
Vol.:(0123456789)

CCF Transactions on High Performance Computing (2024) 6:115–129
https://doi.org/10.1007/s42514-024-00187-x

REGULAR PAPER

AIbench: a tool for benchmarking Huawei ascend AI processors

Yang Xiao1 · Zeke Wang1 

Received: 27 June 2023 / Accepted: 27 March 2024 / Published online: 2 May 2024
© China Computer Federation (CCF) 2024

Abstract
In recent years, plenty of AI accelerators, e.g., Google TPU and Huawei Ascend, have been proposed to accelerate vari-
ous Deep Learning applications, such as CNN and NLP, because AI accelerators are specialized for AI model training and
inference and can thus provide higher performance per watt than GPUs. Despite the wide adoption of AI processors in the
deep learning domain, the potential of AI processors is not fully harvested in the other compute-intensive domains that need
massive matrix and vector operations, because AI processors typically provide custom matrix and vector instructions. A
significant challenge in harnessing AI processors in other domains is the undisclosed performance characteristics of these
processors. To this end, we intend to benchmark AI processors in a comprehensive approach such that programmers can
easily understand the performance characteristics of AI processors that always have similar architecture. Given this, we
present AIBench, a benchmarking tool designed to reveal the underlying details of an AI processor. Initially, we benchmark
Huawei’s Ascend accelerator. The benchmarking results show (1) an Ascend 910 AI chip can provide 216 TFLOPs for float16
data from the matrix unit and 3390 GFLOPs from the vector unit and (2) the performance of an AI core is contingent upon
the appropriate data transmission and operation mode. Utilizing unsuitable transmission modes can lead to data entry and
exit times becoming a bottleneck.

Keywords  Benchmarking · Domain-specific architecture · AI processor · Ascend

1  Introduction

Owing to the extensive application of deep learning, which
requires substantial MACs for training and inference, gen-
eral-purpose central processing units (CPUs) fail to deliver
adequate computing power. This is primarily because CPUs
are not optimized for compute-intensive tasks like deep
learning, but are designed for versatility to run a broad range
of applications. Consequently, graphic processing units
(GPUs) are employed to expedite deep learning model train-
ing and inference, given their architecture featuring a pleth-
ora of computing units to accelerate parallel tasks. However,
GPUs are not specifically designed for deep learning appli-
cations, their use in such tasks can result in elevated energy

consumption. Conversely, AI accelerators, purpose-built for
AI model training and inference, can deliver superior perfor-
mance per watt compared to GPUs (Liao et al. 2021; Jouppi
et al. 2017; Norrie et al. 2021; Jouppi et al. 2023; Liao et al.
2019). Despite the wide adoption of AI processors in the
deep learning domain, their potential remains underutilized
in other compute-intensive applications that require exten-
sive matrix and vector operations. This is primarily due to
the custom matrix and vector instructions typically provided
by AI processors. However, the main challenge of leverag-
ing AI processors in other domains is that the performance
characteristics of AI processors have not yet been revealed.
To close this gap, we intend to benchmark AI processors in
a comprehensive approach enabling programmers to readily
understand the performance characteristics of AI proces-
sors, which often have similar architecture between different
vendors.

To this end, we present AIBench, a benchmarking tool
that allows us to demystify all the underlying details of an AI
processor. As a start, we benchmark Huawei’s Ascend accel-
erator. The benchmarking results show that (1) an Ascend
910 AI chip can provide 216 TFLOPs for float16 data from

 *	 Zeke Wang
	 wangzeke@zju.edu.cn

	 Yang Xiao
	 12221061@zju.edu.cn

1	 Department, Collaborative Innovation Center of Artificial
Intelligence, Zhejiang University, Hangzhou 310027,
Zhejiang, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-024-00187-x&domain=pdf
http://orcid.org/0000-0001-8550-9241

116	 Y. Xiao, Z. Wang

the matrix unit and 3390 GFLOPs from the vector unit and
(2) the performance of an AI core depends on appropriate
data transmission and operation mode. Employing inappro-
priate transmission modes may result in data ingress and
egress times becoming a bottleneck. The performance of
the AI core depends on appropriate data transmission and
operation modes. Like Ascend accelerator, other AI proces-
sors also have a similar computational architecture that com-
prises matrix units and vector units. Consequently, it is easy
to generalize AIBench to these AI processors that exhibit
a similar computational pattern when executing compute-
intensive tasks. Data openly available in a public repository.
The code that used by this study are openly available in
Github at https://​github.​com/​Tinke​rver/​AIBen​ch.

Specifically, the following main parts were carried out
in this work:

•	 Evaluate the performance of each computational unit in
the AI processor.

•	 Quantify the data transfer bandwidth among buffers
within the chip and get the access patterns of these buff-
ers.

•	 Investigate the caching mechanism of global memory and
the interaction rate between global memory and on-chip
buffers under various transfer modes.

•	 Evaluate the performance of AI processors under matrix
and vector-intensive computational loads and assess the
effectiveness of various optimization options.

2 � Background

2.1 � Ascend AI processor architecture

As depicted in Fig. 1, the Ascend processor architecture
incorporates numerous AI cores (two AI cores in Ascend
310 chip and 32 AI cores in Ascend 910), which access a
memory subsystem composed of HBM and DDR.

AIcore’s computational units comprise a matrix unit, a
vector unit, and a scalar unit, which perform the primary
computational tasks of the Ascend processor. The matrix
unit, serving as the computational powerhouse of the AIcore,
swiftly executes matrix multiplication operations. The vector
unit facilitates flexible vector operations in a SIMD manner.
The scalar unit, responsible for executing scalar operations
within the AIcore, handles tasks such as program loop con-
trol and address computation.

