
Vol.:(0123456789)

CCF Transactions on High Performance Computing
https://doi.org/10.1007/s42514-024-00180-4

REGULAR PAPER

A heterogeneous 3‑D stacked PIM accelerator for GCN‑based
recommender systems

Xinyang Shen1 · Yu Huang1,2 · Long Zheng1,2 · Xiaofei Liao1 · Hai Jin1

Received: 9 June 2023 / Accepted: 2 January 2024
© The Author(s) 2024

Abstract
Modern recommendation systems integrate graph convolution neural networks (GCN) for enhancing embedding represen-
tation. Compared with widely deployed neural network-based models, the extra message propagation layer of GCN-based
recommendation is featured with extensive computations and irregular memory access. However, architecture designs for
prevailing deep neural network recommendation models assume simple pooling in the embedding layer. ReRAM-based GCN
accelerators are specialized for graph-related operations. However, they are designed for general graphs, while GCN-based
recommendation models mainly operate on the user-item graph. In this paper, we proposed a resistive random accessed
memory (ReRAM) based processing-in-memory (PIM) accelerator, ReGCNR, for GCN-based recommendation. ReGCNR
is featured with three key innovations. First, we exploit the 3-dimensional (3-D) stacked heterogeneous ReRAM to fit with
the large-size embedding table and user-item graph. Then, we propose a joint degree mapping schema that maximizes the
efficiency of the execution pipeline. After that, ReGCNR assembles a well-coordinated pipeline and hardware scheduling
design to boost overall system performance. Results show that ReGCNR outperforms GPU by 69.83× and 56.67× in terms
of average speedup and energy saving, respectively. In addition, ReGCNR outperforms state-of-the-art ReRAM-based solu-
tions by 11.13× speedups and 7.22× energy savings on average.

Keywords GCN-based recommendation · ReRAM · Accelerator · Processing-in-memory · 3-D stacked PIM ·
Heterogeneous

1 Introduction

GCN-based recommender systems (Huang et al. 2021; He
et al. 2020; Song et al. 2017; Berg et al. 2017; Wu et al.
2022) have emerged as a popular way for performing person-
alized recommendations. Those systems have been applied
for lots of real-world services such as electric commerce
(He et al. 2020; Wang et al. 2019; Feng et al. 2020; Li et al.
2019), content recommendation (Yang and Dong 2020), and
advertising (Huang et al. 2021). The uniqueness of GCN-
based recommendation models is that they integrate GCN
for constructing user and item embeddings to capture the
interaction information in embeddings for more accurate
representations. It is already challenging to process recom-
mender systems on general-purpose platforms due to large
embedding tables and low operational tensity (Ke et al.
2020). The increasing complexity of embedding function
(Huang et al. 2021; Song et al. 2018; Huang et al. 2022) for
combining GCN on recommendation makes it more difficult.

 * Long Zheng
 longzh@hust.edu.cn

 Xinyang Shen
 xyhsen@hust.edu.cn

 Yu Huang
 yuh@hust.edu.cn

 Xiaofei Liao
 xfliao@hust.edu.cn

 Hai Jin
 hjin@hust.edu.cn

1 National Engineering Research Center for Big Data
Technology and System, Services Computing Technology
and System Lab, Clusters and Grid Computing Lab, School
of Computer Science and Technology, Huazhong University
of Science and Technology, Luoyu Road, Wuhan 430074,
Hubei, China

2 Zhejiang Lab, Zhongtai Road, Hangzhou 311121, Zhejiang,
China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-024-00180-4&domain=pdf
http://orcid.org/0000-0002-3927-1102

 X. Shen et al.

Generally speaking, prevailing recommender systems,
such as deep neural network (DNN) based recommendation
models (Naumov et al. 2019), have a hybrid structure mainly
composed of embedding lookup and neural network opera-
tions. The embedding lookup operation has been proved to
be the system bottleneck for the DNN-based recommen-
dation model (Gupta et al. 2020; Kal et al. 2021; Hwang
et al. 2020; Naumov et al. 2019). Those systems have low
operational tensity (Ke et al. 2020), which indicates that the
embedding lookup layer induces extensive memory accesses
in a very short time. Therefore, the overall DNN-based rec-
ommendation system performance is limited by the memory
bandwidth on the general computing platform (Ke et al.
2020). On the contrary, GCN-based recommendations mod-
els have three layers including the embedding lookup, mes-
sage propagation, and prediction layer (Huang et al. 2021;
Wu et al. 2022). Hence, the situation becomes even more
complex for GCN-based recommendations because the extra
message propagation layer induces many more operations.

Specifically, the embedding lookup layer on GCN-based
recommendation generates initial embeddings for users and
items. Those initial embeddings are processed by the mes-
sage propagation layer with two main kernels, aggregation
and combination, to obtain propagated results. The aggre-
gation kernel gathers messages to refine the user and item
embeddings. The combination kernel transforms the aggre-
gated results with weight matrixes. Both tow kernel requires
extensive computations. Especially, the aggregation kernel
induces random memory access while gathering messages
along edges on the user-items bipartite graph. Those two
kernels may be executed with multiple successive layers.
Therefore, instead of embedding lookup operations, the
unique message propagation layer becomes the GCN-based
recommendation model bottleneck.

Several architecture works, such as RecNMP (Ke et al.
2020), Centaur (Hwang et al. 2020), and Space (Kal et al.
2021), address the system bottleneck caused by the embed-
ding lookup layer for the recommendation system. For exam-
ple, RecNMP (Ke et al. 2020) leverages the near-memory
processing to execute pooling operation on computation
logic near memory to mitigate the effect of limitation of
memory bandwidth. However, those designs are specialized
for embedding the lookup layer and may not be adaptable
to GCN-based recommendation models. In GCN-based
models, the message propagations dominate the system per-
formance. In this work, we propose a ReRAM-based PIM
architecture design for end-to-end GCN-based recommenda-
tion and focus on the propagation layer.

Meanwhile, there are GCN accelerators, such as
HyGNC(Yan et al. 2020), PIMGCN (Yang et al. 2021),
and Hetraph (Huang et al. 2022). Those accelerators make

special efforts to accelerate the combination and aggrega-
tion kernels (Yan et al. 2020; Yang et al. 2021; Huang et al.
2022) by exploiting multi-level parallelism (Yang et al.
2021) and reducing sparsity in aggregations kernels (Huang
et al. 2022). However, those designs are designed for general
GCN applications without considering the full procedure of
GCN-based recommendation. GCN-based recommendation
models, especially, generally operate on the user-item graph,
which distinguishes them from general graphs. Compared
with GCN accelerators, our work boosts the full procedure
of the GCN-based recommender system on ReRAM het-
erogeneous PIM, focusing on aggregation and combination
kernels operated for user-item graphs.

The most relevant work to our design is REREC (Wang
et al. 2021), which also exploits ReRAM for accelerating
recommendation. There are mainly two differences between
our design and REREC. First, REREC focuses on interaction
while our design focuses on the propagation layer Second,
REREC adopts a mapping schema that maps item embed-
dings on the crossbar while we map the user and item on
the ReRAM crossbar, owing to the fact that both the user
and item can be the aggregated destination. Furthermore, we
exploit the heterogeneous 3D-stacked design and hardware
scheduling to coordinate the mapping schema.

In summary, we make the following contributions:

• We identify the performance bottleneck of the GCN-
based recommendation and characterize operation and
access patterns.

• We present a ReRAM-based heterogeneous 3-D stacked
PIM architecture design that integrates analog and
memory ReRAM to satisfy the computation and on-chip
memory access requirements for GCN-based recommen-
dation.

• We propose a specific mapping schema and cooperative
hardware scheduling to maximize the hardware effi-
ciency.

• We evaluate ReGCNR on a range of models and data-
sets. Results show that ReGCNR outperforms state-of-art
GPU solutions and ReRAM-based solutions by 69.83×
and 11.13× in terms of average speedups, and by 56.67×
and 7.22× in terms of energy savings.

2 Background and motivation

In this section, we introduce the background of GCN-based
recommendation and ReRAM-based processing. After that,
we make observations of gaps between the GCN-based
recommendations properties and ReRAM-based PIM.
Finally, we briefly introduce how we bridge those gaps.

