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Abstract
Modern recommendation systems integrate graph convolution neural networks (GCN) for enhancing embedding represen-
tation. Compared with widely deployed neural network-based models, the extra message propagation layer of GCN-based 
recommendation is featured with extensive computations and irregular memory access. However, architecture designs for 
prevailing deep neural network recommendation models assume simple pooling in the embedding layer. ReRAM-based GCN 
accelerators are specialized for graph-related operations. However, they are designed for general graphs, while GCN-based 
recommendation models mainly operate on the user-item graph. In this paper, we proposed a resistive random accessed 
memory (ReRAM) based processing-in-memory (PIM) accelerator, ReGCNR, for GCN-based recommendation. ReGCNR 
is featured with three key innovations. First, we exploit the 3-dimensional (3-D) stacked heterogeneous ReRAM to fit with 
the large-size embedding table and user-item graph. Then, we propose a joint degree mapping schema that maximizes the 
efficiency of the execution pipeline. After that, ReGCNR assembles a well-coordinated pipeline and hardware scheduling 
design to boost overall system performance. Results show that ReGCNR outperforms GPU by 69.83× and 56.67× in terms 
of average speedup and energy saving, respectively. In addition, ReGCNR outperforms state-of-the-art ReRAM-based solu-
tions by 11.13× speedups and 7.22× energy savings on average.

Keywords GCN-based recommendation · ReRAM · Accelerator · Processing-in-memory · 3-D stacked PIM · 
Heterogeneous

1 Introduction

GCN-based recommender systems (Huang et al. 2021; He 
et al. 2020; Song et al. 2017; Berg et al. 2017; Wu et al. 
2022) have emerged as a popular way for performing person-
alized recommendations. Those systems have been applied 
for lots of real-world services such as electric commerce 
(He et al. 2020; Wang et al. 2019; Feng et al. 2020; Li et al. 
2019), content recommendation (Yang and Dong 2020), and 
advertising (Huang et al. 2021). The uniqueness of GCN-
based recommendation models is that they integrate GCN 
for constructing user and item embeddings to capture the 
interaction information in embeddings for more accurate 
representations. It is already challenging to process recom-
mender systems on general-purpose platforms due to large 
embedding tables and low operational tensity (Ke et al. 
2020). The increasing complexity of embedding function 
(Huang et al. 2021; Song et al. 2018; Huang et al. 2022) for 
combining GCN on recommendation makes it more difficult.
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Generally speaking, prevailing recommender systems, 
such as deep neural network (DNN) based recommendation 
models (Naumov et al. 2019), have a hybrid structure mainly 
composed of embedding lookup and neural network opera-
tions. The embedding lookup operation has been proved to 
be the system bottleneck for the DNN-based recommen-
dation model (Gupta et al. 2020; Kal et al. 2021; Hwang 
et al. 2020; Naumov et al. 2019). Those systems have low 
operational tensity (Ke et al. 2020), which indicates that the 
embedding lookup layer induces extensive memory accesses 
in a very short time. Therefore, the overall DNN-based rec-
ommendation system performance is limited by the memory 
bandwidth on the general computing platform (Ke et al. 
2020). On the contrary, GCN-based recommendations mod-
els have three layers including the embedding lookup, mes-
sage propagation, and prediction layer (Huang et al. 2021; 
Wu et al. 2022). Hence, the situation becomes even more 
complex for GCN-based recommendations because the extra 
message propagation layer induces many more operations.

Specifically, the embedding lookup layer on GCN-based 
recommendation generates initial embeddings for users and 
items. Those initial embeddings are processed by the mes-
sage propagation layer with two main kernels, aggregation 
and combination, to obtain propagated results. The aggre-
gation kernel gathers messages to refine the user and item 
embeddings. The combination kernel transforms the aggre-
gated results with weight matrixes. Both tow kernel requires 
extensive computations. Especially, the aggregation kernel 
induces random memory access while gathering messages 
along edges on the user-items bipartite graph. Those two 
kernels may be executed with multiple successive layers. 
Therefore, instead of embedding lookup operations, the 
unique message propagation layer becomes the GCN-based 
recommendation model bottleneck.

Several architecture works, such as RecNMP (Ke et al. 
2020), Centaur (Hwang et al. 2020), and Space (Kal et al. 
2021), address the system bottleneck caused by the embed-
ding lookup layer for the recommendation system. For exam-
ple, RecNMP (Ke et al. 2020) leverages the near-memory 
processing to execute pooling operation on computation 
logic near memory to mitigate the effect of limitation of 
memory bandwidth. However, those designs are specialized 
for embedding the lookup layer and may not be adaptable 
to GCN-based recommendation models. In GCN-based 
models, the message propagations dominate the system per-
formance. In this work, we propose a ReRAM-based PIM 
architecture design for end-to-end GCN-based recommenda-
tion and focus on the propagation layer.

Meanwhile, there are GCN accelerators, such as 
HyGNC(Yan et al. 2020), PIMGCN (Yang et al. 2021), 
and Hetraph (Huang et al. 2022). Those accelerators make 

special efforts to accelerate the combination and aggrega-
tion kernels (Yan et al. 2020; Yang et al. 2021; Huang et al. 
2022) by exploiting multi-level parallelism (Yang et al. 
2021) and reducing sparsity in aggregations kernels (Huang 
et al. 2022). However, those designs are designed for general 
GCN applications without considering the full procedure of 
GCN-based recommendation. GCN-based recommendation 
models, especially, generally operate on the user-item graph, 
which distinguishes them from general graphs. Compared 
with GCN accelerators, our work boosts the full procedure 
of the GCN-based recommender system on ReRAM het-
erogeneous PIM, focusing on aggregation and combination 
kernels operated for user-item graphs.

