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Abstract
In recent years, plenty of AI accelerators, e.g., Google TPU and Huawei Ascend, have been proposed to accelerate vari-
ous Deep Learning applications, such as CNN and NLP, because AI accelerators are specialized for AI model training and 
inference and can thus provide higher performance per watt than GPUs. Despite the wide adoption of AI processors in the 
deep learning domain, the potential of AI processors is not fully harvested in the other compute-intensive domains that need 
massive matrix and vector operations, because AI processors typically provide custom matrix and vector instructions. A 
significant challenge in harnessing AI processors in other domains is the undisclosed performance characteristics of these 
processors. To this end, we intend to benchmark AI processors in a comprehensive approach such that programmers can 
easily understand the performance characteristics of AI processors that always have similar architecture. Given this, we 
present AIBench, a benchmarking tool designed to reveal the underlying details of an AI processor. Initially, we benchmark 
Huawei’s Ascend accelerator. The benchmarking results show (1) an Ascend 910 AI chip can provide 216 TFLOPs for float16 
data from the matrix unit and 3390 GFLOPs from the vector unit and (2) the performance of an AI core is contingent upon 
the appropriate data transmission and operation mode. Utilizing unsuitable transmission modes can lead to data entry and 
exit times becoming a bottleneck.
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1  Introduction

Owing to the extensive application of deep learning, which 
requires substantial MACs for training and inference, gen-
eral-purpose central processing units (CPUs) fail to deliver 
adequate computing power. This is primarily because CPUs 
are not optimized for compute-intensive tasks like deep 
learning, but are designed for versatility to run a broad range 
of applications. Consequently, graphic processing units 
(GPUs) are employed to expedite deep learning model train-
ing and inference, given their architecture featuring a pleth-
ora of computing units to accelerate parallel tasks. However, 
GPUs are not specifically designed for deep learning appli-
cations, their use in such tasks can result in elevated energy 

consumption. Conversely, AI accelerators, purpose-built for 
AI model training and inference, can deliver superior perfor-
mance per watt compared to GPUs (Liao et al. 2021; Jouppi 
et al. 2017; Norrie et al. 2021; Jouppi et al. 2023; Liao et al. 
2019). Despite the wide adoption of AI processors in the 
deep learning domain, their potential remains underutilized 
in other compute-intensive applications that require exten-
sive matrix and vector operations. This is primarily due to 
the custom matrix and vector instructions typically provided 
by AI processors. However, the main challenge of leverag-
ing AI processors in other domains is that the performance 
characteristics of AI processors have not yet been revealed. 
To close this gap, we intend to benchmark AI processors in 
a comprehensive approach enabling programmers to readily 
understand the performance characteristics of AI proces-
sors, which often have similar architecture between different 
vendors.

To this end, we present AIBench, a benchmarking tool 
that allows us to demystify all the underlying details of an AI 
processor. As a start, we benchmark Huawei’s Ascend accel-
erator. The benchmarking results show that (1) an Ascend 
910 AI chip can provide 216 TFLOPs for float16 data from 
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the matrix unit and 3390 GFLOPs from the vector unit and 
(2) the performance of an AI core depends on appropriate 
data transmission and operation mode. Employing inappro-
priate transmission modes may result in data ingress and 
egress times becoming a bottleneck. The performance of 
the AI core depends on appropriate data transmission and 
operation modes. Like Ascend accelerator, other AI proces-
sors also have a similar computational architecture that com-
prises matrix units and vector units. Consequently, it is easy 
to generalize AIBench to these AI processors that exhibit 
a similar computational pattern when executing compute-
intensive tasks. Data openly available in a public repository. 
The code that used by this study are openly available in 
Github at https://​github.​com/​Tinke​rver/​AIBen​ch.

Specifically, the following main parts were carried out 
in this work:

•	 Evaluate the performance of each computational unit in 
the AI processor.

•	 Quantify the data transfer bandwidth among buffers 
within the chip and get the access patterns of these buff-
ers.

•	 Investigate the caching mechanism of global memory and 
the interaction rate between global memory and on-chip 
buffers under various transfer modes.

•	 Evaluate the performance of AI processors under matrix 
and vector-intensive computational loads and assess the 
effectiveness of various optimization options.

2 � Background

2.1 � Ascend AI processor architecture

As depicted in Fig. 1, the Ascend processor architecture 
incorporates numerous AI cores (two AI cores in Ascend 
310 chip and 32 AI cores in Ascend 910), which access a 
memory subsystem composed of HBM and DDR.

AIcore’s computational units comprise a matrix unit, a 
vector unit, and a scalar unit, which perform the primary 
computational tasks of the Ascend processor. The matrix 
unit, serving as the computational powerhouse of the AIcore, 
swiftly executes matrix multiplication operations. The vector 
unit facilitates flexible vector operations in a SIMD manner. 
The scalar unit, responsible for executing scalar operations 
within the AIcore, handles tasks such as program loop con-
trol and address computation.