Surrounding the computational unit, DaVinci architecture
establishes multiple on-chip buffers (including the unified
buffer, L1 buffer, buffer L0A, buffer L0B, and buffer L0C).
These buffers collaborate with the data path in the AI Core,
facilitating input provision and output transmission for the
computational unit.

Among these buffers, L0A/L0B/L0C are linked to the
matrix computing unit. The L0A buffer houses the left
matrix data for matrix multiplication, the L0B buffer accom-
modates the right matrix data for matrix multiplication, and
the L0C buffer stores the results and intermediate outcomes

Fig. 1   Ascend AI accelerator logical architecture

https://github.com/Tinkerver/AIBench

117AIbench: a tool for benchmarking Huawei ascend AI processors﻿	

of matrix multiplication. The unified buffer is connected to
the vector computing unit, and functions as the input and
output location for the vector computational unit. The L1
buffer acts as the data transfer zone within AICore, tem-
porarily holding certain data that AICore needs to reuse,
thereby minimizing bus read and write operations.

During the benchmarking process of the computational
units within AI cores, our attention will be centered on the
cube processing unit and the vector processing unit, given
their role as the main sources of computational power. The
crux lies in examining the pipeline throughput of its arithme-
tic pipelines. About matrix units, we will further delve into
the disparities corresponding to different shapes of matrix
multiplication operational modes.

For the benchmarking of the internal buffer and data path,
we measure the storage width of each buffer and the data
transfer bandwidth between interconnected buffers. Addi-
tionally, we will assess the corresponding impact on band-
width variations when transmissions occur with differing
step sizes and iteration counts.

For the input of off-chip data, we examine the corre-
sponding caching mechanism from memory to the AI chip
and measure the peak bandwidth from memory to the AI
core in both single-core and multi-core configurations.

Additionally, pertinent tests will be conducted on
the functionalities of double buffering and barrier
synchronization.

2.2 � Programming APIs for TIK operators

TIK is a dynamic programming framework based on the
Python language, presented as a Python module. Through
the API provided by Tik, custom operators can be crafted
based on Python, which is subsequently compiled into appli-
cations for the Ascend AI processor by the TIK compiler.
Tik operates on Ascend AI acceleration chips, enabling
precise control over data movement and computational pro-
cesses within the AI core.

TIK’s vector operations utilize single instruction multi-
ple data (SIMD) instructions, with the fundamental opera-
tion unit in the instruction being distributed across two

dimensions: space and time. Spatially, it is organized into
blocks, while temporally, iteration is achieved by setting the
‘repeat_times’ parameter.

The API for single-vector operations within TIK is pre-
sented in the following format, with the specific parameter
configurations detailed in Table 1.
I n s t r u c t i o n (m a s k , d s t , s r c , r e p

eat_times,dst_rep_stride,src_rep_stride)
In TIK, the offset of the same block in adjacent repeats

only supports linear mode, implying that users are required
to specify the address offset for each block in the subse-
quent repeat. The principal operands of TIK’s SIMD instruc-
tions are tensors, with a minority of operands being scalars
(scalar/immediate).

2.3 � Profiling tools

To scrutinize operator processes, we employ the msprof tool,
a feature of Ascend CANN (compute architecture for neural
networks), to amass performance profiling data within the
operational environment. This encompasses the execution
duration of matrix, vector, and scalar computational units, in
addition to the corresponding time for “mte1” type instruc-
tions (L1 to L0A/L0B transfer instructions), “mte2” type
instructions (DDR to AICORE transfer instructions), “mte3”
type instructions (AICORE to DDR transfer instructions).

3 � Overview of AIBench

We present AIBench, a benchmarking tool that enables us
to unveal the intricate details of an AI processor, such as
Huawei’s Ascend accelerator. Consequently, programmers
can accelerate other compute-intensive applications on AI
accelerators if possible. In the following, we benchmark
the computing unit of AI processors (Sect. 4), the on-chip
memory subsystem of AI processors (Sect. 5), and the global
memory subsystem of AI processors (Sect. 6). Then, we
scrutinize the performance of computationally demand-
ing workloads and the efficacy of conventional optimiza-
tion techniques (Sect. 7). Subsequently, we deliberate on

Table 1   Function parameters
description

Parameter Type Description

mask Boolean array Control bits, specifying which elements should be processed
dst Array The output of the operation, storing the processed data
src Array The array containing the data to be processed
repeat_times Integer Specifies the number of times the operation is to be repeated
dst_rep_stride Integer The stride between each repeated operation in the destina-

tion array, set at a granularity of 32 bytes
src_rep_stride Integer The stride between each repeated operation in the source

array, set at a granularity of 32 bytes

118	 Y. Xiao, Z. Wang

the guidance provided by the measurement results procured
from AIBench for real-world applications (Sect. 8).

4 � Benchmarking compute units of AI
processors

In this section, we measure the throughput of the main com-
puting units in the AI core and summarize the impact of cor-
responding computing modes on time consumption during
the testing process.

•	 Vector unit: The vector unit performs various mathemati-
cal computations, such as addition, subtraction, multipli-
cation, division, and mathematical functions in a SIMD
instruction manner. This unit is mainly used by AI opera-
tors such as ReLU, negation, and natural logarithm. The
supported formats include unary, binary, scalar binary,
scalar ternary, and reduction instructions. According
to the documentation of Ascend 910, each cycle can
complete the addition/multiplication of two 128-length
float16 type vectors or 64 float32/int32 type vectors.

•	 Matrix unit: The matrix unit efficiently performs matrix
operations. According to the documentation of Ascend
910, this unit can complete a 16 × 16 matrix multiplica-
tion with float16 inputs in one clock cycle. If the inputs
are int8, the unit can complete a 16 × 32 or a 32 × 16
matrix multiplication in one clock cycle.

