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Abstract
The estimation accuracy of a population totals vector based on a simple cluster 
sample is considered. The variance-covariance matrix of estimators depends on the 
intra-cluster spread of variables under study. The spread depends on the partition 
of the population into clusters. The variance-covariance matrix is evaluated under 
several variants of clustering algorithm. This lets us find the clustering algorithm 
providing the most accurate estimation of population vector totals.

Keywords  Vector estimation · Cluster sample · Clustering algorithms · 
Homogeneity coefficient · Generalized variance · Spectral radius

1  Introduction

Research into practical survey sampling is usually based on vector parameters. The 
purpose of this paper is to simultaneously estimate the population totals of at least 
two variables. The well-known vector estimator from a simple cluster sample drawn 
without replacement is considered. Its accuracy is compared with the ordinary vec-
tor estimator from a simple random sample drawn without replacement using the 
variance-covariance matrix. We analyse accuracy of vector estimators using the 
methodology proposed by Borovkov [2], Jensen [4], Rao [7] and the generalized 
relative efficiency coefficient proposed by Rao [8]. This coefficient is defined as the 
maximal eigenvalue of the product of two matrices. In our case, one of the matri-
ces is the variance-covariance matrix of the vector estimator from the cluster sam-
ple and the other is the inverse of the variance-covariance matrix of the vector esti-
mator from the simple random sample. Let us add that Wywial [14] analysed the 

 *	 Janusz L. Wywiał 
	 janusz.wywial@ue.katowice.pl

	 Grzegorz Sitek 
	 grzegorz.sitek@ue.katowice.pl

1	 Department of Statistics, Econometrics and Mathematics, University of Economics in Katowice, 
Katowice, Poland

http://orcid.org/0000-0002-3392-1688
http://orcid.org/0000-0002-7191-8631
http://crossmark.crossref.org/dialog/?doi=10.1007/s42519-021-00196-x&domain=pdf


	 Journal of Statistical Theory and Practice (2021) 15:61

1 3

61  Page 2 of 16

accuracies of estimation procedures of the total based on samples selected according 
to several sampling designs from a population clustered using several algorithms. 
This paper is in some sense a generalization of their considerations into simultane-
ous estimation of totals of at least two variables under study.

The accuracy of the vector estimation of totals based on the cluster sample 
depends on partitioning a population into clusters. The influence of the partitioning 
a population on accuracy of the estimation is considered. This problem was analysed 
by means of the several methods of measuring vector estimation.

The obtained results should be useful in survey sampling conducted, e.g. by sta-
tistical offices. In this case, census data are usually available. Variables under study 
(observed during a census) can be used as auxiliary variables in a survey sampling 
on a subsequent occasion. In this situation, appropriate clustering of the population 
considered in this paper should contribute to improving future sampling strategies.

One of the aspects of big-data analysis is the problem of reduction in the data 
(observations of variables) number. The results of this paper partially contribute to 
solve this problem because considered methods provide partitions of a population 
into such clusters that each of them is similar to the population as close as it is possi-
ble. More precisely, the spreads of data observations in the clusters are not less then 
the spread of the data in the population.

The main results of this paper are as follows:

•	 the variance-covariance matrix of the vector estimation of totals from the simple 
cluster sample is shown as a function of the matrix of homogeneity coefficients, 
Sect. 2.2 and “Appendix”,

•	 properties of the homogeneity matrix let us show when the vector estimator from 
the cluster sample is more accurate than the vector estimator from the simple 
sample , Sect. 2.3 and “Appendix”,

•	 several algorithms for partitioning a population into mutually disjoint and non-
empty clusters are proposed, Sect. 2.4,

•	 using these algorithms to partition of the population of Swedish municipalities 
into clusters, Sect. 3,

•	 for theses partitions values of the generalized coefficient of the relative efficiency 
of the vector estimator from the cluster sample are evaluated what let us analyse 
influence the partition of the population on the accuracy estimation, Sect. 3.

