
Vol.:(0123456789)1 3

CCF Transactions on High Performance Computing (2024) 6:179–191
https://doi.org/10.1007/s42514-023-00172-w

REGULAR PAPER

OneGraph: a cross‑architecture framework for large‑scale graph
computing on GPUs based on oneAPI

Shiyang Li1 · Jingyu Zhu1 · Jiaxun Han1 · Yuting Peng1 · Zhuoran Wang1 · Xiaoli Gong1 · Gang Wang1 · Jin Zhang1 ·
Xuqiang Wang2

Received: 5 May 2023 / Accepted: 10 October 2023 / Published online: 9 November 2023
© China Computer Federation (CCF) 2023

Abstract
The explosive growth of graph data sets has led to an increase in the computing power and storage resources required for
graph computing. To handle large-scale graph processing, heterogeneous platforms have become necessary to provide suf-
ficient computing power and storage. The most popular scheme for this is the CPU-GPU architecture. However, the steep
learning curve and complex concurrency control for heterogeneous platforms pose a challenge for developers. Additionally,
GPUs from different vendors have varying software stacks, making cross-platform porting and verification challenging.
Recently, Intel proposed a unified programming model to manage multiple heterogeneous devices at the same time, named
oneAPI. It provides a more friendly programming model for simple C++ developers and a convenient concurrency control
scheme, allowing managing different vendors of devices at the same time. Hence there is an opportunity to utilize oneAPI to
design a general cross-architecture framework for large-scale graph computing. In this paper, we propose a large-scale graph
computing framework for multiple types of accelerators with Intel oneAPI and we name it as OneGraph. Our approach signifi-
cantly reduces the data transfer between GPU and CPU and masks the latency by asynchronous transfer, which significantly
improves performance. We conducted rigorous performance tests on the framework using four classical graph algorithms. The
experiment results show that our approach achieves an average speedup of 3.3x over the state-of-the-art partitioning-based
approaches. Moreover, thanks to the cross-architecture model of Intel oneAPI, the framework can be deployed on different
GPU platforms without code modification. And our evaluation proves that OneGraph has only less than 1% performance
loss compared to the dedicated programming model on GPUs in large-scale graph computing.

Keywords Heterogeneous programming · Graph computing · Out-of-memory process · Cross-architecture portability ·
OneAPI

1 Introduction

Graph computing has become an increasingly important
field in recent years and has applications in many areas such
as social networks (Rossi and Ahmed 2015), recommenda-
tion systems (Boldi et al. 2004), and biological networks

(Kim 2012). As data becomes more complex and larger in
scale, graph computing provides a powerful tool for analyz-
ing and processing these data.

Graph processing algorithms involve a large number of
computations, iterations, and memory accesses, which can
be time-consuming and resource-intensive, particularly for
large-scale graph data sets. There are many accelerating
devices to deal with large-scale graph computing, includ-
ing multi-core platforms, GPU platforms, and FPGAs, each
with its own strengths. Facing the massive computation in
large-scale graph computing, CPU along systems become
overstretched due to a lack of computing resources. GPUs
have become prevalent for accelerating large-scale graph
computing in recent years. However, GPU devices gener-
ally have very limited memory to process a large-scale graph
(Sahu et al. 2017). As a result, the CPU-GPU heterogeneous

Jingyu Zhu, Jiaxun Han, Yuting Peng and Zhuoran Wang
contributed equally to this work.

 * Xiaoli Gong
 gongxiaoli@nankai.edu.cn

1 Colleage of Computer Science, Nankai University,
Tianjin 300350, China

2 State Grid Tianjin Information and Communication
Company, Tianjin, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-023-00172-w&domain=pdf
http://orcid.org/0000-0002-9836-558X

180 S. Li et al.

1 3

platforms become necessary to provide the required com-
puting power and storage resources. Nevertheless, differ-
ent GPU devices from different manufacturers have various
graph computing accelerating solutions, they may differ in
terms of hardware, software, programming languages, and
APIs, among other aspects, making programming on a het-
erogeneous platform challenging.

Proficiency in a new programming language and model
is often required when programming on a heterogeneous
platform. For instance, CUDA toolkit (NVIDIA 2022) for
NVIDIA GPUs, ROCm (AMD 2022) for AMD GPUs, and
OpenCL (Khronos 2011) for Intel GPUs. This creates a
steep learning curve for developers who need to become
familiar with different programming languages and models
for heterogeneous computing on GPUs. For instance, mas-
tering CUDA programs and NVIDIA GPU architectures is
widely acknowledged to be challenging. Furthermore, when
attempting to port existing code to a different platform,
such as migrating a CUDA program to an Intel GPU, the
complexity only increases. In such cases, developers have
to rewrite the CUDA program using OpenCL, making the
process even more demanding. Worse still, porting across
architectures often comes with performance fluctuations, tra-
ditional cross-architecture programming model like OpenCL
usually has significant performance drop compared to dedi-
cated programming model like CUDA.

Besides the burden of learning specific programming
models, concurrency control and memory management are
also troublesome for developers in large-scale graph com-
puting. Due to limited global memory in GPU, developers
must carefully allocate memory resources and deal with
large amounts of data transfer. Graph partitioning is a widely
adopted technique in prior studies to exploit the parallel-
ism of GPUs for large-scale graph computing, and two pri-
mary approaches are typically employed. The first approach
involves manual graph partitioning, dividing the graph into
multiple subsets that can fit into the GPU memory. A second
approach is through the Unified Virtual Memory (UVM)
to oversubscribe GPU memory and implicitly transfer data.
The graph data is allocated in the main memory and mapped
to the GPU memory by the GPU driver. When the GPU
requires this data, it will be transferred to GPU memory at a
granularity of page(4KB-1 M). UVM can be regarded as an
implicit graph partitioning technique where each partition
corresponds to a page.