4.1 � Vector unit

In this subsection, we validate the efficiency of vector unit,
by measuring the pipeline throughput. In order to explore its
full utilization, we use continuous addresses for both source
data and destination data when running in a single AI core,
in terms of the number of computations executed per cycle.
We also measure the peak throughput in the vector computa-
tion unit with a full mask and 128 repeated vector iterations.
In vector operation instructions, the elements participating
in the computation are denoted by the mask, and the num-
ber of iterations is regulated by the repeat time. During the
test, the number of elements involved in the computation is
controlled by modifying the mask and repeat parameters,
and the bandwidth changes are counted to obtain the com-
putational bit width.

To demonstrate the pipeline throughput of the vector unit,
the basic compute size of vector unit is examined using com-
putations of varying length, and the time consumption for
basic computation is explored by observing changes in time
consumption.Fig. 2 shows the time consumption of vector
calculation with varying masks. With varying mask settings

from 1 to 128, the time consumption will not decrease with
the reduction of the amount of data involved in the calcu-
lation in a single iteration. Figure 3a, b respectively show
the time consumption and bandwidth variation of vector
computation as the computation length increases. Figure 3a
illustrates that time consumption increases linearly by 256
B per cycle as the number of iterations changes. We make 2

Fig. 2   Time consumption of vector operation with varying mask

Fig. 3   Vector unit operations at different computational lengths

119AIbench: a tool for benchmarking Huawei ascend AI processors﻿	

major observations. First, vector unit data calculation par-
allelism is 256 B. As Figs. 2 and 3a show, only 256 B or
larger workload variety will change clock cycle consump-
tion. Second, the pipeline execution time for vector opera-
tions is one clock cycle, as illustrated in Fig. 3a. Considering
the calculation parallelism and this pipeline execution time,
we can conclude that the maximum pipeline throughput can
attain 256 B per clock cycle. At a clock frequency of 900
MHz, the computing power of the vector unit is determined
to reach 113 GFLOPS.

4.2 � Matrix unit

In AI processors, the matrix computation unit is the prin-
cipal source of processing power. Despite variations in the
specific hardware circuitry across different AI processors,
they are all capable of rapidly executing multiplication and
addition operations on small matrices. Furthermore, these
units accomplish matrix multiplication of arbitrary scale by
segmenting the multiplication of large matrices into sev-
eral smaller matrix operations. Consequently, to assess the
matrix computation capabilities of AI processors, we should
focus on the basic unit size and the number of clock cycles
required for executing multiplication and addition operations
on basic unit.

Matrix multiplication is a fundamental operation in linear
algebra. It is a binary operation that produces a matrix from
two matrices. The product of matrices A and B is denoted
as AB. If A is an M × K matrix and B is a K × N matrix, the
matrix product C = AB is defined to be the M × N matrix.
That is, the entry of the product is obtained by multiply-
ing term-by-term the entries of the ith row of A and the jth
column of B, and summing these K products. Therefore,
the dimensions M, K, and N determine the shape of matrix
multiplication.

In our experiments with the Ascend 910, due to limita-
tions imposed by the instruction format, we selected 16 as
the step size to vary M, K, and N, observing the execu-
tion time for matrix multiplication of different sizes. This
approach enabled us to determine the base matrix operation
size and the number of cycles consumed.

In this subsection, we deduced that within a single cycle,
the matrix unit is capable of completing a 16 × 16 × 16
matrix multiplication for float16 and 16 × 32 × 16 multi-
plication for int 8. Furthermore, the computing power of a
single AI core’s matrix unit can achieve 3.6 TOPS for float16
and 7.2 TOPS for int8.

To get the pipeline throughput of the matrix unit, we
investigate the basic unit size for matrix multiplication and
throughput of the matrix unit. The experiment involved set-
ting a fixed M dimension in matrix multiplication and trans-
forming K and N dimensions in 16 steps. The relationship
between K, N, and the number of multiplication in matrix

calculations is established by comparing time consumption
with variations in N. The Fig. 4 illustrates that when M is
fixed at 160 and N exceeds 112, there is a variation in time
consumption corresponding to every increment of 16 in N.
When M and K are fixed, an increase in N in matrix cal-
culation will increase the corresponding matrix calculation
amount. When M is fixed at 160 and K is set to 16, each
increment of 16 in N results in an additional ten 16 × 16 ×
16 matrix operations. As can be seen from the Fig. 5, the
time consumption of matrix multiplication escalates by 10
clock cycles. Additionally, when K assumes a larger value,
the growth in clock cycles for each increment of N corre-
sponds directly to the frequency of executing 16 × 16 × 16
shaped matrix multiplication operations. We make a major
observation that the matrix unit, while handling float16 data,
can perform a 16 × 16 × 16 matrix multiplication in a single
clock cycle, with the resultant matrix values being accumu-
lated within the same cycle. In the case of int8 data, a 16
× 32 × 16 matrix multiplication can be completed in each
clock cycle. Operating at a clock frequency of 900 MHz, this
unit’s computational power is capable of reaching 3.6 TOPS
for float16 and 7.2 TOPS for int8.

Fig. 4   Time consumption of matmul operation with M = 160 and K
= 144

Fig. 5   Variation in clock cycle consumption with the increase of N,
given a set dimension M of 160

120	 Y. Xiao, Z. Wang

During the testing process, we observe that the correla-
tion between instruction execution time and variations in
N is not entirely linear when M is small. As depicted in
Fig. 6, there is a step-like increase in computation time
as N increases when M = 16. We hypothesize that two 16
× 16 matrix multiplications can be completed simultane-
ously in the matrix computation unit. When M = 16 and
N is an odd multiple of 16, the matrix computation unit
cannot be fully utilized. Conversely, when M = 16 and N
is an even multiple of 16, the matrix computation unit is
fully utilized. Hence, when executing matrix multiplica-
tion with smaller sizes, we can optimize the performance
of the matrix operation unit by ensuring an even number
of matrix units are involved in the computation.

