the estimators can be measured as a single real
number. In what follows, we assume without loss of generality that σ 2 = 1. Our aim
is to find a design that minimizes MSE(d).

We call a square matrix M completely symmetric, if there are numbers a and b
such that all diagonal elements are equal to a and all off-diagonal elements are equal
to b. We get the following bound for MSE(d).
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Theorem 1 For any design d ∈ �t,n,p, there is a lower bound for MSE(d), namely

MSE(d) ≥ (t − 1)2

tr(Md11)
+ δ

(tr(Md12))
2

(tr(Md11))2
.

Equality holds if both Md11 and Md12 are completely symmetric.

Proof The proof given for Proposition 1 of [12] remains valid in the circular case. ��
Note that for every Md11 and Md12 there are symmetrized versions M̄d11 and M̄d12

with

M̄di j = 1

t !
∑
�∈St

�T Mdi j�

for 1 ≤ i ≤ j ≤ 2. Here St is the set of all (t × t)−permutation matrices �. We see
that all M̄di j are completely symmetric and that tr(Mdi j ) = tr(M̄di j ).

For any design d, define qdi j = 1
n tr

(
Mdi j

)
for 1 ≤ i ≤ j ≤ 2. Then, the lower

bound in Theorem 1 can be written as

MSE(d) ≥ (t − 1)2

n qd11
+ δ

(
qd12
qd11

)2

.

Each subject in the design d receives a sequence s of treatments. Denote by T (s) and
F(s) the part of Td and Fd that corresponds to s and define

q11(s) = tr
(
T (s)Tω⊥(1p)T (s)

)
and q12(s) = tr

(
T (s)Tω⊥(1p)F(s)

)
.

We call two sequences s1 and s2 equivalent if s1 can be transformed to s2 by relabelling
the treatments. Two equivalent sequences then have the same qi j (s). If for given t and
p there are K , say, equivalence classes of sequences, we choose a representative
sequence sk, 1 ≤ k ≤ K for each class. As pointed out by Kushner [9], the qdi j then
are weighted means of the qi j (sk). More precisely, we get

qdi j =
K∑

k=1

qi j (sk)πd(k),

where πd(k) is the proportion of units of d receiving a sequence from class k, 1 ≤
k ≤ K .

Similarly to [12], we consider approximate designs. For approximate designs, we
remove the restriction that the number of experimental units to receive a given sequence
s must be an integer. For an approximate design, the πd(k), 1 ≤ k ≤ K can be any
set of nonnegative real numbers, subject to the condition that

∑K
k=1 πd(k) = 1. An

exact design d ∈ �t,n,p then is a special instance of an approximate design, where
each sequence is assigned to an integral number of units. We denote the set of all
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Table 1 Size of q11(s) and q12(s) for two classes of sequences in the case p > t

Class Sequence q11(s) q12(s)

A s1 p −
(
g2(t − s) − (g + 1)2s

)
/p p − t −

(
g2(t − s) − (g + 1)2s

)
/p

B s2 p −
(
g2(t − s) − (g + 1)2s

)
/p −

(
g2(t − s) − (g + 1)2s

)
/p

approximate designs for given t, n and p by �t,n,p. Note that the number n of units is
not important for an approximate design d ∈ �t,n,p. It plays a role in the calculation
of MSE(d), however. A design d ∈ �t,n,p is called symmetric, if each sequence s
from class k, 1 ≤ k ≤ K appears equally often (i.e. πd(k)/mk times, where mk is
the number of sequences in class k). If the design d is symmetric, then all Mdi j are
completely symmetric, 1 ≤ i ≤ j ≤ 2. We see from the definition of symmetrized
designs that for every combination of tr(Md11) and tr(Md12) there is a symmetric
design with the same traces. As these designs achieve the lower bound in Theorem 1,
we can restrict attention to symmetric designs.

