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Abstract
The three tests in profile analysis: test of parallelism, test of level and test of flatness 
are modified so that high-dimensional data can be analysed. Using specific scores, 
dimension reduction is performed and the exact null distributions are derived for the 
three hypotheses.

Keywords  High-dimensional data · Hypothesis testing · Linear scores · Multivariate 
analysis · Profile analysis · Spherical distributions

1  Introduction

In this article, we are going to consider profile analysis from a high-dimensional 
perspective, i.e. there are so many parameters in the model that there are not enough 
degrees of freedom to test those hypotheses which are part of the analysis. Profile 
analysis consists of three tests, and the tests are carried out in a certain order. The 
tests are: (1) the test of parallelism; (2) the test of equal level; and (3) the test of flat-
ness. Later we will be more specific how the tests are performed. The approach dif-
fers somewhat from the usual likelihood ratio testing procedure since, in particular, 
the hypotheses are chosen in a certain order.

There are two possible distinct scenarios in the analysis of profiles which both 
imply a need to extend the classical theory to cover high-dimensional models: 
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1.	 The same variable is observed for each subject over many time points (repeated 
measurements) which often are tightly distributed along a finite interval. There 
can be more repeated measurements than the number of independent subjects.

2.	 For each subject many variables should be analysed simultaneously. There can 
be more variables than the number of independent observations.

In (1) there is a natural ordering of the repeated measurements. For example, it 
can be a growth curve or in general any stream of observations which is generated 
from some measurement device. In (2) there does not exist any ordering between 
variables. Instead one can measure hundreds of characteristics on a subject, for 
example components from a vehicle.

Over the years profile analysis has been studied by many authors. One of the 
first contributions was published by Greenhouse and Geisser [4]. Originally, 
mean values were compared and modelled. Many years after profile analysis had 
been introduced, Srivastava [17] derived likelihood ratio-based test statistics 
together with their distributions. Illuminating chapters on profile analysis can be 
found in the books by Srivastava and Carter [19] and Srivastava [18]. A more 
sophisticated approach was suggested by Ohlson and Srivastava [13] who consid-
ered profile analysis of several groups, where the groups of subjects only partly 
had a common profile. In von Rosen [22] an overview of classical profile analysis 
has been given.

Fujikoshi [3], followed by Seo et al. [16], derived likelihood ratio tests for the 
parallelism, level and flatness hypothesis, respectively, when analysing growth 
curve data. For a parallel profile model, i.e. assuming parallel profiles, it has 
also been proposed to consider different covariance structures. In Yokoyama and 
Fujikoshi [25] and Yokoyama [24] the random-effect covariance structure was 
considered and some tests for the random-effect and flatness were derived. Later, 
Srivastava and Singull [20] constructed likelihood ratio tests in profile analysis, 
without any restrictions on the parameter space, for testing the covariance matrix 
for random-effect structure or sphericity.

Moreover, profile analysis has also been discussed under more general models. 
Okamoto et al. [14] studied the asymptotic expansions of the distributions of some 
test statistics considering elliptical distributions. Others have extended this model 
and discuss the asymptotic expansions for the null distribution of test statistics for 
profile analysis under non-normality, e.g. see Maruyama [12] and Harrar and Xu [6].

Our ideas about analysing high-dimensional profile data stem from works by Läu-
ter [8, 9] and Läuter et al. [10, 11] where random scores were utilized in MANOVA 
models. Scores have for a long time been used in statistics and mostly they consti-
tute of known linear combinations of random vectors/matrices. The idea with the 
random scores is that they should be applied to test statistics which to some extent 
are robust, i.e. instead of having test statistics which are based on normally distrib-
uted vectors they can be elliptically distributed and still the test statistics follow the 
same distribution as when the observed variables are normally distributed.

In Sect. 2 profile analysis is introduced and necessary background information 
for the rest of the paper is presented. Thereafter, in Sect. 3 the high-dimensional 
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approach of this paper is described and in Sect. 4 the usual test statistics are mod-
ified so that high-dimensional data can be handled. Section  5 comprises some 
concluding remarks.