2 � Estimation Based on Cluster Sample

2.1 � Basic Notations

Let U be a population of size N. The number of variables observed in U is denoted 
by m. Observations of a vector variable will be denoted by yk = [yk,1...yk,m] 
where k ∈ U . Let us assume that the population is partitioned into disjoint sub-
population Uh of sizes Nh , h = 1, ...,G , called clusters. Hence, N =

∑G

h=1
Nh 

and N̄ = G−1
∑G

h=1
Nh . Let N̄ = M , if all the clusters are of the same size. Let 
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U = {U1, ...,Uh, ...,UG} be a partition of the population elements into clusters. 
Hence, U  is the set of G-mutually disjoint and non-empty clusters. Let

where ȳ is the vector of population means, yU is the vector of totals, C is the matrix 
of variances and covariances, R is the matrix of correlation coefficients and D is the 
diagonal matrix of variances. Moreover, let

where k ∈ U , i = 1, ...,m , j = 1, ...,m , h = 1, ...,G . ȳUh,i
 is the mean of the i-th vari-

able in the h-cluster, yUh,i
 is the total of the i-th variable in the h-th cluster, Ch is the 

variance-covariance matrix in the h-th cluster, and ȳ
U
 is the vector of the means of 

the cluster totals, C
U
 is the variance-covariance matrix of the cluster totals.

2.2 � Simple Cluster Sampling

Let sample s be drawn from population U or partition U  . The random sample will 
be denoted by the capital letter S while its observation by s.

Cluster sample s is defined as a g-element set of clusters Uh drawn from parti-
tion U  . The well-known simple cluster sampling design is defined as 

P1(s) =

(
G

g

)−1

 where s ∈ S
U
 and S

U
 is the sampling space generated for set U  . 

The vector of the unbiased estimator of the population total yU is as follows:

ȳ = [ȳ1...ȳm] =
�

k∈U

yk∕N, yU = Nȳ =
�

k∈U

yk = [yU,1...yU,m],

yU,i =
�

k∈U

yk,i, C = [ci,j], ci,j =
�

k∈U

(yk,i − ȳi)(yk,j − ȳj)∕(N − 1),

R = D−1∕2CD−1∕2 = [ri,j], D = [vi], ri,j =
ci,j

√
vivj

, vi = ci,i

ȳUh
=

∑

k∈Uh

yk∕Nh, ȳUh
= [ȳUh,1

...ȳUh,m
], ȳUh,i

=
∑

k∈Uh

yk,i∕Nh,

yUh
= NhȳUh

=
∑

k∈Uh

yk = [yUh,1
...yUh,m

], yUh,i
=

∑

k∈Uh

yk,i,

CUh
= [cUh,i,j

], cUh,i,j
=

∑

k∈Uh

(yk,i − ȳUh,i
)(yk,j − ȳUh,j

)∕(Nh − 1),

ȳ
U
=

G∑

h=1

yUh
∕G = yU∕G = [ȳ

U,1...ȳU,m], ȳ
U,i =

G∑

h=1

yUh,i
∕G = yU,i∕G,

y
U
= Gȳ

U
=

G∑

h=1

yUh
= yU , C

U
= [c

U,i,j],

c
U,i,j =

G∑

h=1

(yUh,i
− ȳ

U,i)(yUh,j
− ȳ

U
, j)∕(G − 1)



	 Journal of Statistical Theory and Practice (2021) 15:61

1 3

61  Page 4 of 16

Its variance-covariance matrix is:

where ỹS is evaluated on the basis of the simple cluster sample drawn without 
replacement. Generalizing the results of [9,  pp. 129–133] into multidimensional 
case, we derived in “Appendix” the following expression (see also [11, 12]):

where:

or A = A1 + A2 + A3,

or

and wh =
Nh−1

N−G
 . Parameter � is the matrix of the coefficients of intra-cluster data 

spread homogeneity or simply the homogeneity matrix. The intra-cluster variance-
covariance matrix is denoted by C∗ . Let us underline that when Nh = M for all 
h = 1, ...,H , then A = O . Sarndal et al. [9] proved that all diagonal elements of � 
take values from 

[
−

G−1

N−G
;1

]
 . Let � be an eigenvalue of � . In the last part of the 

“Appendix” is proved the following inequality:

Kish [5] provided sound advices on grouping problems that might be encountered in 
practical surveys.

(1)ỹS =
G

g

∑

h∈S

∑

k∈Uh

yk =
G

g

∑

h∈S

yUh
,

(2)V(ỹS) =
G(G − g)

g
C
U

(3)V(ỹS) =
G(G − g)

g
N̄C

(
Im +

N − G

G − 1
�
)
+

G(G − g)

g
A

(4)

� = Im − C−1C∗,

A = [ai,j]; ai,j =
1

G − 1

G∑

h=1

(Nh − N̄)NhȳUh,i
ȳUh,j

, i ≠ j = 1, ...,m

(5)