3 Optimal Designs

For any sequence s, we observe that

q11(s) = p − 1

p

t∑
m=1

f 2s,m and q12(s) = Bs − 1

p

t∑
m=1

f 2s,m,

where fs,m is the frequency of treatment m in sequence s and Bs the number of peri-
ods where the treatment of the preceding period is repeated. These formulas show
that the qi j (s) depend on the sequence only through the treatment frequencies and
the number of periods where the preceding treatment is repeated. The position of the
treatments within the sequence does not matter. Hence, we will choose the represen-
tative sequences such that the periods with repeated treatments, if there are, come at
the end.

As a first step, let p > t . In this case, we can write p = gt + s with g and s being
integers and 1 ≤ s ≤ t . In this situation, there are two classes of particular interest,
namely A with representative sequence s1 and B with representative sequence s2,
where

s1 = [1, . . . , 1, 2, . . . , 2, . . . , t − 1, . . . , t − 1, t, . . . , t]
s2 = [1, 2, . . . , t, 1, 2, . . . , t, . . . , 1, 2, . . . , t, 1, 2, . . . , r ].

In these sequences, each treatment appears either g or g + 1 times. Note that it makes
no difference for q11(s1) and q12(s1) whether the treatments appearing g + 1 times
come early or late in s1.
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Table 2 Size of q11(s) and
q12(s) for the two classes of
possible sequences when
2 = p ≤ t

Class Sequence q11(s) q12(s)

A [1, 1] 0 0

B [1, 2] 1 −1

The values of q11(s) and q12(s) for the two classes A and B are displayed in Table 1.
It can be seen that

∑t
m=1 f 2s,m is minimal, if the fs,m, 1 ≤ m ≤ t, are as nearly equal

as possible. Consequently, s1 and s2 maximize q11(s).With that observation, theMSE-
optimal design can be determined as follows.

Theorem 2 Assume p > t and consider a symmetric approximate design d∗ ∈ �t,n,p

consisting of sequences from class A with proportion

π1 = p2 − s2 + ts

pt(p − t)

and of sequences from class B with proportion π2 = 1 − π1. We then get

∀d ∈ �t,n,p : MSE(d) ≥ MSE(d∗).

Proof In each sequence used by d∗, each treatment in each unit appears either g or
g + 1 times. Therefore, we have that

qd∗11 = max
d

{qd11}

and

MSE(d) ≥ (t − 1)2

n qd11
+ δ

(
qd12
qd11

)2

≥ (t − 1)2

n qd11
≥ (t − 1)2

n qd∗11
.

Observe that the choice of π1 implies that qd∗12 = 0. Since d∗ is symmetric, we get

MSE(d∗) = (t − 1)2

n qd∗11
,

which completes the proof. ��
If p ≤ t , the determination of an MSE-optimal design is more complicated. We

examine the special cases p = 2 ≤ t and p = 3 ≤ t before we find general optimal
designs for 4 ≤ p ≤ t .

Assume p = 2. Note that there are only two possible classes of sequences A and
B, displayed in Table 2.
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Table 3 Size of q11(s) and
q12(s) for the five classes of
possible sequences when
3 = p ≤ t

Class Sequence q11(s) q12(s)

A [1, 1, 1] 0 0

B1 [1, 2, 2] 4/3 −2/3

B2 [1, 1, 2] 4/3 −2/3

B3 [1, 2, 1] 4/3 −2/3

C [1, 2, 3] 2 −1

Theorem 3 Assume 2 = p ≤ t and consider a symmetric approximate design d∗ ∈
�t,n,2 consisting only of sequences from class B with representative sequence [1, 2].
Then,

∀d ∈ �t,n,2 : MSE(d) ≥ MSE(d∗).

Proof Assume the design has proportion π1 of its sequences from class A and π2 =
1 − π1 from class B. We get from Table 2 that qd11 = ∑

πd(s)q11(s) = π2 and
qd12 = −π2. Hence,

MSE(d) ≥ (t − 1)2

nπ2
+ δ

(−π2

π2

)2

= (t − 1)2

nπ2
+ δ ≥ (t − 1)2

n
+ δ = MSE(d∗).