The most relevant work to our design is REREC (Wang 
et al. 2021), which also exploits ReRAM for accelerating 
recommendation. There are mainly two differences between 
our design and REREC. First, REREC focuses on interaction 
while our design focuses on the propagation layer Second, 
REREC adopts a mapping schema that maps item embed-
dings on the crossbar while we map the user and item on 
the ReRAM crossbar, owing to the fact that both the user 
and item can be the aggregated destination. Furthermore, we 
exploit the heterogeneous 3D-stacked design and hardware 
scheduling to coordinate the mapping schema.

In summary, we make the following contributions:

• We identify the performance bottleneck of the GCN-
based recommendation and characterize operation and 
access patterns.

• We present a ReRAM-based heterogeneous 3-D stacked 
PIM architecture design that integrates analog and 
memory ReRAM to satisfy the computation and on-chip 
memory access requirements for GCN-based recommen-
dation.

• We propose a specific mapping schema and cooperative 
hardware scheduling to maximize the hardware effi-
ciency.

• We evaluate ReGCNR on a range of models and data-
sets. Results show that ReGCNR outperforms state-of-art 
GPU solutions and ReRAM-based solutions by 69.83× 
and 11.13× in terms of average speedups, and by 56.67× 
and 7.22× in terms of energy savings.

2  Background and motivation

In this section, we introduce the background of GCN-based 
recommendation and ReRAM-based processing. After that, 
we make observations of gaps between the GCN-based 
recommendations properties and ReRAM-based PIM. 
Finally, we briefly introduce how we bridge those gaps.
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2.1  GCN‑based recommendation

Figure 1a shows the system overview of a GCN-based recom-
mender system. A typical GCN recommender system model 
generally consists of an embedding layer, an embedding propa-
gation layer, and a prediction layer. The embedding layer is 
composed of embedding lookup operations, which serves as 
an initial stage for building user embedding vector eu and item 
embedding vector ei , and can be defined as follows:

where Tablesu denotes the user embedding tables and feau 
denotes the user features.

The embedding propagation layers play the role of refin-
ing the embedding vector by capturing information along the 
user-item graph. Each propagation layer is composed of an 
aggregation stage and a transformation, a.k.a. combination. 
Messages ml

u
 for user u aggregated from it’s neighbours i can 

be defined as follows:

where l denotes the l-th propagation layer. The transforma-
tion can be defined as follows:

 where = �(·) is an activation function such as 
ReLU(·)=Max(0,·), Wl is trainable weight matrice, el

u
 is user 

embedding representation in l-th propagation layer. We can 
obtain the item representation el

i
 with a similar process.

(1)eu = Lookup(Tablesu, feau)

(2)ml
u
= Agg(el−1

i
|i ∈ Neighbour(u))

(3)el
u
= �(Combine(ml

u
,Wl

))

Based on the user and item representation from the propa-
gation layer, the prediction layer makes predictions with a 
prediction function to make the final output as follows:

where L is the number of propagation layers, ctr is the the 
click-through-rate.

The specific functions of different models of different 
layers are shown in Table 1. In the table, ⊙ denotes ele-
ment-wise product, ⊕ denotes concatenation operation, Du 
denotes the degree of user u, and � denotes layer-related 
model parameter. We can observe that there are mainly three 
types of operations in those functions: sum, matrix–vector 
multiplication, and vector multiplication. Those operations 
can be transformed into multiply-and-accumulation (MAC) 
operations. Although there are other operations, such as 
ReLU, MAC operations in those three layers dominate the 
overall performance of GCN-based recommender systems.

Besides, the user and the item can be destinations in the 
aggregation stage. This is because GCN-based recommender 
systems generate the final ctr by exploring the user-item 
interaction and dense information. Therefore, both the item 
and the user must be mapped on the crossbar to accumulate 
the incoming edge.

ReGCNR focuses on requirements for general GCN-
based recommendation models (Huang et al. 2021; He et al. 
2020; Wang et al. 2019; Berg et al. 2017). Those GCN-
based recommender systems generate the final click-through 
rate by exploring the user-item interaction and dense infor-
mation. The user-item interaction information directly 
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Table 1  Specific operations 
of key functions for different 
GCN-based recommender 
system models
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represents the user’s preference for items. The user-user or 
item-item interaction is generally utilized as side informa-
tion in emerging models (Wu et al. 2022). Thereby, the het-
erogeneous graph which has different user or item types, 
and the social recommendation, which considers user-user 
or item-item interactions can be considered as future work.

In conclusion, the GCN-based recommender system per-
formance is dominated by the message propagation layer 
rather than the embedding lookup layer (Gupta et al. 2020; 
Ke et al. 2020) for DNN recommendation. This is caused by 
intensive computation in combination operation and sparse 
aggregation operations. Inside the message propagation 
layer, aggregation dominated overall system performance. 
Therefore, the message propagation layer needs to be con-
sidered as a preliminary layer in a GCN-based recommender 
system.

2.2  ReRAM‑based PIM accelerators

ReRAM-based PIM (Wong et al. 2012; Niu et al. 2013; 
Hudec et al. 2016; Cheng et al. 2021) is widely deployed 
for graph (Song et al. 2018; Zheng et al. 2020; Challapalle 
et al. 2020; Lv et al. 2019), neural network (Chi et al. 2016; 
Song et al. 2017; Shafiee et al. 2016), and GCN (Huang et al. 
2022; Arka et al. 2021; Zeng et al. 2023). ReRAM crossbar 
is well-suited for performing MAC operations and finishes a 
O(N2

) complexity operation at a time. Meanwhile, the com-
putation is completed where the operator M is stored so that 
the data transferring cost between the computation and the 
memory device is reduced.