5 � Benchmarking the on‑chip memory
subsystem of AI processors

In various AI processors, there are high-speed buffers
around the computing units to adapt to the high throughput
of computing units. These buffers cooperate with the data
paths to provide input to the computing units and transmit
output. The memory access characteristics and transmis-
sion bandwidth of these buffers have important guidance
on how to choose the appropriate computing mode to fully
exert the computing power of the computing units.

In AIBench, we count the time consumption changes of
data handling at different granularities in the buffer area to
analyze the buffer bit width and perform continuous data
transmission between buffers to calculate the maximum
bandwidth of each data path on the chip.

AI Core’s internal buffer consists of the unified buffer,
L1 buffer, and L0 out buffer. And AI core interacts with
the bus through the BIU (bus interface unit) and achieves
read-write operations with external storage units. In the
following, we benchmark each component one by one.

5.1 � Unified buffer

In this subsection, we determine the size of the unified buffer
and investigate the bit width of the unified buffer.

By determining the maximum array that can be declared
in the unified buffer, we get that the size of the unified buffer
is 248 KB.

In this subsection, we investigate the bit width of the uni-
fied buffer. The experiment involves data transfer within the
unified buffer with different block sizes. each block in the
instruction has a size of 32 B. As depicted in Fig. 7, the
time consumption varies with different burst size settings.
We observe that instruction execution time increases in a
step-wise manner, passing 16 blocks will increase one clock
cycle. We calculate that the bit width of the unified buffer
is 512 B.

5.2 � L1 buffer

In this subsection, we get the size of the L1 buffer and exam-
ine the bit width of the L1 buffer.

By determining the maximum array that can be declared
in the unified buffer, we get that the size of the L1 buffer is
1 MB.

We investigate the bit width of the L1 buffer. Given that
TIK does not offer instructions for data transfer within L1
buffers, our experiment involves transferring data from the
L1 buffer to the unified buffer while modifying the burst
size. This method allows us to infer the bit width of the L1
buffer by determining the bandwidth between the L1 buffer
and the unified buffer.

Figure 8a shows with the same number of transmissions,
every four blocks take an additional cycle for data transmis-
sion from the unified buffer to the L1 buffer. We observe
the throughput for data transmission from L1 buffer to the
unified buffer is 128 B per clock cycle. Given that the uni-
fied buffer’s measured bit width is 512 B, the bottleneck in

Fig. 6   Time consumption of matmul operation with setting M = 16

Fig. 7   Clock cycle consumption of single transfers with different
block sizes from unified buffer to unified buffer

121AIbench: a tool for benchmarking Huawei ascend AI processors﻿	

data transmission from the L1 buffer to the unified buffer is
attributed to the bit width of the L1 buffer. We conclude that
the bit width of the L1 buffer is 128 B.

5.3 � L0 out buffer

In this subsection, we get the size of the L0 out buffer and
examine the bit width of L0 out buffer.

By determining the maximum array that can be declared
in the unified buffer, we get that the size of L0 out buffer is
256 KB.

To get the bit width of L0 out buffer, the situation is simi-
lar to L1 buffer bit width getting, the bit width needs to be
deduced from the bandwidth of the data transmission with
L0 out buffer and unified buffer.

Figure 8b shows the time consumption for data transfer
from the unified buffer to L0 out buffer. Transferring each
1024 B data takes 4.44 ns or four cycles. Therefore, the data
bandwidth of the L0 out buffer should be 256 B per cycle.
The storage mode of L0 out buffer is relatively unique. As
a buffer for storing matrix calculation results, we observe
that L0 out buffer only supports reads and writes the data in
multiples of 1024 B size and requires four cycles for every
1024 B data.

5.4 � On chip datapath

The data transmission within the AI core includes unified
buffer and L1 buffer, unified buffer, and L0 out buffer. In
the process of determining the bit widths of L0 buffer and
L1 buffer, We have two observations. First, the pipeline
throughput between unified buffer and L0 out buffer is 256
B per cycle. Second, the pipeline throughput between unified
buffer and L0 out buffer is 128 B per cycle. We conclude
that the maximum bandwidth between unified buffer and L0
out buffer reaches 230 GB/s, and the maximum bandwidth
between unified buffer and L0 out buffer reaches 115 GB/s
under 900 MHz clock frequency.

In addition, we test the bandwidth performance of the
stride transfer mode by adjusting the spacing between the
data blocks of the source and destination operands while
keeping the number of transfer blocks and the length of
each block constant. We observe that the transfer time is
not affected by modifying the transfer spacing between data
blocks as long as the source and destination operand posi-
tions satisfy the buffer alignment requirements (32 B align-
ment in unified buffer and L1 buffer, and 1024 B alignment
in L0 out). We conclude that Within the inherent constraints
of the TIK language, data transfer statements implemented
can access all bank groups.

6 � Benchmarking the global memory
subsystem of AI processors

Global memory is the main storage part of the AI proces-
sor, which is located off-chip. Although it is slower than the
buffer, it has a larger storage space. In AIBench, we calculate
the bandwidth of data transfer in and out of the chip through
continuous data reading and writing, then obtain the band-
width of data transfer and the cache level in global memory
by setting different sizes of working sets.

For Ascend accelerator, we conduct tests to investigate
the memory access structure of the global memory. Concur-
rently, we measure the maximum transfer speed between
the global memory and the bus under both single-core and
multi-core scenarios.

BIU manages the data interaction between the bus and
the AI core. In this subsection, we benchmark the interaction
between the AI Core and the bus to explore its maximum
bandwidth for data read and write. We fix the number of data
transfers and change the burst size in each transfer.