A heterogeneous 3-D stacked PIM accelerator for GCN-based recommender systems

2.1 GCN‑based recommendation

Figure 1a shows the system overview of a GCN-based recom-
mender system. A typical GCN recommender system model
generally consists of an embedding layer, an embedding propa-
gation layer, and a prediction layer. The embedding layer is
composed of embedding lookup operations, which serves as
an initial stage for building user embedding vector eu and item
embedding vector ei , and can be defined as follows:

where Tablesu denotes the user embedding tables and feau
denotes the user features.

The embedding propagation layers play the role of refin-
ing the embedding vector by capturing information along the
user-item graph. Each propagation layer is composed of an
aggregation stage and a transformation, a.k.a. combination.
Messages ml

u
 for user u aggregated from it’s neighbours i can

be defined as follows:

where l denotes the l-th propagation layer. The transforma-
tion can be defined as follows:

 where = �(·) is an activation function such as
ReLU(·)=Max(0,·), Wl is trainable weight matrice, el

u
 is user

embedding representation in l-th propagation layer. We can
obtain the item representation el

i
 with a similar process.

(1)eu = Lookup(Tablesu, feau)

(2)ml
u
= Agg(el−1

i
|i ∈ Neighbour(u))

(3)el
u
= �(Combine(ml

u
,Wl

))

Based on the user and item representation from the propa-
gation layer, the prediction layer makes predictions with a
prediction function to make the final output as follows:

where L is the number of propagation layers, ctr is the the
click-through-rate.

The specific functions of different models of different
layers are shown in Table 1. In the table, ⊙ denotes ele-
ment-wise product, ⊕ denotes concatenation operation, Du
denotes the degree of user u, and � denotes layer-related
model parameter. We can observe that there are mainly three
types of operations in those functions: sum, matrix–vector
multiplication, and vector multiplication. Those operations
can be transformed into multiply-and-accumulation (MAC)
operations. Although there are other operations, such as
ReLU, MAC operations in those three layers dominate the
overall performance of GCN-based recommender systems.

Besides, the user and the item can be destinations in the
aggregation stage. This is because GCN-based recommender
systems generate the final ctr by exploring the user-item
interaction and dense information. Therefore, both the item
and the user must be mapped on the crossbar to accumulate
the incoming edge.

ReGCNR focuses on requirements for general GCN-
based recommendation models (Huang et al. 2021; He et al.
2020; Wang et al. 2019; Berg et al. 2017). Those GCN-
based recommender systems generate the final click-through
rate by exploring the user-item interaction and dense infor-
mation. The user-item interaction information directly

(4)ctr = Predict(e1
u
, e2

u
, ..., eL

u
, e1

i
, e2

i
, ..., eL

i
)

i2

i3

i4

u1

u3

u2

u4

i1

g
ni

d
de

b
m

E

V
ec

to
r

Weight Matrices

Sample Graph

Sample Query <u1, i2> Prediction

P
red

ictio
n

 F
u

n
ctio

n

ctr

Aggregation

I4

Voltage

Current

cell

Crossbar
S&H S&H S&H S&H

ADC

DAC

DAC

DAC

DAC
Word linev1

v2

v3

V4

G1,1

I1 I2 I3
Results

Matrix

Vector×

ReRAM CrossbarGCN based Recommendation (c)(a) (b)

Combination

Fig. 1 Overview of a A user-item graph example G and a sample
query q < u1, i2 > . b GCN-based recommendation process of q. For
layer l, u1 and i2 aggregate from their neighbors to construct message
ul
1
 and il

2
 . The aggregated messages are then transformed in the com-

bination layer. Finally, the results of u1, i2 for all L propagation layers
are processed by the prediction function to generate the ctr for query
q. (c) The computation principles of vector–matrix multiplication on
ReRAM crossbar

Table 1 Specific operations
of key functions for different
GCN-based recommender
system models

Model Aggregation Combination Prediction

GCMC m
l

u
=

∑
e
l−1

i
e
l

u
=

1

|Du|
W

l
m

l−1

i
e
1

u
e
1

i

NGCF m
l

u
=

∑
e
l−1

i
⊙ e

l−1

u

1

2
√
�Du��Di�

(W
l

1
e
l

u
+W

l

2
m

l

u
) (e

1

u
⊕ e

2

u
⊕ ...,⊕e

L

u
)
T
(e

1

i
⊕ e

2

i
⊕ ...,⊕e

L

i
)

LightGCN m
l

u
=

∑
e
l−1

i
e
l

u
=

1

2
√
�Du��Di�

W
l
m

l−1

i

∑
�
l
e
l

u

T ∑
�
l
e
l

i

 X. Shen et al.

represents the user’s preference for items. The user-user or
item-item interaction is generally utilized as side informa-
tion in emerging models (Wu et al. 2022). Thereby, the het-
erogeneous graph which has different user or item types,
and the social recommendation, which considers user-user
or item-item interactions can be considered as future work.

In conclusion, the GCN-based recommender system per-
formance is dominated by the message propagation layer
rather than the embedding lookup layer (Gupta et al. 2020;
Ke et al. 2020) for DNN recommendation. This is caused by
intensive computation in combination operation and sparse
aggregation operations. Inside the message propagation
layer, aggregation dominated overall system performance.
Therefore, the message propagation layer needs to be con-
sidered as a preliminary layer in a GCN-based recommender
system.

2.2 ReRAM‑based PIM accelerators

ReRAM-based PIM (Wong et al. 2012; Niu et al. 2013;
Hudec et al. 2016; Cheng et al. 2021) is widely deployed
for graph (Song et al. 2018; Zheng et al. 2020; Challapalle
et al. 2020; Lv et al. 2019), neural network (Chi et al. 2016;
Song et al. 2017; Shafiee et al. 2016), and GCN (Huang et al.
2022; Arka et al. 2021; Zeng et al. 2023). ReRAM crossbar
is well-suited for performing MAC operations and finishes a
O(N2

) complexity operation at a time. Meanwhile, the com-
putation is completed where the operator M is stored so that
the data transferring cost between the computation and the
memory device is reduced.

Figure 1b demonstrates the processing principle of analog
ReRAM crossbar. For a given vector v by applying voltage
on the word line, the result of VM can be obtained by sensing
the current Ii =

∑
Ii.Gi,j on the bit line. Gi,j is the conduct-

ance of memristor cell on the (i, j) location of the crossbar
with a shape of N.

2.3 Gaps between GCN‑based recommendation
and existing ReRAM‑based PIM

ReRAM-based graph processing accelerators: In general,
ReRAM-based PIM for graph processing (Song et al. 2018;
Zheng et al. 2020; Challapalle et al. 2020) processes on
data composed of edge (E) and vertex (V). V is composed
of vertex attributes value and E is a sparse matrix. E is
generally stored in compressed format, e.g., coordinate list
(coo), for saving space. Due to the device size limitation,
graph-based PIM accelerators generally split a graph into
several partitions in a column or row manner and process
one partition each time. For each partition, the vertex gathers
data along incoming edges from its adjacent vertex to update
its own vertex value. Such a gathering pattern provides
opportunities for accelerating graph processing on ReRAM.

GraphR (Song et al. 2018) maps edge data on the crossbar,
source vertex data are fed as the voltage on the word line,
and the gathered information can be obtained on the bit line.
However, those accelerators can not efficiently accelerate
GCN-based recommender systems due to two main reasons.
First, the recommender system processes multi-dimension
vertex data while traditional graph processing focuses more
on edge data(Huang et al. 2022; Naumov et al. 2019). For
example, vertex data account for 59.51% of the model size
for NGCF processed on the Gowalla dataset (Wang et al.
2019). Second, the GCN-based recommender system has
much longer processing stages, as shown in Fig. 1. Those
stages need to be well coordinated.

ReRAM-based neural network accelerators: Generally,
the neural network is composed of multiple layers. Exist-
ing neural network accelerators (Chi et al. 2016; Song et al.
2017; Shafiee et al. 2016; Cheng et al. 2017; Qiao et al. 2018;
Yang et al. 2019) exploit a spatial design that maps layers
of the neural network on the crossbar to be processed in a
pipelined way. Unlike graph processing, the neural network
can be processed entirely on the accelerator or be duplicated
for higher throughput because the parameter size is much
smaller than graph data. Those accelerators are unsuitable
for GCN-based recommender systems because the sparse
matrix multiplication is hardly considered. Besides, the large
embedding table size leads to larger model parameter dis-
crepancy with traditional neural networks.