A1 = [ai,j(111)], A2 = [ȳ
U,iai,j(101)], A3 = [ȳjai,j(110)],

ai,j(bed) =
1

G − 1

G∑

h=1

(Nh − N̄)b(yUh,i
− ȳ

U,i)
e(ȳUh,j

− ȳj)
d,

C∗ = [c∗i,j], c∗i,j =
1

N − G

G∑

h=1

∑

k∈Uh

(yk,i − ȳUh,i
)(yk,j − ȳUh,j

),

c∗i,j =

G∑

h=1

whc∗,Uh,i,j
, c∗,Uh,i,j

=
1

Nh − 1

∑

k∈Uh

(yk,i − ȳUh,i
)(yk,j − ȳUh,j

)

(6)−
G − 1

N − G
≤ � ≤ 1.
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2.3 � Relative Efficiency

Let t1s and t2s be the unbiased estimators of vector parameter � ∈ � . Borovkov [2] pro-
posed comparing the accuracy of vector estimators using the following definition (see 
also [7] or [12], pp. 28–29):

Definition 1  Estimator t1s is not worse than t2sif and only if:

where � = [�1...�m],

Estimator t1s is better than t2s if and only if t1s is not worse than t2sand the above 
inequality becomes sharp for at least one fixed parameter �.

This definition directly leads to the following, see [7] and Borovkov [2]:

Theorem  1  Let the variance-covariance matrices V(tis) , i = 1, 2 be positive defi-
nite. If estimator t1s is not worst than t2s , then V(t2s) − V(t1s) is non-negative definite 
and:

where tr
(
V(tis)

)
 , det

(
V(tis)

)
 and λ

(
V(tis)

)
 are called the mean square radius, the 

generalized variance and the the spectral radius (maximal eigenvalue of V(tis) ) of 
the vector estimator tis , while v(ti,js) is variance of j-th component of tis . The above 
inequalities become sharp, when V(t1s) − V(t2s) is positive definite.

The accuracy of estimator ỹS is compared with the accuracy of the following well-
known estimator of the vector of totals from an ordinary simple random sample drawn 
without replacement from a whole population:

where S is drawn without replacement according to sampling design: 

P0(s) =

(
N

n

)−1

 , s ∈ S and S is the sampling space generated for U. Under the 

assumption that n = gN̄ , we have:

∀�≠0∀�∈� v(t1s�
T ) ≤ v(t2s�

T )

v(t2s�
T ) = �V(tis)�

T , i = 1, 2.

tr
(
V(t1s)

)
≤ tr

(
V(t2s)

)
,

det
(
V(t1s)

)
≤ det

(
V(t2s)

)
,

λ
(
V(t1s)

)
≤ λ

(
V(t2s)

)
,

∀j=1,...,m v(t1,is)) ≤ v(t2,is)

(7)yS =
N

n

∑

k∈S

yk, V(yS) =
N(N − n)

n
C

(8)V(ỹs) − V(yS) =
(
Im +

N − G

G − 1
�
)(

C + N̄C
)
=

G(G − g)

g

(
C
U
− N̄C

)
.
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According to Theorem 1, the estimator ỹs is not worse than ys , when C
U
− N̄C is 

non-positive definite.
Particularly, when Nh = M for all h = 1, ...,G , expressions (4), (7) and (8) let us 

write:

If Nh = M for all h = 1, ...,G , the estimator ỹs is not worse than ys , when C� is non-
positive definite.

The following theorem is proved in the “Appendix”

Theorem  2  Let the variance-covariance matrices V(tis) , i = 1, 2 be positive defi-
nite. If estimator t1s is not worse than t2s , then V(t2s) − V(t1s) is non-negative definite 
and:

for all � ≠ 0 where λ1(...) is the minimal eigenvalue of a matrix. The above inequali-
ties become sharp, when V(t1s) − V(t2s) is positive definite.

When the clusters are of the same size, Theorem 1 and expressions (9) let us con-
clude that when matrix � is non-positive (non-negative) definite, then estimator ỹs is 
not worse (not better) than ys.

Rao and Scott [8, pp. 223], define the generalized relative efficiency coefficient as 
follows:

where V(yS) is non-singular. When n = gN̄ , expressions (2), (3) and (10) lead to the 
following:

Hence, deff (ỹS) = minim when the population is partitioned into set U of clusters in 
such a way that λ(C−1C

U
) = minim.

In particular, expressions (3) and (4) show that when Nh = M for all h = 1, ...,H , 
then A = 0 . Inequality − G−1

N−G
≤ λ(�) ≤ 1 leads to the following:

(9)
V(ỹs) − V(yS) =

N(N − n)

N

N − G

G − 1
C� =

=
N(N − n)

N

N − G

G − 1
(C − C∗).

