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Abstract
The explosive growth of graph data sets has led to an increase in the computing power and storage resources required for 
graph computing. To handle large-scale graph processing, heterogeneous platforms have become necessary to provide suf-
ficient computing power and storage. The most popular scheme for this is the CPU-GPU architecture. However, the steep 
learning curve and complex concurrency control for heterogeneous platforms pose a challenge for developers. Additionally, 
GPUs from different vendors have varying software stacks, making cross-platform porting and verification challenging. 
Recently, Intel proposed a unified programming model to manage multiple heterogeneous devices at the same time, named 
oneAPI. It provides a more friendly programming model for simple C++ developers and a convenient concurrency control 
scheme, allowing managing different vendors of devices at the same time. Hence there is an opportunity to utilize oneAPI to 
design a general cross-architecture framework for large-scale graph computing. In this paper, we propose a large-scale graph 
computing framework for multiple types of accelerators with Intel oneAPI and we name it as OneGraph. Our approach signifi-
cantly reduces the data transfer between GPU and CPU and masks the latency by asynchronous transfer, which significantly 
improves performance. We conducted rigorous performance tests on the framework using four classical graph algorithms. The 
experiment results show that our approach achieves an average speedup of 3.3x over the state-of-the-art partitioning-based 
approaches. Moreover, thanks to the cross-architecture model of Intel oneAPI, the framework can be deployed on different 
GPU platforms without code modification. And our evaluation proves that OneGraph has only less than 1% performance 
loss compared to the dedicated programming model on GPUs in large-scale graph computing.

Keywords Heterogeneous programming · Graph computing · Out-of-memory process · Cross-architecture portability · 
OneAPI

1 Introduction

Graph computing has become an increasingly important 
field in recent years and has applications in many areas such 
as social networks (Rossi and Ahmed 2015), recommenda-
tion systems (Boldi et al. 2004), and biological networks 

(Kim 2012). As data becomes more complex and larger in 
scale, graph computing provides a powerful tool for analyz-
ing and processing these data.

Graph processing algorithms involve a large number of 
computations, iterations, and memory accesses, which can 
be time-consuming and resource-intensive, particularly for 
large-scale graph data sets. There are many accelerating 
devices to deal with large-scale graph computing, includ-
ing multi-core platforms, GPU platforms, and FPGAs, each 
with its own strengths. Facing the massive computation in 
large-scale graph computing, CPU along systems become 
overstretched due to a lack of computing resources. GPUs 
have become prevalent for accelerating large-scale graph 
computing in recent years. However, GPU devices gener-
ally have very limited memory to process a large-scale graph 
(Sahu et al. 2017). As a result, the CPU-GPU heterogeneous 

Jingyu Zhu, Jiaxun Han, Yuting Peng and Zhuoran Wang 
contributed equally to this work.

 * Xiaoli Gong 
 gongxiaoli@nankai.edu.cn

1 Colleage of Computer Science, Nankai University, 
Tianjin 300350, China

2 State Grid Tianjin Information and Communication 
Company, Tianjin, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-023-00172-w&domain=pdf
http://orcid.org/0000-0002-9836-558X


180 S. Li et al.

1 3

platforms become necessary to provide the required com-
puting power and storage resources. Nevertheless, differ-
ent GPU devices from different manufacturers have various 
graph computing accelerating solutions, they may differ in 
terms of hardware, software, programming languages, and 
APIs, among other aspects, making programming on a het-
erogeneous platform challenging.

Proficiency in a new programming language and model 
is often required when programming on a heterogeneous 
platform. For instance, CUDA toolkit (NVIDIA 2022) for 
NVIDIA GPUs, ROCm (AMD 2022) for AMD GPUs, and 
OpenCL (Khronos 2011) for Intel GPUs. This creates a 
steep learning curve for developers who need to become 
familiar with different programming languages and models 
for heterogeneous computing on GPUs. For instance, mas-
tering CUDA programs and NVIDIA GPU architectures is 
widely acknowledged to be challenging. Furthermore, when 
attempting to port existing code to a different platform, 
such as migrating a CUDA program to an Intel GPU, the 
complexity only increases. In such cases, developers have 
to rewrite the CUDA program using OpenCL, making the 
process even more demanding. Worse still, porting across 
architectures often comes with performance fluctuations, tra-
ditional cross-architecture programming model like OpenCL 
usually has significant performance drop compared to dedi-
cated programming model like CUDA.