This completes the proof. ��
For the case p = 3, there are only the five possible classes of sequences listed in

Table 3. In this case, the optimal design consists of sequences [1, 2, 3] only.
Theorem 4 Assume 3 = p ≤ t and consider a symmetric approximate design
d∗ ∈ �t,n,3 that consists only of sequences from class C with representative sequence
[1, 2, 3]. Then,

∀d ∈ �t,n,3 : MSE(d) ≥ MSE(d∗).

Proof In the circularmodel, sequences s from any of the three classes B1, B2 and B3 all
have the same q11(s) and q12(s), respectively. Assume the design d has proportion π2
of its sequences from one of the classes Bj and π3 from class C . Then, the proportion
of sequences from class A is π1 = 1 − π2 − π3. We get from Table 3 that qd11 =∑

πd(s)q11(s) = 2( 23π2 + π3) and qd12 = −( 23π2 + π3). Hence,

MSE(d) ≥ (t − 1)2

n
( 2
3π2 + π3

) + δ

(
− ( 2

3π2 + π3
)

2
( 2
3π2 + π3

)
)2

= (t − 1)2

2n
( 2
3π2 + π3

) + δ

4
≥ (t − 1)2

2n
+ δ

4
= MSE(d∗)

and d∗ is MSE-optimal. ��
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Table 4 Size of q11(s) and q12(s) for two classes of sequences of interest when 4 ≤ p ≤ t

Class Sequence q11(s) q12(s)

A [1, 2, . . . , p − 4, p − 3, p − 3, p − 2, p − 2] p − 1 − 4/p (p − 4)/p

B [1, . . . , p] p − 1 −1

Now consider the situation when 4 ≤ p ≤ t . Remember that for a sequence s, the
number Bs denotes the number of periods in s where the treatment of the preceding
period is repeated. As in [12], we can show that

t∑
m=1

f 2s,m ≥ p + 2Bs,

also in the circular case. This inequality is used in the next proposition.

Proposition 1 Define B(d) of a design d ∈ �t,n,p as the weighted mean of the Bs of
its sequences, that is B(d) = ∑

s Bsπd(s). Then, for any d ∈ �t,n,p we have

qd11 ≤ p − 1 − 2

p
B(d)

qd12 ≤ −1 + p − 2

p
B(d).

Proof From the inequality
∑t

m=1 f 2s,m ≥ p + 2Bs , we get for any sequence s that

q11(s) ≤ p − 1 − 2Bs

p

q12(s) ≤ Bs − 1 − 2Bs

p
= −1 + p − 2

p
Bs .

Since qdi j = ∑
πd(s)qi j (s), the desired inequalities follow. ��

For 4 ≤ p ≤ t , there are two classes of sequences of interest. Class A has repre-
sentative sequence [1, 2, . . . , p − 4, p − 3, p − 3, p − 2, p − 2], i.e. two treatments
are given twice in adjacent periods such that Bs = 2. If p > 4, there are p − 4
other treatments given exactly once. The second class, B, has representative sequence
[1, . . . , p], i.e. no treatment is given twice and Bs = 0. Class B has been shown to
produce (universally) optimal designs for various cases [2,5,8], since balanced designs
use sequences from this class. Class A was shown by Zheng et al. [13] to be important
for non-trivial covariance matrices.

The respective values for q11(s) and q12(s) can be seen in Table 4. We now show
that a design minimizing the MSE can be found in the set of all designs consisting of
sequences from classes A and B only.
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Proposition 2 Assume 4 ≤ p ≤ t . For any design d ∈ �t,n,p define

π̄ = 1

2
min{B(d),

p

p − 2
}

and

M(π̄) = (t − 1)2

n(p − 1 − 4π̄
p )

+ δ

(−1 + 2π̄ p−2
p

p − 1 − 4π̄
p

)2

.

We construct a symmetric design d̄t,n,p ∈ �t,n,p which consists of a proportion π̄ of
sequences from class A and a proportion 1 − π̄ of sequences from class B. Then,

MSE(d) ≥ M(π̄) = MSE(d̄).

