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Abstract
The paper derives some exponential tail bounds for central and non-central chis-
quared random variables. The bounds are simple and can easily be applied in sta-
tistical analysis. Especially relevant are the tail bounds for non-central chisquares, 
which are different from some of the other exponential bounds available in the lit-
erature, for example the one given in [1].
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1 Introduction

The objective of this note is to derive some exponential tail bounds for chisquared 
random variables. The bounds are non-asymptotic, but they can be used very suc-
cessfully for asymptotic derivations as well. As a corollary, one can get tail bounds 
for F-statistics as well. Also, I show how some exact moderate deviation [4] inequal-
ities can be obtained as special cases of these tail bounds.

The chisquared random variables are special cases of sub-exponential random 
variables. We examine when the bounds obtained here are sharper than the ones that 
use only the sub-exponentiality of chisquares.

The outline of the next two sections is as follows. Exponential tail bounds for 
central chisquares are given in Sect. 2. Corresponding bounds for non-central chis-
quares are given in Sect. 3.
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2  Central Chisquare

We begin with an upper tail bound for central chisquares. The following theorem 
is proved.

Theorem 1 Suppose X ∼ �2
p
 . Then for a > p , P(X > a) ≤ exp[−

p

2
{
a

p
− 1 − log(

a

p
)}]

.

Proof From Markov’s inequality in its exponential form (see for example, [2] or [3], 
one gets

Let g(t) = −ta − (p∕2) log(1 − 2t) . Then g�(t) = −a + p(1 − 2t)−1 and 
g��(t) = 2p(1 − 2t)−2(> 0) . Hence, g(t) is minimized at t = t0 = (1∕2)

(
1 −

p

a

)
 . Sub-

stitution in (1) yields

This proves the theorem.

Suppose a = p + c . Then an equivalent way of writing the above result is

By the inequality

a weaker version of (2) is given by

It may be noted that a chisquare random variable is a special case of a sub-expo-
nential random variable. There are several equivalent definitions of sub-exponential 
random variables. The one we find convenient is given as follows (see [5], p 26).

(1)
P(X > a) ≤ inf0<t<1∕2[exp(−ta)E{exp(tX)}]

≤ inf0<t<1∕2[exp(−ta)(1 − 2t)−p∕2].

P(X > a) ≤ exp(−t0a)(1 − 2t0)
−p∕2

= exp

[
−
a

2

(
1 −

p

a
+

p

2
log

(
a

p

))]

= exp

[
−
p

2

(
a

p
− 1 − log

(
a

p

))]
.

(2)P(X − p > c) ≤ exp

[
−
p

2

{
c

p
− log

(
1 +

c

p

)}]
.

x − log(1 + x) = �
x

0

[
1 −

1

1 + y

]
dy = �

x

0

y

1 + y
dy ≥ x2

1 + x
,

(3)P(X > p + c) ≤ exp
[
−
p

2
(c∕p)2(1 + c∕p)−1

] ≤ exp

[
−

c2

4(p + c)

]
.
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Definition A random variable X with mean � is said to be sub-exponential ( �, �) if 
E[exp{t(X − i�)}] ≤ exp(t2�2∕2) whenever |t| < 𝛼−1.

If X ∼ �2
p
 , then X is subexponential (2p,  4). To see this, we note that 

E[exp{t(X − p)}] = exp(−tp)(1 − 2t)−p∕2 ≤ exp(2pt2) with |t| ≤ 1∕4 . Now 
P(X − p > c) ≤ inf0<t<1∕4 exp(−tc + 2pt2) = exp(−c2∕(8p)) . The inequality given 
in (3) is sharper than the last one when 0 < c < p . Moreover, as p → ∞ , it follows 
from (2) that P(X − p > c) ∼ exp(−c2∕(4p)) , while sub-exponentiality continues to 
yield the same upper bound exp(−c2∕(8p)).

The next inequality is related to the lower tail of a chisquared random variable. 
The following theorem is proved.