Besides the burden of learning specific programming 
models, concurrency control and memory management are 
also troublesome for developers in large-scale graph com-
puting. Due to limited global memory in GPU, developers 
must carefully allocate memory resources and deal with 
large amounts of data transfer. Graph partitioning is a widely 
adopted technique in prior studies to exploit the parallel-
ism of GPUs for large-scale graph computing, and two pri-
mary approaches are typically employed. The first approach 
involves manual graph partitioning, dividing the graph into 
multiple subsets that can fit into the GPU memory. A second 
approach is through the Unified Virtual Memory (UVM) 
to oversubscribe GPU memory and implicitly transfer data. 
The graph data is allocated in the main memory and mapped 
to the GPU memory by the GPU driver. When the GPU 
requires this data, it will be transferred to GPU memory at a 
granularity of page(4KB-1 M). UVM can be regarded as an 
implicit graph partitioning technique where each partition 
corresponds to a page.

However, manual graph partitioning often leads to 
redundant data transfer and developers suffer from com-
plex concurrency control when designing their systems. 
The main memory allocation and graph partitioning are 
processed on the CPU side and these part codes are usu-
ally written in C/C++ source files. Still, heterogeneous 

kernel codes about the GPU memory management, kernel 
launch, and computing process are written in another file. 
Concurrency control and synchronization will be a chal-
lenge to developers and significantly influence program 
performance. UVM can be regarded as an implicit graph 
partitioning, and it significantly reduces developers’ bur-
den because the GPU driver will deal with memory man-
agement and concurrency control automatically. However, 
studies (Kim et al. 2020; Harris 2021) have demonstrated 
that UVM can result in data thrashing and frequent page 
faults, which leads to significant overhead.

In summary, existing solutions for large-scale graph 
processing on heterogeneous platforms suffer from high 
learning costs, complex concurrency control, and poor 
portability.

Intel oneAPI (Intel 2023a) is an open, standards-based 
cross-architecture programming model that enables pro-
grammers to develop cross-architecture applications for 
CPUs, GPUs, and FPGAs with agility and efficiency.

In the oneAPI programming model, researchers can use a 
single programming language and programming model for 
multiple heterogeneous hardware platforms including dif-
ferent models of GPUs and FPGAs, so that they can focus 
on applying their ideas to next-generation innovations with-
out having to rewrite their own software for new or next-
generation hardware platforms. This will help reduce the 
time and effort required for developing and optimizing code 
for heterogeneous platforms, and enable developers to focus 
on algorithm design and performance optimization, rather 
than worrying about the underlying hardware and program-
ming languages. oneAPI also provides efficient performance 
analysis and tuning tools for different hardware, and the per-
formance analysis results in this paper were obtained using 
VTune Analyzer from oneAPI product.

In this paper, we propose OneGraph, a general cross-
architecture framework for large-scale graph computing, 
implemented with oneAPI. We follow the state-of-the-art 
out-of-GPU-memory graph processing system (Tang 2021) 
to design our system. The details about the scheme will be 
illustrated in Sect. 3. We conducted rigorous experiments 
to evaluate OneGraph and verified its across-architecture 
portability. Results show that OneGraph achieves signifi-
cant speedup over CPU algorithms and other large-scale 
graph processing schemes. Moreover, OneGraph can be 
ported to different GPU platforms without any code modi-
fication, we have successfully run it on NVIDIA GPU, 
Intel GPU, and AMD GPU. OneGraph also achieves a 
graceful balance between portability and performance. 
Our evaluation proves that OneGraph only has less than 
1% performance loss with a smaller code size compared 
to the dedicated programming model in large-scale graph 
computing on CPU-GPU heterogeneous platforms.
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In summary, we have made the following contributions.1

• We propose a cross-architecture large-scale graph com-
puting framework and implement its prototype One-
Graph with oneAPI.

• We discussed oneAPI’s optimization on concurrency 
control and system synchronization in heterogeneous 
programming for large-scale graph computing.

• As a cross-architecture framework, OneGraph achieves 
a graceful balance between portability and performance. 
We verified it on three kinds of GPUs from different man-
ufacturers. The results show that OneGraph achieves an 
average 3.3x speedup over the SOTA graph-partitioning 
approach on CPU-GPU platforms. The performance loss 
compared to the dedicated programming model CUDA 
is less than 1% on NVIDIA GPU.

The rest of this paper is organized as follows. Section 2 pro-
vides some background about large-scale graph computing 
on heterogeneous platforms and opportunities brought by 
oneAPI. Section 3 illustrates our system design and optimi-
zation. Section 4 presents our experiments, evaluations, and 
analysis. Section 5 concludes this work.

2  Background and related works

2.1  Heterogeneous platforms and programming 
model

As graph data size has increased dramatically in recent years 
(Sahu et al. 2017), heterogeneous platforms, such as CPU-
GPU and FPGAs have been prevalent for large-scale graph 
processing because they can provide enough computing 
power and storage at the same time.