λ
(
V(t2s)V

−1(t1s)
)
= λ

(
V−1(t1s)V(t2s)

)
≥ 1,

λ
(
V−1(t2s)V(t1s)

)
= λ

(
V(t1s)V

−1(t2s)
)
≤ 1

λ1
(
V(t2s)V

−1(t1s)
)
≤

�V(t2s)�
T

�V(t1s)�
T
=

V(t2s�
T )

V(t1s�
T )

≤ λ
(
V−1(t1s)V(t2s)

)
.

(10)deff (tS) = λ
(
V(yS)

−1V(tS)
)
.

(11)deff (ỹS) =
G(G − g)nN̄

N(N − n)g
λ
(
C−1C

U

)
= 1 + λ

(
N − G

G − 1
� +

1

N̄
C−1A

)
.

(12)0 ≤ deff (ỹS) = 1 +
N − G

G − 1
λ(�) ≤

N − 1

G − 1
.
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When λ(�) ≤ 0 , then ỹS is more efficient than yS . Hence, we should partition the 
population into clusters of the same size in such a way that coefficient λ(�) takes the 
minimal negative value.

2.4 � Clustering Algorithms

We can expect that variables observed in a finite and fixed population in a past occa-
sion are highly correlated with the appropriate variables observed in a current occa-
sion or in future occasions. Therefore, census data could be used to construct rea-
sonable sampling design for future occasion.

The above considerations lead to the conclusion that the population has to be 
clustered in such a way that the maximal eigenvalue of C−1C

U
 takes the minimal 

value. Additionally, when we assume that the population has to be partitioned into 
clusters of the same size, then minimization of λ(�) is the criterion for population 
clustering. The following clustering algorithms will be considered:

Systematic algorithm 1:
Let us assume that yk > 0 for all k = 1, ...,N . Next, we evaluate squared dis-

tances dk = yky
T
k
 of yk from the zero vector 0 for all k ∈ U . Let us assume that 

dk ≤ dk+1 for k = 1, ...,N − 1 . The h-th cluster is identified by the unit labels k ∈ Uh 
that k = (i − 1)G + h , for i = 1, ...,M and h = 1, ...,G . This leads to inequalities: 
dUh

≤ dUh+1
 for h = 1, ...,G − 1 where dUh

=
∑

k∈Uh
dk . The result of this clustering 

algorithm will be denoted by U1 . In some sense, this result is the well-known sys-
tematic simple sample space.

Systematic algorithm 2: Let dk = (yk − ȳ)(yk − ȳ)T be the squared distance of yk 
from vector ȳ for all k ∈ U . Let us assume that dk ≤ dk+1 for k = 1, ...,N − 1 . Let 
M = 2 and N = MG . In this case, Uh = {h;N − h + 1} for h = 1, ...,G . In general, 
when M is even and N = MG , then Uh = {(h − 1)

M

2
+ i;N − (h − 1)

M

2
− i + 1} for 

h = 1, ...,G and i = 1, ...M∕2 . The result of this clustering algorithm will be denoted 
by U2.

Permutation algorithm  3: Let U(0) = {U
(0)

1
, ...,U

(0)

G
} be any start partition of a 

population partitioned into clusters of the same sizes, M ≥ m . In the t-th (t=0,1,...) 
iteration partition U(t) = {U

(t)

1
, ...,U

(t)

G
} is generated through permutating population 

elements. For an assumed t = T  , U(T) is treated as optimal when

Iteration algorithm  4: Let U(0) = {U
(0)

1
, ...,U

(0)

G
} be any start partition of the pop-

ulation partitioned into clusters which are not necessary of the same size. Let 
U
(t) = {U

(t)

1
, ...,U

(t)

G
} be the partition of the population obtained as result of the t-th 

iteration and let λt = λ(C−1C
U
(t) ) be the maximal eigenvalue of the variance-covar-

iance matrix of cluster totals. Moreover, let f ∶ U → U
(t) , ft(k) = h , if and only if 

k ∈ U
(t)

h
.