Surrounding the computational unit, DaVinci architecture 
establishes multiple on-chip buffers (including the unified 
buffer, L1 buffer, buffer L0A, buffer L0B, and buffer L0C). 
These buffers collaborate with the data path in the AI Core, 
facilitating input provision and output transmission for the 
computational unit.

Among these buffers, L0A/L0B/L0C are linked to the 
matrix computing unit. The L0A buffer houses the left 
matrix data for matrix multiplication, the L0B buffer accom-
modates the right matrix data for matrix multiplication, and 
the L0C buffer stores the results and intermediate outcomes 

Fig. 1   Ascend AI accelerator logical architecture

https://github.com/Tinkerver/AIBench
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of matrix multiplication. The unified buffer is connected to 
the vector computing unit, and functions as the input and 
output location for the vector computational unit. The L1 
buffer acts as the data transfer zone within AICore, tem-
porarily holding certain data that AICore needs to reuse, 
thereby minimizing bus read and write operations.

During the benchmarking process of the computational 
units within AI cores, our attention will be centered on the 
cube processing unit and the vector processing unit, given 
their role as the main sources of computational power. The 
crux lies in examining the pipeline throughput of its arithme-
tic pipelines. About matrix units, we will further delve into 
the disparities corresponding to different shapes of matrix 
multiplication operational modes.

For the benchmarking of the internal buffer and data path, 
we measure the storage width of each buffer and the data 
transfer bandwidth between interconnected buffers. Addi-
tionally, we will assess the corresponding impact on band-
width variations when transmissions occur with differing 
step sizes and iteration counts.

For the input of off-chip data, we examine the corre-
sponding caching mechanism from memory to the AI chip 
and measure the peak bandwidth from memory to the AI 
core in both single-core and multi-core configurations.

Additionally, pertinent tests will be conducted on 
the functionalities of double buffering and barrier 
synchronization.

2.2 � Programming APIs for TIK operators

TIK is a dynamic programming framework based on the 
Python language, presented as a Python module. Through 
the API provided by Tik, custom operators can be crafted 
based on Python, which is subsequently compiled into appli-
cations for the Ascend AI processor by the TIK compiler. 
Tik operates on Ascend AI acceleration chips, enabling 
precise control over data movement and computational pro-
cesses within the AI core.

TIK’s vector operations utilize single instruction multi-
ple data (SIMD) instructions, with the fundamental opera-
tion unit in the instruction being distributed across two 

dimensions: space and time. Spatially, it is organized into 
blocks, while temporally, iteration is achieved by setting the 
‘repeat_times’ parameter.

The API for single-vector operations within TIK is pre-
sented in the following format, with the specific parameter 
configurations detailed in Table 1.
I n s t r u c t i o n ( m a s k , d s t , s r c , r e p

eat_times,dst_rep_stride,src_rep_stride) 
In TIK, the offset of the same block in adjacent repeats 

only supports linear mode, implying that users are required 
to specify the address offset for each block in the subse-
quent repeat. The principal operands of TIK’s SIMD instruc-
tions are tensors, with a minority of operands being scalars 
(scalar/immediate).

2.3 � Profiling tools

To scrutinize operator processes, we employ the msprof tool, 
a feature of Ascend CANN (compute architecture for neural 
networks), to amass performance profiling data within the 
operational environment. This encompasses the execution 
duration of matrix, vector, and scalar computational units, in 
addition to the corresponding time for “mte1” type instruc-
tions (L1 to L0A/L0B transfer instructions), “mte2” type 
instructions (DDR to AICORE transfer instructions), “mte3” 
type instructions (AICORE to DDR transfer instructions).

3 � Overview of AIBench

We present AIBench, a benchmarking tool that enables us 
to unveal the intricate details of an AI processor, such as 
Huawei’s Ascend accelerator. Consequently, programmers 
can accelerate other compute-intensive applications on AI 
accelerators if possible. In the following, we benchmark 
the computing unit of AI processors (Sect. 4), the on-chip 
memory subsystem of AI processors (Sect. 5), and the global 
memory subsystem of AI processors (Sect. 6). Then, we 
scrutinize the performance of computationally demand-
ing workloads and the efficacy of conventional optimiza-
tion techniques (Sect. 7). Subsequently, we deliberate on 

Table 1   Function parameters 
description

Parameter Type Description

mask Boolean array Control bits, specifying which elements should be processed
dst Array The output of the operation, storing the processed data
src Array The array containing the data to be processed
repeat_times Integer Specifies the number of times the operation is to be repeated
dst_rep_stride Integer The stride between each repeated operation in the destina-

tion array, set at a granularity of 32 bytes
src_rep_stride Integer The stride between each repeated operation in the source 

array, set at a granularity of 32 bytes
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the guidance provided by the measurement results procured 
from AIBench for real-world applications (Sect. 8).