In the past heterogeneous programming work, if you 
wanted to port works to a new platform, you had to use a 
new specific language or a different programming model 
for rewriting software to run on the target hardware, which 
undoubtedly increases the time cost of cross-architecture 
development and verification, and also to some extent hin-
ders the joint use of different hardware platforms, limiting 
the innovation of researchers.

Recently, Intel has proposed a cross-architecture pro-
gramming model oneAPI (Intel 2023a) to address this 
problem. The oneAPI program is written in Data Parallel 
C++ (DPC++). It utilizes a similar structure to modern 
C++, following the SYCL (Khronos 2020) standards for 

data parallelism and heterogeneous programming. DPC++ 
is a single-source language where host code and heterogene-
ous kernel code can be mixed in the same source file. The 
C++/SYCL program is called on the host and offloads the 
task to the heterogeneous platform. It shields the differences 
between different hardware platforms and provides a unified 
scheme to call GPUs or FPGAs from different vendors.

Listing 1 shows a simple vector add code written in 
DPC++ and Listing 2 shows its CUDA version. Compared 
to CUDA, DPC++ follows the modern C++ style, which is 
more friendly to developers. The code size of DPC++ is also 
significantly reduced. When we need to port this code to a 
new platform, the only thing that needs to be done is to change 
the device selector in DPC++ (the first line in Listing 1).

1 This work is a redesign and optimization based on our previous 
work, which was demonstrated at the 50th International Conference 
on Parallel Processing (ICPP 2021) as “Ascetic: Enhancing Cross-
Iterations Data Efficiency in Out-of-Memory Graph Processing on 
GPUs”.
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2.2  Concurrency control of oneAPI

As we discussed in Sect. 1, complex concurrency control 
has caused many troubles for developers and has raised the 
barrier of heterogeneous programming. oneAPI DPC++ 
program uses a queue mechanism following SYCL stand-
ard, where a single queue can be assigned to a single device 
and will submit its task code to the runtime driver of the 
corresponding device. Tasks in the same queue are executed 
sequentially, following the order in which they are added 
to the queue. Meanwhile, if there are no dependencies or 
hardware conflicts among tasks in different queues, those 
tasks can be executed in parallel. Therefore, to achieve the 
concurrence execution of CPU and GPU, we only need to 
allocate tasks in 2 separate queues—one for the GPU tasks 
and another for the CPU tasks.

Figure 1 depicts this scheme with an example. In this 
example, the execution model coordinates the execution of 
task kernels and data management between CPU and GPU 
via queues. Instead of processing data serially, we assign dif-
ferent tasks into two separate queues, which makes the CPU 
and GPU execute tasks in parallel when data is prepared.

2.3  Out‑of‑memory graph processing on GPUs

Graph partitioning is a straightforward solution for out-of-
memory graph processing. A whole graph is divided into 
several subgraphs that can fit in GPU memory. The system 
processes and transfers on-demand subgraphs required by 
GPU in turn. Many prior works use this scheme, such as 
GraphReduce (Sengupta et al. 2015) and Graphie (Han et al. 
2017). However, the sparse and irregular access pattern of 
graph traversal leads to lots of redundant data transfer.

Unified Virtual Memory  (UVM) was introduced by 
NVIDIA in Pascal architecture   (NVIDIA 2006). With 
UVM, developers can use a single, virtual address space 
to manage memory on both CPU and GPU. UVM enables 
applications to implicitly move data between CPU and GPU 
memory with page migration managed by the GPU driver.

When processing out-of-memory graphs with UVM, the 
page scheme could be considered a partitioning-based scheme 
whereby each partition is a page. However, handling frequent 
page faults leads to bad performance (Kim et al. 2020) and we 
find that the graph data is always evicted before reuse due to 
long reuse distance, making the situation worse.

SubWay (Sabet et al. 2020) is another solution proposed 
to minimize data transfer between CPU and GPU by select-
ing and reorganizing on-demand data to be transferred. It 
is considered the best graph-partitioning-based scheme so 
far. In SubWay, the vertices are maintained in both main 
memory and GPU memory, and the edges are only kept 
in main memory. Before each iteration, the required data 
will be selected and reorganized. By accurately selecting 
required data for the current iteration during pre-processing, 
the amount of data transfer between CPU and GPU is greatly 
reduced, and redundant data transfer is eliminated.

Ascetic (Tang 2021) is the state-of-the-art out-of-GPU-
memory graph processing framework. It partitions the GPU 
memory into two regions, Static Region and On-demand Region. 
Static Region stores some reusable data and On-demand Region 
requires other graph data on-demand. The computing of Static 
Region and the data transfer of On-demand Region is overlapped 
by concurrent execution of CPU and GPU.