ReRAM-based GCN accelerators: Considering graph and
neural network characteristics, existing ReRAM-based GCN
accelerator (Huang et al. 2022; Yang et al. 2021) process
graph data. In particular, GCN accelerators focus on acceler-
ating the aggregation and combination kernel that dominate
the overall system performance. Besides, specialized map-
ping designs for the vertex are considered in that accelerators
(Huang et al. 2022). However, GCN-based accelerators are
unsuitable for GCN-based recommender systems because
the latter has a specialized computation phase. Meanwhile,
GCN-based recommender systems mainly process user-item
graphs.

ReRAM-based recommendation accelerator: REREC
(Wang et al. 2021) focuses on accelerating the inner-
product for feature interaction. Besides, MLP operations in
the prediction layer are also considered in REREC (Wang
et al. 2021) design. However, instead of interaction and
prediction operations, the aggregation and combination
operations in the message propagation layer dominate the
system performance. For instance, the propagation layer
accounts for 92.76% ∼ 94.79% execution time for Neural
Graph Collaborative Filtering (NGCF) (Wang et al. 2019) on
the Gowalla dataset in our evaluation. Besides, considering
the user and item vector access discrepancy, REREC
chooses to map the item vectors on the ReRAM and apply
user embedding as voltage. Differently, ReGCNR proposes

A heterogeneous 3-D stacked PIM accelerator for GCN-based recommender systems

a joint degree mapping design that assigns the ReRAM
resource by distinguishing user and item to coordinate the
processing of each propagation layer.

2.4 Combining ReRAM‑based PIM and GCN‑based
recommendation

To bridge those gaps, we propose ReGCNR with the fol-
lowing aspects.

First, ReGCNR adopts a unified MAC computation
scheme for all the key components in GCG-based recom-
mendation. For the combination kernel, the MAC is the mul-
tiplication of embedding e and each row vector Mi in matrix
M. For the aggregation kernel, the MAC is the VM, where
V is the vertex, Mi is the i-th column of the sparse adjacent
matrix. For the prediction kernel, the MAC is the multipli-
cation of embedding e and each row vector Mi in matrix M.
For the inner-product kernel, the MAC is the euei , where eu
and ei are user and item embeddings. While being unified
into MACs, those kernels can be processed efficiently in the
same computation manner. This lays a basis for integrating
a GCN-based recommender system on ReRAM.

Second, we propose a specialized mapping schema for the
entire model mapping (Sect. 4). Especially, a joint degree
mapping for aggregation is proposed for assigning resources
for both user and item aggregation among different propaga-
tion layers. For example, the inner production-based predic-
tion maps the embedding vector on the crossbar, and neural
network-based prediction maps the weight matrix on the
crossbar.

Third, we design the query-driven pipeline and leverage
the 3-D heterogeneous architecture for higher performance.
The aggregation is executed in a way that separates user
aggregation and item aggregation. Especially, this helps
to balance latency for the aggregation kernel because we
can assign different hardware for user and item aggrega-
tion, respectively. Therefore, the pipeline for processing
one query can be more predictable. With the heterogeneous
hardware design, the logic ReRAM layer is used to process

the MAC operations. The memory ReRAM layer is used to
store the intermediate user and item embeddings. Therefore,
both the large on-chip data storage requirements for embed-
ding tables and the large computing requirements for the
message propagation layer can be satisfied. What’s more,
the inter-layer connection of 3-D stacked architecture can
reduce the embedding access latency.

3 Overall architecture

In this section, we first describe the architecture overview.
Then, we give a brief introduction to the workflow of
ReGCNR phase by phase.

3.1 Architecture overview

ReRAM-based heterogeneous 3-D staked organization:
ReGCNR follows the design prototype of heterogeneous 3-D
stacked architecture as shown in Fig. 2a. There are various
heterogeneous 3-D stacked prototypes. We exploit a 3-tier
logic-memory-logic (LML) heterogeneous 3-D stacked
architecture (Kaul et al. 2022) based on the following con-
siderations. Compared with one logic tier, LML can provide
more logic ReRAM resources, which is helpful for comput-
ing kernels in GCN-based recommendation. Compared with
LLL adopted in RegraphX (Arka et al. 2021), LML had an
essential memory layer for the large-scale embedding table.
The logic layer consists of multiple PEs. The memory layer
consists of multiple memory ReRAM units (MRU). Each
memory unit provides 2 MBs of memory. There are 64 units
on each layer in total. As shown in Table 2, GCNR provides
128 MBs on-chip memory and 16 MBs analog crossbar in
total. Both those two kinds of resources decide the batch size
that GCNR can process each time. Besides, the graph data
is stored in a compressed graph data format to save space.

Inter-layer connection: Layers are connected by through-
silicon vias (TSVs) (Kaul et al. 2022), which are dense and
short interconnects offering high bandwidth for inter-layer

Logic Layer

Logic Layer

Memory Layer

TSVs

NoC Router

Analog ReRAM
Elements

Memory
ReRAM

Elements

Input
Buffer

POOL

ARU ARU ARU

ARU ARU ARU

Crossbar
Buffer

NFU

S&
A

IR
O

R

NFU: Non-linear Func�on Units
IR/OR: Input/output Register

DAC: Digital-to-analog Converter
ADC: Analog-to-digital Converter

ARU: Analog ReRAM Units
S&H: Sample and Hold

S&A: Shi� and Add
POOL: Pooling Units

S&H

ADC

DAC

Mapped data path Input/output data path

(a) (b) (c)

Fig. 2 Overview of a 3-tier heterogeneous 3-D stacked architecture, b processing elements, c analog ReRAM unit

 X. Shen et al.

communications. Prior works, such as Hetraph (Huang
et al. 2020) and RegraphX (Arka et al. 2021), have utilized
3-D heterogeneous ReRAM to accelerate graph and GCN,
respectively. The high bandwidth enables efficient data
exchanges in embedding access across analog ReRAM and
memory ReRAM. Due to the tensive access in embedding
lookup operations, the shortened compute-memory distance
further reduces the latency and the power consumption.

Processing element: The processing element consists of
several analog ReRAM-based units (ARU), crossbar buff-
ers, nonlinear function units, and pooling units. The ARU
executes the main MAC operations of the entire system.
The data buffer is used for buffering input data. The cross-
bar buffer is used for buffering the data to be mapped on
the crossbar. The nonlinear and pooling function units are
deployed for generality.

In ReGCNR, each ARU executes operations of one layer
in a spatial way. Only the vertex to be aggregated will be
mapped, and the combination and prediction kernel are gen-
erally assumed suitable for on-chip ARU resource(Huang
et al. 2022; Shafiee et al. 2016). It’s worth noticing that we
do not need to process the entire graph in a partitioned way.
This is because the recommender system processes one
query each time, and the queries in a batch are random.

Memory ReRAM layer: The memory ReRAM layer
(MRL) is composed of several memory ReRAM elements
(MRE) and 3-D on-chip NoC. The MRE is designed to store
intermediate embedding vector and on-chip edge data for
both the user and the item. The MRL is integrated in the
middle of two LRL layers so that the data transfer cost can
be reduced. This is because aggregation for the user (item)
takes el

i
 (el

u
) as l-th propagation layer output and generates

el+1
u

 (el+1
i

). The MRE size and the number of propagation
layers of the model decide the system throughput.

Discussion on off-chip memory access: The LML 3-D
stacked architecture can provide a large amount of on-chip
memory. However, it still requires access to off-chip memory
that stores the original embedding vector and graph edge
data. Specifically, the edge data is stored in two kinds of
compressed formats for user-based aggregation and item-
based aggregation. ReGCNR only processes queried user
item embeddings. The size of batches is decided by the
hardware resource and model size. The advantage of such a
pattern is the multiple intermediate results for the propagation
layer do not require to be written back to off-chip memory
until the final result is obtained. The disadvantage is that the
intermediate data will limit the number of queries that can
be processed on-chip due to the multiple-layer structure of
propagation.