4 � Benchmarking compute units of AI 
processors

In this section, we measure the throughput of the main com-
puting units in the AI core and summarize the impact of cor-
responding computing modes on time consumption during 
the testing process.

•	 Vector unit: The vector unit performs various mathemati-
cal computations, such as addition, subtraction, multipli-
cation, division, and mathematical functions in a SIMD 
instruction manner. This unit is mainly used by AI opera-
tors such as ReLU, negation, and natural logarithm. The 
supported formats include unary, binary, scalar binary, 
scalar ternary, and reduction instructions. According 
to the documentation of Ascend 910, each cycle can 
complete the addition/multiplication of two 128-length 
float16 type vectors or 64 float32/int32 type vectors.

•	 Matrix unit: The matrix unit efficiently performs matrix 
operations. According to the documentation of Ascend 
910, this unit can complete a 16 × 16 matrix multiplica-
tion with float16 inputs in one clock cycle. If the inputs 
are int8, the unit can complete a 16 × 32 or a 32 × 16 
matrix multiplication in one clock cycle.

4.1 � Vector unit

In this subsection, we validate the efficiency of vector unit, 
by measuring the pipeline throughput. In order to explore its 
full utilization, we use continuous addresses for both source 
data and destination data when running in a single AI core, 
in terms of the number of computations executed per cycle. 
We also measure the peak throughput in the vector computa-
tion unit with a full mask and 128 repeated vector iterations. 
In vector operation instructions, the elements participating 
in the computation are denoted by the mask, and the num-
ber of iterations is regulated by the repeat time. During the 
test, the number of elements involved in the computation is 
controlled by modifying the mask and repeat parameters, 
and the bandwidth changes are counted to obtain the com-
putational bit width.

To demonstrate the pipeline throughput of the vector unit, 
the basic compute size of vector unit is examined using com-
putations of varying length, and the time consumption for 
basic computation is explored by observing changes in time 
consumption.Fig. 2 shows the time consumption of vector 
calculation with varying masks. With varying mask settings 

from 1 to 128, the time consumption will not decrease with 
the reduction of the amount of data involved in the calcu-
lation in a single iteration. Figure 3a, b respectively show 
the time consumption and bandwidth variation of vector 
computation as the computation length increases. Figure 3a 
illustrates that time consumption increases linearly by 256 
B per cycle as the number of iterations changes. We make 2 

Fig. 2   Time consumption of vector operation with varying mask

Fig. 3   Vector unit operations at different computational lengths
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major observations. First, vector unit data calculation par-
allelism is 256 B. As Figs. 2 and 3a show, only 256 B or 
larger workload variety will change clock cycle consump-
tion. Second, the pipeline execution time for vector opera-
tions is one clock cycle, as illustrated in Fig. 3a. Considering 
the calculation parallelism and this pipeline execution time, 
we can conclude that the maximum pipeline throughput can 
attain 256 B per clock cycle. At a clock frequency of 900 
MHz, the computing power of the vector unit is determined 
to reach 113 GFLOPS.

4.2 � Matrix unit

In AI processors, the matrix computation unit is the prin-
cipal source of processing power. Despite variations in the 
specific hardware circuitry across different AI processors, 
they are all capable of rapidly executing multiplication and 
addition operations on small matrices. Furthermore, these 
units accomplish matrix multiplication of arbitrary scale by 
segmenting the multiplication of large matrices into sev-
eral smaller matrix operations. Consequently, to assess the 
matrix computation capabilities of AI processors, we should 
focus on the basic unit size and the number of clock cycles 
required for executing multiplication and addition operations 
on basic unit.

Matrix multiplication is a fundamental operation in linear 
algebra. It is a binary operation that produces a matrix from 
two matrices. The product of matrices A and B is denoted 
as AB. If A is an M × K matrix and B is a K × N matrix, the 
matrix product C = AB is defined to be the M × N matrix. 
That is, the entry of the product is obtained by multiply-
ing term-by-term the entries of the ith row of A and the jth 
column of B, and summing these K products. Therefore, 
the dimensions M, K, and N determine the shape of matrix 
multiplication.

In our experiments with the Ascend 910, due to limita-
tions imposed by the instruction format, we selected 16 as 
the step size to vary M, K, and N, observing the execu-
tion time for matrix multiplication of different sizes. This 
approach enabled us to determine the base matrix operation 
size and the number of cycles consumed.

In this subsection, we deduced that within a single cycle, 
the matrix unit is capable of completing a 16 × 16 × 16 
matrix multiplication for float16 and 16 × 32 × 16 multi-
plication for int 8. Furthermore, the computing power of a 
single AI core’s matrix unit can achieve 3.6 TOPS for float16 
and 7.2 TOPS for int8.