However, all the above works only work on NVIDIA 
GPUs. And they do not support managing multiple devices 
at the same time.

2.4  Related works

Out-of-memory graph processing on GPUs has been a 
highly active research area in recent years due to the grow-
ing demand for efficient processing of large-scale graphs. 
Various frameworks and systems have been developed to 
tackle the challenges of processing graphs that do not fit into 
a single GPU memory.

One of the earliest and most well-known frameworks for 
out-of-memory graph processing on GPUs is Gunrock (Wang 
2016), which uses graph partitioning to address the memory 
constraint. Similarly, approaches such as CuSha (Khorasani 
et al. 2014), MapGraph (Malewicz 2011), and CuGraph (Jiang 
et al. 2018) have been developed. However, the limited GPU 
memory continues to pose a challenge. There are three primary 
challenges in this area. First, graph partitioning can incur sig-
nificant overhead due to CPU-GPU synchronization. Second, 
graph partitioning-based schemes involve numerous redundant 
data transfer. Third, Unified Virtual Memory (UVM) does not 
perform well due to data thrashing and page fault latency.

To overcome these limitations, recent works have 
been proposed. Pegasus (Dong 2021) is a distributed-
memory GPU cluster-based graph processing framework 
for large-scale graphs. SubWay (Sabet et al. 2020) is a 
recently proposed fine-grained memory management 

Fig. 1  Concurrency control with task queue in oneAPI
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graph processing system, which reduces redundant trans-
fer by accurately organizing subgraphs and accelerates 
the organization process with GPUs. Ascetic (Tang 2021) 
is the state-of-the-art out-of-GPU-memory graph com-
puting framework. It utilizes part of GPU memory as a 
data cache and handles cache misses in the rest of GPU 
memory, improving data efficiency with data reuse.

3  System design and implementation

Based on oneAPI, we propose a general cross-architecture 
large-scale graph processing system OneGraph. We fol-
low the scheme of Ascetic Tang (2021), which acceler-
ates large-scale graph computing on GPUs across three 
aspects. First, fully utilizing the GPU memory; Second, 
attempting to exploit the data reusability in large-scale 
graph computing to improve data efficiency, reduce data 
transfer, and eliminate redundant transfer; Third, overlap-
ping CPU and GPU tasks as much as possible to obtain 
higher parallelism and minimize the busy waiting time.

The memory management approach partitions the GPU 
memory into two regions, namely the Static Region and 
the On-demand Region. The Static Region is responsible 
for caching reusable data, while the On-demand Region 
loads other required data on demand. In this section, we 
will describe the system design and its implementation 
with oneAPI in detail.

3.1  System overview

As shown in Fig. 2, the GPU memory is divided into Static 
Region and On-demand Region following the design strat-
egy of Ascetic Tang (2021). The Static Region stores part of 
data that can be reused across iterations, called Static Data. 
While the On-demand Region is in charge of storing data 
required in the current iteration but not present in the Static 
Region, called On-demand Data. In the whole workflow, two 
controllers are set up. One is the GPU Manager which sends 
requests to the CPU for data to be stored in On-demand 
Region, and the other is the On-demand Engine on the CPU 
side which sorts out the requested data from the raw data 
in a fine-grained manner and transfers it to the On-demand 
Region within the GPU memory.

To locate the On-demand data, we set two bitmaps on the 
GPU side, namely Active Bitmap and Static Bitmap. The Active 
Bitmap marks the data required in the current iteration, while 
the Static Bitmap keeps track of the data already prefetched 
into the Static Region of GPU. In each iteration, the data to be 
accessed is marked as active and set to 1 in the Active Bitmap. 
Before the computing task begins, GPU Manager processes 
the two bitmaps by AND operation to locate Static Data which 
can be processed immediately. Simultaneously, GPU Manager 
processes the two bitmaps by XOR operation to identify the 
On-demand Data which is left in the main memory. Data in 
this part is organized in a similar way in SubWay Sabet et al. 

Static Region On-demand 
RegionStatic Data

Graph Data in Main Memory

On-demand 
Data

GPU Memory

On-demand
Engine Manager

OneGraph
On-demand data request

static data is transfered in
preprocessing

chunk
1

chunk
2 ... chunk

n

Transfer on-demand data-chunks by PCIe

Fill the 
On-demand 
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Fig. 2  System overview of OneGraph 
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(2020), GPU has to wait for the CPU to process the required 
data and transfer it to the On-demand Region. Furthermore, 
as the On-demand data cannot be stored into the On-demand 
Region all at once, the CPU divides the data into several 
chunks, resulting in multiple data transmissions.