However, manual graph partitioning often leads to
redundant data transfer and developers suffer from com-
plex concurrency control when designing their systems.
The main memory allocation and graph partitioning are
processed on the CPU side and these part codes are usu-
ally written in C/C++ source files. Still, heterogeneous

kernel codes about the GPU memory management, kernel
launch, and computing process are written in another file.
Concurrency control and synchronization will be a chal-
lenge to developers and significantly influence program
performance. UVM can be regarded as an implicit graph
partitioning, and it significantly reduces developers’ bur-
den because the GPU driver will deal with memory man-
agement and concurrency control automatically. However,
studies (Kim et al. 2020; Harris 2021) have demonstrated
that UVM can result in data thrashing and frequent page
faults, which leads to significant overhead.

In summary, existing solutions for large-scale graph
processing on heterogeneous platforms suffer from high
learning costs, complex concurrency control, and poor
portability.

Intel oneAPI (Intel 2023a) is an open, standards-based
cross-architecture programming model that enables pro-
grammers to develop cross-architecture applications for
CPUs, GPUs, and FPGAs with agility and efficiency.

In the oneAPI programming model, researchers can use a
single programming language and programming model for
multiple heterogeneous hardware platforms including dif-
ferent models of GPUs and FPGAs, so that they can focus
on applying their ideas to next-generation innovations with-
out having to rewrite their own software for new or next-
generation hardware platforms. This will help reduce the
time and effort required for developing and optimizing code
for heterogeneous platforms, and enable developers to focus
on algorithm design and performance optimization, rather
than worrying about the underlying hardware and program-
ming languages. oneAPI also provides efficient performance
analysis and tuning tools for different hardware, and the per-
formance analysis results in this paper were obtained using
VTune Analyzer from oneAPI product.

In this paper, we propose OneGraph, a general cross-
architecture framework for large-scale graph computing,
implemented with oneAPI. We follow the state-of-the-art
out-of-GPU-memory graph processing system (Tang 2021)
to design our system. The details about the scheme will be
illustrated in Sect. 3. We conducted rigorous experiments
to evaluate OneGraph and verified its across-architecture
portability. Results show that OneGraph achieves signifi-
cant speedup over CPU algorithms and other large-scale
graph processing schemes. Moreover, OneGraph can be
ported to different GPU platforms without any code modi-
fication, we have successfully run it on NVIDIA GPU,
Intel GPU, and AMD GPU. OneGraph also achieves a
graceful balance between portability and performance.
Our evaluation proves that OneGraph only has less than
1% performance loss with a smaller code size compared
to the dedicated programming model in large-scale graph
computing on CPU-GPU heterogeneous platforms.

181OneGraph: a cross‑architecture framework for large‑scale graph computing on GPUs based on…

1 3

In summary, we have made the following contributions.1

• We propose a cross-architecture large-scale graph com-
puting framework and implement its prototype One-
Graph with oneAPI.

• We discussed oneAPI’s optimization on concurrency
control and system synchronization in heterogeneous
programming for large-scale graph computing.

• As a cross-architecture framework, OneGraph achieves
a graceful balance between portability and performance.
We verified it on three kinds of GPUs from different man-
ufacturers. The results show that OneGraph achieves an
average 3.3x speedup over the SOTA graph-partitioning
approach on CPU-GPU platforms. The performance loss
compared to the dedicated programming model CUDA
is less than 1% on NVIDIA GPU.

The rest of this paper is organized as follows. Section 2 pro-
vides some background about large-scale graph computing
on heterogeneous platforms and opportunities brought by
oneAPI. Section 3 illustrates our system design and optimi-
zation. Section 4 presents our experiments, evaluations, and
analysis. Section 5 concludes this work.

2 Background and related works

2.1 Heterogeneous platforms and programming
model

As graph data size has increased dramatically in recent years
(Sahu et al. 2017), heterogeneous platforms, such as CPU-
GPU and FPGAs have been prevalent for large-scale graph
processing because they can provide enough computing
power and storage at the same time.

In the past heterogeneous programming work, if you
wanted to port works to a new platform, you had to use a
new specific language or a different programming model
for rewriting software to run on the target hardware, which
undoubtedly increases the time cost of cross-architecture
development and verification, and also to some extent hin-
ders the joint use of different hardware platforms, limiting
the innovation of researchers.

Recently, Intel has proposed a cross-architecture pro-
gramming model oneAPI (Intel 2023a) to address this
problem. The oneAPI program is written in Data Parallel
C++ (DPC++). It utilizes a similar structure to modern
C++, following the SYCL (Khronos 2020) standards for

data parallelism and heterogeneous programming. DPC++
is a single-source language where host code and heterogene-
ous kernel code can be mixed in the same source file. The
C++/SYCL program is called on the host and offloads the
task to the heterogeneous platform. It shields the differences
between different hardware platforms and provides a unified
scheme to call GPUs or FPGAs from different vendors.

Listing 1 shows a simple vector add code written in
DPC++ and Listing 2 shows its CUDA version. Compared
to CUDA, DPC++ follows the modern C++ style, which is
more friendly to developers. The code size of DPC++ is also
significantly reduced. When we need to port this code to a
new platform, the only thing that needs to be done is to change
the device selector in DPC++ (the first line in Listing 1).

1 This work is a redesign and optimization based on our previous
work, which was demonstrated at the 50th International Conference
on Parallel Processing (ICPP 2021) as “Ascetic: Enhancing Cross-
Iterations Data Efficiency in Out-of-Memory Graph Processing on
GPUs”.