Theorem 2 Suppose X ∼ �2
p
 . Then for 0 < c < p,

Proof The second inequality is an easy consequence of expansion of a logarithmic 
function. To prove the first inequality, we begin with

Similar as before, let g(t) = −t(p − c) − (p∕2) log(1 − 2t) . Then 
g�(t) = −(p − c) + p(1 − 2t)−1 and g��(t) = 2p(1 − 2t)−2 . Hence, g(t) is minimized at 
t = t0 where 1 − 2t0 = p∕(p − c) , i.e., t0 = −c∕[2(p − c)] . Substituting t0 for t in (4), 
one gets the inequality

This proves the theorem.

The exact upper bound given in the rightmost side of Theorem 2 is stronger 
than the similar sub-exponential bound exp

(
−

c2

8p

)
 . Moreover, since p + c > p , it 

is possible to combine (3) with Theorem 2 to get the inequality

Since �2
p
∕p is the average of p iid �2

1
 random variables, each with mean 1 and vari-

ance 2, the central limit theorem leads to (�2
p
− p)∕(

√
2p

d
−→ N (0, 1) . For averages of 

p iid random variables with nonzero and finite variance, [4] provided an asymptotic 
two sided tail bound for deviations of the order 

√
log p . Putting c =

√
2p log p , one 

gets the asymptotic upper bound exp
(
−

2p log p

4p

)
= p−1∕2 which is slightly weaker 

than O(p−1∕2(log p)−1∕2) , one obtained by Rubin and Sethuraman in conformity with 
Mill’s ratio.

P(X − p < −c) ≤ exp

[
(p∕2)

{
c

p
+ log

(
1 −

c

p

)}]
≤ exp

(
−
c2

4p

)
.

(4)P(X − p < −c) ≤ inft<0
[
exp{−t(p − c)}(1 − 2t)−p∕2

]
.

P(X − p < −c) ≤ exp(c)

(
p

p − c

)−p∕2

= exp

[
p

2

{
c

p
+ log

(
1 −

c

p

)}]
.

(5)P(|𝜒2
p
− p| > c) ≤ 2 exp

[
−

c2

4(p + c)

]
.
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It is possible to use Theorems 1 and 2 to obtain some crude tail bounds for the 
F-statistic as well. To see this, suppose rXx and Y are two independent chisquared 
random variables with respective degrees of freedom m1 and m2 . I write F =

X∕m1

Y∕m2

 . 
Then for d > 1 , and writing � = (d − 1)∕(d + 1),

Putting d = m1(1 + �) in (3) and d = m2(1 − �) in Theorem 2, one gets the bound

It is well-known that asymptotically as m2 → ∞ , the F-statistic reduces to a chis-
quare statistic divided by its degrees of freedom. This is also reflected in (6). In 
particular, we get the inequality

3  Non‑Central Chisquare

I find in this section, upper and lower tail bounds for non-central chisquare. These 
upper bounds are not the sharpest ones that one might get, but they are simple 
enough for potential use in statistics. I begin with the upper bound.

Theorem 3 Suppose X ∼ �2
p
(�) . Then for c > 0,

Proof The second inequality is based on an argument similar to the one used In The-
orem 1. For getting the first inequality, I begin with the moment generating function 
of a non-central chisquare and get

Let g(t) = −t(p + � + c) +
�t

1−2t
−

p

2
log(1 − 2t) . Then 

g�(t) = −(p + � + c) + �(1 − 2t)−2 + p(1 − 2t)−1 and 
g��(t) = 4𝜆(1 − 2t)−3 + 2p(1 − 2t)−2 > 0 . Thus the infimum in (7) is obtained at 
t = t0 , where g�(t0) = 0 . Letting u = (1 − 2t)−1 and noting that u is strictly increasing 

P(F > d) = P[F > (1 + 𝛿)∕(1 − 𝛿)]

≤ P[{X > m1(1 + 𝛿)} ∪ {Y < m2(1 − 𝛿)}]

≤ Pr([X > m1(1 + 𝛿))] + P(Y < m2(1 − 𝛿)).

(6)P[F > (1 + 𝛿)∕(1 − 𝛿)] ≤ exp

[
−

m1𝛿
2

4(m1 + 𝛿)

]
+ exp

[
−
m2𝛿

2

4

]
.

lim supm2→∞P[F > (1 + 𝛿)∕(1 − 𝛿)] ≤ exp

[
−

m1𝛿
2

4(m1 + 𝛿)

]
.