In this explanation, we’ll take the example of BFS 
(Breadth-First Search) to illustrate the workflow of OneGraph. 
This is depicted in Fig. 3. The first step involves the GPU 
manager partitioning the GPU memory based on the size of 
the loaded graph data, details about how to partition is illus-
trated in Sect. 3.3. The Static Data is then loaded into the 
Static Region, and the Static BitMap is initialized accurately. 
Once the iterations begin, the index of the source vertex is 
marked as 1 on the Active Bitmap. Then, parallel AND and 
XOR between Static BitMmap and Active Bitmap and gener-
ate StaticMap and On-demand Map separately. All available 
adjacent vertexes of the source vertex in Static Region are 
marked as 1 on StaticMap, otherwise marked as 1 on On-
demand Map. GPU begins processing those available Static 
Data, simultaneously sending requests for On-demand data 
to On-demand Engine. The CPU manages the organization 
of this data. After the computing of Static Data is completed, 
On-demand Engine fills the On-demand Region in GPU mem-
ory and GPU begins processing On-demand Data. During the 
processing of graph data, all of the visited vertexes will be 
marked to 0 and their adjacent vertexes will be marked to 1 
on the Active BitMap. This prepares the Active BitMap for the 

next iteration. The above processing is repeated until no more 
vertexes are marked as 1 on the Active BitMap.

3.2  Concurrent execution of CPU and GPU

In the given process, specific steps in Fig. 2 can be per-
formed concurrently, particularly between data transmis-
sion and computing. For instance, once the GPU manager 
has finished executing the AND operation of two bitmaps, 
it can immediately begin computing the data in the Static 
Region. The processing of this portion will overlap the On-
demand Engine’s collection and transmission of data in the 
main memory. This approach reduces the busy waiting time 
between CPU and GPU, overlapping the latency caused by 
data transmission.

The programming model of oneAPI makes it simpler to 
achieve such parallelism with the device queue scheme men-
tioned in Sect. 2. Therefore, to achieve the overlapping of 
computing and data transmission, we only need to put these 
tasks in 2 separate queues - one for the computing task in 
the Static Region and the other for the data transmission in 
the On-demand Region. This approach enables the system to 
hide data transmission latency and improve overall system 
performance.

Figure 4 depicts the overlapping effect in each iteration. 
In OneGraph, all the tasks on the CPU side are put into 

Fig. 3  A BFS workflow of 
OneGraph. Pink vertexes are 
active in the current iteration. If 
its adjacent edges are stored in 
Static Region, the correspond-
ing index on StaticBitmap will 
be marked as 1 (green items)
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one task queue, which is assigned to the CPU. Tasks on the 
GPU side are put into another queue that is assigned to the 
GPU device. Due to there being no data dependence and 
hardware conflict between Static Region Computing and 
CPU tasks, the Static Region Computing and on-demand 
data location and transfer will be processed in parallel. 
In order to ensure correctness, a system-wide synchro-
nization must be performed prior to On-demand Region 
Computing. Listing 3 shows the code of this part and List-
ing 4 shows its CUDA version. Concurrency execution 
in the DPC++ program has been simplified, allowing 
programmers to control only when the wait() interface 
for a queue is used. In Listing 3, no wait() is demon-
strated for the StaticRegion Computing and On-demand 
data location before their completion, enabling these tasks 
to execute concurrently and the on-demand data locating 
and transfer latency will be overlapped with StaticRegion 
Computing. Conversely, executing the same scheme in 
CUDA necessitates specific APIs, such as cudaMem-
cpyAsync, and managing different cudastreams 
while launching kernels.

3.3  GPU memory partition

In OneGraph, the data in the Static Region is reusable across 
iterations, and the computing of these data can overlap the 
latency of data transfer. We attempt to maximize Static 
Region’s size. However, a small On-demand Region can 
lead to dividing the On-demand Data into more and smaller 
chunks, resulting in more frequent data transfer between the 
CPU and GPU. This situation is similar to the graph par-
titioning approach discussed in Sect. 2.1, leading to data 
thrashing and performance degradation. Moreover, trans-
mitting too little data during each transmission will waste 
the PCIe bandwidth. Hence, it is critical to set a proper ratio 
between the two regions for better performance.