6.1 � Single core data transmission

To examine the bandwidth from external memory to the on-
chip buffer through BIU on the single core, we fix the times
of data transfers and change the burst size for each transfer.

Fig. 8   Clock cycle consumption for single transfers with different
block sizes from L0 out and L1 buffer to unified buffer

122	 Y. Xiao, Z. Wang

Figure 9a illustrates that using smaller blocks for data
transfers can result in fluctuations in time consumption.
However, as the volume of data escalates, we observe a
linear increase in the time required for these transfers. Fig-
ure 9b shows the data transfer bandwidth varies with the
length of each instruction. As the size of the data blocks
increases, the transfer bandwidth gradually reaches its
peak value. We have two observations. First, when trans-
ferring large amounts of data, the pipeline throughput can
reach 108.7 GB/s, as indicated by the slope in Fig. 9a.
Second, The bandwidth can reach 93.6 GB/s when trans-
ferring 16 KB of data in a single instrument as shown in
Fig. 9b.

To assess the data transfer bandwidth between the inter-
nal buffer and external memory, we adopt a comparable
methodology. Within the data path from global memory
to the unified buffer, we observe a pipeline throughput of
103.7 GB/s. Moreover, for a single instruction that trans-
fers 16 KB of data, the achievable bandwidth is 60.3 GB/s.

6.2 � Multi‑core Data Transmission

To evaluate performance in a multi-core environment, we
allocate the data transmission workload across all AI cores
in the processor by distributing data blocks to each AI core.
By monitoring how task duration fluctuates with changes in
the number of distributed shards, we ascertain the maximum
bandwidth achievable from the active cores to the bus.

To examine the access structure of the global memory,
our experiment involves transferring an equivalent total
amount of data from the global memory to the AI core,
while varying the working set size within the global mem-
ory. During the computation, data is sequentially retrieved
in 128 KB bursts from the designated range of the working
set in the global memory and transferred to a fixed unified
buffer address for data overwriting. In this experiment, atten-
tion is not centered on the specific division of labor among
the cores; instead, the total time required for execution was
measured.

Figure 10 illustrates that the bandwidth initially
increases and then stabilizes as the working set size
expands. When the working set size is less than 4 blocks
(512 KB), the data transfer bandwidth exhibits an upward
trend. Once the working set size surpasses 4 blocks, the
data transfer bandwidth plateaus at 2850 GB/s. We make
two observations from this experiment. First, when the
working set size is below 512 KB, the data transfer band-
width from the global memory to the AI core might be
reduced due to reading conflicts in the global memory.
As the size of the working set increases, so does the
data transfer bandwidth. The maximum bandwidth from
global memory to the bus is reached when the working
set size exceeds 512 KB. Second, When the working set
size exceeds 512 KB, the bandwidth stabilizes at its maxi-
mum value. We conclude that this maximum bandwidth
can reach up to 2850 GB/s. Furthermore, within a dataset

Fig. 9   Transferring data 100 times from external memory to AI core

Fig. 10   Under the multi-core configuration, the data bandwidth
between global memory and L1 buffer as the number of 128 KB-
sized data blocks varied in the working set

123AIbench: a tool for benchmarking Huawei ascend AI processors﻿	

spanning 16,384 blocks (equivalent to 2 GB), the cache of
the global memory seems to have no significant impact.

To determine the number of AI cores that can be
actively engaged in computation, we assign multiple tasks
to transmit data slices of 128 KB each to an AI core with
several cores enabled. Figure 11 illustrates data transfer
latency from external memory to an internal buffer. We
observe that the instruction latency escalates in a step-wise
fashion with a step size of 30 as the number of process-
ing blocks augments. Our observations indicate that an
equal distribution of data blocks among AI cores occurs
when the total number of data segments is a multiple of
30. This uniform distribution is due to the system’s archi-
tecture, where introducing an additional segment beyond
a multiple of 30 necessitates engaging another AI core,
leading to a noticeable increase in latency. Consequently,
we conclude that the Ascend 910 chip utilizes 30 AI cores
for computational tasks.

7 � Performance benchmarking of workloads
with optimization strategies

Upon acquiring the performance metrics of computational
units and transmission paths, we can evaluate various com-
putationally demanding task flows. This allows us to ascer-
tain the utilization and pipeline efficiency of the computa-
tional units and their associated transmission paths. This
section evaluates the performance of AI processors under
matrix and vector-intensive computational loads and tests
the efficacy of two optimization strategies: double buffer-
ing and multi-core processing.

In the evaluation of computational load, data from
memory is transferred to the on-chip for computation,
subsequently, the result is relayed to the global memory
outside the chip. The time consumed by each instruction
is recorded as the computational load escalates.

7.1 � Vector computational loads

The vector computing unit, incorporated within AI pro-
cessors, may offer less computational power compared
to matrix computing units, yet it is capable of executing
more flexible computations. In this section, we assess the
performance of vector operation units under vector opera-
tion workloads. We evaluated the time efficiency of vector
computing units during single-core execution and when
utilizing double buffer in both single-core and multi-core
environments.

Double buffer is a method for optimizing the perfor-
mance of vector operations. A complete vector operation
encompasses both data transfer and computation. Within
the Ascend Accelerator employing double buffer, MTE2 is
responsible for transferring data from external memory to
the unified buffer, while the vector unit completes the com-
putation and writes the results back to the unified buffer.
Subsequently, MTE3 transfers the computed results back
to external memory. The double buffer mechanism seg-
ments the unified buffer into two parts, enabling parallel
execution of computation in one buffer and data transfer in
the other, thereby diminishing the overall operation time.