Proof For the design d̄, we conclude from the qi j (s) in Table 4, that qd̄11 = p−1− 4
p π̄

and qd̄12 = −(1 − π̄) + π̄
p−4
p = −1 + 2π̄ p−2

p . Making use of the fact that d̄ is
symmetric, we then have

MSE(d̄) = (t − 1)2

nqd̄11
+ δ

(
qd̄12
qd̄11

)2

= M(π̄).

Now distinguish between two cases.
Case 1: B(d) ≥ p

p−2 .

In this case, π̄ = p
2(p−2) and therefore qd̄11 = p − 1 − 2

p B(d) while qd̄12 = 0. It

follows from Proposition 1 that qd11 ≤ p − 1 − 2
p B(d) ≤ qd̄11. Hence,

M(π̄) = MSE(d̄) = (t − 1)2

nqd̄11
+ δ

(
qd̄12
qd̄11

)2

= (t − 1)2

nqd̄11
≤ (t − 1)2

nqd11
≤ MSE(d).

Case 2: Assume 0 ≤ B(d) <
p

p−2 .

In that case, it follows from Proposition 1 that qd12 ≤ −1 + p−2
p B(d) < 0.

Therefore, a lower bound for MSE(d) is achieved by making both qd12 and qd11 as
large as possible. We hence get from Proposition 1 that

MSE(d) ≥ (t − 1)2

n(p − 1 − 2B(d)
p )

+ δ

(−1 + p−2
p B(d)

p − 1 − 2B(d)
p

)2

.

Since π̄ = B(d)/2, the right hand side of this inequality equals M(π̄). ��
It follows from Proposition 2 that the MSE-optimal design for a given δ can be

found among the set of all designs d̄ defined in Proposition 2. That is, we have to find
the best π̄ .

Theorem 5 Assume 4 ≤ p ≤ t and δ ≥ 0 is given.
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1. If δ <
(p−1)(t−1)2

np(p−3) choose d∗ as the symmetric design that only consists of

sequences from class B, i.e. a design d̄ with π̄ = 0. Then,

MSE(d∗) = M(0) = min
d∈�t,n,p

MSE(d)

2. If δ ≥ (p−1)(t−1)2

np(p−3) , let d∗ be a symmetric design that consists of sequences from
class A with proportion

π(δ) = p(p − 1)

4
− δnp3(p − 3)2

4
(
δnp(p − 2)(p − 3) − 2(t − 1)2

)

and of sequences from class B with proportion 1 − π(δ). Then,

MSE(d∗) = M(π(δ)) = min
d∈�t,n,p

MSE(d).

Proof It follows from Proposition 2 that for any d there is a π ∈ [0, p
2(p−2) ] such that

MSE(d) ≥ M(π).
We therefore have to find a π∗ ∈ [0, p

2(p−2) ] which minimizes M(π).

Case 1: δ = 2(t−1)2

np(p−2)(p−3) . In this case the derivative of M(π) with respect to π is

D(π) = 4(t − 1)2(p − 3)

n(p − 2)(p − 1 − 4π
p )3

Then, D(π) > 0 for all π ∈ [0, p
2(p−1) ] and M(π) is minimal for π = 0.

For all other δ, the derivative of M(π) with respect to π is

D(π) = 8
(
δnp(p − 2)(p − 3) − 2(t − 1)2

)
np2(p − 1 − 4π

p )3
(π − π0) ,

where π0 = p(p−1)
4 − δnp3(p−3)2

4
(
δnp(p−2)(p−3)−2(t−1)2

) .

Hence, D(π) = 0 if and only if π = π0.

Case 2: 0 ≤ δ <
2(t−1)2

np(p−2)(p−3) .

In this case, δnp(p − 2)(p − 3) − 2(t − 1)2 < 0 and, therefore, π0 >
p(p−1)

4 >
p

2(p−1) . Further, it follows for all π < π0 that D(π) > 0. Hence, the minimum of
M(π) is attained for π = 0.