Concerning notation bold upper case letters denote matrices and bold lower case 
vectors. Other notations are defined when they first appear.

2 � Profile Analysis

Assume that there are q groups which should be compared with ni p-dimensional 
random vectors xij , j ∈ {1, ..., ni} , which are independently normally distributed as 
Np(�i,�) , i ∈ {1, ..., q} , where �i = (�1,i, ...,�p,i)

� and � is an unknown positive def-
inite dispersion matrix. As mentioned in the introduction there are three different 
hypotheses which are commonly considered in profile analysis: 

1.	 Parallelism hypothesis
	   H1 ∶ �i − �q = �i1p , i ∈ {1, ..., q − 1} and A1 ≠ H1 , meaning that �i − �q ≠ �i1p , 

i ∈ {1, ..., q − 1} , where A1 stands for alternative hypothesis, the parameters �i are 
unknown scalars and 1p is a p-dimensional vector of ones;

2.	 Level hypothesis
	   H2|H1 ∶ �i = 0 , i ∈ {1, ..., q − 1} and A2 ≠ H2|H1 , implying that �i ≠ 0 , 

i ∈ {1, ..., q − 1} , where H2|H1 means H2 under the assumption that H1 is true;
3.	 Flatness hypothesis
	   H3|H1 ∶ �i = �i1p , i ∈ {1, ..., q} and A3 ≠ H3|H1 , where H3|H1 means H3 under 

the assumption that H1 is true, and the parameters �i are unknown scalars.

One can note that instead of H3|H1 the strategy can be to test H3|H2 , when we have 
�1 = ⋯ = �q . In this way, profile analysis can be built up around a chain of tests.

Profile analysis can also be reformulated with the help of matrices and the 
MANOVA and growth curve model (GMANOVA) as well as the extended growth 
curve model which all belong to the class of bilinear models (see von Rosen [23]). 
Moreover, for technical details we refer to the report by Cengiz and von Rosen [1].

Let the observation matrix be matrix normally distributed, i.e. X ∼ Np,N(BC,�, I) , 
B : p × q and � : p × p , consist of the unknown parameters and C : q × N , is the 
design matrix describing the q groups. In this article, to simplify presentation, C is 
supposed to be of full rank. It can be noted that B = (�

1
,… ,�q) and one choice of 

C is

The null hypothesis and the alternative hypothesis for parallelism can be written

C =

⎛
⎜⎜⎜⎜⎝

1
�
n1

0 ⋯ 0

0 1
�
n2

⋯ ⋮

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 1
�
nq

⎞
⎟⎟⎟⎟⎠
.
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where F and G are contrast matrices given by

It can be noted that F is of size (p − 1) × p and G is of size q × (q − 1) , respectively, 
of ranks p − 1 and q − 1.

If N − 2 is larger than p, the likelihood ratio statistic for the parallelism hypoth-
esis can be given as

where | ∙ | stands for the determinant, the projection PM = M(M�M)−1M� , for any 
matrix expression M of full rank and S = X(I − PC� )X

� . The notation of a projec-
tion will frequently be used in this article. Let r(M) denote the rank of a matrix M . 
Moreover,

are two expressions which are independently distributed, where Wp(�, n) denotes 
the Wishart distribution with scale parameter � and n degrees of freedom. Note that 
r(C) = q and r(G) = q − 1 . If p = 1 then a Wishart variable is proportional to a chi-
square variable. Furthermore, if U ∼ Wp(�, n) is independent of V ∼ Wp(�,m) then

which is known as Wilk’s lambda distribution. Hence, the distribution for the likeli-
hood ratio statistic given in (3) is

If the profiles are parallel, we can say that there is no interaction between the 
responses and the groups. Given that the parallelism hypothesis holds, the next step 
is to proceed with testing the second hypothesis, H2 , which indicates that there is no 
group effect. Moreover, if the first hypothesis holds, one may also want to test the 
third hypothesis, H3 , meaning that the response is constant “over time”. Note that 
failing to reject H1 , as always, does not mean that the hypothesis is true but in profile 
analysis it is used as a strategy for analysing data.