182 S. Li et al.

1 3

2.2 Concurrency control of oneAPI

As we discussed in Sect. 1, complex concurrency control
has caused many troubles for developers and has raised the
barrier of heterogeneous programming. oneAPI DPC++
program uses a queue mechanism following SYCL stand-
ard, where a single queue can be assigned to a single device
and will submit its task code to the runtime driver of the
corresponding device. Tasks in the same queue are executed
sequentially, following the order in which they are added
to the queue. Meanwhile, if there are no dependencies or
hardware conflicts among tasks in different queues, those
tasks can be executed in parallel. Therefore, to achieve the
concurrence execution of CPU and GPU, we only need to
allocate tasks in 2 separate queues—one for the GPU tasks
and another for the CPU tasks.

Figure 1 depicts this scheme with an example. In this
example, the execution model coordinates the execution of
task kernels and data management between CPU and GPU
via queues. Instead of processing data serially, we assign dif-
ferent tasks into two separate queues, which makes the CPU
and GPU execute tasks in parallel when data is prepared.

2.3 Out‑of‑memory graph processing on GPUs

Graph partitioning is a straightforward solution for out-of-
memory graph processing. A whole graph is divided into
several subgraphs that can fit in GPU memory. The system
processes and transfers on-demand subgraphs required by
GPU in turn. Many prior works use this scheme, such as
GraphReduce (Sengupta et al. 2015) and Graphie (Han et al.
2017). However, the sparse and irregular access pattern of
graph traversal leads to lots of redundant data transfer.

Unified Virtual Memory (UVM) was introduced by
NVIDIA in Pascal architecture (NVIDIA 2006). With
UVM, developers can use a single, virtual address space
to manage memory on both CPU and GPU. UVM enables
applications to implicitly move data between CPU and GPU
memory with page migration managed by the GPU driver.

When processing out-of-memory graphs with UVM, the
page scheme could be considered a partitioning-based scheme
whereby each partition is a page. However, handling frequent
page faults leads to bad performance (Kim et al. 2020) and we
find that the graph data is always evicted before reuse due to
long reuse distance, making the situation worse.

SubWay (Sabet et al. 2020) is another solution proposed
to minimize data transfer between CPU and GPU by select-
ing and reorganizing on-demand data to be transferred. It
is considered the best graph-partitioning-based scheme so
far. In SubWay, the vertices are maintained in both main
memory and GPU memory, and the edges are only kept
in main memory. Before each iteration, the required data
will be selected and reorganized. By accurately selecting
required data for the current iteration during pre-processing,
the amount of data transfer between CPU and GPU is greatly
reduced, and redundant data transfer is eliminated.

Ascetic (Tang 2021) is the state-of-the-art out-of-GPU-
memory graph processing framework. It partitions the GPU
memory into two regions, Static Region and On-demand Region.
Static Region stores some reusable data and On-demand Region
requires other graph data on-demand. The computing of Static
Region and the data transfer of On-demand Region is overlapped
by concurrent execution of CPU and GPU.

However, all the above works only work on NVIDIA
GPUs. And they do not support managing multiple devices
at the same time.

2.4 Related works

Out-of-memory graph processing on GPUs has been a
highly active research area in recent years due to the grow-
ing demand for efficient processing of large-scale graphs.
Various frameworks and systems have been developed to
tackle the challenges of processing graphs that do not fit into
a single GPU memory.

One of the earliest and most well-known frameworks for
out-of-memory graph processing on GPUs is Gunrock (Wang
2016), which uses graph partitioning to address the memory
constraint. Similarly, approaches such as CuSha (Khorasani
et al. 2014), MapGraph (Malewicz 2011), and CuGraph (Jiang
et al. 2018) have been developed. However, the limited GPU
memory continues to pose a challenge. There are three primary
challenges in this area. First, graph partitioning can incur sig-
nificant overhead due to CPU-GPU synchronization. Second,
graph partitioning-based schemes involve numerous redundant
data transfer. Third, Unified Virtual Memory (UVM) does not
perform well due to data thrashing and page fault latency.

To overcome these limitations, recent works have
been proposed. Pegasus (Dong 2021) is a distributed-
memory GPU cluster-based graph processing framework
for large-scale graphs. SubWay (Sabet et al. 2020) is a
recently proposed fine-grained memory management

Fig. 1 Concurrency control with task queue in oneAPI

183OneGraph: a cross‑architecture framework for large‑scale graph computing on GPUs based on…

1 3

graph processing system, which reduces redundant trans-
fer by accurately organizing subgraphs and accelerates
the organization process with GPUs. Ascetic (Tang 2021)
is the state-of-the-art out-of-GPU-memory graph com-
puting framework. It utilizes part of GPU memory as a
data cache and handles cache misses in the rest of GPU
memory, improving data efficiency with data reuse.

3 System design and implementation

Based on oneAPI, we propose a general cross-architecture
large-scale graph processing system OneGraph. We fol-
low the scheme of Ascetic Tang (2021), which acceler-
ates large-scale graph computing on GPUs across three
aspects. First, fully utilizing the GPU memory; Second,
attempting to exploit the data reusability in large-scale
graph computing to improve data efficiency, reduce data
transfer, and eliminate redundant transfer; Third, overlap-
ping CPU and GPU tasks as much as possible to obtain
higher parallelism and minimize the busy waiting time.

The memory management approach partitions the GPU
memory into two regions, namely the Static Region and
the On-demand Region. The Static Region is responsible
for caching reusable data, while the On-demand Region
loads other required data on demand. In this section, we
will describe the system design and its implementation
with oneAPI in detail.

3.1 System overview

As shown in Fig. 2, the GPU memory is divided into Static
Region and On-demand Region following the design strat-
egy of Ascetic Tang (2021). The Static Region stores part of
data that can be reused across iterations, called Static Data.
While the On-demand Region is in charge of storing data
required in the current iteration but not present in the Static
Region, called On-demand Data. In the whole workflow, two
controllers are set up. One is the GPU Manager which sends
requests to the CPU for data to be stored in On-demand
Region, and the other is the On-demand Engine on the CPU
side which sorts out the requested data from the raw data
in a fine-grained manner and transfers it to the On-demand
Region within the GPU memory.