Figure 1b demonstrates the processing principle of analog 
ReRAM crossbar. For a given vector v by applying voltage 
on the word line, the result of VM can be obtained by sensing 
the current Ii =

∑
Ii.Gi,j on the bit line. Gi,j is the conduct-

ance of memristor cell on the (i, j) location of the crossbar 
with a shape of N.

2.3  Gaps between GCN‑based recommendation 
and existing ReRAM‑based PIM

ReRAM-based graph processing accelerators: In general, 
ReRAM-based PIM for graph processing (Song et al. 2018; 
Zheng et al. 2020; Challapalle et al. 2020) processes on 
data composed of edge (E) and vertex (V). V is composed 
of vertex attributes value and E is a sparse matrix. E is 
generally stored in compressed format, e.g., coordinate list 
(coo), for saving space. Due to the device size limitation, 
graph-based PIM accelerators generally split a graph into 
several partitions in a column or row manner and process 
one partition each time. For each partition, the vertex gathers 
data along incoming edges from its adjacent vertex to update 
its own vertex value. Such a gathering pattern provides 
opportunities for accelerating graph processing on ReRAM. 

GraphR (Song et al. 2018) maps edge data on the crossbar, 
source vertex data are fed as the voltage on the word line, 
and the gathered information can be obtained on the bit line. 
However, those accelerators can not efficiently accelerate 
GCN-based recommender systems due to two main reasons. 
First, the recommender system processes multi-dimension 
vertex data while traditional graph processing focuses more 
on edge data(Huang et al. 2022; Naumov et al. 2019). For 
example, vertex data account for 59.51% of the model size 
for NGCF processed on the Gowalla dataset (Wang et al. 
2019). Second, the GCN-based recommender system has 
much longer processing stages, as shown in Fig. 1. Those 
stages need to be well coordinated.

ReRAM-based neural network accelerators: Generally, 
the neural network is composed of multiple layers. Exist-
ing neural network accelerators (Chi et al. 2016; Song et al. 
2017; Shafiee et al. 2016; Cheng et al. 2017; Qiao et al. 2018; 
Yang et al. 2019) exploit a spatial design that maps layers 
of the neural network on the crossbar to be processed in a 
pipelined way. Unlike graph processing, the neural network 
can be processed entirely on the accelerator or be duplicated 
for higher throughput because the parameter size is much 
smaller than graph data. Those accelerators are unsuitable 
for GCN-based recommender systems because the sparse 
matrix multiplication is hardly considered. Besides, the large 
embedding table size leads to larger model parameter dis-
crepancy with traditional neural networks.

ReRAM-based GCN accelerators: Considering graph and 
neural network characteristics, existing ReRAM-based GCN 
accelerator (Huang et al. 2022; Yang et al. 2021) process 
graph data. In particular, GCN accelerators focus on acceler-
ating the aggregation and combination kernel that dominate 
the overall system performance. Besides, specialized map-
ping designs for the vertex are considered in that accelerators 
(Huang et al. 2022). However, GCN-based accelerators are 
unsuitable for GCN-based recommender systems because 
the latter has a specialized computation phase. Meanwhile, 
GCN-based recommender systems mainly process user-item 
graphs.

ReRAM-based recommendation accelerator: REREC 
(Wang et  al. 2021) focuses on accelerating the inner-
product for feature interaction. Besides, MLP operations in 
the prediction layer are also considered in REREC (Wang 
et al. 2021) design. However, instead of interaction and 
prediction operations, the aggregation and combination 
operations in the message propagation layer dominate the 
system performance. For instance, the propagation layer 
accounts for 92.76% ∼ 94.79% execution time for Neural 
Graph Collaborative Filtering (NGCF) (Wang et al. 2019) on 
the Gowalla dataset in our evaluation. Besides, considering 
the user and item vector access discrepancy, REREC 
chooses to map the item vectors on the ReRAM and apply 
user embedding as voltage. Differently, ReGCNR proposes 
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a joint degree mapping design that assigns the ReRAM 
resource by distinguishing user and item to coordinate the 
processing of each propagation layer.

2.4  Combining ReRAM‑based PIM and GCN‑based 
recommendation

To bridge those gaps, we propose ReGCNR with the fol-
lowing aspects.

First, ReGCNR adopts a unified MAC computation 
scheme for all the key components in GCG-based recom-
mendation. For the combination kernel, the MAC is the mul-
tiplication of embedding e and each row vector Mi in matrix 
M. For the aggregation kernel, the MAC is the VM, where 
V is the vertex, Mi is the i-th column of the sparse adjacent 
matrix. For the prediction kernel, the MAC is the multipli-
cation of embedding e and each row vector Mi in matrix M. 
For the inner-product kernel, the MAC is the euei , where eu 
and ei are user and item embeddings. While being unified 
into MACs, those kernels can be processed efficiently in the 
same computation manner. This lays a basis for integrating 
a GCN-based recommender system on ReRAM.

Second, we propose a specialized mapping schema for the 
entire model mapping (Sect. 4). Especially, a joint degree 
mapping for aggregation is proposed for assigning resources 
for both user and item aggregation among different propaga-
tion layers. For example, the inner production-based predic-
tion maps the embedding vector on the crossbar, and neural 
network-based prediction maps the weight matrix on the 
crossbar.

Third, we design the query-driven pipeline and leverage 
the 3-D heterogeneous architecture for higher performance. 
The aggregation is executed in a way that separates user 
aggregation and item aggregation. Especially, this helps 
to balance latency for the aggregation kernel because we 
can assign different hardware for user and item aggrega-
tion, respectively. Therefore, the pipeline for processing 
one query can be more predictable. With the heterogeneous 
hardware design, the logic ReRAM layer is used to process 

the MAC operations. The memory ReRAM layer is used to 
store the intermediate user and item embeddings. Therefore, 
both the large on-chip data storage requirements for embed-
ding tables and the large computing requirements for the 
message propagation layer can be satisfied. What’s more, 
the inter-layer connection of 3-D stacked architecture can 
reduce the embedding access latency.