(1)
H1 ∶ E[X] = BC, FBG = 0,

A1 ∶ E[X] = BC, no restrictions on B,

(2)F =

⎛
⎜⎜⎜⎜⎝

1 − 1 0 0 ⋯ 0 0

0 1 − 1 0 ⋯ 0 0

0 0 1 − 1 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 ⋯ 1 − 1

⎞
⎟⎟⎟⎟⎠
, G =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 ⋯ 0

−1 1 ⋯ 0

0 − 1 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 1

0 0 ⋯ − 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(3)�P =
|FSF�|

|FSF� + FXPC�(CC�)−1GX
�F�| ,

FSF� ∼ Wp−1(F�F
�
,N − r(C)),

FXPC�(CC�)−1GX
�F� ∼ Wp−1(F�F

�
, r(G)),

|U|
|U + V| ∼ Λ(p,m, n),

�P ∼ Λ(p − 1, r(G),N − r(C)).
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The level hypothesis in matrix form equals

where F and G are defined in (2). Let M◦ denote any matrix of full rank generating 
the orthogonal complement to the column space of M . The corresponding likeli-
hood ratio test statistic for the level hypothesis can be expressed as

where

Note that r((F�)◦) = 1 since r(F) = p − 1 . Then, it can be shown that

which are independently distributed. Moreover, the Wilk’s lambda distribution for 
(5) is given by

which equals a beta-distribution, with (N − r(C) − p + 1)∕2 and r(G)∕2 degrees of 
freedom. Furthermore, by a one-to-one transformation �L can be converted into an 
F-statistic.

Assuming that the profiles are parallel, a test can be constructed to see if the pro-
files are flat, i.e.

where F and G are defined in (2). The likelihood ratio statistic for the flatness 
hypothesis equals

where there are two independently distributed Wishart matrices:

Thus,

(4)
H2|H1 ∶ E[X] = BC, BG = 0,

A2|H1 ∶ E[X] = BC, FBG = 0,

(5)�L =
((F�)◦

�
S−1(F�)◦)−1

((F�)◦
�
S−1(F�)◦)−1 +HXC�(CC�)−1GQ−1G�(CC�)−1CX�H�

,

H = ((F�)◦
�
S−1(F�)◦)−1(F�)◦

�
S−1,

Q = G�(CC�)−1G + G�(CC�)−1CX�F�(FSF�)−1FXC�(CC�)−1G.

((F�)◦
�
S−1(F�)◦)−1 ∼ W1(((F

�)◦
�
�
−1(F�)◦)−1,N − r(C) − p + 1),

HXC�(CC�)−1GQ−1G�(CC�)−1CX�H� ∼ W1(((F
�)◦

�
�
−1(F�)◦)−1, r(G)),

�L ∼ Λ(1, r(G),N − r(C) − p + 1)

(6)
H3|H1 ∶ E[X] = BC, FB = 0,

A3|H1 ∶ E(X) = BC, FBG = 0,

(7)�F =
|FSF� + FXPC�(CC�)−1GX

�F�|
|FSF� + FXPC�(CC�)−1GX

�F� + FXPC�G◦X
�F�| ,

FXPC�G◦X
�F� ∼ Wp−1(F�F

�
, r(C�G◦)),

FSF� + FXPC�(CC�)−1GX
�F� ∼ Wp−1(F�F

�
,N − r(C) + r(G)).
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and r(C�G◦) = r(C) − r(G) = 1.
To find an exact significance level for the level hypothesis test and the flatness 

hypothesis test is still an open question. The main reason for this fact is that it is a 
difficult problem to solve since the different “conditional” test statistics are depend-
ent. If the significance level is important, a Bonferroni approach can be used. Since 
the focus in this article is to construct test statistics in “high dimensions”, we leave 
it to the future to compare the classical profile analysis approach with an approach 
based on “unconditional tests”.

