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Abstract
The paper derives some exponential tail bounds for central and non-central chis-
quared random variables. The bounds are simple and can easily be applied in sta-
tistical analysis. Especially relevant are the tail bounds for non-central chisquares, 
which are different from some of the other exponential bounds available in the lit-
erature, for example the one given in [1].
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1  Introduction

The objective of this note is to derive some exponential tail bounds for chisquared 
random variables. The bounds are non-asymptotic, but they can be used very suc-
cessfully for asymptotic derivations as well. As a corollary, one can get tail bounds 
for F-statistics as well. Also, I show how some exact moderate deviation [4] inequal-
ities can be obtained as special cases of these tail bounds.

The chisquared random variables are special cases of sub-exponential random 
variables. We examine when the bounds obtained here are sharper than the ones that 
use only the sub-exponentiality of chisquares.

The outline of the next two sections is as follows. Exponential tail bounds for 
central chisquares are given in Sect. 2. Corresponding bounds for non-central chis-
quares are given in Sect. 3.
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2 � Central Chisquare

We begin with an upper tail bound for central chisquares. The following theorem 
is proved.

Theorem 1  Suppose X ∼ �2
p
 . Then for a > p , P(X > a) ≤ exp[−

p

2
{
a

p
− 1 − log(

a

p
)}]

.

Proof  From Markov’s inequality in its exponential form (see for example, [2] or [3], 
one gets

Let g(t) = −ta − (p∕2) log(1 − 2t) . Then g�(t) = −a + p(1 − 2t)−1 and 
g��(t) = 2p(1 − 2t)−2(> 0) . Hence, g(t) is minimized at t = t0 = (1∕2)

(
1 −

p

a

)
 . Sub-

stitution in (1) yields

This proves the theorem.

Suppose a = p + c . Then an equivalent way of writing the above result is

By the inequality

a weaker version of (2) is given by

It may be noted that a chisquare random variable is a special case of a sub-expo-
nential random variable. There are several equivalent definitions of sub-exponential 
random variables. The one we find convenient is given as follows (see [5], p 26).

(1)
P(X > a) ≤ inf0<t<1∕2[exp(−ta)E{exp(tX)}]

≤ inf0<t<1∕2[exp(−ta)(1 − 2t)−p∕2].

P(X > a) ≤ exp(−t0a)(1 − 2t0)
−p∕2

= exp

[
−
a

2

(
1 −

p

a
+

p

2
log

(
a

p

))]

= exp

[
−
p

2

(
a

p
− 1 − log

(
a

p

))]
.

(2)P(X − p > c) ≤ exp

[
−
p

2

{
c

p
− log

(
1 +

c

p

)}]
.

x − log(1 + x) = �
x

0

[
1 −

1

1 + y

]
dy = �

x

0

y

1 + y
dy ≥ x2

1 + x
,

(3)P(X > p + c) ≤ exp
[
−
p

2
(c∕p)2(1 + c∕p)−1

] ≤ exp

[
−

c2

4(p + c)

]
.
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Definition  A random variable X with mean � is said to be sub-exponential ( �, �) if 
E[exp{t(X − i�)}] ≤ exp(t2�2∕2) whenever |t| < 𝛼−1.

If X ∼ �2
p
 , then X is subexponential (2p,  4). To see this, we note that 

E[exp{t(X − p)}] = exp(−tp)(1 − 2t)−p∕2 ≤ exp(2pt2) with |t| ≤ 1∕4 . Now 
P(X − p > c) ≤ inf0<t<1∕4 exp(−tc + 2pt2) = exp(−c2∕(8p)) . The inequality given 
in (3) is sharper than the last one when 0 < c < p . Moreover, as p → ∞ , it follows 
from (2) that P(X − p > c) ∼ exp(−c2∕(4p)) , while sub-exponentiality continues to 
yield the same upper bound exp(−c2∕(8p)).

The next inequality is related to the lower tail of a chisquared random variable. 
The following theorem is proved.

Theorem 2  Suppose X ∼ �2
p
 . Then for 0 < c < p,

Proof  The second inequality is an easy consequence of expansion of a logarithmic 
function. To prove the first inequality, we begin with

Similar as before, let g(t) = −t(p − c) − (p∕2) log(1 − 2t) . Then 
g�(t) = −(p − c) + p(1 − 2t)−1 and g��(t) = 2p(1 − 2t)−2 . Hence, g(t) is minimized at 
t = t0 where 1 − 2t0 = p∕(p − c) , i.e., t0 = −c∕[2(p − c)] . Substituting t0 for t in (4), 
one gets the inequality

This proves the theorem.