What’s more, a natural question is raised: will the off-
chip memory access eliminate the in-memory processing
benefits of ReGCNR? Such consideration is reasonable for

a DNN-based recommender system as embedding table
lookup operation dominates the overall system performance.
Since the performance bottleneck of the GCN-based recom-
mender system lies in combination and aggregation layers,
ReGCNR can promote the system performance by process-
ing those layers in parallel.

3.2 Workflow

ReGCNR processes one batch of queries each time. There-
fore, ReGCNR is essentially a data parallel accelerator. Each
query is composed of user and item embeddings and is used
to generate a ctr.

For each query, there are mainly three stages. The first is
the aggregation stage. Only the embedding queried will be
loaded from off-chip memory. The user aggregation and item
aggregation are processed by different aggregation engines
on LRE in ReGCNR design because those two kernels oper-
ate on different compressed formats, and the aggregation
destinations are user and item, respectively. The aggregated
embeddings are then written into MRE for combination. The
second stage is the combination stage, and the combination
engine fetches the aggregated result from MRE and executes
the combination operation. The combination engine maps
combination weight on the crossbar and fed embedding as
inputs. The third is the prediction stage. After each layer of
combination has been finished, the result will be written to
MRL for subsequent prediction.

4 Model mapping

In this section, we discuss the algorithm mapping of
ReGCNR. It is worth noticing that aggregation mapping
is dominant in each query procedure. This is because the
aggregation resource for each query is not fixed, while the
resource of combination and prediction is based on the
model parameter. After the mapping of aggregation is deter-
mined, the mapping of the other two kernels can be decided.

4.1 Aggregation mapping

We propose a joint degree mapping schema. The key idea of
the schema is that the aggregation resource for each query is
assigned based on the destination degree and the degree of
its source. As demonstrated in Fig. 3, for propagation layer
l, user u are mapped for aggregation to get el+1

u
 on the user

aggregation kernel. User’s connected items i are mapped on
the item aggregation kernel at the same time to get el+1

i
 . With

such a mapping schema, the user u aggregation for el+2
u

 in
layer l + 1 can be finished in one time of mapping because
the all connected el+1

i
 have been calculated. This helps to

A heterogeneous 3-D stacked PIM accelerator for GCN-based recommender systems

manage resource assignments for each query at the very first
propagation layer.

Meanwhile, there is a well-known sparse problem that
induces processing on invalid edges for graph-related appli-
cations. Existed work has proposed mapping the vertex on
the crossbar rather than the edge to mitigate overhead caused
by the sparse problem for GCN on ReRAM (Huang et al.
2022). We adopt the same vertex-based mapping schema
because it is more suitable for models with multi-dimen-
sional vertex vectors. However, the sparsity problem still
causes unused rows on the crossbar. This problem is severe
when the vertex degree is low.

Fortunately, low-degree vertexes are further less accessed
than high-degree vertex in the recommender system. This
fact helps to reduce the overheads of the sparsity problem of
the low-degree vertex. Besides, the sparsity overheads can be
mitigated by reducing the crossbar size. However, this may
generate extra overhead for aggregating high-degree vertex.
Consequently, there is an interesting trade-off between high-
degree and low-degree by varying the crossbar size � . We
further explore the relationship between � sensitivity study
in Sect. 6.

Finally, the mapping strategy adopted by ReGCNR only
incurs one time of ReRAM crossbar write for aggregation
in each propagation layer for each query. This is because
only the vertex to be aggregated will be loaded in our query-
driven design (Sect. 5.1). ReGCNR can support hundreds
of billions of total inferences on average by conservatively
assuming the endurance of the memristor cells (Niu et al.
2013; Qiao et al. 2018) is 1012.

4.2 Combination mapping

In the combination stage, our aim is to provide enough
resources for every combination matrix of every propagation
layer for each query. This is because REGCNR processes
a batch of queries where each query can be in a random
partition. This inherent property means ReGCNR can not
be processed in a partitioned way. Consequently, it is more
efficient for ReGCNR to work in an end-to-end way that pro-
vides enough resources for the entire procedure. Therefore,

it is necessary to map all weights of each propagation layer
on the crossbar.

4.3 Prediction mapping

There are generally two kinds of prediction kernels: MLP-
based kernel and inner-production-based interaction kernel
for GCN-based recommender systems. The mapping of
MLP-based prediction can be done as traditional ReRAM-
based neural network accelerators, and we mainly discuss
the inner-product-based prediction mapping below. As
demonstrated in Table 1, the inner product multiplication
is composed of vector multiplication between user and
item embeddings of every propagation layer. Based on the
computation pattern, we map the item embedding on the
crossbar bar once the combination engine generates item
embedding. To leverage the MAC property of the crossbar,
the item is mapped on the same column of the crossbar. The
user embeddings are fed into PEs mapped with item embed-
dings as input in a way that each embedding dimension cor-
responds to one row of the crossbar once the one layer of
combination finishes.

It’s worth noticing that despite the fact that each column
of the crossbar is mapped with item embedding, only the
column corresponding to the input data is activated for
multiplication. This is because the interaction executes
only between user embedding and item embedding of the
same propagation layer l. Such a prediction mapping can
only generate one result of one column each time. This can
be tolerated because the prediction result does not take part
in the subsequent layer of propagation. Therefore, the same
PE for the prediction can process propagated results from a
different query.

5 Pipeline and hardware scheduling

In this section, we describe the pipeline execution and hard-
ware scheduling of the proposed architecture.

5.1 Query‑driven pipeline

As demonstrated in Fig. 4, general GCN processes one par-
tition each time. However, the GCN-based recommender
system processes one query each time, and partition-based
processes will generate ineffective results on columns. For
processing the mapped PEs, we propose the query-driven
pipeline execution as the basic processing model, which
matches the nature of query processing in recommender
systems.

Pipeline on ReRAM: Assuming each query is com-
posed by e1

u
 and e1

i
 , which both has a length of d. For

the user embedding eu , the aggregation kernel for layer

i2

i3

i4

u1

u3

u2

u4

i1
Sample Graph u1 i2Sample Query

Propagation layer l

i2

i3

i4

u1

i1 u1i1u1
i2

u2

u1
i3

u4

u1

i4

u4

u1 u2
i2

u1 i2

i3

i4

u1

i1

i2

i4
u2

Aggregation for u1 Aggregation for i2

Aggrega�on Mapping for Query

Fig. 3 Overview of joint degree mapping designed for batch-pro-
cessing in ReGCNR. For one query for that aggregate u1 and i2 on the
sample graph, aggregation for u1 and i2 are calculated, respectively,
together with its adjacent vertex

 X. Shen et al.

1 is executed on all connected item embeddings, which
includes one time of loading the source embedding and
aggregation operation. Then, the aggregated result is writ-
ten to the input buffer of PE mapped with the subsequent
combination kernels. After that, the combination ker-
nels for layer 1 are utilized for processing the aggregated
results to get e2

u
 . Then, the e2

u
 is written to MRL for access

to other processing elements.
After layer 1 is finished, the aggregation for layer 2 can

start. In fact, the aggregation kernel for layer 2 can start as
long as it has finished the aggregation task of layer 1 and
the item embedding for layer 2 is ready. It’s worth noticing
that ReGCNR adopts the joint degree mapping schema that
assigns enough resources for every propagation kernel at
the very beginning of the propagation layer. Besides, this
mapping schema ensures item embeddings are processed
on the item aggregation kernel as the user embedding for
layer 1 is processed. Therefore, the long tail problem on
large-degree vertex aggregation can be mitigated, and the
aggregation can start the next layer operation within one
operation cycle. Similar to layer 1, the combination kernel
of layer 2 can be done once the input data is ready. Such
procedures are executed for the subsequent layers until all
layers are processed.

Meanwhile, it’s optional to process the prediction oper-
ation, which is decided by the model. The prediction is not
in the pipeline as the result of the prediction does not take
part in the subsequent layer of propagation. For example,
for NGCF (Wang et al. 2019), the inner-product of el

u
 , el

i

can be executed to get the prediction result, a scalar sl of
layer l. Then el

i
p is written to MRE for the final ctr.