To get the pipeline throughput of the matrix unit, we 
investigate the basic unit size for matrix multiplication and 
throughput of the matrix unit. The experiment involved set-
ting a fixed M dimension in matrix multiplication and trans-
forming K and N dimensions in 16 steps. The relationship 
between K, N, and the number of multiplication in matrix 

calculations is established by comparing time consumption 
with variations in N. The Fig. 4 illustrates that when M is 
fixed at 160 and N exceeds 112, there is a variation in time 
consumption corresponding to every increment of 16 in N. 
When M and K are fixed, an increase in N in matrix cal-
culation will increase the corresponding matrix calculation 
amount. When M is fixed at 160 and K is set to 16, each 
increment of 16 in N results in an additional ten 16 × 16 × 
16 matrix operations. As can be seen from the Fig. 5, the 
time consumption of matrix multiplication escalates by 10 
clock cycles. Additionally, when K assumes a larger value, 
the growth in clock cycles for each increment of N corre-
sponds directly to the frequency of executing 16 × 16 × 16 
shaped matrix multiplication operations. We make a major 
observation that the matrix unit, while handling float16 data, 
can perform a 16 × 16 × 16 matrix multiplication in a single 
clock cycle, with the resultant matrix values being accumu-
lated within the same cycle. In the case of int8 data, a 16 
× 32 × 16 matrix multiplication can be completed in each 
clock cycle. Operating at a clock frequency of 900 MHz, this 
unit’s computational power is capable of reaching 3.6 TOPS 
for float16 and 7.2 TOPS for int8.

Fig. 4   Time consumption of matmul operation with M = 160 and K 
= 144

Fig. 5   Variation in clock cycle consumption with the increase of N, 
given a set dimension M of 160
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During the testing process, we observe that the correla-
tion between instruction execution time and variations in 
N is not entirely linear when M is small. As depicted in 
Fig. 6, there is a step-like increase in computation time 
as N increases when M = 16. We hypothesize that two 16 
× 16 matrix multiplications can be completed simultane-
ously in the matrix computation unit. When M = 16 and 
N is an odd multiple of 16, the matrix computation unit 
cannot be fully utilized. Conversely, when M = 16 and N 
is an even multiple of 16, the matrix computation unit is 
fully utilized. Hence, when executing matrix multiplica-
tion with smaller sizes, we can optimize the performance 
of the matrix operation unit by ensuring an even number 
of matrix units are involved in the computation.

5 � Benchmarking the on‑chip memory 
subsystem of AI processors

In various AI processors, there are high-speed buffers 
around the computing units to adapt to the high throughput 
of computing units. These buffers cooperate with the data 
paths to provide input to the computing units and transmit 
output. The memory access characteristics and transmis-
sion bandwidth of these buffers have important guidance 
on how to choose the appropriate computing mode to fully 
exert the computing power of the computing units.

In AIBench, we count the time consumption changes of 
data handling at different granularities in the buffer area to 
analyze the buffer bit width and perform continuous data 
transmission between buffers to calculate the maximum 
bandwidth of each data path on the chip.

AI Core’s internal buffer consists of the unified buffer, 
L1 buffer, and L0 out buffer. And AI core interacts with 
the bus through the BIU (bus interface unit) and achieves 
read-write operations with external storage units. In the 
following, we benchmark each component one by one.

5.1 � Unified buffer

In this subsection, we determine the size of the unified buffer 
and investigate the bit width of the unified buffer.

By determining the maximum array that can be declared 
in the unified buffer, we get that the size of the unified buffer 
is 248 KB.

In this subsection, we investigate the bit width of the uni-
fied buffer. The experiment involves data transfer within the 
unified buffer with different block sizes. each block in the 
instruction has a size of 32 B. As depicted in Fig. 7, the 
time consumption varies with different burst size settings. 
We observe that instruction execution time increases in a 
step-wise manner, passing 16 blocks will increase one clock 
cycle. We calculate that the bit width of the unified buffer 
is 512 B.

5.2 � L1 buffer

In this subsection, we get the size of the L1 buffer and exam-
ine the bit width of the L1 buffer.

By determining the maximum array that can be declared 
in the unified buffer, we get that the size of the L1 buffer is 
1 MB.

We investigate the bit width of the L1 buffer. Given that 
TIK does not offer instructions for data transfer within L1 
buffers, our experiment involves transferring data from the 
L1 buffer to the unified buffer while modifying the burst 
size. This method allows us to infer the bit width of the L1 
buffer by determining the bandwidth between the L1 buffer 
and the unified buffer.