The exact upper bound given in the rightmost side of Theorem 2 is stronger 
than the similar sub-exponential bound exp

(
−

c2

8p

)
 . Moreover, since p + c > p , it 

is possible to combine (3) with Theorem 2 to get the inequality

Since �2
p
∕p is the average of p iid �2

1
 random variables, each with mean 1 and vari-

ance 2, the central limit theorem leads to (�2
p
− p)∕(

√
2p

d
−→ N (0, 1) . For averages of 

p iid random variables with nonzero and finite variance, [4] provided an asymptotic 
two sided tail bound for deviations of the order 

√
log p . Putting c =

√
2p log p , one 

gets the asymptotic upper bound exp
(
−

2p log p

4p

)
= p−1∕2 which is slightly weaker 

than O(p−1∕2(log p)−1∕2) , one obtained by Rubin and Sethuraman in conformity with 
Mill’s ratio.

P(X − p < −c) ≤ exp

[
(p∕2)

{
c

p
+ log

(
1 −

c

p

)}]
≤ exp

(
−
c2

4p

)
.

(4)P(X − p < −c) ≤ inft<0
[
exp{−t(p − c)}(1 − 2t)−p∕2

]
.

P(X − p < −c) ≤ exp(c)

(
p

p − c

)−p∕2

= exp

[
p

2

{
c

p
+ log

(
1 −

c

p

)}]
.

(5)P(|𝜒2
p
− p| > c) ≤ 2 exp

[
−

c2

4(p + c)

]
.
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It is possible to use Theorems 1 and 2 to obtain some crude tail bounds for the 
F-statistic as well. To see this, suppose rXx and Y are two independent chisquared 
random variables with respective degrees of freedom m1 and m2 . I write F =

X∕m1

Y∕m2

 . 
Then for d > 1 , and writing � = (d − 1)∕(d + 1),

Putting d = m1(1 + �) in (3) and d = m2(1 − �) in Theorem 2, one gets the bound

It is well-known that asymptotically as m2 → ∞ , the F-statistic reduces to a chis-
quare statistic divided by its degrees of freedom. This is also reflected in (6). In 
particular, we get the inequality

3 � Non‑Central Chisquare

I find in this section, upper and lower tail bounds for non-central chisquare. These 
upper bounds are not the sharpest ones that one might get, but they are simple 
enough for potential use in statistics. I begin with the upper bound.

Theorem 3  Suppose X ∼ �2
p
(�) . Then for c > 0,

Proof  The second inequality is based on an argument similar to the one used In The-
orem 1. For getting the first inequality, I begin with the moment generating function 
of a non-central chisquare and get

Let g(t) = −t(p + � + c) +
�t

1−2t
−

p

2
log(1 − 2t) . Then 

g�(t) = −(p + � + c) + �(1 − 2t)−2 + p(1 − 2t)−1 and 
g��(t) = 4𝜆(1 − 2t)−3 + 2p(1 − 2t)−2 > 0 . Thus the infimum in (7) is obtained at 
t = t0 , where g�(t0) = 0 . Letting u = (1 − 2t)−1 and noting that u is strictly increasing 

P(F > d) = P[F > (1 + 𝛿)∕(1 − 𝛿)]

≤ P[{X > m1(1 + 𝛿)} ∪ {Y < m2(1 − 𝛿)}]

≤ Pr([X > m1(1 + 𝛿))] + P(Y < m2(1 − 𝛿)).

(6)P[F > (1 + 𝛿)∕(1 − 𝛿)] ≤ exp

[
−

m1𝛿
2

4(m1 + 𝛿)

]
+ exp

[
−
m2𝛿

2

4

]
.

lim supm2→∞P[F > (1 + 𝛿)∕(1 − 𝛿)] ≤ exp

[
−

m1𝛿
2

4(m1 + 𝛿)

]
.

P(X > p + 𝜆 + c) ≤ exp

[
−
p

2

{
c

p + 2𝜆
− log

(
1 +

c

p + 2𝜆

)}]

≤ exp

[
−

pc2

4(p + 2𝜆)(p + 2𝜆 + c)

]
.