In iteration t + 1 , we randomly choose number k∗ of data observation from the 
sequences 1, ..., N. Next, element k∗ is moved from the cluster h# = ft(k∗) to cluster 
h∗ where h∗ is randomly drawn from set {h ∶ h = 1, ...,G;h ≠ h#} . This leads to the 
new partition U(t+1) . Finally, we count λt+1 = λ(C−1C

U
(t+1) ) . If λt+1 < λt , then U(t+1) is 

(13)λ∗(U
(T)) = min{t=1,..,T}(λ(�(U

(t)))).
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the current partition and we start iteration t + 2 of the algorithm. If λt+1 ≥ λt , then 
we start stage t + 2 of the algorithm from partition U(t) . The algorithm of the par-
tition is stopped when the number of iterations reaches the assumed level T. This 
algorithm leads to the minimization of deff (ỹS) . The population clustered according 
to this algorithm will be denoted by U4.

Iteration algorithm 5: The clustering procedure described below is similar to the 
above one and also leads to minimization of V(ỹS).

Let U(t) = {U
(t)

1
, ...,U

(t)

G
} be the partition of the population obtained as result of the 

t-th iteration where t = (l − 1)N + k , k = 1, ...,N , l = 1, 2, ... and let λt = λ(C−1C
U
(t) ) 

be the maximal eigenvalue evaluated on the basis of U(t) = {U
(t)

1
, ...,U

(t)

G
} . Let 

f ∶ U → U
(t) , ft(l) = h , if and only if l ∈ U

(k,t)

h
.

In stage t + 1 , the population element k ∈ U
(t)

h
 , where h = ft(k) , is moved to clus-

ters U(t)
z

 , z ≠ h , z = 1, ...,G and calculated using the following

where λ(C−1C
U
(t) (k, z)) is evaluated for partition U(t) in which clusters U(t)

z
 , U(t)

h
 are 

replaced by {U(t)
z
∪ {k}} and {U

(t)

h
− {k}} , respectively, and h = ft(k) . If 

λ(C−1C
U
(t) (z)) < λt , then λt+1 = λ(C−1C

U
(t+1) ) and U(t+1) is equal to U(t) where clusters 

U(t)
z

 and U(t)

h
 are replaced by U(t+1)

z
= {U(t)

z
∪ {k}} and U(t+1)

h
= {U

(t)

h
− {k}} , respec-

tively. If λ(C−1C
U
(t) (z)) ≥ λt , then U(t+1) = U

(t) and λt+1 = λt.
The iteration clustering process is stopped when λt+N = λt or the number of itera-

tions reaches the assumed level T. This algorithm will be denoted by U5.
Iteration algorithm 6: We keep the notation introduced earlier. In iteration t + 1 , 

the population element k ∈ U
(t)

h
 , where h = ft(k) , is moved to clusters U(t)

z
 , z ≠ h , 

z = 1, ...,G . Next, we calculate the following

where λ(C−1C
U
(t) (k, z)) is evaluated for partition U(t) in which clusters U(t)

z
 and U(t)

h
 are 

replaced by {U(t)
z
∪ {k}} and {U

(t)

h
− {k}} , respectively, and h = ft(k) . If 

λ(C−1C
U
(t) (k, z)) < λt , then λ(C−1C

U
(t+1) ) = λ(C−1C

U
(t) (k, z)) and U(t+1) is equal to U(t) 

where clusters U(t)
z

 and U
(t)

h
 are replaced by U(t+1)

z
= {U(t)

z
∪ {k}} and 

U
(t+1)

h
= {U

(t)

h
− {k}} , respectively. The iteration clustering process is stopped when 

λ(C−1C
U
(t) (k, z)) ≥ λt . The population clustered according to this algorithm will be 

denoted by U6.

3 � Accuracy Analysis

Data about Swedish municipalities published in the monograph by [9] will be con-
sidered. Variables y1 and y2 are the real estate values (according to the 1984 assess-
ment, in millions of kronor) and number of the municipal employees (in millions 
of kronor), respectively. Their population correlation coefficient is �y1,y2 = 0.9924 . 
The population size (without outliers) is N = 280 . Moreover, ȳ1,U = 51945.99 , 
ȳ2,U = 378859 , vy1 = 35954.39 , vy2 = 2008981 . The partitions obtained as results of 

(14)(k, z) = arg
(
min{z=1,...,G,z≠ft(k)}

(
λ(C−1C

U
(t) (k, z))

))

(15)(k, z) = arg
(
min{k∈U}min{z≠ft(k),z=1,...,G}

(
λ(C−1C

U
(t) (k, z))

))
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the above clustering algorithms will be denoted by Uj , j = 1, ..., 6 . We will consider 
the sample sizes g = 2, 4, 8, 12, 14, 24 and cluster sizes M = 2, 4, 8, 14 . The relative 
efficiency coefficient is evaluated according to expression (10) for estimation strat-
egy (ỹS).