In the OneGraph, we just follow the memory partition-
ing approach in Ascetic Tang (2021), determining the ratio 
between the Static Region and the On-demand Region using 
empirical values. Assuming that the proportion of required 
edge data in a single iteration is K, set M as the size of 
GPU memory, and M

Static
 is the size of Static Region. If the 

size of the dataset is D, the average data size that needs to 
be loaded into the On-demand Region for each iteration is 

Fig. 4  Computing and data 
transfer overlapping in 
OneGraph
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(D −M
Static

) × K . Set R is the proportion of Static Region, 
that is R = M

Static
∕M , in order to maximize the size of the 

Static Region while meeting the requirements, we should 
ensure that:

Some studies (Sahu et al. 2017; Tang 2021) have demon-
strated that the average proportion of edge data required per 
iteration is about 10%. Hence we choose 10% as the default 
value of K in experiments.

4  Experiment and evaluation

4.1  Experiment settings

Our local experiment platform has 96 Intel(R) Xeon(R) Gold 
5318Y CPUs and 256GB DRAM memory, running on Linux 
Ubuntu 22.04.1. The configuration of the NVIDIA GPU and 
Intel GPU we used are shown in Table 1.

As shown in Table 2, we use four real-world large-scale 
graphs and two synthesized graphs in experiments. The GS 
and FK are directed and others are undirected. Their size 
shown in Table 2 is their size in CSR format without edge 
weight, and when the edge weights are necessary, it will 
nearly double the CSR file size. For instance, the size of FK 
with edge weight in CSR is 20 G. We use RMAT (Chakra-
barti et al. 2004), a widely used graph generator, to generate 
the synthesized graphs. We limit the available GPU memory 
to 12 G for our applications in experiments to simulate the 
out-of-memory situation. It is worth mentioning that in this 
scenario, all the data sets, regardless of whether they have 
edge weight or not, are out-of-memory. This is because the 

(1)R =
(

1 − K ×
D

M

)

∕(1 − K)

frameworks used in experiments will introduce some addi-
tional memory overhead. Four classical graph processing 
algorithms are used to evaluate our scheme, BFS, CC, SSSP, 
and PR. We use the empirical value to determine the size of 
Static Region according to Ascetic (Tang 2021).

For comparison, we implement a UVM-based scheme in 
our framework with Intel oneAPI, using the Unified Shared 
Memory API malloc_shared in Intel oneAPI to allocate 
the EdgeList and keep other data in GPU memory. We also 
reproduce a prototype of SubWay with oneAPI for compari-
son, which gathers requested data in a fine-grained manner 
and sends them to GPU for processing. SubWay and One-
Graph both use muti-thread to accelerate the data organiza-
tion on the CPU side. Each application is run 10 times and 
we take the arithmetic mean in our evaluation.

4.2  Performance analysis and evaluation

Table 3 shows three memory management approaches’ per-
formance on the datasets in Table 2. We evaluate them with 
their speedup over the common CPU serial approach. The 
results show that the UVM-based scheme could reach an 
average 11.65x speedup while the SubWay only has 9.23x. 
OneGrpah can achieve a 32.62x speedup on average and 
127.53x in the best case.

OneGrpah achieves the best performance among them. 
Our analysis of the reasons for the poor performance of 
SubWay revealed that the bottleneck lies primarily in the 
GPU busy waiting for the CPU to organize and transfer 
data. Although we have accelerated the data organization 
process with multi-thread and GPU, the final results show 
that the GPU is still idle for an average of 50% of the GPU 
time in SubWay.

Table 4 demonstrates the average data transfer amount 
of OneGrpah is only 12.74% of that of USM. Compared to 
USM, OneGrpah reduces data transfer by almost 90%, and 
compared to SubWay, OneGrpah reduces data transfer by 
almost four times. This illustrates that OneGrpah greatly 
improves data efficiency while fully utilizing GPU mem-
ory resources. In some experiments, SubWay may transfer 
more data than USM, which is due to the communication 
costs when using GPU to accelerate subgraph generation, 

Table 1  GPU platform configuration

NVIDIA GPU Intel GPU

Model A100 PCIe Data Center GPU Flex 170
Cores 6912 512
Memory 80GB HBM2 16GB GDDR6
Driver Driver 515.65.01 and 

CUDA 11.6.2
intel-i915

Table 2  Datasets used in 
experiments

Abbr Name Vertices Edges Size

GS Gsh-host-2015(d) (Low 2010) 65.47M 1.68B 14 G
FK Friendster-konect(d) (Ganguly 2020) 65.18M 2.41B 11 G
UK Uk-2007-04(u) (Low 2010) 101.92M 3.53B 15 G
FS Friendster-snap(u) (Leskovec and Krevl 2014) 124.83M 3.61B 15 G
RMAT1 RMAT-rand(u) 5.25M 1.96B 16 G
RMAT2 RMAT-rand(u) 106.67M 3.72B 15 G
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which incurs a significant overhead when the communica-
tion between CPU and GPU is too frequent.