Case 3: 2(t−1)2

np(p−2)(p−3) < δ ≤ (p−1)(t−1)2

np(p−3) .

In this case, δnp(p − 2)(p − 3) − 2(t − 1)2 > 0 and, therefore, D(π) > 0 for all
π > π0. Also in this case, π0 ≤ 0. Hence, again, the minimum of MSE(π) is attained
for π = 0.

Combining cases 1, 2 and 3, we have shown that for all δ ≤ (p−1)(t−1)2

np(p−3) the choice
π∗ = 0 is optimum.
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Case 4: δ ≥ (p−1)(t−1)2

np(p−3) . In this case, δnp(p − 2)(p − 3) − 2(t − 1)2 > 0 and,
therefore, D(π) > 0 for all π > π0 and D(π) < 0 for all π < π0. Therefore, the
MSE is minimized by that d̄ for which π̄ = π0 = π(δ). ��

Note that π(δ) increases with δ and approaches p
2(p−2) for δ → ∞.

4 Optimal Designs for theModel with Period Effects

We extend the model and include period effects, i.e. the model becomes

y = Uα + Pβ + Tdτ + Fdρ + ε,

with β the vector of the period effects and P the corresponding design matrix. In this
model, we have the information matrices

M̃d11 = T T
d ω⊥ ([U , P]) Td ,

M̃d12 = FT
d ω⊥ ([U , P]) Td ,

M̃d22 = FT
d ω⊥ ([U , P]) Fd .

The MSE of a design then can be defined in the same manner as in the model without
period effects, only replacing Mdi j by M̃di j , 1 ≤ i ≤ j ≤ 2. We get

M̃SE(d) = σ 2tr(M̃d11)
+ + δλ1

(
M̃T

d12M̃
+
d11M̃

+
d11M̃d12

)
.

Defining q̃d11 = 1
n tr

(
M̃d11

)
and q̃d12 = 1

n tr
(
M̃d12

)
, we can show with the same

arguments as before that

M̃SE(d) ≥ (t − 1)2

nq̃d11
+ δ

(
q̃d12
q̃d11

)2

,

with equality if M̃d11 and M̃d12 are completely symmetric.

Unfortunately, the calculations of tr
(
M̃d11

)
and tr

(
M̃d12

)
are different from the

calculations before. In particular, it is not possible to express the q̃di j as weighted
means of contributions from the single sequences.Adapting the results of [4] to circular
designs, we get

tr(M̃d11) = n q̃d11 = n qd11 − 1

n

t∑
i=1

p∑
k=1

l2di,k + 1

np

t∑
i=1

r2di and

tr(M̃d12) = n q̃d12 = n qd12 − 1

n

t∑
i=1

p∑
k=1

ldi,kldi,k−1 + 1

np

t∑
i=1

r2di ,
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where ldi,k is the number of appearances of treatment i in period k (with ldi0 = ldip)
and rdi the number of appearances of treatment i in the design. The numbers qd11 and
qd12 are as in Sect. 3.

For symmetric designs, we get tr(M̃d11) = n qd11 and tr(M̃d12) = n qd12, i.e.
q̃di j = qdi j . In the case p > t , the best symmetric designs have qd12 = 0 and the
results of Theorem 2 extend to the model with period effects.

There are examples—at least in non-circular designs—of designs that are non-
symmetric and where the uncorrected estimate from the model with period effects has
a smaller bias than the estimate from the model without period effects. In the case
p ≤ t , the best symmetric designs have nonzero bias. Hence, it is not obvious that the
results of Theorems 3 and 4 and of Proposition 2 still hold in the model with period
effects.

To show that they do, we start by showing that for non-symmetric designs the loss
in tr(M̃d11) is higher than the possible gain in |tr(M̃d12)|.
Proposition 3 For any d ∈ �t,n,p, it holds that

qd11 − q̃d11 ≥ |qd12 − q̃d12|.