To locate the On-demand data, we set two bitmaps on the
GPU side, namely Active Bitmap and Static Bitmap. The Active
Bitmap marks the data required in the current iteration, while
the Static Bitmap keeps track of the data already prefetched
into the Static Region of GPU. In each iteration, the data to be
accessed is marked as active and set to 1 in the Active Bitmap.
Before the computing task begins, GPU Manager processes
the two bitmaps by AND operation to locate Static Data which
can be processed immediately. Simultaneously, GPU Manager
processes the two bitmaps by XOR operation to identify the
On-demand Data which is left in the main memory. Data in
this part is organized in a similar way in SubWay Sabet et al.

Static Region On-demand
RegionStatic Data

Graph Data in Main Memory

On-demand
Data

GPU Memory

On-demand
Engine Manager

OneGraph
On-demand data request

static data is transfered in
preprocessing

chunk
1

chunk
2 ... chunk

n

Transfer on-demand data-chunks by PCIe

Fill the
On-demand

Region

Fetch
active
Data Organieze

On-demand data
in chunks

...

Fig. 2 System overview of OneGraph

184 S. Li et al.

1 3

(2020), GPU has to wait for the CPU to process the required
data and transfer it to the On-demand Region. Furthermore,
as the On-demand data cannot be stored into the On-demand
Region all at once, the CPU divides the data into several
chunks, resulting in multiple data transmissions.

In this explanation, we’ll take the example of BFS
(Breadth-First Search) to illustrate the workflow of OneGraph.
This is depicted in Fig. 3. The first step involves the GPU
manager partitioning the GPU memory based on the size of
the loaded graph data, details about how to partition is illus-
trated in Sect. 3.3. The Static Data is then loaded into the
Static Region, and the Static BitMap is initialized accurately.
Once the iterations begin, the index of the source vertex is
marked as 1 on the Active Bitmap. Then, parallel AND and
XOR between Static BitMmap and Active Bitmap and gener-
ate StaticMap and On-demand Map separately. All available
adjacent vertexes of the source vertex in Static Region are
marked as 1 on StaticMap, otherwise marked as 1 on On-
demand Map. GPU begins processing those available Static
Data, simultaneously sending requests for On-demand data
to On-demand Engine. The CPU manages the organization
of this data. After the computing of Static Data is completed,
On-demand Engine fills the On-demand Region in GPU mem-
ory and GPU begins processing On-demand Data. During the
processing of graph data, all of the visited vertexes will be
marked to 0 and their adjacent vertexes will be marked to 1
on the Active BitMap. This prepares the Active BitMap for the

next iteration. The above processing is repeated until no more
vertexes are marked as 1 on the Active BitMap.

3.2 Concurrent execution of CPU and GPU

In the given process, specific steps in Fig. 2 can be per-
formed concurrently, particularly between data transmis-
sion and computing. For instance, once the GPU manager
has finished executing the AND operation of two bitmaps,
it can immediately begin computing the data in the Static
Region. The processing of this portion will overlap the On-
demand Engine’s collection and transmission of data in the
main memory. This approach reduces the busy waiting time
between CPU and GPU, overlapping the latency caused by
data transmission.

The programming model of oneAPI makes it simpler to
achieve such parallelism with the device queue scheme men-
tioned in Sect. 2. Therefore, to achieve the overlapping of
computing and data transmission, we only need to put these
tasks in 2 separate queues - one for the computing task in
the Static Region and the other for the data transmission in
the On-demand Region. This approach enables the system to
hide data transmission latency and improve overall system
performance.

Figure 4 depicts the overlapping effect in each iteration.
In OneGraph, all the tasks on the CPU side are put into

Fig. 3 A BFS workflow of
OneGraph. Pink vertexes are
active in the current iteration. If
its adjacent edges are stored in
Static Region, the correspond-
ing index on StaticBitmap will
be marked as 1 (green items)

185OneGraph: a cross‑architecture framework for large‑scale graph computing on GPUs based on…

1 3

one task queue, which is assigned to the CPU. Tasks on the
GPU side are put into another queue that is assigned to the
GPU device. Due to there being no data dependence and
hardware conflict between Static Region Computing and
CPU tasks, the Static Region Computing and on-demand
data location and transfer will be processed in parallel.
In order to ensure correctness, a system-wide synchro-
nization must be performed prior to On-demand Region
Computing. Listing 3 shows the code of this part and List-
ing 4 shows its CUDA version. Concurrency execution
in the DPC++ program has been simplified, allowing
programmers to control only when the wait() interface
for a queue is used. In Listing 3, no wait() is demon-
strated for the StaticRegion Computing and On-demand
data location before their completion, enabling these tasks
to execute concurrently and the on-demand data locating
and transfer latency will be overlapped with StaticRegion
Computing. Conversely, executing the same scheme in
CUDA necessitates specific APIs, such as cudaMem-
cpyAsync, and managing different cudastreams
while launching kernels.

3.3 GPU memory partition

In OneGraph, the data in the Static Region is reusable across
iterations, and the computing of these data can overlap the
latency of data transfer. We attempt to maximize Static
Region’s size. However, a small On-demand Region can
lead to dividing the On-demand Data into more and smaller
chunks, resulting in more frequent data transfer between the
CPU and GPU. This situation is similar to the graph par-
titioning approach discussed in Sect. 2.1, leading to data
thrashing and performance degradation. Moreover, trans-
mitting too little data during each transmission will waste
the PCIe bandwidth. Hence, it is critical to set a proper ratio
between the two regions for better performance.