3  Overall architecture

In this section, we first describe the architecture overview. 
Then, we give a brief introduction to the workflow of 
ReGCNR phase by phase.

3.1  Architecture overview

ReRAM-based heterogeneous 3-D staked organization: 
ReGCNR follows the design prototype of heterogeneous 3-D 
stacked architecture as shown in Fig. 2a. There are various 
heterogeneous 3-D stacked prototypes. We exploit a 3-tier 
logic-memory-logic (LML) heterogeneous 3-D stacked 
architecture (Kaul et al. 2022) based on the following con-
siderations. Compared with one logic tier, LML can provide 
more logic ReRAM resources, which is helpful for comput-
ing kernels in GCN-based recommendation. Compared with 
LLL adopted in RegraphX (Arka et al. 2021), LML had an 
essential memory layer for the large-scale embedding table. 
The logic layer consists of multiple PEs. The memory layer 
consists of multiple memory ReRAM units (MRU). Each 
memory unit provides 2 MBs of memory. There are 64 units 
on each layer in total. As shown in Table 2, GCNR provides 
128 MBs on-chip memory and 16 MBs analog crossbar in 
total. Both those two kinds of resources decide the batch size 
that GCNR can process each time. Besides, the graph data 
is stored in a compressed graph data format to save space.

Inter-layer connection: Layers are connected by through-
silicon vias (TSVs) (Kaul et al. 2022), which are dense and 
short interconnects offering high bandwidth for inter-layer 

Logic Layer

Logic Layer

Memory Layer

TSVs

NoC Router

Analog ReRAM 
Elements

Memory 
ReRAM 

Elements

Input 
Buffer

POOL

ARU ARU ARU

ARU ARU ARU

Crossbar
Buffer

NFU

S&
A

IR
O

R

NFU: Non-linear Func�on Units
IR/OR: Input/output Register

DAC: Digital-to-analog Converter
ADC: Analog-to-digital Converter

ARU: Analog ReRAM Units
S&H: Sample and Hold

S&A: Shi� and Add
POOL: Pooling Units

S&H

ADC

DAC

Mapped data path Input/output data path

(a) (b) (c)

Fig. 2  Overview of a 3-tier heterogeneous 3-D stacked architecture, b processing elements, c analog ReRAM unit



 X. Shen et al.

communications. Prior works, such as Hetraph (Huang 
et al. 2020) and RegraphX (Arka et al. 2021), have utilized 
3-D heterogeneous ReRAM to accelerate graph and GCN, 
respectively. The high bandwidth enables efficient data 
exchanges in embedding access across analog ReRAM and 
memory ReRAM. Due to the tensive access in embedding 
lookup operations, the shortened compute-memory distance 
further reduces the latency and the power consumption.

Processing element: The processing element consists of 
several analog ReRAM-based units (ARU), crossbar buff-
ers, nonlinear function units, and pooling units. The ARU 
executes the main MAC operations of the entire system. 
The data buffer is used for buffering input data. The cross-
bar buffer is used for buffering the data to be mapped on 
the crossbar. The nonlinear and pooling function units are 
deployed for generality.

In ReGCNR, each ARU executes operations of one layer 
in a spatial way. Only the vertex to be aggregated will be 
mapped, and the combination and prediction kernel are gen-
erally assumed suitable for on-chip ARU resource(Huang 
et al. 2022; Shafiee et al. 2016). It’s worth noticing that we 
do not need to process the entire graph in a partitioned way. 
This is because the recommender system processes one 
query each time, and the queries in a batch are random.

Memory ReRAM layer: The memory ReRAM layer 
(MRL) is composed of several memory ReRAM elements 
(MRE) and 3-D on-chip NoC. The MRE is designed to store 
intermediate embedding vector and on-chip edge data for 
both the user and the item. The MRL is integrated in the 
middle of two LRL layers so that the data transfer cost can 
be reduced. This is because aggregation for the user (item) 
takes el

i
 ( el

u
 ) as l-th propagation layer output and generates 

el+1
u

 ( el+1
i

 ). The MRE size and the number of propagation 
layers of the model decide the system throughput.

Discussion on off-chip memory access: The LML 3-D 
stacked architecture can provide a large amount of on-chip 
memory. However, it still requires access to off-chip memory 
that stores the original embedding vector and graph edge 
data. Specifically, the edge data is stored in two kinds of 
compressed formats for user-based aggregation and item-
based aggregation. ReGCNR only processes queried user 
item embeddings. The size of batches is decided by the 
hardware resource and model size. The advantage of such a 
pattern is the multiple intermediate results for the propagation 
layer do not require to be written back to off-chip memory 
until the final result is obtained. The disadvantage is that the 
intermediate data will limit the number of queries that can 
be processed on-chip due to the multiple-layer structure of 
propagation.

What’s more, a natural question is raised: will the off-
chip memory access eliminate the in-memory processing 
benefits of ReGCNR? Such consideration is reasonable for 

a DNN-based recommender system as embedding table 
lookup operation dominates the overall system performance. 
Since the performance bottleneck of the GCN-based recom-
mender system lies in combination and aggregation layers, 
ReGCNR can promote the system performance by process-
ing those layers in parallel.

3.2  Workflow

ReGCNR processes one batch of queries each time. There-
fore, ReGCNR is essentially a data parallel accelerator. Each 
query is composed of user and item embeddings and is used 
to generate a ctr.