3 � High‑Dimensional Setting

The focus in this article is on high-dimensional profile analysis. Several authors 
have approached the analysis of high-dimensional profiles. Onozawa et al. [15] and 
Harrar and Kong [5] (see also Hyodo [7]) derived test statistics for high-dimensional 
profile analysis with unequal covariance matrices. Takahashi and Shutoh [21] pro-
posed new test statistics in profile analysis with high-dimensional data by apply-
ing the Cauchy–Schwarz inequality. The above-mentioned authors introduce differ-
ent high-dimensional asymptotic frameworks and derive the test statistics in profile 
analysis under these frameworks. The approach in this article is different since we 
will not focus on the asymptotic distributions of the test statistics. Instead a fixed p 
(number of repeated measurements) and n (number of observations) are of interest 
with a p which can be much larger than n.

The method adopted in this article is mainly based on ideas put forward by Läu-
ter [8, 9] and Läuter et al. [10, 11] who proposed a scoring method for dealing with 
high-dimensional problems in MANOVA. The method is more advanced than prin-
cipal component analysis and tests based on these scores are exact. However, for 
the level test in profile analysis this article presents a completely new approach. The 
tests which arise from Läuter’s [8, 9] and Läuter et al.’s [10, 11] approach are based 
on linear scores which are constructed with the help of sums of products matrices. 
These scores are linear combinations of the repeated measurements. The approach 
implies that high-dimensional observations are compressed into low-dimensional 
observations and then these are used in the analysis instead of the original data. 
Note that we are very briefly mentioning the choice of scores and only one explicit 
expression of the scores is given in this work. However, there exist different kinds of 
scores and for details it can be referred to Läuter et al. [10] where several examples 
are presented.

Now it is started with a brief introductory mathematical presentation of the the-
ory. Suppose

and consider a single score

�F ∼ Λ(p − 1, r(C�G◦),N − r(C) + r(G))

X ∼ Np,n(�1
�
n
,�, In)
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where d is the vector of weights and zj’s, j ∈ {1, ..., n} , are the individual scores. 
Suppose that the null hypothesis � = 0 is of interest. In this case one can choose the 
vector d to be a unique function of XX′ which is the total sums of product matrix of 
size p × p . Then, with z̄ = 1

n
z�1n and s2

z
=

1

n−1
(z�z − nz̄2),

is t-distributed with n − 1 degrees of freedom. Note that the vector of random scores 
z is not normally distributed. The result on this type of “robustness” follows from a 
general result stated in the next lemma.

Lemma 3.1  (Fang and Zhang [2], Theorem 2.5.8). Let �z and z have the same distri-
bution for all orthogonal matrices � and suppose that P(z = 0) = 0 which defines a 
class of spherical distributions, say Φ+ . The distribution of a statistic t(z) , where the 
distribution of z belongs to Φ+ , is the same for each member of Φ+ , if for all 𝛼 > 0 
the statistic t(�z) has the same distribution as t(z).

The lemma is useful if the distribution of the statistic mentioned in Lemma 
3.1 can be derived for one member of Φ+ . In particular if it holds for u ∼ Nn(0, I) 
because u belongs to Φ+ and then the distribution has been obtained for all members 
of the class Φ+ . These facts, among others, establish why (8) is true for all spherical 
distributions.

Wilk’s Λ statistic is frequently used in this article and Theorem  1 in Läuter 
et al. [11] implies the following theorem:

Theorem 3.1  Let V ∼ Wp(�,m) and W ∼ Wp(�, n) be independently Wishart distrib-
uted and put

where D : s × p , s ≤ p is a function of W + V and the rank of D�(W + V)D equals s 
with probability 1. Then � ∼ Λ(s,m, n).

In the theorem there is � involved in V ∼ Wp(�,m) and W ∼ Wp(�, n) but the 
distribution of � is the same for all � . It is only crucial that the same � is included in 
the distributions for W and V . One way of constructing the weights D is to use the 
so-called principal component method (see Läuter et al. [11]), where the weights are 
determined by solving the eigenvalue problem

and � is a diagonal matrix with the positive eigenvalues.
The next corollary of the theorem is what is needed in this article.

z� = (z1, z2,⋯ , zn) = (d1, d2,⋯ , dp)X = d�X,

(8)t =

√
nz̄

sz
,

� =
|D�WD|

|D�(W + V)D| ,

(9)(W + V)D = D�, D�D = I,
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Corollary 3.1  Let V ∼ Wp(�,m) and W ∼ Wp(�, n) be independently Wishart dis-
tributed and

where d ∈ ℜp is a function of W + V such that d�(W + d�V)d > 0 with probability 
1. Then � is �-distributed with m/2 and n/2 degrees of freedom.