In the OneGraph, we just follow the memory partition-
ing approach in Ascetic Tang (2021), determining the ratio
between the Static Region and the On-demand Region using
empirical values. Assuming that the proportion of required
edge data in a single iteration is K, set M as the size of
GPU memory, and M

Static
 is the size of Static Region. If the

size of the dataset is D, the average data size that needs to
be loaded into the On-demand Region for each iteration is

Fig. 4 Computing and data
transfer overlapping in
OneGraph

GPU

CPU

Static Region

Computing

GenDataMap

Gather On-demand

Data
Transfer

Baseline

GPU

CPU

GenDataMap

GatherData Transfer

Computing

OneGraph

On-demand Region

Computing

186 S. Li et al.

1 3

(D −M
Static

) × K . Set R is the proportion of Static Region,
that is R = M

Static
∕M , in order to maximize the size of the

Static Region while meeting the requirements, we should
ensure that:

Some studies (Sahu et al. 2017; Tang 2021) have demon-
strated that the average proportion of edge data required per
iteration is about 10%. Hence we choose 10% as the default
value of K in experiments.

4 Experiment and evaluation

4.1 Experiment settings

Our local experiment platform has 96 Intel(R) Xeon(R) Gold
5318Y CPUs and 256GB DRAM memory, running on Linux
Ubuntu 22.04.1. The configuration of the NVIDIA GPU and
Intel GPU we used are shown in Table 1.

As shown in Table 2, we use four real-world large-scale
graphs and two synthesized graphs in experiments. The GS
and FK are directed and others are undirected. Their size
shown in Table 2 is their size in CSR format without edge
weight, and when the edge weights are necessary, it will
nearly double the CSR file size. For instance, the size of FK
with edge weight in CSR is 20 G. We use RMAT (Chakra-
barti et al. 2004), a widely used graph generator, to generate
the synthesized graphs. We limit the available GPU memory
to 12 G for our applications in experiments to simulate the
out-of-memory situation. It is worth mentioning that in this
scenario, all the data sets, regardless of whether they have
edge weight or not, are out-of-memory. This is because the

(1)R =
(

1 − K ×
D

M

)

∕(1 − K)

frameworks used in experiments will introduce some addi-
tional memory overhead. Four classical graph processing
algorithms are used to evaluate our scheme, BFS, CC, SSSP,
and PR. We use the empirical value to determine the size of
Static Region according to Ascetic (Tang 2021).

For comparison, we implement a UVM-based scheme in
our framework with Intel oneAPI, using the Unified Shared
Memory API malloc_shared in Intel oneAPI to allocate
the EdgeList and keep other data in GPU memory. We also
reproduce a prototype of SubWay with oneAPI for compari-
son, which gathers requested data in a fine-grained manner
and sends them to GPU for processing. SubWay and One-
Graph both use muti-thread to accelerate the data organiza-
tion on the CPU side. Each application is run 10 times and
we take the arithmetic mean in our evaluation.

4.2 Performance analysis and evaluation

Table 3 shows three memory management approaches’ per-
formance on the datasets in Table 2. We evaluate them with
their speedup over the common CPU serial approach. The
results show that the UVM-based scheme could reach an
average 11.65x speedup while the SubWay only has 9.23x.
OneGrpah can achieve a 32.62x speedup on average and
127.53x in the best case.

OneGrpah achieves the best performance among them.
Our analysis of the reasons for the poor performance of
SubWay revealed that the bottleneck lies primarily in the
GPU busy waiting for the CPU to organize and transfer
data. Although we have accelerated the data organization
process with multi-thread and GPU, the final results show
that the GPU is still idle for an average of 50% of the GPU
time in SubWay.

Table 4 demonstrates the average data transfer amount
of OneGrpah is only 12.74% of that of USM. Compared to
USM, OneGrpah reduces data transfer by almost 90%, and
compared to SubWay, OneGrpah reduces data transfer by
almost four times. This illustrates that OneGrpah greatly
improves data efficiency while fully utilizing GPU mem-
ory resources. In some experiments, SubWay may transfer
more data than USM, which is due to the communication
costs when using GPU to accelerate subgraph generation,

Table 1 GPU platform configuration

NVIDIA GPU Intel GPU

Model A100 PCIe Data Center GPU Flex 170
Cores 6912 512
Memory 80GB HBM2 16GB GDDR6
Driver Driver 515.65.01 and

CUDA 11.6.2
intel-i915

Table 2 Datasets used in
experiments

Abbr Name Vertices Edges Size

GS Gsh-host-2015(d) (Low 2010) 65.47M 1.68B 14 G
FK Friendster-konect(d) (Ganguly 2020) 65.18M 2.41B 11 G
UK Uk-2007-04(u) (Low 2010) 101.92M 3.53B 15 G
FS Friendster-snap(u) (Leskovec and Krevl 2014) 124.83M 3.61B 15 G
RMAT1 RMAT-rand(u) 5.25M 1.96B 16 G
RMAT2 RMAT-rand(u) 106.67M 3.72B 15 G

187OneGraph: a cross‑architecture framework for large‑scale graph computing on GPUs based on…

1 3

which incurs a significant overhead when the communica-
tion between CPU and GPU is too frequent.

4.3 Breakdown of the optimization

For a deep understanding of the performance optimization of
OneGraph, we use “static savings” to represent the perfor-
mance benefits of caching data in Static Region, and “over-
lapping savings” to represent the performance benefits of
the overlapping strategy. We use SubWay’s performance as
a baseline, as shown in Fig. 5. The results show that, com-
pared to SubWay, the Static Region can provide an average
performance improvement of 30%, while the overlapping
strategy can provide an average performance improvement
of 32%. It is worth noting that, for the BFS, there is actually
no fine-grained data reuse since visited nodes will not be vis-
ited again. However, the Static Region prefetching policy can
still provide an average performance improvement of 20%
for the BFS. This is because, after some data is prefetched
into the GPU’s memory, the GPU can directly access it with-
out waiting for the CPU to organize the data.