To assess the performance of AI processors in execut-
ing dense vector computations, we initially explored how
time efficiency for vector computations of various lengths
varies under a single kernel. As illustrated in Fig. 12a,
performing vector computations without double buffer-
ing results in time consumption increasing linearly with
the extension of computational length. The total operation
time is approximately the sum of MTE2 time and com-
putation time. Conversely, as depicted in Fig. 12b, with
the implementation of double buffering, the total time Fig. 11   Transferring data 100 times from external memory to AI core

in multicore scenarios

124	 Y. Xiao, Z. Wang

efficiency is significantly reduced to nearly the duration
of MTE2 time alone. We conclude that employing double
buffering effectively overlaps computation time with data
transmission.

To assess multi-core vector operations, a consistent load
is applied to each AI core same as single-core testing. The
average time taken for each instruction type in each core,
along with the time needed for all cores to complete the
entire task, was recorded. In the Ascend 910 chip, prior test-
ing identified 30 operational cores. Thus, during multi-core
testing, a workload equal to 30 times that of the single-core
test was evenly distributed across these 30 AI cores.

We make two major observations in Fig. 13. First, imple-
menting double buffering does not directly shorten the exe-
cution time for any specific type of instruction. Rather, it
enhances overall efficiency by integrating data transforma-
tion and computation into a pipeline, thereby reducing the
cumulative time needed for processes. Second, in execu-
tions involving multi-core processing of vector operations,
the time taken for computation is similar to the duration

of executing a computation instruction on a single core.
However, during data transmission, due to issues such as
bus contention, the time required can exceed twice that of a
single-core computation, with data transmission emerging
as the primary bottleneck. We conclude that the efficiency
of vector computing units could be further enhanced by
increasing the density of vector computations.

Given that the time expended on data input and output
surpasses the computational time, we hypothesize that the
utilization of a double buffer could potentially allow for the
overlap of more computational operations with input and
output, thereby enhancing pipeline efficiency.

We investigate the optimal pairing scheme for double
buffering. The experimental setup involves varying the
frequency of computations per data transfer into and out
of the chip. As illustrated in Fig. 14, conducting 3 or 6
vector calculations in a single in-chip process does not
lead to a bottleneck in the pipeline, and the overall time
spent by the AI core remains constant. When the process
involves nine vector computations, the time for vector

Fig. 12   Performance under vector computing load

125AIbench: a tool for benchmarking Huawei ascend AI processors﻿	

computation surpasses the MTE2 time, thereby becom-
ing the pipeline bottleneck and augmenting the total AI

core time. Consequently, in the mode of slice input, vector
computation, and slice output, feeding data for six vector

Fig. 13   Execution time of each
instruction under various opti-
mization strategies

Fig. 14   Performance with varying computational intensity under vector computational loads

126	 Y. Xiao, Z. Wang

computations can adequately fill the double buffer pipe-
line, thereby attaining peak computational efficiency.

7.2 � Matrix computational loads

Matrix computing units within AI processors are capable
of delivering superior computational power. In this section,
we assess the performance of these matrix operation units in
managing matrix workloads in both single-core and multi-
core configurations. Furthermore, we compare the parallel
execution of instructions at varying computational densities.

In the evaluation of matrix operations, we compute the
length of the data stream and the number of data sharing
operations via transformation. Subsequently, we assess the
processor’s performance under varying vector loads using
both single-core and multi-core approaches.

For the Ascend 910 processor, we select matrix mul-
tiplication dimensions of 160 × k and k × 16 for our
experiments. Our testing encompasses different sce-
narios: employing a single kernel to perform one matrix

multiplication, using a single kernel for two matrix multi-
plications simultaneously, and deploying multiple kernels,
each performing a single matrix multiplication.

As depicted in Fig. 15, the total time efficiency
increases in a stepwise manner as the value of k grows.
We have three major observations. First, the dimensions of
matrices involved in computations can significantly affect
their performance, due to the presence of dual buffers that
link the on-chip buffers with matrix computation units.
Second, upon augmenting the density of matrix opera-
tion data sharding, the total time efficiency is amplified
by an equivalent amount as a singular time efficiency. The
transmission of accessible data is unable to mask the com-
putational time. Third, When employing 30 cores and the
average load per core aligns with that of a single-core test,
it can attain a maximum data throughput of 608 GB/s.We
conclude that choosing the appropriate mode for computa-
tion transmission is essential to fully harness the compu-
tational capabilities of AI accelerators.

Fig. 15   Performance with varying computational length under matrix computational loads

127AIbench: a tool for benchmarking Huawei ascend AI processors﻿	

8 � Optimization guidance for practical
applications

This section will illustrate the optimization of fast Fourier
transform (FFT) based on vector operation units, aiming
to clarify the impact of AIBench measurement results on
the optimization process.

The butterfly operation plays a pivotal role in the FFT
algorithm, effectively simplifying the computation of the
discrete Fourier transform (DFT). It achieves this by divid-
ing an N-point DFT task into two sub-tasks, each dealing
with N/2 points. This division process, characteristic of
the butterfly operation, requires log(N) steps to complete
for the entire dataset. In practice, calculating the opera-
tions for the xth layer involves processing 2x elements,
with each element undergoing both a multiplication and
an addition to produce the output. This repetitive applica-
tion of the same mathematical operations across the signal
samples makes it ideally suited for vector processing units.

Experiments discussed in Sect. 8 reveal that performing
over six vector operations inside the AI core allows for the
overlapping of operation times of the vector unit with the
data transfer times between the chip and global memory. In
the FFT implementation employing vector operation units,
the direct method involves executing a butterfly operation
on each element after it enters into the AI core. Each ele-
ment undergoes computation only twice during its trans-
mission into and out of the chip. Under these conditions,
data transmission emerges as the bottleneck, hindering the
full exploitation of the computational capabilities of vector
operation units.