Analysis of Table  1 leads to the following conclusions. Only under clustering 
algorithms U1 and U2 , the accuracy of estimator yS is approximately not less than the 
accuracy of estimator ỹS for all considered combinations (M, g).

Partition U4 leads to the most efficient estimation based on ỹS . When we also 
assume that the population is split into sub-populations of the same sizes, estimator 
ỹS based on the sample drawn from the population clustered according to algorithm 
U3 is the most efficient.

For algorithms U1 and U2 , the estimation efficiency based on ỹS decreases (or 
equivalently deff (ỹS ) increases) when the number of clusters g decreases under 
the fixed sample size n. For algorithms U3 - U6 , the situation is reversed. Under the 
fixed sample size n, the estimation efficiency based on ỹS increases when number 
of clusters g decreases. For instance, under partition U4 when (M, g) = (2, 14) and 
(M, g) = (14, 2) , the accuracy of ỹS is almost two times and fifty times better than 
the accuracy of yS , respectively.

4 � Conclusions

In this paper, we have shown that it is possible to significantly increase the accu-
racy of estimating population totals using vector estimator from a simple cluster 
sample drawn without replacement by considering specific partition of a popula-
tion into clusters. In the analysed empirical example, algorithm 5 and 6 lead to 
the optimal partition of the population. These algorithms should work quickly 
when a population size is large. The results could be useful for panel or census 
survey sampling repeated on more than one occasion. The results of paper could 
be applied to partitioning a population into clusters based on census data. This 

Table 1   Relative efficiency 
for the population partitioned 
into clusters. Source: Own 
calculations.

n (M,g) U1 U2 U3 U4 U5 U6

1 2 3 5 6 7 8 9
16 (2,8) 0.992 1.108 0.824 0.561 0.639 0.771
16 (4,4) 1.095 2.147 0.749 0.182 0.444 0.578
16 (8,2) 1.171 4.245 0.621 0.049 0.182 0.442
28 (2,14) 0.992 1.108 0.824 0.561 0.639 0.771
28 (4,7) 1.095 2.147 0.749 0.182 0.444 0.578
28 (14,2) 1.309 7.353 0.504 0.019 0.041 0.196
48 (2,24) 0.992 1.108 0.824 0.561 0.639 0.771
48 (4,12) 1.095 2.147 0.749 0.182 0.444 0.578
48 (8,6) 1.171 4.245 0.621 0.049 0.182 0.442
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could improve accuracy of estimation of population total vector. Moreover, the 
results could be useful in some aspects of big-data analysis.

This paper could be treated as a contribution to comparison of vector estimators. 
Several properties of the generalized relative efficiency coefficient are considered 
in Theorem 2. The generalized coefficient of intra-cluster data spread homogeneity 
was defined, its properties were considered and its values were interpreted. The gen-
eralized deff coefficient was also written as the function of matrix of coefficients of 
intra-cluster homogeneity. The proposed procedures could be developed in several 
ways. Other clustering algorithms could be considered. In particular, the clustering 
procedures based on multivariate variables that are proposed in this paper could be 
reduced to one-dimensional cases. For instance, these variables could be replaced 
with their principal component. In this case, the several clustering procedures based 
on one-dimensional variables that have been proposed by [14] could be adopted in 
our considerations.

In addition, many of the clustering algorithms available in the statistical litera-
ture (see, e.g. [1, 6]) divide the population into homogeneous clusters. Typically, 
these procedures can be modified to algorithms that ensure the maximum spread of 
multivariate observations within the cluster. This seems to the well-known nearest 
(farthest) neighbour criteria. Properties of some sampling designs used in spatial 
statistics could inspirate for the construction of clustering algorithms. For example, 
the criteria considered by Thompson and Seber [10] or [13] can be adapted to divide 
the spatial population into clusters composed of non-neighbours.

Appendix

Decomposition of Matrix C
U

[9] decomposed the diagonal element of V(ỹS) defined by expression (2) as the func-
tion of matrix C

U
 . Their result can be generalized as follows. Using their result, we 

transform elements of C
U
= [c

U,i,j] in the following way (see [12], pp. 139–150):
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(G − 1)c
U,i,j =

G∑

h=1

(yUh,i
− ȳ

U,i)(yUh,j
− ȳ

U,j)

=

G∑

h=1

(NhȳUh,i
− N̄ȳi)(NhȳUh,j

− N̄ȳj)

=

G∑

h=1

((Nh − N̄)ȳUh,i
+ N̄(ȳUh,i

− ȳi))((Nh − N̄)ȳUh,j
+ N̄(ȳUh,j

− ȳj))