For each query, there are mainly three stages. The first is 
the aggregation stage. Only the embedding queried will be 
loaded from off-chip memory. The user aggregation and item 
aggregation are processed by different aggregation engines 
on LRE in ReGCNR design because those two kernels oper-
ate on different compressed formats, and the aggregation 
destinations are user and item, respectively. The aggregated 
embeddings are then written into MRE for combination. The 
second stage is the combination stage, and the combination 
engine fetches the aggregated result from MRE and executes 
the combination operation. The combination engine maps 
combination weight on the crossbar and fed embedding as 
inputs. The third is the prediction stage. After each layer of 
combination has been finished, the result will be written to 
MRL for subsequent prediction.

4  Model mapping

In this section, we discuss the algorithm mapping of 
ReGCNR. It is worth noticing that aggregation mapping 
is dominant in each query procedure. This is because the 
aggregation resource for each query is not fixed, while the 
resource of combination and prediction is based on the 
model parameter. After the mapping of aggregation is deter-
mined, the mapping of the other two kernels can be decided.

4.1  Aggregation mapping

We propose a joint degree mapping schema. The key idea of 
the schema is that the aggregation resource for each query is 
assigned based on the destination degree and the degree of 
its source. As demonstrated in Fig. 3, for propagation layer 
l, user u are mapped for aggregation to get el+1

u
 on the user 

aggregation kernel. User’s connected items i are mapped on 
the item aggregation kernel at the same time to get el+1

i
 . With 

such a mapping schema, the user u aggregation for el+2
u

 in 
layer l + 1 can be finished in one time of mapping because 
the all connected el+1

i
 have been calculated. This helps to 
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manage resource assignments for each query at the very first 
propagation layer.

Meanwhile, there is a well-known sparse problem that 
induces processing on invalid edges for graph-related appli-
cations. Existed work has proposed mapping the vertex on 
the crossbar rather than the edge to mitigate overhead caused 
by the sparse problem for GCN on ReRAM (Huang et al. 
2022). We adopt the same vertex-based mapping schema 
because it is more suitable for models with multi-dimen-
sional vertex vectors. However, the sparsity problem still 
causes unused rows on the crossbar. This problem is severe 
when the vertex degree is low.

Fortunately, low-degree vertexes are further less accessed 
than high-degree vertex in the recommender system. This 
fact helps to reduce the overheads of the sparsity problem of 
the low-degree vertex. Besides, the sparsity overheads can be 
mitigated by reducing the crossbar size. However, this may 
generate extra overhead for aggregating high-degree vertex. 
Consequently, there is an interesting trade-off between high-
degree and low-degree by varying the crossbar size � . We 
further explore the relationship between � sensitivity study 
in Sect. 6.

Finally, the mapping strategy adopted by ReGCNR only 
incurs one time of ReRAM crossbar write for aggregation 
in each propagation layer for each query. This is because 
only the vertex to be aggregated will be loaded in our query-
driven design (Sect. 5.1). ReGCNR can support hundreds 
of billions of total inferences on average by conservatively 
assuming the endurance of the memristor cells (Niu et al. 
2013; Qiao et al. 2018) is 1012.

4.2  Combination mapping

In the combination stage, our aim is to provide enough 
resources for every combination matrix of every propagation 
layer for each query. This is because REGCNR processes 
a batch of queries where each query can be in a random 
partition. This inherent property means ReGCNR can not 
be processed in a partitioned way. Consequently, it is more 
efficient for ReGCNR to work in an end-to-end way that pro-
vides enough resources for the entire procedure. Therefore, 

it is necessary to map all weights of each propagation layer 
on the crossbar.

4.3  Prediction mapping

There are generally two kinds of prediction kernels: MLP-
based kernel and inner-production-based interaction kernel 
for GCN-based recommender systems. The mapping of 
MLP-based prediction can be done as traditional ReRAM-
based neural network accelerators, and we mainly discuss 
the inner-product-based prediction mapping below. As 
demonstrated in Table 1, the inner product multiplication 
is composed of vector multiplication between user and 
item embeddings of every propagation layer. Based on the 
computation pattern, we map the item embedding on the 
crossbar bar once the combination engine generates item 
embedding. To leverage the MAC property of the crossbar, 
the item is mapped on the same column of the crossbar. The 
user embeddings are fed into PEs mapped with item embed-
dings as input in a way that each embedding dimension cor-
responds to one row of the crossbar once the one layer of 
combination finishes.

It’s worth noticing that despite the fact that each column 
of the crossbar is mapped with item embedding, only the 
column corresponding to the input data is activated for 
multiplication. This is because the interaction executes 
only between user embedding and item embedding of the 
same propagation layer l. Such a prediction mapping can 
only generate one result of one column each time. This can 
be tolerated because the prediction result does not take part 
in the subsequent layer of propagation. Therefore, the same 
PE for the prediction can process propagated results from a 
different query.

5  Pipeline and hardware scheduling

In this section, we describe the pipeline execution and hard-
ware scheduling of the proposed architecture.

5.1  Query‑driven pipeline

As demonstrated in Fig. 4, general GCN processes one par-
tition each time. However, the GCN-based recommender 
system processes one query each time, and partition-based 
processes will generate ineffective results on columns. For 
processing the mapped PEs, we propose the query-driven 
pipeline execution as the basic processing model, which 
matches the nature of query processing in recommender 
systems.