To optimize the efficiency of vector operation units,
it is necessary to execute over six vector operations on
incoming data. This involves the data undergoing three
stages of butterfly operations each time it enters the AI
chip. Additionally, to comply with the prerequisites of but-
terfly operations, the input data must be a multiple of 8. As
a result, the shape of the computational load is determined.
Theoretically, this approach can increase the utilization
rate of vector operation units by 60% compared to execut-
ing operations layer by layer.

The overarching similarity in the architecture of various
AI processors enables the use of similar optimization tech-
niques to boost calculation efficiency. In scenarios involv-
ing more complex computational loads, such as the need
to execute format conversions within the AI core, employ-
ing on-chip buffers and multiple pathways within the core
becomes essential. Under these circumstances, leveraging
data from AIBench’s benchmarks can guide the planning
of the most efficient on-chip data transfer strategies.

9 � Related work

To our knowledge, AIBench is the first benchmark testing
tool for AI processor’s underlying performance charac-
teristics. Our work intersects with other work in the fol-
lowing areas (1) AI accelerator hardware architecture, (2)
benchmarking neural network training and inference on
AI accelerators, (3) hardware benchmarking on GPUs and
FPGAs.

AI accelerators. Several AI accelerators (Liao et al.
2021; Jouppi et al. 2017; Norrie et al. 2021; Jouppi et al.
2023; Liao et al. 2019) have emerged in recent years. To
adapt neural networks effectively, AI accelerators offer
robust matrix computation capabilities. Despite variations
in the specifics of their implementation, these accelerators
share a similar foundational structure.

ıNeural network training and inference on AI accelera-
tors. Previous works (Wang et al. 2020b; Reuther et al.
2019; Kumar et al. 2019; Sengupta et al. 2020; Zhang
et al. 2020; Lu et al. 2022) have conducted end-to-end
measurements of several AI accelerators for training and
inference of neural networks. These works conduct a thor-
ough comparison of various software libraries alongside
an analysis of processor performance and efficiency across
different deep-learning frameworks provided by multiple
vendors. Specifically, the work (Lu et al. 2022) includes
testing hardware utilization at the level of individual
operator invocations beyond performing end-to-end test-
ing on Ascend. Contrasting with the focus of these existing
studies, AIBench emphasizes direct interactions with the
underlying hardware, deliberately bypassing the complexi-
ties of higher-level frameworks.

Hardware benchmarking on GPUs and FPGA. Bench-
marking has been widely used to determine the hardware
organization of various processor architectures. For GPUs
(Mittal and Vetter 2014; Jia et al. 2018; Mei and Chu 2016;
Wong et al. 2010) and FPGAs (Zohouri and Matsuoka
2019; Manev et al. 2019; Wang et al. 2020a; Huang et al.
2022), benchmarking extends beyond computing speed
also to encompass their storage structures. In a similar
vein, AIBench employs comprehensive methods to assess
cache configurations alongside computational performance
across various hardware platforms.

10 � Conclusion

We present AIBench, a benchmarking tool designed to
reveal the underlying details of an AI processor. By utiliz-
ing AIBench to generate test operators, we obtain relevant
hardware information. AIBench focuses on three primary

128	 Y. Xiao, Z. Wang

areas of benchmarking. Firstly, AIBench assesses comput-
ing units by measuring vector calculations’ parallelism and
throughput, along with the operational modes and time
efficiency of matrix computing units. Secondly, AIBench
evaluates the AI core’s internal buffer by determining each
buffer’s bit width and the data transfer bandwidth between
buffers, which is informed by their sizes. Thirdly, AIBench
examines data interactions within and outside the chip,
capturing the maximum bandwidth achievable in such sce-
narios, how bandwidth varies with different data transmis-
sion strategies, and the effectiveness of data transfers in
a multi-core configuration. In conclusion, AIBench rigor-
ously evaluates the performance under computationally
intensive workloads. Following this, we explore how the
insights derived from these test results can be effectively
applied to real-world applications.

The computing power of other AI processors such as
GPUs, TPUs, and Cambricon is mainly provided by matrix
computation units and vector computation units. Although
the implementation of these computational units may vary,
there is a commonality in the data flow when performing
intensive workloads. So the testing methods of AIBench can
also be applied to other AI accelerators.

Acknowledgement  The work is supported by the National Key R&D
Program of China (NO.2022ZD0119301).

Declarations 

Conflict of interest  Yang Xiao from Zhejiang University declares that
there are no commercial or related interests representing conflicts of
interest in the submitted work. Zeke Wang from Zhejiang University
declares that there are no commercial or related interests representing
conflicts of interest in the submitted work.

References

Huang, H., Wang, Z., Zhang, J., He, Z., Wu, C., Xiao, J., Alonso,
G.: Shuhai: a tool for benchmarking high bandwidth memory on
fpgas. TC (2022)

Jia, Z., Maggioni, M., Staiger, B., Scarpazza, D.P.: Dissecting the
nvidia volta gpu architecture via microbenchmarking (2018).
arXiv:​1804.​06826

Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa,
R., Bates, S., Bhatia, S., Boden, N., Borchers, A., : In-datacenter
performance analysis of a tensor processing unit. In: Proceed-
ings of the 44th Annual International Symposium on Computer
Architecture, pp. 1–12 (2017)

Jouppi, N.P., Kurian, G., Li, S., Ma, P., Nagarajan, R., Nai, L., Patil,
N., Subramanian, S., Swing, A., Towles, B., et al.: Tpu v4: an
optically reconfigurable supercomputer for machine learning with
hardware support for embeddings (2023). arXiv:​2304.​01433

Kumar, S., Bitorff, V., Chen, D., Chou, C., Hechtman, B., Lee, H.,
Kumar, N., Mattson, P., Wang, S., Wang, T., et al.: Scale mlp-
erf-0.6 models on google tpu-v3 pods (2019). arXiv:​1909.​09756