Figure 8a shows with the same number of transmissions, 
every four blocks take an additional cycle for data transmis-
sion from the unified buffer to the L1 buffer. We observe 
the throughput for data transmission from L1 buffer to the 
unified buffer is 128 B per clock cycle. Given that the uni-
fied buffer’s measured bit width is 512 B, the bottleneck in 

Fig. 6   Time consumption of matmul operation with setting M = 16

Fig. 7   Clock cycle consumption of single transfers with different 
block sizes from unified buffer to unified buffer
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data transmission from the L1 buffer to the unified buffer is 
attributed to the bit width of the L1 buffer. We conclude that 
the bit width of the L1 buffer is 128 B.

5.3 � L0 out buffer

In this subsection, we get the size of the L0 out buffer and 
examine the bit width of L0 out buffer.

By determining the maximum array that can be declared 
in the unified buffer, we get that the size of L0 out buffer is 
256 KB.

To get the bit width of L0 out buffer, the situation is simi-
lar to L1 buffer bit width getting, the bit width needs to be 
deduced from the bandwidth of the data transmission with 
L0 out buffer and unified buffer.

Figure 8b shows the time consumption for data transfer 
from the unified buffer to L0 out buffer. Transferring each 
1024 B data takes 4.44 ns or four cycles. Therefore, the data 
bandwidth of the L0 out buffer should be 256 B per cycle. 
The storage mode of L0 out buffer is relatively unique. As 
a buffer for storing matrix calculation results, we observe 
that L0 out buffer only supports reads and writes the data in 
multiples of 1024 B size and requires four cycles for every 
1024 B data.

5.4 � On chip datapath

The data transmission within the AI core includes unified 
buffer and L1 buffer, unified buffer, and L0 out buffer. In 
the process of determining the bit widths of L0 buffer and 
L1 buffer, We have two observations. First, the pipeline 
throughput between unified buffer and L0 out buffer is 256 
B per cycle. Second, the pipeline throughput between unified 
buffer and L0 out buffer is 128 B per cycle. We conclude 
that the maximum bandwidth between unified buffer and L0 
out buffer reaches 230 GB/s, and the maximum bandwidth 
between unified buffer and L0 out buffer reaches 115 GB/s 
under 900 MHz clock frequency.

In addition, we test the bandwidth performance of the 
stride transfer mode by adjusting the spacing between the 
data blocks of the source and destination operands while 
keeping the number of transfer blocks and the length of 
each block constant. We observe that the transfer time is 
not affected by modifying the transfer spacing between data 
blocks as long as the source and destination operand posi-
tions satisfy the buffer alignment requirements (32 B align-
ment in unified buffer and L1 buffer, and 1024 B alignment 
in L0 out). We conclude that Within the inherent constraints 
of the TIK language, data transfer statements implemented 
can access all bank groups.

6 � Benchmarking the global memory 
subsystem of AI processors

Global memory is the main storage part of the AI proces-
sor, which is located off-chip. Although it is slower than the 
buffer, it has a larger storage space. In AIBench, we calculate 
the bandwidth of data transfer in and out of the chip through 
continuous data reading and writing, then obtain the band-
width of data transfer and the cache level in global memory 
by setting different sizes of working sets.

For Ascend accelerator, we conduct tests to investigate 
the memory access structure of the global memory. Concur-
rently, we measure the maximum transfer speed between 
the global memory and the bus under both single-core and 
multi-core scenarios.

BIU manages the data interaction between the bus and 
the AI core. In this subsection, we benchmark the interaction 
between the AI Core and the bus to explore its maximum 
bandwidth for data read and write. We fix the number of data 
transfers and change the burst size in each transfer.

6.1 � Single core data transmission

To examine the bandwidth from external memory to the on-
chip buffer through BIU on the single core, we fix the times 
of data transfers and change the burst size for each transfer.

Fig. 8   Clock cycle consumption for single transfers with different 
block sizes from L0 out and L1 buffer to unified buffer
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Figure 9a illustrates that using smaller blocks for data 
transfers can result in fluctuations in time consumption. 
However, as the volume of data escalates, we observe a 
linear increase in the time required for these transfers. Fig-
ure 9b shows the data transfer bandwidth varies with the 
length of each instruction. As the size of the data blocks 
increases, the transfer bandwidth gradually reaches its 
peak value. We have two observations. First, when trans-
ferring large amounts of data, the pipeline throughput can 
reach 108.7 GB/s, as indicated by the slope in Fig. 9a. 
Second, The bandwidth can reach 93.6 GB/s when trans-
ferring 16 KB of data in a single instrument as shown in 
Fig. 9b.

To assess the data transfer bandwidth between the inter-
nal buffer and external memory, we adopt a comparable 
methodology. Within the data path from global memory 
to the unified buffer, we observe a pipeline throughput of 
103.7 GB/s. Moreover, for a single instruction that trans-
fers 16 KB of data, the achievable bandwidth is 60.3 GB/s.