Batch size: The batch size is decided by the on-chip
hardware resource and the specific model. Considering
the hardware, the loaded graph has to ensure that the
intermediate data of all queries in the loaded batch
will not exceed the MRL capacity. Besides, the loaded
queries should not exceed the ARU resource capacity. To
cooperate with the querying-driven pipeline for a specific

model, we only load two kinds of embeddings each time:
1) the embeddings of the queried user and items, 2) the
embeddings of the user (item) are connected to the queried
item (users). Besides the embeddings, the edge data are
stored on-chip in compressed format for the aggregation
kernel.

5.2 Hardware scheduling

The query time for the individual user determines the quality
of service for the recommender system in real-world applica-
tions. Therefore, we process the user and item on different
hardware simultaneously so that the end-to-end query time
can be reduced to nearly half. To achieve this, we propose the
differentiated-user-item (DUI) execution for user and item pro-
cessing. This is feasible because the processing pipelines of eu
and ei have a unified processing pipeline. This time reduction
can not improve the system throughput because two times of
hardware is occupied for processing user and item embedding
simultaneously. Specifically, the DUI engine processes each
query in the following way. For aggregation, user aggregation
and item aggregation are executed on separate hardware simul-
taneously. For combination we assign hardware for the user
and item separately to ensure there are no hardware conflicts
for combination.

Degree-based execution schema for DUI engine on 3-tier
accelerator: To maximize the system performance under a
hybrid execution pattern, we exploit the 3-D interleaved
architecture to adopt the execution. We choose the 3-tier
logic-memory 3-D architecture (Sect. 3) to harvest the fol-
lowing benefits. First, compared with 2-D architecture, LML
architecture provides higher computing density and larger
on-chip memory, which is essential for the GCN-based rec-
ommendation. Second, accessing the embedding on MRU
connected with the same TSV connection can reduce com-
munication overhead. Third, compared to one logic layer 3-D
stacked architecture, LML architecture can provide more ARU
resources, which satisfies large computation requirements in
aggregation, combination, and prediction kernels.

However, the aggregated message volumes for the user
and item can be different. Therefore, intuitively executing the
user and item engine on each logic tier can cause unbalanced
resource assignment between two tiers. Therefore, we
propose the degree-based execution of DUI Engine on a
3-tier accelerator. Specifically, assuming the degree of the
destination of one execution is dengine , we can calculate the
total degree of all engines for one logic tier dtier . The schema
ensures the dtier of both logic tiers are close to each other. This
can be done by choosing which tier to load the aggregation and
combination of the query. With such a degree-based design,
the hardware on both tiers can be fully exploited. Meanwhile,

i4

i4

i3
i2
i4

i3i2i1

P1

P3

P2

P4

i4

i4

u1

u4

u1 i4

u2
u3

i3
i2
i4

u2u3i3i2i1
u1 i2Sample Query

i2i3

i4

i5

i7

i6i8

i1

Sample Graph
i8i7i6i5

i8
i7
i6
i5

par��on size = 4

i2

i3

i4

u1

u3

u2

u4

i1

Sample Graph

Fig. 4 Partition-based processing for general GCN processes one par-
tition each time

A heterogeneous 3-D stacked PIM accelerator for GCN-based recommender systems

the vertical transferring ability of both sides of MRL can
be fully exploited because there is a large amount of data
transferring for intermediate embeddings.

6 Evaluation

In this section, a comprehensive evaluation is conducted to
assess the performance and energy efficiency of ReGCNR,
in comparison with state-of-art solutions. Furthermore, the
resource usage and sensitivity of ReGCNR are examined.

6.1 Setup

ReGCNR setting: Table 2 shows the hardware configura-
tion of ReGCNR. There are three layers of ReRAM in
ReGCNR architecture. Both two logic layers have the same
hardware setting. Each logic ReRAM layer has 64 process-
ing elements. Each processing element is composed of 8
analog ReRAM units, which are set with 32 crossbars. The
crossbar array has a size of 64 × 64 , where each cross point
is a TaOx ReRAM cell that has a 29.31 ns read latency
and a 50.88 ns write latency.(Zheng et al. 2020; Shafiee
et al. 2016; Song et al. 2018). The cell precision is set
conservatively with 2 bits for operation reliability. (Song
et al. 2018; Xu et al. 2015). Table 2 assumes ReGCNR
configurations.

Following the specification for LML heterogeneous
stacked architecture (Kaul et al. 2022), we built a cycle-
accurate simulator to model the on-chip behavior of
components on ReGCNR. The on-chip network is mod-
eled using Booksim 2.0 (Jiang et al. 2010). We model
the ReRAM crossbar arrays energy via nvsim (Dong
et al. 2012). We set a 32 nm process for a buffer, which
is the same as REREC (Song et al. 2018), and estimate
its latency, area, and power via CACTI (Thoziyoor et al.
2008). We set ADC and DACs with 8-bit and 2-bit preci-
sion, respectively, and their energy and area overheads are
taken from ISAAC (Shafiee et al. 2016). The pooling and
non-linear function parameters are adopted from (Shafiee
et al. 2016). The time of model execution on the GPU
platform is estimated based on the open-sourced frame-
work (Berg et al. 2017; Wang et al. 2019; He et al. 2020).
The CPU energy consumption is estimated based on Intel
Product Specifications. The energy consumption of GPU
is estimated with NVIDIA System Management Interface.

Datasets and benchmarks: Table 3 demonstrates 4
widely-used real-world datasets: MovieLens-100K (ML1)
(Harper and Konstan 2015), Gowalla (GOW) (He et al.
2020), Yelp (YEL) (Huang et al. 2021), MovieLens-10 M
(ML2) (Harper and Konstan 2015) for GCN-based

recommendation model. All four datasets are widely used
and cover a range of data by varying in terms of data size
and density. We conduct experiments with several rep-
resentative GCN-based recommendation models: GCMC
(Berg et al. 2017), NGCF (Wang et al. 2019), and Light-
GCN (He et al. 2020) for real-world workloads. Consid-
ering the marginal improvements and even the overfitting
problem, we set each model with a 3-layer GCN as default.
Besides, the hidden features are set with 64 dimensions
(Wang et al. 2019).

Baseline: We compare ReGCNR with a state-of-the-
art ReRAM-based accelerator for recommender system,
REREC (Wang et al. 2021). To make an apple-to-apple
comparison with REREC, we set ReGCNR with approxi-
mately the same ReRAM resource as REREC. Besides, we
deploy the benchmarks on the GPU platform, implemented

Table 2 Hardware configurations of ReGCNR

Component Param. Spec. Pow. (mW) Area (mm2)

ARU properties (8 ARUs per Tile)
 ADC Number 32 64 0.00384

Resolution 8 b
 DAC Number 32 × 64 8 0.00034

Resolution 2 b
 S &H Number 32 × 64 0.020 0.000080
 Crossbar Number 32 6.2 0.0005

Size 64 × 64
bits/cell 2

 S &A Number 16 0.80 0.00096
 IR size 4 KB 2.32 0.0038
 OR size 512 B 0.42 0.0014

PE properties (64 PEs per chip)
 ARU Total Number 8 653.92 0.36384
 I-Buffer size 16 KB 5.17 0.021
 C-Buffer size 128 KB 39.6 0.135
 NFU Number 8 2.08 0.0024
 POOL Number 8 3.20 0.0019

Chip properties
 LRE total number 64 90.11K 33.544
 MRE total size 128 MB 2.245K 22.016
 NoC Flit_size 128 b 75 0.58
 Chip total - - 92.430K 34.124

Table 3 Dataset parameters of different datasets

Dataset User Item Interaction Density

ML-100K 943 1682 100,000 0.0630
Gowalla 29,858 40,981 1,027,370 0.00084
Yelp 31,668 38,048 1,561,406 0.00130
ML-10M 69,878 10,677 10,000,054 0.0134

 X. Shen et al.

by the constantly-updated tensorflow framework as a
baseline on the general-purpose computing platform. The
hardware specifications of GPU and REREC are listed in
Table 4.