Table 3 Performance results

The values of USM, SubWay and OneGraph are represented by the
speedup of Serial. The best among the three methods is in bold

Serial USM SubWay OneGraph

SSSP FS 105.91s 1.04x 3.75x 10.11x
GS 340.97s 2.12x 3.27x 10.72x
FK 151.46s 2.08x 3.43x 20.56x
UK 236.69s 0.51x 1.06x 2.34x
RMAT1 117.63s 1.96x 3.97x 14.15x
RMAT2 507.40s 1.91x 7.78x 29.33x

BFS FS 48.78s 4.36x 3.26x 15.36x
GS 66.94s 35.72x 26.90x 110.83x
FK 11.31s 21.07x 16.27x 110.90x
UK 133.14s 6.27x 5.71x 28.54x
RMAT1 8.98s 10.57x 11.21x 39.44x
RMAT2 284.32s 54.28x 48.47x 127.53x

CC FS 92.65s 6.48x 2.88x 17.01x
GS 41.82s 1.93x 1.05x 12.53x
FK 126.66s 8.35x 3.52x 28.68x
UK 170.19s 2.41x 1.53x 4.94x
RMAT1 63.58s 2.68x 1.84x 9.97x
RMAT2 192.01s 7.48x 4.28x 11.64x

PR FS 604.25s 17.16x 13.41x 28.38x
GS 568.10s 2.01x 6.94x 3.31x
FK 560.50s 31.16x 34.89x 71.57x
UK 879.70s 0.90x 5.45x 7.36x
RMAT1 455.00s 15.84x 10.90x 38.29x
RMAT2 906.50s 41.41x 1.89x 29.32x

Average 11.65x 9.23x 32.62x

Table 4 Data transfer results

The values of SubWay and OneGraph are represented by the percent-
age of USM. The best among the three methods is in bold

USM(GB) SubWay (%) OneGraph (%)

SSSP FS 33.03 265.49 33.64
GS 418.93 126.26 3.29
FK 404.84 15.32 2.82
UK 3545.39 29.18 0.43
RMAT1 2781.65 1.47 0.26
RMAT2 421.05 21.90 5.82

BFS FS 22.66 60.08 12.88
GS 82.31 21.00 3.02
FK 106.81 12.01 2.01
UK 199.56 18.60 4.56
RMAT1 147.69 6.05 2.24
RMAT2 108.06 15.08 8.85

CC FS 14.12 158.25 19.63
GS 123.59 46.51 13.53
FK 82.05 44.49 23.62
UK 334.10 28.85 22.21
RMAT1 157.22 24.99 15.29
RMAT2 228.67 17.94 14.63

PR FS 348.41 38.50 30.25
GS 4697.27 8.23 3.23
FK 688.21 17.19 7.37
UK 13951.46 3.35 2.53
RMAT1 170.59 67.09 20.22
RMAT2 255.51 1247.07 39.34

Average 90.04 12.74

Fig. 5 Breakdown of the optimization benefits

188 S. Li et al.

1 3

The bitmaps in OneGraph are not free. We have evalu-
ated the overhead during the look-up of StaticMap and
OndeamandMap. The results show that the look-up of
bitmaps takes 31% of GPU time in OneGraph. According
to our measurement, SubWay spends 50% of GPU time to
locate data on the CPU side and USM spends 61% of GPU
time to handle page faults, which is consistent with other
research (Kim et al. 2020). In contrast, OneGraph sig-
nificantly minimizes the overhead associated with locat-
ing on-demand data. Bitmaps also reduce available GPU
memory for storing graph data. According to our scheme,
bitmaps and relative auxiliary arrays will occupy 2.2 GB
for GSH and FK, and 4.1 GB for FK and UK. Despite the
limited GPU memory for processing all edges, sacrificing
some memory to achieve faster data locating and process-
ing is a justifiable trade-off. However, when the dataset
is so large that bitmaps exceed GPU memory, OneGraph
becomes infeasible.

We also test the impact of a different ratio between
Static Region and On-demand Region on the UK dataset
with PR and BFS. As shown in Fig. 6, with a larger ratio
of Static Region increases, OneGraph spends more time in
Static Data processing, leading to fewer On-demand Data
transmissions and more overlapping between transfer and
computing. The results demonstrate that the chosen ratio
based on our empirical value can achieve relatively good
performance, although not always optimal performance.
This impact varies with the different topologies of differ-
ent graph data sets.

We also use RMAT (Chakrabarti et al. 2004) to gen-
erate some larger datasets(e.g.20G-50 G) and compare

the performance of USM, SubWay, and OneGraph. This
time we limited available GPU memory to the application
to 15 G-20 G. Results show that OneGrpah achieves an
average of 1.64x speedup over USM and 2.75x speedup
over SubWay on these larger datasets. Moreover, with a
larger dataset and limited PCIe bandwidth, SubWay and
OneGraph have to spend more time in data transfer, how-
ever, OneGraph always transfers fewer data because the
date reuse in Static Region.

In general, our experiments prove that the empirical value
of the ratio between two regions is reasonable. And whether
different ratios or a larger data set, OneGraph always shows
the best performance.

4.4 Graceful balance between portability
and performance

oneAPI is a cross-architecture programming model and Intel
has also proposed a series of tools to support convenience
cross-architecture portability and migration. For NVIDIA
GPUs and AMD GPUs, besides Intel oneAPI Toolkit, a
plugin for compiler (CodePlay 2023a, b) is necessary. The
plugin can be used along with the existing oneAPI Toolkits
that includes the oneAPI DPC++/C++ Compiler to build
your SYCL code and run it on compatible NVIDIA or AMD
GPUs. Moreover, the DPC++ Compatibility Tool(dpct) in
oneAPI toolkit could automatically migrate a CUDA project
to a DPC++/SYCL project (Intel 2023b).