=

G∑

h=1

(Nh − N̄)2ȳUh,i
ȳUh,j

+ N̄2

G∑

h=1

(ȳUh,i
− ȳi)(ȳUh,j

− ȳj)

+ N̄

G∑

h=1

(Nh − N̄)(ȳUh,j
− ȳj)ȳUh,i

+ N̄

G∑

h=1

(Nh − N̄)(ȳUh,i
− ȳi)ȳUh,j

=

G∑

h=1

(Nh − N̄)2ȳUh,i
ȳUh,j

+ N̄2

G∑

h=1

(ȳUh,i
− ȳi)(ȳUh,j

− ȳj)+

+ 2N̄

G∑

h=1

(Nh − N̄)(ȳUh,i
− ȳi)(ȳUh,j

− ȳj) + N̄ȳi

G∑

h=1

(Nh − N̄)(ȳUh,j
− ȳj)+

+ N̄ȳj

G∑

h=1

(Nh − N̄)(ȳUh,i
− ȳi) =

G∑

h=1

(Nh − N̄)2ȳUh,i
ȳUh,j

+

− N̄2

G∑

h=1

(ȳUh,i
− ȳi)(ȳUh,j

− ȳj) + 2N̄

G∑

h=1

(ȳUh,i
− ȳi)(ȳUh,j

− ȳj)Nh

+ N̄ȳi

G∑

h=1

(Nh − N̄)(ȳUh,j
− ȳj) + N̄ȳj

G∑

h=1

(Nh − N̄)(ȳUh,i
− ȳi) =
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Finally, we have:

The decomposition of the ordinary covariance is:

This and expression (16) lead to the following:

Moreover:

=

G∑

h=1

(Nh − N̄)2ȳUh,i
ȳUh,j

+ N̄

G∑

h=1

(Nh − N̄)(ȳUh,i
− ȳi)(ȳUh,j

− ȳj)

+ N̄

G∑

h=1

(ȳUh,i
− ȳi)(ȳUh,j

− ȳj)Nh + N̄ȳi

G∑

h=1

(Nh − N̄)(ȳUh,j
− ȳj)

+ N̄ȳj

G∑

h=1

(Nh − N̄)(ȳUh,i
− ȳi) =

G∑

h=1

(Nh − N̄)2ȳUh,i
ȳUh,j

+ N̄

G∑

h=1

(Nh − N̄)(ȳUh,i
− ȳi)(ȳUh,j

− ȳj + ȳj)

+ N̄

G∑

h=1

(ȳUh,i
− ȳi)(ȳUh,j

− ȳj)Nh + N̄ȳi

G∑

h=1

(Nh − N̄)(ȳUh,j
− ȳj)

=

G∑

h=1

(Nh − N̄)2ȳUh,i
ȳUh,j

+ N̄

G∑

h=1

(ȳUh,i
− ȳi)(ȳUh,j

− ȳj)Nh+

+ N̄

G∑

h=1

(Nh − N̄)ȳUh,i
ȳUh,j

.

(16)(G − 1)c
U,i,j =

G∑

h=1

(Nh − N̄)NhȳUh,i
ȳUh,j

+ N̄

G∑

h=1

(ȳUh,i
− ȳi)(ȳUh,j

− ȳj)Nh.

(N − 1)ci,j =

G∑

h=1

∑

k∈Uh

(yk,i − ȳi)(yk,j − ȳj) =

=

G∑

h=1

∑

k∈Uh

(yk,i − ȳUh,i
)(yk,j − ȳUh,j

) +

G∑

h=1

(ȳUh,i
− ȳi)(ȳUh,j

− ȳj)Nh =

= (N − G)c∗i,j +

G∑

h=1

(ȳUh,i
− ȳi)(ȳUh,j

− ȳj)Nh.

(17)(G − 1)ci,j,U =

G∑

h=1

(Nh − N̄)NhȳUh,i
ȳUh,j

+ N̄(N − 1)ci,j − N̄(N − G)c∗i,j.
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This leads to the decomposition of matrix A shown in Sect. 2.2.

Derivation of Expression (3)

Expression (17) leads to the following:

This result, expressions (2) and (4) let us evaluate expression (3).

Proof of Theorem 2

Let F and L be m × m symmetric matrices. F is non-negative definite, while L is 
positive definite. There is a non-singular matrix G such that L = GTG (see, e.g. 
[3], p. 218-219. Moreover, [3], p. 563) shows that:

where

Therefore, matrices M , FL−1 and L−1F have the same eigenvalues as roots of equa-
tion |F − λL| = 0 . If F is non-negative (positive) definite, then M is non-negative 
(positive) definite.