6.2 Performance evaluation

ReGCNR vs GPU: Figure 5 demonstrates the performance
comparisons among GPU, REREC, and ReGCNR. ReGCNR
focuses on throughput as the main performance improve-
ment target because the real-word recommender systems are
required to process numerous queries in a large batch simul-
taneously. The throughput result is equal to the execution
time divided by the number of total queries in each test data-
set. As the number of queries of the dataset remains the same
for ReGCNR and GPU-based experiments, the throughput
is proportional to execution time. Therefore, we can regard
throughput as time performance speedup.

ReGCNR achieves 7.44× ∼ 141.79× (69.83× on average)
speedup over GPU. The main benefit comes from the cross-
bar structure, in-memory processing, and the architecture. In
particular, ReGCNR achieves the highest speedup on ML1,
which is induced by two reasons. First, ML1 is the smallest
dataset among all four datasets, which means the least off-
chip memory access for ReGCNR. Consequently, ReGCNR
can harvest relatively high in-memory processing benefits.
Such trends can also be seen on relatively small-size datasets
YEL and ML2, where the speedup is 68.93× and 61.20× ,
respectively. The YEL is an exception because YEL has

the lowest density, which induces a severe sparsity problem
for ReRAM. Second, ML1 has the highest average degree,
which induces a large amount of irregular memory access
in the aggregation phase. The mapping schema adopted in
ReGCNR can efficiently reduce data movements to mitigate
the effects of irregular access.

ReGCNR vs REREC: As shown in Fig. 5, ReGCNR
achieves 2.32× ∼ 19.95× (11.13× on average) speedup over
REREC. The speedup comes from the aggregation phase
optimizations, including the mapping schema and the hybrid
execution design. Besides, the high-speed layer-wise vertical
communication of LML architecture also contributes to the
speedup. It’s worth noticing that we assume equally analog
ReRAM resources for REREC for a fair comparison. Specif-
ically, ReGCNR achieves a relatively high speedup on YEL
and ML1, which is 19.94× and 14.76× , respectively. This is
caused by two sides of reasons. The first side of the reason is
that datasets with a larger degree, such as ML1, can harvest
more aggregation phase benefits on ReGCNR. Second, the
REREC mapping schema is more suitable for datasets where
items are more accessed. Specifically, ReGCNR adopts a
mapping schema that considers user and item, while REREC
mainly maps items on the crossbar. Therefore, ReGCNR
achieves a relatively low speedup on ML2 (6.44 ×), where
the average item degree is much larger than the user degree.

6.3 Energy savings

Figure 6 depicts the energy savings of ReGCNR over GPU
and REREC. Compared with GPU, ReGCNR achieves
6.03× ∼ 115.05× (56.67× on average) energy savings. The
energy savings mainly come from two sides. First, the data
movement reduction of in-situ processing on the crossbar
costs less energy. Therefore, GPU consumes 1.66 × power
over ReGCNR, despite the fact that ReGCNR is equipped
with three layers of ReRAM. Meanwhile, the throughput
advantage of ReGCNR brings an overall processing time
reduction. Both two reasons contribute to the overall energy
saving of ReGCNR. The highest energy saving (115.05 ×)
is achieved on ML1, which has a relatively large size of
irregular memory access in the aggregation phase.

Table 4 Hardware configurations of CPU, GPU, and REREC

CPU Intel Xeon CPU E5-2680 v4, 28 cores, 2.4 GHz
 Cache L1 64KB, L2 256KB, L3 35MB
 Main memory 256GB DDR4

GPU Tesla P100, 56 SMs × 64 cores, 1.33 GHz
 Cache L1 64 KB per SM, L2 4MB
 GPU memory 16GB HBM2

REREC 419 MB MLP/memory arrays, 1048 KB inner-
product arrays

0.1

1

10

100

1000

ML1 GOW YEL ML2

dezila
mro

N
tuphguorhT

(
)

UPG
ot

GPU REREC ReGCNR

Fig. 5 Performance comparisons among GPU, REREC, and
ReGCNR

0.1

1

10

100

1000

ML1 GOW YEL ML2

ygrenE
dezila

mro
N

)R
NCGeR

ot(

GPU REREC ReGCNR

Fig. 6 Energy comparisons among GPU, REREC, and ReGCNR

A heterogeneous 3-D stacked PIM accelerator for GCN-based recommender systems

Compared with REREC, ReGCNR achieves 1.51×
∼ 12.95× (7.22× on average) energy savings. The main
energy saving comes from the throughput improvement
and the intermediate embedding accessing on the mem-
ory layer. The former reduces the overall execution time.
The latter reduces the energy cost for aggregating embed-
ding via planer NoC. Thus YEL and ML1 achieve rela-
tively high energy savings, which are 12.95× and 9.59 ×
respectively.

6.4 Resource breakdowns

Resource breakdowns of kernels: To demonstrate the
adaptability of the mapping schema, Fig. 7 compares
the analog ReRAM resource occupation breakdowns for
different kernels. Each bar is composed of the blue part
(aggregation), brown part (combination), and green part
(prediction). In most of the dataset, aggregation occu-
pies the major part of the chip resource, which is 95.92%
(ML2), 74.02% (ML1), 57.76% (YEL), and 45.50%
(GOW), respectively. Such an assignment coincides with
the GCN-based recommendation property.

The GOW allocates the least resorce for aggrega-
tion because the GOW has the lowest average degree.
Therefore, a relatively smaller size of ARU is enough for
the aggregation of one destination user or item. On the
contrary, the combination and prediction kernel are not
affected by the average degree. This indicates that the
effort to reduce sparsity encounters a marginal effect on
system performance because the combination shall domi-
nate the overall system performance.

Resource breakdowns in terms of users and items: We
also explore mapping and execution efficiency by explor-
ing the hardware assignment pattern in terms of user and
items. As depicted in Fig. 8, REGCNR manages to assign
resources for different datasets. The resource difference
between the user and item of ML2 is that there is a large
difference between the user and item degree. The proposed
mapping scheme is designed to address such situations

to balance the processing time cost of the user and item
sides. By combining the mapping and hardware sched-
uling, ReGCNR achieves throughput improvements and
energy savings for different datasets.

6.5 Sensitivity study

Figure 9 demonstrates the system performance under dif-
ference crossbar size � . For small � , the peripheral circuit,
such as ADC and DAC, occupies most of the on-chip area.
Thereby, only a small amount of ReRAM can be integrated
into the chip. Therefore, such a small � throughput is the
smallest for all datasets even though the sparsity problem
can be mitigated with a smaller crossbar size.

A larger crossbar indicates that more ReRAM accounts
for the overall chip area. Besides, for relatively larger � ,
our aggregation mapping schema helps to mitigate the
sparsity problem. However, there is a marginal effect of
crossbar size on the system performance as � increases
larger than 512. This is because the embedding aggrega-
tion of a low degree causes a more severe effect on the
overall system throughput. Meanwhile, the variation and
current leakage problem in the ReRAM device will cause
severe effects on device reliability and endurance when
the � is too large (Wong et al. 2012; Niu et al. 2013).

0

10

20

30

40

ML1 ML2 GOW YEL

)B
M(

ecruoseR
MAReR

golanA

Aggrega Combina Predic on

Fig. 7 Analog ReRAM resource occupation of aggregation, combina-
tion, and prediction for different datasets

0

5

10

15

20

25

30

ML1 ML2 GOW YEL

)B
M(

ecruoseR
MAReR

golanA

User Aggrega

Item Aggrega on

Fig. 8 Resource assignment difference of aggregation kernels on user
and item

0

0.5

1

1.5

2

2.5

3

3.5

8 16 32 64 128 256 512

tuphguorhT
dezila

mro
N

Crossbar Size

YEL ML2 ML1 GOW

Fig. 9 Performance of ReGCNR on NGCF with varying crossbar size
�

 X. Shen et al.

Therefore, � = 64 strikes a sweet spot for performance
and reliability.

6.6 Generality

To show the ReGCNR generality for different models,
we investigate the generality of the design by comparing
the overall system performance for GCMC, NGCF, and
LightGCN, as depicted in Fig. 10. ReGCNR achieves the
highest throughput on GCMC for all other three models,
which is 1.26 × over NGCF. The main difference lies in
the operations of message construction in the propagation
layer and the final embedding representation, as shown in
Table 1. Unlike GCMC, NGCF adopts an element-wise
multiplication that can exploit the MAC operation pat-
tern on the crossbar. As for LightGCN, it achieves bet-
ter performance than NGCF due to simpler combination
operation.