We have tested the performance of OneGrpah on differ-
ent hardware platforms. Without any code modifications,
OneGrpah was successfully compiled and able to run on

Fig. 6 Impact of static region ratio on performance(PR/BFS) using UK dataset. The red star is the result of chosen ratio based on empirical value

189OneGraph: a cross‑architecture framework for large‑scale graph computing on GPUs based on…

1 3

NVIDIA A100 GPU, Intel Datacenter Flex170 GPU, and
AMD Radeon integrated GPU. We conducted experiments
using datasets in Table 2 on the Intel GPU in the Intel data
center to evaluate SubWay and OneGrpah. The results,
summarized in Table 5, indicate that OneGraph achieves an
average speedup of 2.75x over SubWay. Our experiments
also reveal that PR performs better on the Intel Flex170 GPU
than on the NVIDIA A100 GPU. Due to the AMD GPU we
have is not a data-center-level product, we did not conduct
any further evaluations on it.

When considering the trade-offs between convenient
portability and performance, it is widely acknowledged
that achieving both can be challenging. oneAPI, as a gen-
eral cross-architectural programming model, usually being
considered to have a significant performance loss compared
to a dedicated programming model like CUDA. We have
reproduced Ascetic according to its open-source release and
compared the performance of OneGraph with it. Figure 7
shows the performance comparison between OneGraph and
Ascetic. As shown in Fig. 7, the results demonstrate that
the performance loss of OneGraph is less than 1% for CC.
Furthermore, for BFS, SSSP, and PR, OneGraph outper-
forms Ascetic. This finding suggests that OneGraph strikes
a graceful balance, providing both good portability and
excellent performance for large-scale graph computing on
CPU-GPU heterogeneous platforms.

5 Conclusion

Efficiently utilizing heterogeneous platforms to accelerate
large-scale graph computing applications is a significant
challenge. The steep learning curve, complex concurrency
control schemes, and bad portability of dedicated program-
ming models have been troublesome for heterogeneous
developers. In this paper, we utilize the opportunity provided
by Intel oneAPI to design a cross-architecture framework
for large-scale graph computing on heterogeneous platforms
with GPU and CPU. It follows the design of the state-of-the-
art large-scale graph computing framework. We implement
a prototype of the framework OneGraph using Intel oneAPI
and conduct rigorous performance tests on four classical
graph algorithms. The results show that OneGraph out-
performs the graph-partitioning scheme and UVM scheme
in large-scale graph computing. Moreover, it can be easily
ported to different hardware platforms without code modi-
fication. The performance loss is only less than 1% in large-
scale graph computing and the code size is also significantly
reduced compared to other dedicated programming models.

Acknowledgements This work was supported in part by the
Key Research and Development Program of Guangdong,
China (2021B0101310002), Natural Science Foundation of
China (62172239), and Intel Corporation.

Data availability The data that support the findings of this study are
available on request from the corresponding author upon reasonable
request.

Code availability The source code of OneGraph is available at https://
github. com/ NKU- Embed dedSy stem/ OneGr aph

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References

AMD: ROCm (2022). https:// www. amd. com/ zh- hans/ graph ics/ serve
rs- solut ions- rocm- ml. Accessed: April 7, 2023

Boldi, P., Codenotti, B., Santini, M., Vigna, S.: UbiCrawler: a scal-
able fully distributed web crawler. Softw. Pract. Exp. 34, 711–726
(2004)

Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model
for graph mining, pp. 442–446. SIAM (2004)

CodePlay: OneAPI for AMD GPUS. https:// devel oper. codep lay. com/
produ cts/ oneapi/ amd/ home/ (2023a). Accessed 14 Apr 2023

CodePlay: OneAPI for NVIDIA GPUS. https:// devel oper. codep lay.
com/ produ cts/ oneapi/ nvidia/ home/ (2023b). Accessed 14 Apr
2023

Dong, Y., et al.: PEGASUS: pre-training graph neural networks by con-
trastive decoding of graph random walks, pp. 6996–7008 (2021)

Ganguly, D., Zhang, Z., Yang, J., Melhem, R.: Adaptive page migra-
tion for irregular data-intensive applications under GPU memory
oversubscription, pp. 451–461 (2020)

Table 5 The performance of OneGraph and SubWay on Intel Flex170
GPU

SubWay OneGraph SpeedUp

BFS 26.53s 7.98s 3.32x
PR 83.89s 64.43s 1.30x
CC 48.15s 17.93s 2.69x
SSSP 293.4s 56.59s 5.18x
AVERAGE 100.97s 36.73s 2.75x

Fig. 7 Performance comparison with CUDA program

https://github.com/NKU-EmbeddedSystem/OneGraph
https://github.com/NKU-EmbeddedSystem/OneGraph
https://www.amd.com/zh-hans/graphics/servers-solutions-rocm-ml
https://www.amd.com/zh-hans/graphics/servers-solutions-rocm-ml
https://developer.codeplay.com/products/oneapi/amd/home/
https://developer.codeplay.com/products/oneapi/amd/home/
https://developer.codeplay.com/products/oneapi/nvidia/home/
https://developer.codeplay.com/products/oneapi/nvidia/home/

190 S. Li et al.

1 3

Han, W., Mawhirter, D., Wu, B., Buland, M.: Graphie: large-scale
asynchronous graph traversals on just a GPU, pp. 233–245 (2017)

Harris, M. Unified memory for CUDA beginners. https:// devel oper.
nvidia. com/ blog/ unifi ed- memory- cuda- begin ners/ (2021).
Accessed 31 Dec 2020

Intel: Intel oneAPI. https:// www. intel. com/ conte nt/ www/ us/ en/ softw
are/ oneapi. html (2023a). Accessed Mar 2023

Intel: Migrate CUDA applications to oneAPI cross-architecture pro-
gramming model based on SYCL. https:// www. intel. com/ conte nt/
www/ us/ en/ devel oper/ artic les/ techn ical/ migra te- cuda- appli catio
ns- to- oneapi- based- on- sycl. html (2023b). Accessed 14 Apr 2023