Let V(t1s) = L and V(t2s) = F . This and the above properties let us immediately 
prove the first two equalities of Theorem 2.

Expression (20) let us rewrite |FL−1 − λI| = 0 as follows:

(18)

1

G − 1

G∑

h=1

(Nh − N̄)NhȳUh,i
ȳUh,j

=
1

G − 1

G∑

h=1

(Nh − N̄)yUh,i
ȳUh,j

=
1

G − 1

G∑

h=1

(Nh − N̄)((yUh,i
− ȳ

U,i) + ȳ
U,i)((ȳUh,j

− ȳj) + ȳj) =

=
1

G − 1

G∑

h=1

(Nh − N̄)(yUh,i
− ȳ

U,i)(ȳUh,j
− ȳj)

+
ȳj

G − 1

G∑

h=1

(Nh − N̄)(yUh,i
− ȳ

U,i) +
ȳ
U,i

G − 1

G∑

h=1

(Nh − N̄)(ȳUh,j
− ȳj).

(19)

C
U
= A +

N̄(N − 1)

G − 1
C −

N̄(N − G)

G − 1
C∗

= A + N̄C
(
Im + Im

N − G

G − 1
−

N − G

G − 1
C−1C∗

)

= A + N̄C
(
Im +

N − G

G − 1

(
Im − C−1C∗

))
.

(20)|F − λL| = |G2||M − λI| = |L||FL−1 − λI| = |L||L−1FL−1 − λI|

(21)M = (GT )−1FG−1
.

|F − λL| = 0, F − L − (λ − 1)L| = 0, |(GT )−1(F − L)G−1 − �I| = 0
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where � = λ − 1 . If F − L is non-negative definite, then matrix (GT )−1(F − L)G−1 is 
non-negative definite (see, e.g. [3], pp. 213) and � = λ − 1 ≥ 0 . This leads to λ ≥ 1 . 
Hence, the first inequality of Theorem 2 is proved.

If matrix F − L is non-positive definite, then L − F is non-negative definite and 
|F − λL| = 0 is equivalent to |F − L − (λ − 1)L| = 0 , |L − F − (1 − λ)L| = 0 and

Therefore, matrices L − F and (GT )−1(L − F)G−1 are non-negative definite and 
� = 1 − λ ≥ 0 , λ ≤ 1 . Hence, the second inequality of Theorem 2 is proved.

Let us consider the following ratio of the quadratic forms:

where � = �(GT )−1 and L = GTG . This and (16) and (17) let us write the following:

where λ1 and λm are minimal and maximal eigenvalue of matrix 
FL−1 = V(t2s)V

−1(t1s) , respectively. This directly leads to last expression of 
Theorem 2.

Proof of Expression (6) About Eigenvalues of the Homogeneity Matrix

The eigenvalues of the homogeneity matrix, given by (4), are roots of the following 
equation:

According to the properties of matrix (see, e.g. [3], pp. 219) C = GTG , where G is 
symmetric because matrix C is symmetric and positive definite. Therefore:

where M = (G−1)TC∗G
−1 . Matrix M is non-negative definite (see, e.g. [3], pp. 213). 

This let us write 1 − � ≥ 1 and � ≤ 1.
The well-known decomposition of C is:

Matrix (N − 1)C − (N − G)C∗ is non-negative definite because C is positive defi-
nite and C∗ , C# are non-negative definite. Moreover, N−1

N−G
C − C∗ = C +

G−1

N−G
C − C∗ 

is non-negative definite. This and expression (22) let us write that equation 
|� − �I| = 0 is equivalent to the following

|(GT )−1(L − F)G−1 − �I| = 0, � = 1 − λ.

�F�T

�L�T
=

�M�T

��T

λ1 ≤
�M�T

��T
=

�FL−1�T

��T
≤ λm,

(22)|� − �I| = 0, |C − C∗ − �C| = 0, |C∗ − (1 − �)C| = 0.

(23)|M − (1 − �)I| = 0

(N − 1)C = GC# + (N − G)C∗
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Similarly to expression (23), there is symmetric matrix K making the above equa-
tion equivalent to the following

where

is non-negative definite. This leads to inequality � ≥ −
G−1

N−G
 . Hence, inequality 

−
G−1

N−G
≤ � ≤ 1 where � is the eigenvalue of � is proved.
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