(7)

P(X > p + 𝜆 + c) ≤ inf f0<t<1∕2 exp[−t(p + 𝜆 + c)] exp
(

𝜆t

1 − 2t

)
(1 − 2t)−p∕2.
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in t, this amounts to solving the equation �u2 + pu − (p + � + c) = 0 . The solution is 
given by u0 =

−p+
√
(p+2�)2+4�c)

2�
 . This solution is not too convenient for use in prac-

tice. Instead I use the simple inequality (1 + z)1∕2 < 1 +
z

2
 to get u0 < 1 +

c

p+2𝜆
= u1 , 

say. Correspondingly, t0 < t1 = (u1 − 1)∕(2u1) =
c

2(p+2𝜆+c)
 . Substitution of this t1 for 

t in (7) yields

By the inequality, (p + 𝜆 + c)∕(p + 2𝜆 + c) > (p + 𝜆)∕(p + 2𝜆) , it follows on simpli-
fication, the right-hand side of (8) is bounded above by 
exp

[
−

p

2

(
c

p+2�
− log

(
1 +

c

p+2�

))]
 . This proves the theorem.

The final theorem of this this paper provides a lower tail bound for non-central 
chisquares.

Theorem 4  Suppose X ∼ �2
p
(�) . Then for 0 < c < p + 𝜆,

Proof  Again, the second inequality is obtained by log expansion. To prove the first 
inequality, we start with

Let g(t) = −t(p + � − c) +
�t

1−2t
− (p∕2) log(1 − 2t) . As before, g(t) is minimized at 

t = t0 , where t0 is a solution of −(p + � − c) + �(1 − 2t)−2 + p(1 − 2t)−1 = 0 . Again, 
writing u = (1 − 2t)−1 , one needs solving �u2 + pu − (p + � − c) = 0 . The solution 
is given by u0 =

−p+
√
(p+2�)2−4�c

2�
 . Now by the inequality (1 − z)1∕2 < 1 −

z

2
 , one gets 

u0 < 1 −
c

p+2𝜆
= u1 , say. The corresponding t1 = −c∕(p + 2𝜆 − c)(< 0) . Substitution 

of t1 for t in (8) leads to the inequality

By the inequality, (p + � − c)∕(p + 2� − c) ≤ (p + �)∕(p + 2�) , one gets after 
simplification,

This proves the theorem.

Remark  It is possible to obtain exponential tail-bounds for non-central F-statistic as 
well. Suppose, for example X and Y are independently distributed with X ∼ �2

m1
(�1) 

(8)P(X > p + 𝜆 + c) ≤ exp

[
−
c(p + 𝜆 + c)

p + 2𝜆 + c)
+

𝜆c

p + 2𝜆
+

p

2
log

(
1 +

c

p + 2𝜆

)]
.

P(X < p + 𝜆 − c) ≤ exp

[
p

2

{
c

p + 2𝜆
+ log

(
1 −

c

p + 2𝜆

)}]
≤ exp

[
−

pc2

4(p + 2𝜆)2

]
.

(9)P(X < p + 𝜆 − c) ≤ inft<0 exp
[
−t(p + 𝜆 − c) +

𝜆t

1 − 2t

]
(1 − 2t)−p∕2.

P(X < p + 𝜆 − c) ≤ exp

[
c(p + 𝜆 − c)

p + 2𝜆 − c
−

𝜆c

p + 2𝜆
+ (p∕2) log

(
1 −

c

p + 2𝜆

)]
.

P(X < p + 𝜆 − c) ≤ exp

[
p

2

[
c

p + 2𝜆
+ log

(
1 −

c

p + 2𝜆

)]]
.
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and Y ∼ �2
m2
(�2) . We may recall that E(X) = m1 + �1 and E(Y) = m2 + �2 . Writing 

F = (X∕m1)∕(Y∕m2) , if d = (1 + �1∕m1)∕(1 + �2∕m2)(1 + �)∕(1 − �) , one can as in 
(6), get the inequality,

The exponential bounds are now obtained using c = (m1 + �1)� in Theorem 3 and 
c = (m2 + �2)� in Theorem 4.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

References

	 1.	 Boucheron S, Lugosi G, Massart P (2013) Concentration inequalities: a noasymptotic theory of 
independence. Oxford University Press, Oxford, England

	 2.	 Chernoff H (1952) A measure of asymptotic efficiency for tests of a hypothesis based on a sum of 
observations. Ann Math Stat 23:493–507

	 3.	 Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J Am Stat 
Assoc 58:13–30

	 4.	 Rubin H, Sethuraman J (1965) Probabilities of moderate deviations. Sankhya A 27:325–346
	 5.	 Wainwright MJ (2019) High-Dimensional statistics: a non-asymptotic viewpoint. Cambridge Uni-

versity Press, Cambridge, England

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

P(F > d) ≤ P(X > (m1 + 𝜆1)(1 + 𝛿)) + P(Y < (m2 + 𝜆2)(1 − 𝛿)).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Exponential Tail Bounds for Chisquared Random Variables
	Abstract
	1 Introduction
	2 Central Chisquare
	3 Non-Central Chisquare
	References