Liao, H., Tu, J., Xia, J., Zhou, X.: Davinci: a scalable architecture for
neural network computing. In: Hot Chips Symposium, pp. 1–44
(2019)

Liao, H., Tu, J., Xia, J., Liu, H., Zhou, X., Yuan, H., Hu, Y.: Ascend:
a scalable and unified architecture for ubiquitous deep neural net-
work computing: Industry track paper. In: 2021 IEEE Interna-
tional Symposium on High-Performance Computer Architecture
(HPCA), pp. 789–801 (2021). IEEE

Lu, W., Zhang, F., He, Y., Chen, Y., Zhai, J., Du, X.: Evaluation and
optimization for huawei ascend neural network accelerator. Chin.
J. Comput. 45(8), 1618–37 (2022)

Manev, K., Vaishnav, A., Koch, D.: Unexpected diversity: quantitative
memory analysis for zynq ultrascale+ systems. In: FPT (2019)

Mei, X., Chu, X.: Dissecting gpu memory hierarchy through micro-
benchmarking. IEEE Trans. Parallel Distrib. Syst. 28(1), 72–86
(2016)

Mittal, S., Vetter, J.S.: A survey of methods for analyzing and improv-
ing gpu energy efficiency. ACM Comput. Surv. (CSUR) 47(2),
1–23 (2014)

Norrie, T., Patil, N., Yoon, D.H., Kurian, G., Li, S., Laudon, J., Young,
C., Jouppi, N., Patterson, D.: The design process for google’s
training chips: Tpuv2 and tpuv3. IEEE Micro 41(2), 56–63 (2021)

Reuther, A., Michaleas, P., Jones, M., Gadepally, V., Samsi, S., Kepner,
J.: Survey and benchmarking of machine learning accelerators. In:
2019 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–9 (2019). https://​doi.​org/​10.​1109/​HPEC.​2019.​
89163​27

Sengupta, J., Kubendran, R., Neftci, E., Andreou, A.: High-speed, real-
time, spike-based object tracking and path prediction on google
edge tpu. In: 2020 2nd IEEE International Conference on Arti-
ficial Intelligence Circuits and Systems (AICAS), pp. 134–135
(2020). https://​doi.​org/​10.​1109/​AICAS​48895.​2020.​90738​67

Wang, Z., Huang, H., Zhang, J., Alonso, G.: Shuhai: benchmarking
high bandwidth memory on fpgas. In: 2020 IEEE 28th Annual
International Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), pp. 111–119. IEEE (2020a)

Wang, Y., Wang, Q., Shi, S., He, X., Tang, Z., Zhao, K., Chu, X.:
Benchmarking the performance and energy efficiency of ai
accelerators for ai training. In: 2020 20th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Internet Computing
(CCGRID), pp. 744–751 (2020b). https://​doi.​org/​10.​1109/​CCGri​
d49817.​2020.​00-​15

Wong, H., Papadopoulou, M.-M., Sadooghi-Alvandi, M., Moshovos,
A.: Demystifying gpu microarchitecture through microbench
marking. In: 2010 IEEE International Symposium on Performance
Analysis of Systems & Software (ISPASS), pp. 235–246. IEEE
(2010)

Zhang, C., Zhang, F., Guo, X., He, B., Zhang, X., Du, X.: imlbench: a
machine learning benchmark suite for cpu-gpu integrated architec-
tures. IEEE Trans. Parallel Distrib. Syst. 32(7), 1740–1752 (2020)

Zohouri, H.R., Matsuoka, S.: The memory controller wall: benchmark-
ing the intel fpga sdk for opencl memory interface. In: H2RC
(2019)

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://arxiv.org/abs/1804.06826
http://arxiv.org/abs/2304.01433
http://arxiv.org/abs/1909.09756
https://doi.org/10.1109/HPEC.2019.8916327
https://doi.org/10.1109/HPEC.2019.8916327
https://doi.org/10.1109/AICAS48895.2020.9073867
https://doi.org/10.1109/CCGrid49817.2020.00-15
https://doi.org/10.1109/CCGrid49817.2020.00-15

129AIbench: a tool for benchmarking Huawei ascend AI processors﻿	

Yang Xiao  received the bachelor’s
degree from Shandong Univer-
sity, Weihai, China, in 2021,
where he is currently pursuing
the Ph.D. degree. His current
research direction is Approxi-
mate Nearest Neighbor Search
(ANNS) in vectors.

Zeke Wang  received the Ph.D.
degree from Zhejiang University,
Hangzhou, China, in 2011. He is
a Research Professor at the Col-
laborative Innovation Center of
Artificial Intelligence, Depart-
ment of Computer Science, Zhe-
jiang University, China. His cur-
rent research interests mainly
focus on building machine learn-
ing systems using heterogeneous
devices, e.g., SmartNIC and
SmartSwitch.

	AIbench: a tool for benchmarking Huawei ascend AI processors
	Abstract
	1 Introduction
	2 Background
	2.1 Ascend AI processor architecture
	2.2 Programming APIs for TIK operators
	2.3 Profiling tools

	3 Overview of AIBench
	4 Benchmarking compute units of AI processors
	4.1 Vector unit
	4.2 Matrix unit

	5 Benchmarking the on-chip memory subsystem of AI processors
	5.1 Unified buffer
	5.2 L1 buffer
	5.3 L0 out buffer
	5.4 On chip datapath

	6 Benchmarking the global memory subsystem of AI processors
	6.1 Single core data transmission
	6.2 Multi-core Data Transmission

	7 Performance benchmarking of workloads with optimization strategies
	7.1 Vector computational loads
	7.2 Matrix computational loads

	8 Optimization guidance for practical applications
	9 Related work
	10 Conclusion
	Acknowledgement
	References