Proof Defining Q = 1
n P PT − 1

np1np1
T
np = ω

(
ω⊥ (U ) P

)
, we find that

nqd11 − nq̃d11 = 1

n

t∑
i=1

p∑
k=1

l2di,k − 1

np

t∑
i=1

r2di = tr
(
T T
d QTd

)

and that

nqd12 − nq̃d12 = 1

n

t∑
i=1

p∑
k=1

ldi,kldi,k−1 − 1

np

t∑
i=1

r2di = tr(T T
d QFd).

Because of the circular structure of the carryover effects, we have

T T
d ω⊥ ([U , P]) Td = FT

d ω⊥ ([U , P]) Fd

(cf. [8] or [6]) and, hence, that T T
d QTd = FT

d QFd . Therefore, the Cauchy–Schwarz
inequality implies that

|tr
(
T T
d QFd

)
| ≤

√
tr

(
T T
d QTd

)
tr

(
FT
d QFd

) = tr
(
T T
d QTd

)

and the proposition follows. ��
If p ≥ 4, we are now able to show that for every design d there is a symmetric design
ds consisting of sequences from classes A and B described in Table 4 only and having
smaller or equal MSE.
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Proposition 4 Let p ≥ 4. Assume the model with period effects holds and define
�t,n,p ⊂ �t,n,p as the set of all symmetric d ∈ �t,n,p.

Then, ∀d ∈ �t,n,p ∃ ds ∈ �t,n,p with

M̃SE(d) ≥ M̃SE(ds).

Proof Case 1: |q̃d12| > 1.
Let ds be a symmetric design that consists of sequences from class B only. Then,

ds ∈ �t,n,p and |qds12| = 1 < |q̃d12|. On the other hand (because of Proposition 1 and
since B(ds) = 0), we have that

qds11 ≥ qd11 ≥ q̃d11.

Thus, it holds that

M̃SE(d) ≥ (t − 1)2

nqd11
+ δ

(
q̃d12
qd11

)2

≥ (t − 1)2

nqds11
+ δ

(
1

qds11

)2

= M̃SE(ds).

Case 2: |q̃d12| ≤ 1.
Let ds be the symmetric design that consists of sequences from class A with pro-

portion

π = p(1 − |q̃d12|)
2(p − 2)

and sequences from class B with proportion 1−π . Then, ds ∈ �t,n,p and we get from
Table 4 that

qds12 = −(1 − π) + π
p − 4

p
= −1 + 2π

p − 2

p
= −|q̃d12|

(and hence |qds12| = |q̃d12|).
Therefore, if we can show that q̃ds11 ≥ q̃d11, we are done.
Remembering that ds is a symmetric design we have q̃ds11 = qds11. Making use of

Table 4 again, we get that B(ds) = 2π and

q̃ds11 =
(
1 − B(ds)

2

)
(p − 1) + B(ds)

2

(
p − 1 − 4

p

)
= p − 1 − 2B(ds)

p
.

Subcase 2a: B(d) ≥ B(ds).
From Proposition 1, we know that qd11 ≤ p − 1 − 2B(d)

p . Hence,

q̃d11 ≤ qd11 ≤ p − 1 − 2B(d)

p
≤ p − 1 − 2B(ds)

p
= q̃ds11.

Subcase 2b: B(d) < B(ds).
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Observe that

q̃d12 − qd12 ≥ −|q̃d12| − qd12 ≥ qds12 + 1 − p − 2

p
B(d)

= −1 + p − 2

p
B(ds) + 1 − p − 2

p
B(d) = p − 2

p
(B(ds) − B(d)) ≥ 0.

Hence, we conclude from Proposition 3 that

qd11 − q̃d11 ≥ q̃d12 − qd12 ≥ p − 2

p
(B(ds) − B(d)).

Therefore,

q̃d11 ≤ qd11 − p − 2

p
(B(ds) − B(d)).

With Proposition 1, it follows that

q̃d11 ≤ p − 1 − 2B(d)

p
− p − 2

p
(B(ds) − B(d)).