6.2 � Multi‑core Data Transmission

To evaluate performance in a multi-core environment, we 
allocate the data transmission workload across all AI cores 
in the processor by distributing data blocks to each AI core. 
By monitoring how task duration fluctuates with changes in 
the number of distributed shards, we ascertain the maximum 
bandwidth achievable from the active cores to the bus.

To examine the access structure of the global memory, 
our experiment involves transferring an equivalent total 
amount of data from the global memory to the AI core, 
while varying the working set size within the global mem-
ory. During the computation, data is sequentially retrieved 
in 128 KB bursts from the designated range of the working 
set in the global memory and transferred to a fixed unified 
buffer address for data overwriting. In this experiment, atten-
tion is not centered on the specific division of labor among 
the cores; instead, the total time required for execution was 
measured.

Figure  10 illustrates that the bandwidth initially 
increases and then stabilizes as the working set size 
expands. When the working set size is less than 4 blocks 
(512 KB), the data transfer bandwidth exhibits an upward 
trend. Once the working set size surpasses 4 blocks, the 
data transfer bandwidth plateaus at 2850 GB/s. We make 
two observations from this experiment. First, when the 
working set size is below 512 KB, the data transfer band-
width from the global memory to the AI core might be 
reduced due to reading conflicts in the global memory. 
As the size of the working set increases, so does the 
data transfer bandwidth. The maximum bandwidth from 
global memory to the bus is reached when the working 
set size exceeds 512 KB. Second, When the working set 
size exceeds 512 KB, the bandwidth stabilizes at its maxi-
mum value. We conclude that this maximum bandwidth 
can reach up to 2850 GB/s. Furthermore, within a dataset 

Fig. 9   Transferring data 100 times from external memory to AI core

Fig. 10   Under the multi-core configuration, the data bandwidth 
between global memory and L1 buffer as the number of 128 KB-
sized data blocks varied in the working set
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spanning 16,384 blocks (equivalent to 2 GB), the cache of 
the global memory seems to have no significant impact.

To determine the number of AI cores that can be 
actively engaged in computation, we assign multiple tasks 
to transmit data slices of 128 KB each to an AI core with 
several cores enabled. Figure 11 illustrates data transfer 
latency from external memory to an internal buffer. We 
observe that the instruction latency escalates in a step-wise 
fashion with a step size of 30 as the number of process-
ing blocks augments. Our observations indicate that an 
equal distribution of data blocks among AI cores occurs 
when the total number of data segments is a multiple of 
30. This uniform distribution is due to the system’s archi-
tecture, where introducing an additional segment beyond 
a multiple of 30 necessitates engaging another AI core, 
leading to a noticeable increase in latency. Consequently, 
we conclude that the Ascend 910 chip utilizes 30 AI cores 
for computational tasks.

7 � Performance benchmarking of workloads 
with optimization strategies

Upon acquiring the performance metrics of computational 
units and transmission paths, we can evaluate various com-
putationally demanding task flows. This allows us to ascer-
tain the utilization and pipeline efficiency of the computa-
tional units and their associated transmission paths. This 
section evaluates the performance of AI processors under 
matrix and vector-intensive computational loads and tests 
the efficacy of two optimization strategies: double buffer-
ing and multi-core processing.

In the evaluation of computational load, data from 
memory is transferred to the on-chip for computation, 
subsequently, the result is relayed to the global memory 
outside the chip. The time consumed by each instruction 
is recorded as the computational load escalates.

7.1 � Vector computational loads

The vector computing unit, incorporated within AI pro-
cessors, may offer less computational power compared 
to matrix computing units, yet it is capable of executing 
more flexible computations. In this section, we assess the 
performance of vector operation units under vector opera-
tion workloads. We evaluated the time efficiency of vector 
computing units during single-core execution and when 
utilizing double buffer in both single-core and multi-core 
environments.

Double buffer is a method for optimizing the perfor-
mance of vector operations. A complete vector operation 
encompasses both data transfer and computation. Within 
the Ascend Accelerator employing double buffer, MTE2 is 
responsible for transferring data from external memory to 
the unified buffer, while the vector unit completes the com-
putation and writes the results back to the unified buffer. 
Subsequently, MTE3 transfers the computed results back 
to external memory. The double buffer mechanism seg-
ments the unified buffer into two parts, enabling parallel 
execution of computation in one buffer and data transfer in 
the other, thereby diminishing the overall operation time.

To assess the performance of AI processors in execut-
ing dense vector computations, we initially explored how 
time efficiency for vector computations of various lengths 
varies under a single kernel. As illustrated in Fig. 12a, 
performing vector computations without double buffer-
ing results in time consumption increasing linearly with 
the extension of computational length. The total operation 
time is approximately the sum of MTE2 time and com-
putation time. Conversely, as depicted in Fig. 12b, with 
the implementation of double buffering, the total time Fig. 11   Transferring data 100 times from external memory to AI core 

in multicore scenarios
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efficiency is significantly reduced to nearly the duration 
of MTE2 time alone. We conclude that employing double 
buffering effectively overlaps computation time with data 
transmission.