Pipeline on ReRAM: Assuming each query is com-
posed by e1

u
 and e1

i
 , which both has a length of d. For 

the user embedding eu , the aggregation kernel for layer 
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1 is executed on all connected item embeddings, which 
includes one time of loading the source embedding and 
aggregation operation. Then, the aggregated result is writ-
ten to the input buffer of PE mapped with the subsequent 
combination kernels. After that, the combination ker-
nels for layer 1 are utilized for processing the aggregated 
results to get e2

u
 . Then, the e2

u
 is written to MRL for access 

to other processing elements.
After layer 1 is finished, the aggregation for layer 2 can 

start. In fact, the aggregation kernel for layer 2 can start as 
long as it has finished the aggregation task of layer 1 and 
the item embedding for layer 2 is ready. It’s worth noticing 
that ReGCNR adopts the joint degree mapping schema that 
assigns enough resources for every propagation kernel at 
the very beginning of the propagation layer. Besides, this 
mapping schema ensures item embeddings are processed 
on the item aggregation kernel as the user embedding for 
layer 1 is processed. Therefore, the long tail problem on 
large-degree vertex aggregation can be mitigated, and the 
aggregation can start the next layer operation within one 
operation cycle. Similar to layer 1, the combination kernel 
of layer 2 can be done once the input data is ready. Such 
procedures are executed for the subsequent layers until all 
layers are processed.

Meanwhile, it’s optional to process the prediction oper-
ation, which is decided by the model. The prediction is not 
in the pipeline as the result of the prediction does not take 
part in the subsequent layer of propagation. For example, 
for NGCF (Wang et al. 2019), the inner-product of el

u
 , el

i
 

can be executed to get the prediction result, a scalar sl of 
layer l. Then el

i
p is written to MRE for the final ctr.

Batch size: The batch size is decided by the on-chip 
hardware resource and the specific model. Considering 
the hardware, the loaded graph has to ensure that the 
intermediate data of all queries in the loaded batch 
will not exceed the MRL capacity. Besides, the loaded 
queries should not exceed the ARU resource capacity. To 
cooperate with the querying-driven pipeline for a specific 

model, we only load two kinds of embeddings each time: 
1) the embeddings of the queried user and items, 2) the 
embeddings of the user (item) are connected to the queried 
item (users). Besides the embeddings, the edge data are 
stored on-chip in compressed format for the aggregation 
kernel.

5.2  Hardware scheduling

The query time for the individual user determines the quality 
of service for the recommender system in real-world applica-
tions. Therefore, we process the user and item on different 
hardware simultaneously so that the end-to-end query time 
can be reduced to nearly half. To achieve this, we propose the 
differentiated-user-item (DUI) execution for user and item pro-
cessing. This is feasible because the processing pipelines of eu 
and ei have a unified processing pipeline. This time reduction 
can not improve the system throughput because two times of 
hardware is occupied for processing user and item embedding 
simultaneously. Specifically, the DUI engine processes each 
query in the following way. For aggregation, user aggregation 
and item aggregation are executed on separate hardware simul-
taneously. For combination we assign hardware for the user 
and item separately to ensure there are no hardware conflicts 
for combination.

Degree-based execution schema for DUI engine on 3-tier 
accelerator: To maximize the system performance under a 
hybrid execution pattern, we exploit the 3-D interleaved 
architecture to adopt the execution. We choose the 3-tier 
logic-memory 3-D architecture (Sect. 3) to harvest the fol-
lowing benefits. First, compared with 2-D architecture, LML 
architecture provides higher computing density and larger 
on-chip memory, which is essential for the GCN-based rec-
ommendation. Second, accessing the embedding on MRU 
connected with the same TSV connection can reduce com-
munication overhead. Third, compared to one logic layer 3-D 
stacked architecture, LML architecture can provide more ARU 
resources, which satisfies large computation requirements in 
aggregation, combination, and prediction kernels.

However, the aggregated message volumes for the user 
and item can be different. Therefore, intuitively executing the 
user and item engine on each logic tier can cause unbalanced 
resource assignment between two tiers. Therefore, we 
propose the degree-based execution of DUI Engine on a 
3-tier accelerator. Specifically, assuming the degree of the 
destination of one execution is dengine , we can calculate the 
total degree of all engines for one logic tier dtier . The schema 
ensures the dtier of both logic tiers are close to each other. This 
can be done by choosing which tier to load the aggregation and 
combination of the query. With such a degree-based design, 
the hardware on both tiers can be fully exploited. Meanwhile, 
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the vertical transferring ability of both sides of MRL can 
be fully exploited because there is a large amount of data 
transferring for intermediate embeddings.

6  Evaluation

In this section, a comprehensive evaluation is conducted to 
assess the performance and energy efficiency of ReGCNR, 
in comparison with state-of-art solutions. Furthermore, the 
resource usage and sensitivity of ReGCNR are examined.

6.1  Setup

ReGCNR setting: Table 2 shows the hardware configura-
tion of ReGCNR. There are three layers of ReRAM in 
ReGCNR architecture. Both two logic layers have the same 
hardware setting. Each logic ReRAM layer has 64 process-
ing elements. Each processing element is composed of 8 
analog ReRAM units, which are set with 32 crossbars. The 
crossbar array has a size of 64 × 64 , where each cross point 
is a TaOx ReRAM cell that has a 29.31 ns read latency 
and a 50.88 ns write latency.(Zheng et al. 2020; Shafiee 
et al. 2016; Song et al. 2018). The cell precision is set 
conservatively with 2 bits for operation reliability. (Song 
et al. 2018; Xu et al. 2015). Table 2 assumes ReGCNR 
configurations.

Following the specification for LML heterogeneous 
stacked architecture (Kaul et al. 2022), we built a cycle-
accurate simulator to model the on-chip behavior of 
components on ReGCNR. The on-chip network is mod-
eled using Booksim 2.0 (Jiang et al. 2010). We model 
the ReRAM crossbar arrays energy via nvsim (Dong 
et al. 2012). We set a 32 nm process for a buffer, which 
is the same as REREC (Song et al. 2018), and estimate 
its latency, area, and power via CACTI (Thoziyoor et al. 
2008). We set ADC and DACs with 8-bit and 2-bit preci-
sion, respectively, and their energy and area overheads are 
taken from ISAAC (Shafiee et al. 2016). The pooling and 
non-linear function parameters are adopted from (Shafiee 
et al. 2016). The time of model execution on the GPU 
platform is estimated based on the open-sourced frame-
work (Berg et al. 2017; Wang et al. 2019; He et al. 2020). 
The CPU energy consumption is estimated based on Intel 
Product Specifications. The energy consumption of GPU 
is estimated with NVIDIA System Management Interface.