4.3  Breakdown of the optimization

For a deep understanding of the performance optimization of 
OneGraph, we use “static savings” to represent the perfor-
mance benefits of caching data in Static Region, and “over-
lapping savings” to represent the performance benefits of 
the overlapping strategy. We use SubWay’s performance as 
a baseline, as shown in Fig. 5. The results show that, com-
pared to SubWay, the Static Region can provide an average 
performance improvement of 30%, while the overlapping 
strategy can provide an average performance improvement 
of 32%. It is worth noting that, for the BFS, there is actually 
no fine-grained data reuse since visited nodes will not be vis-
ited again. However, the Static Region prefetching policy can 
still provide an average performance improvement of 20% 
for the BFS. This is because, after some data is prefetched 
into the GPU’s memory, the GPU can directly access it with-
out waiting for the CPU to organize the data.

Table 3  Performance results

The values of USM, SubWay and OneGraph are represented by the 
speedup of Serial. The best among the three methods is in bold

Serial USM SubWay OneGraph

SSSP FS 105.91s 1.04x 3.75x 10.11x
GS 340.97s 2.12x 3.27x 10.72x
FK 151.46s 2.08x 3.43x 20.56x
UK 236.69s 0.51x 1.06x 2.34x
RMAT1 117.63s 1.96x 3.97x 14.15x
RMAT2 507.40s 1.91x 7.78x 29.33x

BFS FS 48.78s 4.36x 3.26x 15.36x
GS 66.94s 35.72x 26.90x 110.83x
FK 11.31s 21.07x 16.27x 110.90x
UK 133.14s 6.27x 5.71x 28.54x
RMAT1 8.98s 10.57x 11.21x 39.44x
RMAT2 284.32s 54.28x 48.47x 127.53x

CC FS 92.65s 6.48x 2.88x 17.01x
GS 41.82s 1.93x 1.05x 12.53x
FK 126.66s 8.35x 3.52x 28.68x
UK 170.19s 2.41x 1.53x 4.94x
RMAT1 63.58s 2.68x 1.84x 9.97x
RMAT2 192.01s 7.48x 4.28x 11.64x

PR FS 604.25s 17.16x 13.41x 28.38x
GS 568.10s 2.01x 6.94x 3.31x
FK 560.50s 31.16x 34.89x 71.57x
UK 879.70s 0.90x 5.45x 7.36x
RMAT1 455.00s 15.84x 10.90x 38.29x
RMAT2 906.50s 41.41x 1.89x 29.32x

Average 11.65x 9.23x 32.62x

Table 4  Data transfer results

The values of SubWay and OneGraph are represented by the percent-
age of USM. The best among the three methods is in bold

USM(GB) SubWay (%) OneGraph (%)

SSSP FS 33.03 265.49 33.64
GS 418.93 126.26 3.29
FK 404.84 15.32 2.82
UK 3545.39 29.18 0.43
RMAT1 2781.65 1.47 0.26
RMAT2 421.05 21.90 5.82

BFS FS 22.66 60.08 12.88
GS 82.31 21.00 3.02
FK 106.81 12.01 2.01
UK 199.56 18.60 4.56
RMAT1 147.69 6.05 2.24
RMAT2 108.06 15.08 8.85

CC FS 14.12 158.25 19.63
GS 123.59 46.51 13.53
FK 82.05 44.49 23.62
UK 334.10 28.85 22.21
RMAT1 157.22 24.99 15.29
RMAT2 228.67 17.94 14.63

PR FS 348.41 38.50 30.25
GS 4697.27 8.23 3.23
FK 688.21 17.19 7.37
UK 13951.46 3.35 2.53
RMAT1 170.59 67.09 20.22
RMAT2 255.51 1247.07 39.34

Average 90.04 12.74

Fig. 5  Breakdown of the optimization benefits
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The bitmaps in OneGraph are not free. We have evalu-
ated the overhead during the look-up of StaticMap and 
OndeamandMap. The results show that the look-up of 
bitmaps takes 31% of GPU time in OneGraph. According 
to our measurement, SubWay spends 50% of GPU time to 
locate data on the CPU side and USM spends 61% of GPU 
time to handle page faults, which is consistent with other 
research (Kim et al. 2020). In contrast, OneGraph sig-
nificantly minimizes the overhead associated with locat-
ing on-demand data. Bitmaps also reduce available GPU 
memory for storing graph data. According to our scheme, 
bitmaps and relative auxiliary arrays will occupy 2.2 GB 
for GSH and FK, and 4.1 GB for FK and UK. Despite the 
limited GPU memory for processing all edges, sacrificing 
some memory to achieve faster data locating and process-
ing is a justifiable trade-off. However, when the dataset 
is so large that bitmaps exceed GPU memory, OneGraph 
becomes infeasible.