P(X > p + 𝜆 + c) ≤ exp

[
−
p

2

{
c

p + 2𝜆
− log

(
1 +

c

p + 2𝜆

)}]

≤ exp

[
−

pc2

4(p + 2𝜆)(p + 2𝜆 + c)

]
.

(7)

P(X > p + 𝜆 + c) ≤ inf f0<t<1∕2 exp[−t(p + 𝜆 + c)] exp
(

𝜆t

1 − 2t

)
(1 − 2t)−p∕2.
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in t, this amounts to solving the equation �u2 + pu − (p + � + c) = 0 . The solution is 
given by u0 =

−p+
√
(p+2�)2+4�c)

2�
 . This solution is not too convenient for use in prac-

tice. Instead I use the simple inequality (1 + z)1∕2 < 1 +
z

2
 to get u0 < 1 +

c

p+2𝜆
= u1 , 

say. Correspondingly, t0 < t1 = (u1 − 1)∕(2u1) =
c

2(p+2𝜆+c)
 . Substitution of this t1 for 

t in (7) yields

By the inequality, (p + 𝜆 + c)∕(p + 2𝜆 + c) > (p + 𝜆)∕(p + 2𝜆) , it follows on simpli-
fication, the right-hand side of (8) is bounded above by 
exp

[
−

p

2

(
c

p+2�
− log

(
1 +

c

p+2�

))]
 . This proves the theorem.

The final theorem of this this paper provides a lower tail bound for non-central 
chisquares.

Theorem 4 Suppose X ∼ �2
p
(�) . Then for 0 < c < p + 𝜆,

Proof Again, the second inequality is obtained by log expansion. To prove the first 
inequality, we start with

Let g(t) = −t(p + � − c) +
�t

1−2t
− (p∕2) log(1 − 2t) . As before, g(t) is minimized at 

t = t0 , where t0 is a solution of −(p + � − c) + �(1 − 2t)−2 + p(1 − 2t)−1 = 0 . Again, 
writing u = (1 − 2t)−1 , one needs solving �u2 + pu − (p + � − c) = 0 . The solution 
is given by u0 =

−p+
√
(p+2�)2−4�c

2�
 . Now by the inequality (1 − z)1∕2 < 1 −

z

2
 , one gets 

u0 < 1 −
c

p+2𝜆
= u1 , say. The corresponding t1 = −c∕(p + 2𝜆 − c)(< 0) . Substitution 

of t1 for t in (8) leads to the inequality

By the inequality, (p + � − c)∕(p + 2� − c) ≤ (p + �)∕(p + 2�) , one gets after 
simplification,

This proves the theorem.

Remark It is possible to obtain exponential tail-bounds for non-central F-statistic as 
well. Suppose, for example X and Y are independently distributed with X ∼ �2

m1
(�1) 

(8)P(X > p + 𝜆 + c) ≤ exp

[
−
c(p + 𝜆 + c)

p + 2𝜆 + c)
+

𝜆c

p + 2𝜆
+

p

2
log

(
1 +

c

p + 2𝜆

)]
.

P(X < p + 𝜆 − c) ≤ exp

[
p

2

{
c

p + 2𝜆
+ log

(
1 −

c

p + 2𝜆

)}]
≤ exp

[
−

pc2

4(p + 2𝜆)2

]
.

(9)P(X < p + 𝜆 − c) ≤ inft<0 exp
[
−t(p + 𝜆 − c) +

𝜆t

1 − 2t

]
(1 − 2t)−p∕2.

P(X < p + 𝜆 − c) ≤ exp

[
c(p + 𝜆 − c)

p + 2𝜆 − c
−

𝜆c

p + 2𝜆
+ (p∕2) log

(
1 −

c

p + 2𝜆

)]
.

P(X < p + 𝜆 − c) ≤ exp

[
p

2

[
c

p + 2𝜆
+ log

(
1 −

c

p + 2𝜆

)]]
.
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and Y ∼ �2
m2
(�2) . We may recall that E(X) = m1 + �1 and E(Y) = m2 + �2 . Writing 

F = (X∕m1)∕(Y∕m2) , if d = (1 + �1∕m1)∕(1 + �2∕m2)(1 + �)∕(1 − �) , one can as in 
(6), get the inequality,

The exponential bounds are now obtained using c = (m1 + �1)� in Theorem 3 and 
c = (m2 + �2)� in Theorem 4.
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