To assess multi-core vector operations, a consistent load 
is applied to each AI core same as single-core testing. The 
average time taken for each instruction type in each core, 
along with the time needed for all cores to complete the 
entire task, was recorded. In the Ascend 910 chip, prior test-
ing identified 30 operational cores. Thus, during multi-core 
testing, a workload equal to 30 times that of the single-core 
test was evenly distributed across these 30 AI cores.

We make two major observations in Fig. 13. First, imple-
menting double buffering does not directly shorten the exe-
cution time for any specific type of instruction. Rather, it 
enhances overall efficiency by integrating data transforma-
tion and computation into a pipeline, thereby reducing the 
cumulative time needed for processes. Second, in execu-
tions involving multi-core processing of vector operations, 
the time taken for computation is similar to the duration 

of executing a computation instruction on a single core. 
However, during data transmission, due to issues such as 
bus contention, the time required can exceed twice that of a 
single-core computation, with data transmission emerging 
as the primary bottleneck. We conclude that the efficiency 
of vector computing units could be further enhanced by 
increasing the density of vector computations.

Given that the time expended on data input and output 
surpasses the computational time, we hypothesize that the 
utilization of a double buffer could potentially allow for the 
overlap of more computational operations with input and 
output, thereby enhancing pipeline efficiency.

We investigate the optimal pairing scheme for double 
buffering. The experimental setup involves varying the 
frequency of computations per data transfer into and out 
of the chip. As illustrated in Fig. 14, conducting 3 or 6 
vector calculations in a single in-chip process does not 
lead to a bottleneck in the pipeline, and the overall time 
spent by the AI core remains constant. When the process 
involves nine vector computations, the time for vector 

Fig. 12   Performance under vector computing load
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computation surpasses the MTE2 time, thereby becom-
ing the pipeline bottleneck and augmenting the total AI 

core time. Consequently, in the mode of slice input, vector 
computation, and slice output, feeding data for six vector 

Fig. 13   Execution time of each 
instruction under various opti-
mization strategies

Fig. 14   Performance with varying computational intensity under vector computational loads
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computations can adequately fill the double buffer pipe-
line, thereby attaining peak computational efficiency.

7.2 � Matrix computational loads

Matrix computing units within AI processors are capable 
of delivering superior computational power. In this section, 
we assess the performance of these matrix operation units in 
managing matrix workloads in both single-core and multi-
core configurations. Furthermore, we compare the parallel 
execution of instructions at varying computational densities.

In the evaluation of matrix operations, we compute the 
length of the data stream and the number of data sharing 
operations via transformation. Subsequently, we assess the 
processor’s performance under varying vector loads using 
both single-core and multi-core approaches.

For the Ascend 910 processor, we select matrix mul-
tiplication dimensions of 160 × k and k × 16 for our 
experiments. Our testing encompasses different sce-
narios: employing a single kernel to perform one matrix 

multiplication, using a single kernel for two matrix multi-
plications simultaneously, and deploying multiple kernels, 
each performing a single matrix multiplication.

As depicted in Fig.  15, the total time efficiency 
increases in a stepwise manner as the value of k grows. 
We have three major observations. First, the dimensions of 
matrices involved in computations can significantly affect 
their performance, due to the presence of dual buffers that 
link the on-chip buffers with matrix computation units. 
Second, upon augmenting the density of matrix opera-
tion data sharding, the total time efficiency is amplified 
by an equivalent amount as a singular time efficiency. The 
transmission of accessible data is unable to mask the com-
putational time. Third, When employing 30 cores and the 
average load per core aligns with that of a single-core test, 
it can attain a maximum data throughput of 608 GB/s.We 
conclude that choosing the appropriate mode for computa-
tion transmission is essential to fully harness the compu-
tational capabilities of AI accelerators.

Fig. 15   Performance with varying computational length under matrix computational loads
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8 � Optimization guidance for practical 
applications

This section will illustrate the optimization of fast Fourier 
transform (FFT) based on vector operation units, aiming 
to clarify the impact of AIBench measurement results on 
the optimization process.

The butterfly operation plays a pivotal role in the FFT 
algorithm, effectively simplifying the computation of the 
discrete Fourier transform (DFT). It achieves this by divid-
ing an N-point DFT task into two sub-tasks, each dealing 
with N/2 points. This division process, characteristic of 
the butterfly operation, requires log(N) steps to complete 
for the entire dataset. In practice, calculating the opera-
tions for the xth layer involves processing 2x elements, 
with each element undergoing both a multiplication and 
an addition to produce the output. This repetitive applica-
tion of the same mathematical operations across the signal 
samples makes it ideally suited for vector processing units.