Datasets and benchmarks: Table  3 demonstrates 4 
widely-used real-world datasets: MovieLens-100K (ML1) 
(Harper and Konstan 2015), Gowalla (GOW) (He et al. 
2020), Yelp (YEL) (Huang et al. 2021), MovieLens-10 M 
(ML2) (Harper and Konstan 2015) for GCN-based 

recommendation model. All four datasets are widely used 
and cover a range of data by varying in terms of data size 
and density. We conduct experiments with several rep-
resentative GCN-based recommendation models: GCMC 
(Berg et al. 2017), NGCF (Wang et al. 2019), and Light-
GCN (He et al. 2020) for real-world workloads. Consid-
ering the marginal improvements and even the overfitting 
problem, we set each model with a 3-layer GCN as default. 
Besides, the hidden features are set with 64 dimensions 
(Wang et al. 2019).

Baseline: We compare ReGCNR with a state-of-the-
art ReRAM-based accelerator for recommender system, 
REREC (Wang et al. 2021). To make an apple-to-apple 
comparison with REREC, we set ReGCNR with approxi-
mately the same ReRAM resource as REREC. Besides, we 
deploy the benchmarks on the GPU platform, implemented 

Table 2  Hardware configurations of ReGCNR

Component Param. Spec. Pow. (mW) Area ( mm2)

ARU properties (8 ARUs per Tile)
  ADC Number 32 64 0.00384

Resolution 8 b
 DAC Number 32 × 64 8 0.00034

Resolution 2 b
 S &H Number 32 × 64 0.020 0.000080
 Crossbar Number 32 6.2 0.0005

Size 64 × 64
bits/cell 2

 S &A Number 16 0.80 0.00096
 IR size 4 KB 2.32 0.0038
 OR size 512 B 0.42 0.0014

PE properties (64 PEs per chip)
 ARU Total Number 8 653.92 0.36384
 I-Buffer size 16 KB 5.17 0.021
 C-Buffer size 128 KB 39.6 0.135
 NFU Number 8 2.08 0.0024
 POOL Number 8 3.20 0.0019

Chip properties
 LRE total number 64 90.11K 33.544
 MRE total size 128 MB 2.245K 22.016
 NoC Flit_size 128 b 75 0.58
 Chip total - - 92.430K 34.124

Table 3  Dataset parameters of different datasets

Dataset User Item Interaction Density

ML-100K 943 1682 100,000 0.0630
Gowalla 29,858 40,981 1,027,370 0.00084
Yelp 31,668 38,048 1,561,406 0.00130
ML-10M 69,878 10,677 10,000,054 0.0134
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by the constantly-updated tensorflow framework as a 
baseline on the general-purpose computing platform. The 
hardware specifications of GPU and REREC are listed in 
Table 4.

6.2  Performance evaluation

ReGCNR vs GPU:  Figure 5 demonstrates the performance 
comparisons among GPU, REREC, and ReGCNR. ReGCNR 
focuses on throughput as the main performance improve-
ment target because the real-word recommender systems are 
required to process numerous queries in a large batch simul-
taneously. The throughput result is equal to the execution 
time divided by the number of total queries in each test data-
set. As the number of queries of the dataset remains the same 
for ReGCNR and GPU-based experiments, the throughput 
is proportional to execution time. Therefore, we can regard 
throughput as time performance speedup.

ReGCNR achieves 7.44× ∼ 141.79× (69.83× on average) 
speedup over GPU. The main benefit comes from the cross-
bar structure, in-memory processing, and the architecture. In 
particular, ReGCNR achieves the highest speedup on ML1, 
which is induced by two reasons. First, ML1 is the smallest 
dataset among all four datasets, which means the least off-
chip memory access for ReGCNR. Consequently, ReGCNR 
can harvest relatively high in-memory processing benefits. 
Such trends can also be seen on relatively small-size datasets 
YEL and ML2, where the speedup is 68.93× and 61.20× , 
respectively. The YEL is an exception because YEL has 

the lowest density, which induces a severe sparsity problem 
for ReRAM. Second, ML1 has the highest average degree, 
which induces a large amount of irregular memory access 
in the aggregation phase. The mapping schema adopted in 
ReGCNR can efficiently reduce data movements to mitigate 
the effects of irregular access.

ReGCNR vs REREC: As shown in Fig.  5, ReGCNR 
achieves 2.32× ∼ 19.95× (11.13× on average) speedup over 
REREC. The speedup comes from the aggregation phase 
optimizations, including the mapping schema and the hybrid 
execution design. Besides, the high-speed layer-wise vertical 
communication of LML architecture also contributes to the 
speedup. It’s worth noticing that we assume equally analog 
ReRAM resources for REREC for a fair comparison. Specif-
ically, ReGCNR achieves a relatively high speedup on YEL 
and ML1, which is 19.94× and 14.76× , respectively. This is 
caused by two sides of reasons. The first side of the reason is 
that datasets with a larger degree, such as ML1, can harvest 
more aggregation phase benefits on ReGCNR. Second, the 
REREC mapping schema is more suitable for datasets where 
items are more accessed. Specifically, ReGCNR adopts a 
mapping schema that considers user and item, while REREC 
mainly maps items on the crossbar. Therefore, ReGCNR 
achieves a relatively low speedup on ML2 (6.44 × ), where 
the average item degree is much larger than the user degree.