Since p − 2 ≥ 2, we get

q̃d11 ≤ p − 1 − 2B(ds)

p
,

which is q̃ds11. This completes the proof. ��
Note that this proposition implies that the design d∗ determined in Theorem 5 for

themodel without period effects, is alsoMSE-optimal in themodel with period effects.
The proofs for the cases p = 2 and p = 3 have to be done differently. We start

with p = 2.

Theorem 6 Assume 2 = p ≤ t . As in Theorem 3, consider the symmetric approxi-
mate design d∗ ∈ �t,n,2 consisting only of sequences from class B of Table 2 with
representative sequence [1, 2]. We then have ∀d ∈ �t,n,2 that

M̃SE(d) ≥ M̃SE
(
d∗) .

Proof We have seen in the proof of Theorem 3 for an arbitrary design d that

qd11 = π2 and qd12 = −π2,

where π2 is the proportion of sequences from class B.
In the model with period effects, we write q̃d11 = qd11 − ε = π2 − ε. Since

qd11 ≥ q̃d11 ≥ 0, we have π2 ≥ ε ≥ 0.
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From Proposition 3, we get that |qd12 − q̃d12| ≤ ε. Therefore, q̃d12 ≤ qd12 + ε =
−π2 + ε ≤ 0 and |q̃d12| ≥ π2 − ε.

It follows that

M̃SE(d) ≥ (t − 1)2

nπ2 − ε
+ δ

(
π2 − ε

π2 − ε

)2

≥ (t − 1)2

n
+ δ = M̃SE(dB).

This completes the proof. ��
The proof for the case p = 3 turns out to cause extra difficulties.

Theorem 7 Assume 3 = p ≤ t . As in Theorem 4, consider a symmetric approximate
design d∗ ∈ �t,n,3 that consists only of sequences from class C with representative
sequence [1, 2, 3]. Then,

∀d ∈ �t,n,3 : M̃SE(d) ≥ M̃SE(d∗).

Proof We have seen in the proof of Theorem 4 for an arbitrary design d ∈ �t,n,3 that

qd11 = 2

(
π3 + 2

3
π2

)
and qd12 = −

(
π3 − 2

3
π2

)
.

If we define ε = qd11 − q̃d11 and ρ = q̃d12 − qd12, we get that

M̃SE(d) ≥ (t − 1)2

n
(
2

(
π3 + 2

3π2
) − ε

) + δ

(
π3 + 2

3π2 − ρ

2
(
π3 + 2

3π2
) − ε

)2

.

At this point, Proposition 3 is of no use. It only guarantees that ε ≥ |ρ|, but if we
could find a design with ρ = ε > 0, this would produce a smaller bias. If we could
get ρ = ε = π3 + 2

3π2, we could even achieve

(
π3 + 2

3π2 − ρ

2
(
π3 + 2

3π2
) − ε

)2

= 0.

However, this is not possible. In the case p = 3, we can get a stronger version of
Proposition 3.

In the proof of Proposition 3, we have used the equalities

nqd11 − nq̃d11 = 1

n

t∑
i=1

p∑
k=1

l2dik − 1

np

t∑
i=1

r2di

and

nqd12 − nq̃d12 = 1

n

t∑
i=1

p∑
k=1

ldi,k−1ldik − 1

np

t∑
i=1

r2di .
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Hence,

ε = 1

n2

t∑
i=1

⎛
⎝ 3∑

k=1

l2di,k − 1

3

(
3∑

k=1

ldi,k

)2⎞
⎠

= 1

n2

t∑
i=1

2

3

(
l2di,1 + l2di,2 + l2di,3 − ldi,1ldi,3 − ldi,2ldi,1 − ldi,3ldi,2

)

and

ρ = − 1

n2

t∑
i=1

⎛
⎝ 3∑

k=1

ldi,kldi,k−1 − 1

3

(
3∑

k=1

ldi,k

)2⎞
⎠

= 1

n2

t∑
i=1

1

3

(
l2di,1 + l2di,2 + l2di,3 − ldi,1ldi,3 − ldi,2ldi,1 − ldi,3ldi,2

)
.