Experiments discussed in Sect. 8 reveal that performing 
over six vector operations inside the AI core allows for the 
overlapping of operation times of the vector unit with the 
data transfer times between the chip and global memory. In 
the FFT implementation employing vector operation units, 
the direct method involves executing a butterfly operation 
on each element after it enters into the AI core. Each ele-
ment undergoes computation only twice during its trans-
mission into and out of the chip. Under these conditions, 
data transmission emerges as the bottleneck, hindering the 
full exploitation of the computational capabilities of vector 
operation units.

To optimize the efficiency of vector operation units, 
it is necessary to execute over six vector operations on 
incoming data. This involves the data undergoing three 
stages of butterfly operations each time it enters the AI 
chip. Additionally, to comply with the prerequisites of but-
terfly operations, the input data must be a multiple of 8. As 
a result, the shape of the computational load is determined. 
Theoretically, this approach can increase the utilization 
rate of vector operation units by 60% compared to execut-
ing operations layer by layer.

The overarching similarity in the architecture of various 
AI processors enables the use of similar optimization tech-
niques to boost calculation efficiency. In scenarios involv-
ing more complex computational loads, such as the need 
to execute format conversions within the AI core, employ-
ing on-chip buffers and multiple pathways within the core 
becomes essential. Under these circumstances, leveraging 
data from AIBench’s benchmarks can guide the planning 
of the most efficient on-chip data transfer strategies.

9 � Related work

To our knowledge, AIBench is the first benchmark testing 
tool for AI processor’s underlying performance charac-
teristics. Our work intersects with other work in the fol-
lowing areas (1) AI accelerator hardware architecture, (2) 
benchmarking neural network training and inference on 
AI accelerators, (3) hardware benchmarking on GPUs and 
FPGAs.

AI accelerators. Several AI accelerators (Liao et al. 
2021; Jouppi et al. 2017; Norrie et al. 2021; Jouppi et al. 
2023; Liao et al. 2019) have emerged in recent years. To 
adapt neural networks effectively, AI accelerators offer 
robust matrix computation capabilities. Despite variations 
in the specifics of their implementation, these accelerators 
share a similar foundational structure.

ıNeural network training and inference on AI accelera-
tors. Previous works (Wang et al. 2020b; Reuther et al. 
2019; Kumar et al. 2019; Sengupta et al. 2020; Zhang 
et al. 2020; Lu et al. 2022) have conducted end-to-end 
measurements of several AI accelerators for training and 
inference of neural networks. These works conduct a thor-
ough comparison of various software libraries alongside 
an analysis of processor performance and efficiency across 
different deep-learning frameworks provided by multiple 
vendors. Specifically, the work (Lu et al. 2022) includes 
testing hardware utilization at the level of individual 
operator invocations beyond performing end-to-end test-
ing on Ascend. Contrasting with the focus of these existing 
studies, AIBench emphasizes direct interactions with the 
underlying hardware, deliberately bypassing the complexi-
ties of higher-level frameworks.

Hardware benchmarking on GPUs and FPGA. Bench-
marking has been widely used to determine the hardware 
organization of various processor architectures. For GPUs 
(Mittal and Vetter 2014; Jia et al. 2018; Mei and Chu 2016; 
Wong et al. 2010) and FPGAs (Zohouri and Matsuoka 
2019; Manev et al. 2019; Wang et al. 2020a; Huang et al. 
2022), benchmarking extends beyond computing speed 
also to encompass their storage structures. In a similar 
vein, AIBench employs comprehensive methods to assess 
cache configurations alongside computational performance 
across various hardware platforms.

10 � Conclusion

We present AIBench, a benchmarking tool designed to 
reveal the underlying details of an AI processor. By utiliz-
ing AIBench to generate test operators, we obtain relevant 
hardware information. AIBench focuses on three primary 
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areas of benchmarking. Firstly, AIBench assesses comput-
ing units by measuring vector calculations’ parallelism and 
throughput, along with the operational modes and time 
efficiency of matrix computing units. Secondly, AIBench 
evaluates the AI core’s internal buffer by determining each 
buffer’s bit width and the data transfer bandwidth between 
buffers, which is informed by their sizes. Thirdly, AIBench 
examines data interactions within and outside the chip, 
capturing the maximum bandwidth achievable in such sce-
narios, how bandwidth varies with different data transmis-
sion strategies, and the effectiveness of data transfers in 
a multi-core configuration. In conclusion, AIBench rigor-
ously evaluates the performance under computationally 
intensive workloads. Following this, we explore how the 
insights derived from these test results can be effectively 
applied to real-world applications.

The computing power of other AI processors such as 
GPUs, TPUs, and Cambricon is mainly provided by matrix 
computation units and vector computation units. Although 
the implementation of these computational units may vary, 
there is a commonality in the data flow when performing 
intensive workloads. So the testing methods of AIBench can 
also be applied to other AI accelerators.
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