7 Conclusion

In this paper, we propose a ReRAM-based accelerator,
ReGCNR, for GCN-based recommendations. ReGCNR
is featured with the following designs. First, ReGCNR
exploits a 3-D heterogeneous architecture to fit the large-
size intermediate data and extensive embedding access on
GCN-based recommendation models. Second, ReGCNR
proposes a mapping schema for the full execution stages
of GCN-based recommendation with a specialized design
for user-item graphs. Third, the hardware scheduling
is leveraged to coordinate the execution of GCN
recommender systems on the proposed heterogeneous
3-D ReRAM accelerator. Results show that ReGCNR
outperforms state-of-the-art ReRAM-based solutions in
terms of performance and energy.

Acknowledgements This work is supported by the National Key
Research and Development Program of China under Grant No.

2023YFB4503400 and the National Natural Science Foundation of
China under Grant No. 62322205, 62072195, and 61825202. This work
is also supported by Zhejiang Lab (Grant No. 2022P10AC02).

Data availability The data that support the findings of this study are
available upon request from the authors.

Declarations

Conflict of interest The authors declare that there is no conflict of in-
terest relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Arka, A.I., Doppa, J.R., Pande, P.P., Joardar, B.K., Chakrabarty, K.:
ReGraphX: NoC-enabled 3D heterogeneous ReRAM architecture
for training graph neural networks. In: Proceedings of the Design,
Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, pp. 1667–1672 (2021)

Berg, R.V.d., Kipf, T.N., Welling, M.: Graph convolutional matrix
completion. arXiv preprint arXiv: 1706. 02263 (2017). Accessed
10 June 2023

Challapalle, N., Rampalli, S., Song, L., Chandramoorthy, N., Swami-
nathan, K., Sampson, J., Chen, Y., Narayanan, V.: GaaS-X: Graph
analytics accelerator supporting sparse data representation using
crossbar architectures. In: Proceedings of the International Sym-
posium on Computer Architecture (ISCA). IEEE, pp. 433–445
(2020)

Cheng, M., Xia, L., Zhu, Z., Cai, Y., Xie, Y., Wang, Y., Yang, H.:
Time: A training-in-memory architecture for memristor-based
deep neural networks. In: Proceedings of the Design Automation
Conference (DAC). ACM, pp. 1–6 (2017)

Cheng, C., Tiw, P.J., Cai, Y., Yan, X., Yang, Y., Huang, R.: In-memory
computing with emerging nonvolatile memory devices. Sci. China
Inf. Sci. 64, 1–46 (2021)

Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y., Xie,
Y.: Prime: A novel processing-in-memory architecture for neural
network computation in ReRAM-based main memory. SIGARCH
Comput. Archit. News 44(3), 27–39 (2016)

Dong, X., Xu, C., Xie, Y., Jouppi, N.P.: Nvsim: A circuit-level perfor-
mance, energy, and area model for emerging nonvolatile memory.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 31(7),
994–1007 (2012)

Feng, Y., Hu, B., Lv, F., Liu, Q., Zhang, Z., Ou, W.: Atbrg: adaptive
target-behavior relational graph network for effective recommen-
dation. In: Proceedings of the International SIGIR Conference
on Research and Development in Information Retrieval (SIGIR).
ACM, pp. 2231–2240 (2020)

1

10

100

1000

10000

100000

1000000

ML1 ML2 GOW YEL

tuphguorhT
)sdnoceSrepsecnerefnI(

GCMC NGCF LightGCN

Fig. 10 System performance of ReGCNR on popular GCN-based
recommendation models

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1706.02263

A heterogeneous 3-D stacked PIM accelerator for GCN-based recommender systems

Gupta, U., Wu, C.-J., Wang, X., Naumov, M., Reagen, B., Brooks, D.,
Cottel, B., Hazelwood, K., Hempstead, M., Jia, B., Lee, H.-H. S.,
Malevich, A., Mudigere, D., Smelyanskiy, M., Xiong, L., Zhang,
X.: The architectural implications of Facebook’s DNN-based
personalized recommendation. In: Proceedings of the Interna-
tional Symposium on High Performance Computer Architecture
(HPCA). IEEE, pp. 488–501 (2020)

Harper, F.M., Konstan, J.A.: The movielens datasets: history and con-
text. ACM Trans. Interact. Intell. Syst. 5(4), 1–19 (2015)

He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN:
simplifying and powering graph convolution network for recom-
mendation. In: Proceedings of the International SIGIR Conference
on Research and Development in Information Retrieval (SIGIR).
ACM, pp. 639–648 (2020)

Huang, Y., Zheng, L., Yao, P., Zhao, J., Liao, X., Jin, H., Xue, J.:
A heterogeneous PIM hardware-software co-design for energy-
efficient graph processing. In: Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS). IEEE,
pp. 684–695 (2020)

Huang, T., Dong, Y., Ding, M., Yang, Z., Feng, W., Wang, X., Tang, J.:
Mixgcf: an improved training method for graph neural network-
based recommender systems. In: Proceedings of the SIGKDD
Conference on Knowledge Discovery & Data Mining (KDD).
ACM, pp. 665–674 (2021)

Huang, Y., Zheng, L., Yao, P., Wang, Q., Liao, X., Jin, H., Xue, J.:
Accelerating graph convolutional networks using crossbar-based
processing-in-memory architectures. In: Proceedings of the Inter-
national Symposium on High Performance Computer Architecture
(HPCA). IEEE, pp. 1029–1042 (2022)

Hudec, B., Hsu, C.-W., Wang, I.-T., Lai, W.-L., Chang, C.-C., Wang,
T., Fröhlich, K., Ho, C.-H., Lin, C.-H., Hou, T.-H.: 3D resistive
RAM cell design for high-density storage class memory-a review.
Sci. China Inf. Sci. 59, 1–21 (2016)

Hwang, R., Kim, T., Kwon, Y., Rhu, M.: Centaur: A chiplet-based,
hybrid sparse-dense accelerator for personalized recommenda-
tions. In: Proceedings of the International Symposium on Com-
puter Architecture (ISCA). IEEE, pp. 968–981 (2020)

Jiang, N., Michelogiannakis, G., Becker, D., Towles, B., Dally, W.J.:
Booksim 2.0 user’s guide. Standford University, p. q1 (2010)

Kal, H., Lee, S., Ko, G., Ro, W.W.: Space: Locality-aware processing
in heterogeneous memory for personalized recommendations. In:
Proceedings of the International Symposium on Computer Archi-
tecture (ISCA). IEEE, pp. 679–691 (2021)

Kaul, A., Luo, Y., Peng, X., Manley, M., Luo, Y.-C., Yu, S., Bakir,
M.S.: 3-D heterogeneous integration of RRAM-based compute-in-
memory: impact of integration parameters on inference accuracy.
IEEE Trans. Electron Devices 70(2), 485–492 (2022)

Ke, L., Gupta, U., Cho, B. Y., Brooks, D., Chandra, V., Diril, U.,
Firoozshahian, A., Hazelwood, K., Jia, B., Lee, H.-H. S., Li, M.,
Maher, B., Mudigere, D., Naumov, M., Schatz, M., Smelyanskiy,
M., Wang, X., Reagen, B., Wu, C.-J., Hempstead, M., Zhang, X.:
Recnmp: Accelerating personalized recommendation with near-
memory processing. In: Proceedings of the International Sym-
posium on Computer Architecture (ISCA). IEEE, pp. 790–803
(2020)

Li, C., Jia, K., Shen, D., Shi, C.-J. R., Yang, H.: Hierarchical rep-
resentation learning for bipartite graphs. In: Proceedings of the
International Joint Conferences on Artificial Intelligence (IJCAI),
vol. 19. AAAI Press, pp. 2873–2879 (2019)

Lv, X., Xiao, W., Zhang, Y., Liao, X., Jin, H., Hua, Q.: An effective
framework for asynchronous incremental graph processing. Front.
Comput. Sci. 13, 539–551 (2019)

Naumov, M., Mudigere, D., Shi, H.-J. M., Huang, J., Sundaraman,
N., Park, J., Wang, X., Gupta, U., Wu, C.-J., Azzolini, A. G.,