We also test the impact of a different ratio between 
Static Region and On-demand Region on the UK dataset 
with PR and BFS. As shown in Fig. 6, with a larger ratio 
of Static Region increases, OneGraph spends more time in 
Static Data processing, leading to fewer On-demand Data 
transmissions and more overlapping between transfer and 
computing. The results demonstrate that the chosen ratio 
based on our empirical value can achieve relatively good 
performance, although not always optimal performance. 
This impact varies with the different topologies of differ-
ent graph data sets.

We also use RMAT (Chakrabarti et al. 2004) to gen-
erate some larger datasets(e.g.20G-50 G) and compare 

the performance of USM, SubWay, and OneGraph. This 
time we limited available GPU memory to the application 
to 15 G-20 G. Results show that OneGrpah achieves an 
average of 1.64x speedup over USM and 2.75x speedup 
over SubWay on these larger datasets. Moreover, with a 
larger dataset and limited PCIe bandwidth, SubWay and 
OneGraph have to spend more time in data transfer, how-
ever, OneGraph always transfers fewer data because the 
date reuse in Static Region.

In general, our experiments prove that the empirical value 
of the ratio between two regions is reasonable. And whether 
different ratios or a larger data set, OneGraph always shows 
the best performance.

4.4  Graceful balance between portability 
and performance

oneAPI is a cross-architecture programming model and Intel 
has also proposed a series of tools to support convenience 
cross-architecture portability and migration. For NVIDIA 
GPUs and AMD GPUs, besides Intel oneAPI Toolkit, a 
plugin for compiler (CodePlay 2023a, b) is necessary. The 
plugin can be used along with the existing oneAPI Toolkits 
that includes the oneAPI DPC++/C++ Compiler to build 
your SYCL code and run it on compatible NVIDIA or AMD 
GPUs. Moreover, the DPC++ Compatibility Tool(dpct) in 
oneAPI toolkit could automatically migrate a CUDA project 
to a DPC++/SYCL project (Intel 2023b).

We have tested the performance of OneGrpah on differ-
ent hardware platforms. Without any code modifications, 
OneGrpah was successfully compiled and able to run on 

Fig. 6  Impact of static region ratio on performance(PR/BFS) using UK dataset. The red star is the result of chosen ratio based on empirical value
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NVIDIA A100 GPU, Intel Datacenter Flex170 GPU, and 
AMD Radeon integrated GPU. We conducted experiments 
using datasets in Table 2 on the Intel GPU in the Intel data 
center to evaluate SubWay and OneGrpah. The results, 
summarized in Table 5, indicate that OneGraph achieves an 
average speedup of 2.75x over SubWay. Our experiments 
also reveal that PR performs better on the Intel Flex170 GPU 
than on the NVIDIA A100 GPU. Due to the AMD GPU we 
have is not a data-center-level product, we did not conduct 
any further evaluations on it.

When considering the trade-offs between convenient 
portability and performance, it is widely acknowledged 
that achieving both can be challenging. oneAPI, as a gen-
eral cross-architectural programming model, usually being 
considered to have a significant performance loss compared 
to a dedicated programming model like CUDA. We have 
reproduced Ascetic according to its open-source release and 
compared the performance of OneGraph with it. Figure 7 
shows the performance comparison between OneGraph and 
Ascetic. As shown in Fig. 7, the results demonstrate that 
the performance loss of OneGraph is less than 1% for CC. 
Furthermore, for BFS, SSSP, and PR, OneGraph outper-
forms Ascetic. This finding suggests that OneGraph strikes 
a graceful balance, providing both good portability and 
excellent performance for large-scale graph computing on 
CPU-GPU heterogeneous platforms.

5  Conclusion

Efficiently utilizing heterogeneous platforms to accelerate 
large-scale graph computing applications is a significant 
challenge. The steep learning curve, complex concurrency 
control schemes, and bad portability of dedicated program-
ming models have been troublesome for heterogeneous 
developers. In this paper, we utilize the opportunity provided 
by Intel oneAPI to design a cross-architecture framework 
for large-scale graph computing on heterogeneous platforms 
with GPU and CPU. It follows the design of the state-of-the-
art large-scale graph computing framework. We implement 
a prototype of the framework OneGraph using Intel oneAPI 
and conduct rigorous performance tests on four classical 
graph algorithms. The results show that OneGraph out-
performs the graph-partitioning scheme and UVM scheme 
in large-scale graph computing. Moreover, it can be easily 
ported to different hardware platforms without code modi-
fication. The performance loss is only less than 1% in large-
scale graph computing and the code size is also significantly 
reduced compared to other dedicated programming models.
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