6.3  Energy savings

Figure 6 depicts the energy savings of ReGCNR over GPU 
and REREC. Compared with GPU, ReGCNR achieves 
6.03× ∼ 115.05× (56.67× on average) energy savings. The 
energy savings mainly come from two sides. First, the data 
movement reduction of in-situ processing on the crossbar 
costs less energy. Therefore, GPU consumes 1.66 × power 
over ReGCNR, despite the fact that ReGCNR is equipped 
with three layers of ReRAM. Meanwhile, the throughput 
advantage of ReGCNR brings an overall processing time 
reduction. Both two reasons contribute to the overall energy 
saving of ReGCNR. The highest energy saving (115.05 × ) 
is achieved on ML1, which has a relatively large size of 
irregular memory access in the aggregation phase.

Table 4  Hardware configurations of CPU, GPU, and REREC

CPU Intel Xeon CPU E5-2680 v4, 28 cores, 2.4 GHz
 Cache L1 64KB, L2 256KB, L3 35MB
 Main memory 256GB DDR4

GPU Tesla P100, 56 SMs × 64 cores, 1.33 GHz
 Cache L1 64 KB per SM, L2 4MB
 GPU memory 16GB HBM2

REREC 419 MB MLP/memory arrays, 1048 KB inner-
product arrays
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Compared with REREC, ReGCNR achieves 1.51× 
∼ 12.95× (7.22× on average) energy savings. The main 
energy saving comes from the throughput improvement 
and the intermediate embedding accessing on the mem-
ory layer. The former reduces the overall execution time. 
The latter reduces the energy cost for aggregating embed-
ding via planer NoC. Thus YEL and ML1 achieve rela-
tively high energy savings, which are 12.95× and 9.59 ×
respectively.

6.4  Resource breakdowns

Resource breakdowns of kernels: To demonstrate the 
adaptability of the mapping schema, Fig.  7 compares 
the analog ReRAM resource occupation breakdowns for 
different kernels. Each bar is composed of the blue part 
(aggregation), brown part (combination), and green part 
(prediction). In most of the dataset, aggregation occu-
pies the major part of the chip resource, which is 95.92% 
(ML2), 74.02% (ML1), 57.76% (YEL), and 45.50% 
(GOW), respectively. Such an assignment coincides with 
the GCN-based recommendation property.

The GOW allocates the least resorce for aggrega-
tion because the GOW has the lowest average degree. 
Therefore, a relatively smaller size of ARU is enough for 
the aggregation of one destination user or item. On the 
contrary, the combination and prediction kernel are not 
affected by the average degree. This indicates that the 
effort to reduce sparsity encounters a marginal effect on 
system performance because the combination shall domi-
nate the overall system performance.

Resource breakdowns in terms of users and items: We 
also explore mapping and execution efficiency by explor-
ing the hardware assignment pattern in terms of user and 
items. As depicted in Fig. 8, REGCNR manages to assign 
resources for different datasets. The resource difference 
between the user and item of ML2 is that there is a large 
difference between the user and item degree. The proposed 
mapping scheme is designed to address such situations 

to balance the processing time cost of the user and item 
sides. By combining the mapping and hardware sched-
uling, ReGCNR achieves throughput improvements and 
energy savings for different datasets.

6.5  Sensitivity study

Figure 9 demonstrates the system performance under dif-
ference crossbar size � . For small � , the peripheral circuit, 
such as ADC and DAC, occupies most of the on-chip area. 
Thereby, only a small amount of ReRAM can be integrated 
into the chip. Therefore, such a small � throughput is the 
smallest for all datasets even though the sparsity problem 
can be mitigated with a smaller crossbar size.

A larger crossbar indicates that more ReRAM accounts 
for the overall chip area. Besides, for relatively larger � , 
our aggregation mapping schema helps to mitigate the 
sparsity problem. However, there is a marginal effect of 
crossbar size on the system performance as � increases 
larger than 512. This is because the embedding aggrega-
tion of a low degree causes a more severe effect on the 
overall system throughput. Meanwhile, the variation and 
current leakage problem in the ReRAM device will cause 
severe effects on device reliability and endurance when 
the � is too large (Wong et al. 2012; Niu et al. 2013). 
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Therefore, � = 64 strikes a sweet spot for performance 
and reliability.

6.6  Generality

To show the ReGCNR generality for different models, 
we investigate the generality of the design by comparing 
the overall system performance for GCMC, NGCF, and 
LightGCN, as depicted in Fig. 10. ReGCNR achieves the 
highest throughput on GCMC for all other three models, 
which is 1.26 × over NGCF. The main difference lies in 
the operations of message construction in the propagation 
layer and the final embedding representation, as shown in 
Table 1. Unlike GCMC, NGCF adopts an element-wise 
multiplication that can exploit the MAC operation pat-
tern on the crossbar. As for LightGCN, it achieves bet-
ter performance than NGCF due to simpler combination 
operation.

7  Conclusion

In this paper, we propose a ReRAM-based accelerator, 
ReGCNR, for GCN-based recommendations. ReGCNR 
is featured with the following designs. First, ReGCNR 
exploits a 3-D heterogeneous architecture to fit the large-
size intermediate data and extensive embedding access on 
GCN-based recommendation models. Second, ReGCNR 
proposes a mapping schema for the full execution stages 
of GCN-based recommendation with a specialized design 
for user-item graphs. Third, the hardware scheduling 
is leveraged to coordinate the execution of GCN 
recommender systems on the proposed heterogeneous 
3-D ReRAM accelerator. Results show that ReGCNR 
outperforms state-of-the-art ReRAM-based solutions in 
terms of performance and energy.
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