Proof  By definition of a Wishart distribution there exist Y ∼ Np,m(0,�, Im) 
and Z ∼ Np,n(0,�, In) such that V = YY� and W = ZZ� . Put X = (Y ∶ Z) and 
then V +W = XX� = YY� + ZZ� . Since d = g(V +W) for some function g(∙) , 
d�X = g�(XX�)X . Moreover, for any orthogonal matrix � , g(XX�) = g(X���X�) and 
since X� has the same distribution as X , the score d�X = g�(XX�)X is spherically 
distributed. Note that � can be written

and it follows from Lemma 3.1 that since the statement instead of d′X also is true 
for a normally distributed variable with a dispersion matrix equal to I , � is indeed �
-distributed with m/2 and n/2 degrees of freedom.	�  ◻

Corresponding to (9) one alternative way to determine the weight d in Corollary 
3.1 is by solving the eigenvalue/eigenvector problem

4 � Main Results

In Sect. 2 the three hypothesis in classical profile analysis was presented, i.e. when 
N > p + q . Now it will be focused on the high-dimensional setting when p > N − q . 
Consider, for example, the test statistic given in (3). When p is large the problem is 
that S is singular and the determinant in (3) equals 0.

Läuter [8, 9] and Läuter et al. [10, 11] directly applied a vector d to the observa-
tion matrix X . In this article, since there is a bilinear testing situation, it is proposed 
to apply d to FX where F is given in (2). Hence, d is of size p − 1.

Let Y = FX , then the following test statistic is proposed to test the hypothesis of 
parallel profiles which is based on the formulation in (1):

Proposition 4.1  Let the parallelism hypothesis be defined via (1) and let Y = FX . A 
test statistic for testing the hypothesis is given by

� =
d�Vd

d�Wd + d�Vd
,

� =
d�X(I ∶ 0)�(I ∶ 0)X�d

d�XX�d

(W + V)d = 𝜓d, d�d = 1, 𝜓 > 0.

(10)�Ph =
d�Y(I − PC� )Y

�d

d�Y(I − PC� )Y
�d + d�YPC�(CC�)−1GY

�d
.
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It can be noted that Y(I − PC� )Y
� ∼ Wp−1(F�F

�
,N − r(C)) is independ-

ent of YPC�(CC�)−1GY
� ∼ Wp−1(F�F

�
, r(G)) and if d is a function of Y(I − PC� )Y

� 
+YPC�(CC�)−1GY

� = Y(I − PC�Go)Y
� Corollary 3.1 establishes the next theorem.

Theorem 4.1  If d is a nonzero function (with probability 1) of Y(I − PC�Go)Y
� the test 

statistic for testing for parallel profiles in high dimensions, given in (10), follows a �
-distribution with parameters (N − r(C))∕2 and r(G)∕2.

In (5) the likelihood ratio was presented for the level hypothesis defined in (4). 
As it can be seen from the expression in (5) problems occur in high dimensions 
because S−1 does not exist when p > N − r(C) + 1 . Therefore, ((F�)◦

�
S−1(F�)◦)−1 

and ((F�)◦
�
S−1(F�)◦)−1(F�)◦

�
S−1 have to be studied. It can be noted that if 

p < N − r(C) + 1,

Thus, it can be seen that if p > N − r(C) + 1 negative degrees of freedom appear 
which of course is impossible. Thus, in order to test the level hypothesis in high 
dimensions the statistic in (5) has to be modified significantly. In this article the 
idea will be to modify the statistic in (5) as little as possible but so much that high-
dimensional statistical analyses can be carried out.