Therefore, ρ = 1
2ε, regardless of our choice of the ldi,k . It follows that

M̃SE(d) ≥ (t − 1)2

n(2(π3 + 2
3π2) − ε)

+ δ

4
≥ (t − 1)2

2n
+ δ

4
= M̃SE(d∗).

��

5 Efficiency in Terms of MSE and Example

We have seen in Sects. 3 and 4 that MSE-optimality, for 4 ≤ p ≤ t , is a local criterion,
the MSE-optimum design depends on the true δ. Since in practice, we will in general
not know δ, we try to find a design which is efficient for a broad range of δ. The
efficiency of a design d at a point δ is defined as

Effδ(d) = MSEδ,opt/MSEδ(d),

where MSEδ,opt is the minimum MSE for this δ. Thus, a high efficiency is desirable
and the efficiency is a number between 0 and 1.

In what follows, we consider the case 4 ≤ p ≤ t . In the case of circular designs,
often designs are considered that only consist of sequences from class B. Special
cases of these designs are so-called circular balanced designs or orthogonal arrays of
type I. These have been shown to be optimal in a broad class of designs, see, e.g. [2].
However, Zheng et al. [13] showed that designs with sequences from class A can be
efficient in some situations. Thus, we will consider the designs dA and dB that only
consist of sequences from classes A or B, respectively, and calculate their efficiency.
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Fig. 1 Proportion 1 − π(δ) of sequences from class B as a function of δ

Fig. 2 MSE-efficiencies for designs dB (solid line) and dA (dashed line) for parameters p = 6, t = 4, n =
40 and δ ∈ [0, 3]

First, we examine the case that δ <
(p−1)(t−1)2

np(p−3) . In this case, dB is MSE-optimal
and thus

Effδ(dB) = 1.
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For dA, we get in this case

Effδ(dA) = −(δn + (p − 1)(t − 1)2)(p2 − p − 4)2

(p − 1)2(4p − tp(t − 2)(p2 − p − 4) + p2(p − 1) + δn(p − 4)2)
.

If δ ≥ (p−1)(t−1)2

np(p−3) , we get

Effδ(dB) = (δnp(p2 − 5p + 6) − (t − 1)2)(t − 1)2(p − 1)2

δnp2(p − 3)2(δn + (p − 1)(t − 1)2)

and

Effδ(dA) = (δnp(p2 − 5p + 6) − (t − 1)2)(t − 1)2(p2 − p − 4)2

δnp2(p − 3)2
(
p(t − 1)2(p2 − p − 4) + nδ(p − 4)2

) .

We see that the efficiency of dB decreases with δ while the efficiency of dA increases
with δ.

As an example, consider the case t = 6, p = 4 and n = 40. In that case, the
critical step for π(δ) is at δ1 = 4·25

40·4·1 = 15
32 = 0.46875. If δ < δ1, the design dB is

MSE-optimal and has MSE-efficiency 1.
If δ increases, we see that the proportion 1 − π(δ) of sequences from class B in

the MSE-optimal design decreases (Fig. 1). This is in agreement with the decreasing
efficiency of the design dB and the increasing efficiency of the design that only consists
of sequences from class A (Fig. 2). However, as long as δ remains reasonably small,
the efficiency of dB is still high (and larger than the efficiency of dA). Therefore, it
makes sense to use the design dB .

Of particular interest for practice is the case when the number of treatments t equals
the number of periods p. In this case, we can construct a circular balanced uniform
design dB with n = t(t − 1) units.

For a design of this size, the limit δ1 = (p−1)(t−1)2

np(p−3) becomes 0.56 for p = 4, 0.32
for p = 5, 0.23 for p = 6 and goes down to 0.01 for p = 100. The efficiency EffdB (δ)

is 1 as long as δ is less than δ1, and decreases when δ increases. For δ = 3, we observe
that EffdB (3) is 0.62 if p = 4, 0.61 if p = 5 and 0.64 if p = 6. For larger p, it
increases, for instance, it is 0.97 for p = 100.
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