Dzhulgakov, D., Mallevich, A., Cherniavskii, I., Lu, Y., Krishna-
moorthi, R., Yu, A., Kondratenko, V., Pereira, S., Pereira, X.,
Chen, W., Rao, V., Jia, B., Xiong, L., Smelyanskiy, M.: Deep
learning recommendation model for personalization and recom-
mendation systems. arXiv preprint arXiv: 1906. 00091 (2019).
Accessed 24 May 2023

Niu, D., Xu, C., Muralimanohar, N., Jouppi, N. P., Xie, Y.: Design of
cross-point metal-oxide ReRAM emphasizing reliability and cost.
In: Proceedings of the International Conference on Computer-
Aided Design (ICCAD). IEEE, pp. 17–23 (2013)

Qiao, X., Cao, X., Yang, H., Song, L., Li, H.: AtomLayer: a universal
ReRAM-based CNN accelerator with atomic layer computation.
In: Proceedings of the Design Automation Conference (DAC).
ACM, pp. 1–6 (2018)

Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Stra-
chan, J.P., Hu, M., Williams, R.S., Srikumar, V.: ISAAC: a con-
volutional neural network accelerator with in-situ analog arithme-
tic in crossbars. SIGARCH Comput. Archit. News 44(3), 14–26
(2016)

Song, L., Qian, X., Li, H., Chen, Y.: Pipelayer: a pipelined ReRAM-
based accelerator for deep learning. In: Proceedings of the Inter-
national Symposium on High Performance Computer Architecture
(HPCA). IEEE, pp. 541–552 (2017)

Song, L., Zhuo, Y., Qian, X., Li, H., Chen, Y.: GraphR: accelerating
graph processing using ReRAM. In: Proceedings of the Interna-
tional Symposium on High Performance Computer Architecture
(HPCA). IEEE, pp. 531–543 (2018)

Thoziyoor, S., Muralimanohar, N., Ahn, J. H., Jouppi, N. P.: CACTI
5.1. Tech. rep., Technical Report HPL-2008-20, HP Labs (2008)

Wang, X., He, X., Wang, M., Feng, F., Chua, T.-S.: Neural graph
collaborative filtering. In: Proceedings of the International
SIGIR conference on Research and development in Informa-
tion Retrieval (SIGIR). ACM, pp. 165–174 (2019)

Wang, Y., Zhu, Z., Chen, F., Ma, M., Dai, G., Wang, Y., Li, H., Chen,
Y.: REREC: In-ReRAM acceleration with access-aware map-
ping for personalized recommendation. In: Proceedings of the
International Conference On Computer Aided Design (ICCAD).
IEEE, pp. 1–9 (2021)

Wong, H.-S.P., Lee, H.-Y., Yu, S., Chen, Y.-S., Wu, Y., Chen, P.-S.,
Lee, B., Chen, F.T., Tsai, M.-J.: Metal-oxide RRAM. Proc.
IEEE 100(6), 1951–1970 (2012)

Wu, S., Sun, F., Zhang, W., Xie, X., Cui, B.: Graph neural networks
in recommender systems: a survey. ACM Comput. Surv. 55(5),
1–37 (2022)

Xu, C., Niu, D., Muralimanohar, N., Balasubramonian, R., Zhang, T.,
Yu, S., Xie, Y.: Overcoming the challenges of crossbar resistive
memory architectures. In: Proceedings of the International Sym-
posium on High Performance Computer Architecture (HPCA).
IEEE, pp. 476–488 (2015)

Yang, Z., Dong, S.: HAGERec: Hierarchical attention graph convo-
lutional network incorporating knowledge graph for explainable
recommendation. Knowl. Based Syst. 204, 106194 (2020)

Yang, T.-H., Cheng, H.-Y., Yang, C.-L., Tseng, I.-C., Hu, H.-W.,
Chang, H.-S., Li, H.-P.: Sparse ReRAM engine: joint explo-
ration of activation and weight sparsity in compressed neural
networks. In: Proceedings of the International Symposium on
Computer Architecture (ISCA). ACM, pp. 236–249 (2019)

Yan, M., Deng, L., Hu, X., Liang, L., Feng, Y., Ye, X., Zhang, Z.,
Fan, D., Xie, Y.: HyGCN: A GCN accelerator with hybrid
architecture. In: Proceedings of the International Symposium
on High Performance Computer Architecture (HPCA). IEEE,
pp. 15–29 (2020)

Yang, T., Li, D., Han, Y., Zhao, Y., Liu, F., Liang, X., He, Z.,
Jiang, L.: PIMGCN: A ReRAM-based PIM design for graph

http://arxiv.org/abs/1906.00091

 X. Shen et al.

convolutional network acceleration. In: Proceedings of the
Design Automation Conference (DAC). ACM, pp. 583–588
(2021)

Zeng, Y., Li, Z., Chen, Z., Ma, H.: Aspect-level sentiment analysis
based on semantic heterogeneous graph convolutional network.
Front. Comput. Sci. 17(6), 176340 (2023)

Zheng, L., Zhao, J., Huang, Y., Wang, Q., Zeng, Z., Xue, J., Liao, X.,
Jin, H.: Spara: An energy-efficient ReRAM-based accelerator
for sparse graph analytics applications. In: Proceedings of the
International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, pp. 696–707 (2020)

Xinyang Shen is currently a Ph.D.
student in the School of Com-
puter Science and Technology,
Huazhong University of Science
and Technology (HUST) in
China. His research interests
include ReRAM-based process-
ing in memory, graph processing
and recommendation systems.

Yu Huang received a BS degree
from the Huazhong University of
Science and Technology
(HUST), in 2016. He is now
working toward a PhD degree in
the School of Computer Science
and Technology, HUST, in
China. His research interests
focus on distributed stream pro-
cessing and graph processing.

Long Zheng is now an Associate
Professor in the School of Com-
puter Science and Technology at
Huazhong University of Science
and Technology (HUST) in
China. He received his Ph.D.
degree at HUST in 2016. His
current research interests include
runtime systems, and configur-
able computer architecture.

Xiaofei Liao received his Ph.D.
degree in computer science and
engineering from Huazhong
University of Science and Tech-
nology (HUST), China, in 2005.
He is currently a Professor in the
School of Computer Science and
Technology at HUST. He has
served as a reviewer for many
conferences and journal papers.
He was the recipient of the
Excellent Youth Award from the
National Science Foundation of
China in 2018 and the CCF-
IEEE CS Young Computer Sci-
entist Award in 2017. He is a

member of the IEEE. His research interests are in the areas of system
software, P2P system, cluster computing, graph processing, and stream-
ing services.

Hai Jin is a Cheung Kung Schol-
ars Chair Professor of computer
science and engineering at
Huazhong University of Science
and Technology (HUST) in
China. Jin received his Ph.D. in
computer engineering from
HUST in 1994. Jin worked at
The University of Hong Kong
between 1998 and 2000 and as a
visiting scholar at the University
of Southern California between
1999 and 2000. Jin is the chief
scientist of ChinaGrid, the larg-
est grid computing project in
China. Jin is an IEEE Fellow,

CCF Fellow, and a member of the ACM. He has co-authored 22 books
and published over 800 research papers. His research interests include
computer architecture, virtualization technology, big data processing,
data storage, and system security.

	A heterogeneous 3-D stacked PIM accelerator for GCN-based recommender systems
	Abstract
	1 Introduction
	2 Background and motivation
	2.1 GCN-based recommendation
	2.2 ReRAM-based PIM accelerators
	2.3 Gaps between GCN-based recommendation and existing ReRAM-based PIM
	2.4 Combining ReRAM-based PIM and GCN-based recommendation

	3 Overall architecture
	3.1 Architecture overview
	3.2 Workflow

	4 Model mapping
	4.1 Aggregation mapping
	4.2 Combination mapping
	4.3 Prediction mapping

	5 Pipeline and hardware scheduling
	5.1 Query-driven pipeline
	5.2 Hardware scheduling

	6 Evaluation
	6.1 Setup
	6.2 Performance evaluation
	6.3 Energy savings
	6.4 Resource breakdowns
	6.5 Sensitivity study
	6.6 Generality

	7 Conclusion
	Acknowledgements
	References