A couple of ideas will bring us to a proposition where a test statistic and its 
distribution are given. The first idea will be to prove (11) in detail and see if any-
thing can be modified so that when p is large reasonable expressions appear. To 
simplify notation (A�S−1A)−1 will be discussed where, for example, A = (F�)◦ and 
the inverse is supposed to exist. The following chain of equalities shows some 
interesting structure:

where

Since A�
�
−1X is independent of A◦′X it is also independent of P . Moreover, P is 

idempotent and r(P) = N − r(C) − p + r(A) . Thus, for any choice of A◦ , condition-
ally on A◦′X , the expression in (12) is Wishart distributed but it also appears that 
this distribution is independent of A◦′X and therefore (11) is established for the spe-
cific choice A = (F�)◦.

The critical point in the high-dimensional setting is that r(P) will approach 0, 
even if the inverse in (13) is replaced by a g-inverse, and therefore, it is proposed 
that P is modified in such a way that instead of this projection (expressed in F′ 
instead of A◦)

(11)((F�)◦
�
S−1(F�)◦)−1 ∼ W1(((F

�)◦
�
�
−1(F�)◦)−1,N − r(C) − p + 1)).

(12)

(A�S−1A)−1 = (A�
�
−1A)−1A�

�
−1A(A�S−1A)−1A�

�
−1A(A�

�
−1A)−1

= (A�
�
−1A)−1A�

�
−1(S − SA◦(A◦�SA◦)−1A◦�S)�−1A(A�

�
−1A)−1

= (A�
�
−1A)−1A�

�
−1XPX�

�
−1A(A�

�
−1A)−1,

(13)P = I − PC′ − (I − PC′)X
�A◦(A◦�X(I − PC′)X

�A◦)−1A◦�X(I − PC′).
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will be used, where d is a function in FX . Summarizing these calculations will give 
a quantity which will be used as nominator in a test statistic for testing the level 
hypothesis:

How to choose d in (14) is not clear. On the one hand the distribution for U does not 
depend on d but if explicit expressions are to be calculated this will be a function d 
where now data has replaced X . From (5) it also follows that (A�S−1A)−1A�S−1 has to 
be considered. Similar calculations to those in (12) yield

Replacing A by (F�)◦ and then using the same d vector as in (14) leads to

where

is an idempotent matrix. Moreover, let

and put

Corresponding to �L in (5) the next quantity is proposed to test the level hypothesis:

where U and V are defined in (15) and (20), respectively. However, it is not possible 
to use �Lh,prel in (21) because both U and V include the unknown dispersion matrix � 
so a few more results have to be established. It follows immediately that

(14)P̃ = I − PC′ − (I − PC′)X
�F�d(d�FX(I − PC′)X

�F�d)−1d�FX(I − PC′ )

(15)U = ((F�)◦
�
�
−1(F�)◦)−1(F�)◦

�
�
−1XP̃X�

�
−1(F�)◦((F�)◦

�
�
−1(F�)◦)−1.

(16)

(A�S−1A)−1A�S−1X = (A�
�
−1A)−1A�

�
−1A(A�S−1A)−1A�S−1X

= (A�
�
−1A)−1A�

�
−1X

× (I − (I − PC� )X
�(A�)◦((A′)o

�

X(I − PC� )X
�(A′)o)−1(A′)o

�

X).

(17)h = P�
1
X�
�
−1(F�)◦((F�)◦

�
�
−1(F�)◦)−1,

(18)P1 = I − (I − PC′)X
�F�d(d�FX(I − PC′)X

�F�d)−1d�FX

(19)
Q̃ = G�(CC�)−1G + G�(CC�)−1CX�F�d

× (d�FX(I − PC′ )X
�F�d)−1d�FXC�(CC�)−1G

(20)V = h�XC�(CC�)−1GQ̃
−1
G�(CC�)−1CX�h.

(21)�Lh,prel =
U

U + V
,

(22)U ∼W1(((F
�)◦

�
𝚺
−1(F�)◦)−1,N − r(C) − 1),

(23)V ∼W1(((F
�)◦

�
𝚺
−1(F�)◦)−1, r(G)).



1 3

Journal of Statistical Theory and Practice (2021) 15:15	 Page 11 of 14  15

If multiplying the nominator and denominator in (21) by ((F�)◦
�
𝚺
−1(F�)◦)1∕2 it fol-

lows since the distribution of

is independent of � that the distribution of �Lh,prel is independent of � . Thus, in order 
to have a test statistic which is functionally independent of the dispersion matrix 
� = I is chosen. In the next proposition the text statistic for the level hypothesis is 
stated.

Proposition 4.2  Let the level hypothesis testing problem be defined via (4). A test 
statistic for testing the level hypothesis is given by

where

with P̃ , P1 and Q̃ defined in (14), (18) and (19), respectively.

How to choose d in (14) and (18) is not clear. On the one side the distribution for 
�Lh does not depend on the choice of d whereas on the other side when calculating 
an explicit value of �Lh the choice of d will have an impact. This type of phenom-
ena has been discussed very rarely. (We only know about it when a singular Gauss-
Markov model has been considered.)

Based on the results in (22) and (23) the next theorem can be formulated.

Theorem 4.2  Let d in (14) be a nonzero function (with probability 1) of FX . The test 
statistic in Proposition 4.2 for testing the level hypothesis in (4) follows a �-distribu-
tion with parameters (N − r(C) − 1)∕2 and r(G)∕2.

The third hypothesis of flatness was stated in (6). Since the approach for creat-
ing a test statistic is the same as for the parallelism hypothesis, the results are stated 
without any proofs.

Proposition 4.3  Let the flatness hypothesis be defined via (6) and put Y = FX . A test 
statistic for testing the hypothesis is given by

where d ∈ ℜp−1 , with probability 1, is a nonzero function in YY′.

((F�)◦
�
�
−1(F�)◦)−1∕2((F�)◦

�
�
−1X

�Lh =
Ũ

Ũ + Ṽ
,

Ũ = ((F�)◦
�
(F�)◦)−1(F�)◦

�
XP̃X�(F�)◦((F�)◦

�
(F�)◦)−1,

Ṽ = h̃
�
XC�(CC�)−1GQ̃

−1
G�(CC�)−1CX�h̃,

h̃ = P�
1
X�(F�)◦((F�)◦

�
(F�)◦)−1

(24)�Fh =
d�Y(I − PC� )Y

�d + d�YPC�(CC�)−1GY
�d

d�Y(I − PC� )Y
�d + d�YPC�(CC�)−1GY

�d + d�YPC�G◦Y
�d
,
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The motivation that d is a function in YY′ follows from the fact that

Moreover,

These results imply that the next theorem can be established.

Theorem 4.3  The test statistic for testing for flatness in high dimensions, given in 
Proposition  4.3, follows a �-distribution with parameters (N − r(C�G◦))∕2 and 
r(C�G◦)∕2.

5 � Concluding Remarks

In this article the three well-known test statistics in profile analysis have been modi-
fied so that high-dimensional data can be handled in a non-asymptotic approach. 
The test for parallelism and flatness was derived following ideas given by Läuter [8, 
9] and Läuter et al. [10, 11] which originally was developed for handling MANOVA 
problems. Concerning the level testing a completely new approach is proposed. Here 
we modify the degrees of freedom and an exact test is derived.

The vector d , which is utilized in our approach when testing for parallelism and 
flatness, is a function of some sums of squares has only briefly been considered in 
this article. Instead it is referred to Läuter et al. [10], Section 4, where several dif-
ferent alternatives for determining d are proposed. Furthermore, a generalization of 
the presented approach in this article will be to apply a matrix D , i.e. study several 
linear scores, instead of a vector d which only give one score.

There is another important problem (observed by one of the reviewers) that the 
choice of F can have an effect on the choice of d and thus the test statistic depends 
in fact on the choice of F . It is important to continue this work and establish restric-
tions on the choice of d so that the vector only depends on the space generated by 
the columns in F , i.e. instead of using F using the projection F(F�F)−F�.
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YY� = Y(I − PC� )Y
� + YPC�(CC�)−1GY

� + YPC�G◦Y
�
.

Y(I − PC� )Y
� + YPC�(CC�)−1GY

� ∼ Wp−1(F�F
�
,N − r(C�G◦)),

YPC�G◦Y
� ∼ Wp−1(F�F

�
, r(C�G◦)).
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