Jiang, C., Chou, J., Zhou, T.: cuGraph: a GPU-accelerated graph ana-
lytics library, pp. 1–7. IEEE (2018)

Khorasani, F., Vora, K., Gupta, R., Bhuyan, L.N.: CuSha: vertex-cen-
tric graph processing on GPUS, pp. 239–252 (2014)

Khronos: OpenCL. https:// www. khron os. org/ opencl/ (2011). Accessed
7 Apr 2023

Khronos: SYCL 2020 provisional specification. Tech. Rep., Khronos
Group (2020)

Kim, W.: Prediction of essential proteins using topological properties
in GO-pruned PPI network based on machine learning methods.
Tsinghua Sci. Technol. 17, 645–658 (2012)

Kim, H., Sim, J., Gera, P., Hadidi, R., Kim, H.: Batch-aware unified
memory management in GPUS for irregular workloads. In: ASP-
LOS’20, pp. 1357–1370. Association for Computing Machinery,
NY, USA, New York (2020)

Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset
collection. http:// snap. stanf ord. edu/ data (2014)

Low, Y., et al.: GraphLab: a new framework for parallel machine learn-
ing. In: UAI’10, pp. 340–349. AUAI Press, Arlington, Virginia,
USA (2010)

Malewicz, G., et al.: Pregel: a system for large-scale graph processing,
pp, 135–146. ACM (2011)

NVIDIA: CUDA toolkit. https:// devel oper. nvidia. com/ cuda- toolk it
(2022). Accessed 7 Apr 2023

NVIDIA: NVIDIA Tesla P100-the most advanced datacenter accelera-
tor ever built featuring pascal GP100. https:// www. nvidia. cn/ conte
nt/ dam/ en- zz/ Solut ions/ Data- Center/ tesla- p100/ pdf/ nvidia- tesla
p100- techo vervi ew. pdf (2006). Accessed 26 Nov 2022

Rossi, R.A., Ahmed, N.K.: The network data repository with interac-
tive graph analytics and visualization. In: AAAI’15, pp. 4292–
4293 (2015)

Sabet, A.H.N., Zhao, Z., Gupta, R.: Subway: minimizing data transfer
during out-of-GPU-memory graph processing. In: EuroSys’20.
Association for Computing Machinery, NY, USA, New York
(2020)

Sahu, S., Mhedhbi, A., Salihoglu, S., Lin, J., Özsu, M.T.: The ubiquity
of large graphs and surprising challenges of graph processing.
Proc. VLDB Endow. 11, 420–431 (2017)

Sengupta, D., Song, S.L., Agarwal, K., Schwan, K.: GraphReduce:
processing large-scale graphs on accelerator-based systems. In:
SC’15, Association for Computing Machinery, NY, USA, New
York (2015)

Tang, R., et al.: Ascetic: enhancing cross-iterations data efficiency in
out-of-memory graph processing on GPUS. In: ICPP 2021. Asso-
ciation for Computing Machinery, NY, USA, New York (2021)

Wang, Y., et al.: Gunrock: a high-performance graph processing library
on the GPU, pp. 1–12 (2016)

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Shiyang Li received the bache-
lor’s degree from Nankai Univer-
sity, in 2022. He is currently
working toward the graduate
degree with Nankai University.
His research interests include
parallel processing and operating
system.

Jingyu Zhu is currently working
toward the graduate degree with
Nankai University.

Jiaxun Han is currently working
toward the graduate degree with
Nankai University.

Yuting Peng is currently working
toward the graduate degree with
Nankai University.

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://www.intel.com/content/www/us/en/software/oneapi.html
https://www.intel.com/content/www/us/en/software/oneapi.html
https://www.intel.com/content/www/us/en/developer/articles/technical/migrate-cuda-applications-to-oneapi-based-on-sycl.html
https://www.intel.com/content/www/us/en/developer/articles/technical/migrate-cuda-applications-to-oneapi-based-on-sycl.html
https://www.intel.com/content/www/us/en/developer/articles/technical/migrate-cuda-applications-to-oneapi-based-on-sycl.html
https://www.khronos.org/opencl/
http://snap.stanford.edu/data
https://developer.nvidia.com/cuda-toolkit
https://www.nvidia.cn/content/dam/en-zz/Solutions/Data-Center/tesla-p100/pdf/nvidia-teslap100-techoverview.pdf
https://www.nvidia.cn/content/dam/en-zz/Solutions/Data-Center/tesla-p100/pdf/nvidia-teslap100-techoverview.pdf
https://www.nvidia.cn/content/dam/en-zz/Solutions/Data-Center/tesla-p100/pdf/nvidia-teslap100-techoverview.pdf

191OneGraph: a cross‑architecture framework for large‑scale graph computing on GPUs based on…

1 3

Zhuoran Wang is currently work-
ing toward the graduate degree
with Nankai University.

Xiaoli Gong was born in 1983.
He received the bachelor’s and
doctor degrees from Nankai Uni-
versity, Tianjin, China in 2005
and 2011 respectively. He is cur-
rently an associate professor and
the vice chair with the Institute
of Systems and Networks at
Nankai University. His research
interests include system virtual-
ization, parallel computing,
embedded system optimization,
and trustable computing.

Gang Wang was born in 1974. He
received the PhD degree from
Nankai University. He is cur-
rently a professor. His research
interests include massive data
storage, search engine, parallel
computing, and bioinformatics.

Jin Zhang received the PhD
degree from Nankai University.
He is a professor with Nankai
University. His main research
interests include mobile cloud
computing.

Xuqiang Wang was born in 1989.
He is an associate senior engi-
neer in the Information and
Communication Company of
State Grid Tianjin Electric
Power Company. His research
interests include application
technology of AI in power grid
and big data mining.

	OneGraph: a cross-architecture framework for large-scale graph computing on GPUs based on oneAPI
	Abstract
	1 Introduction
	2 Background and related works
	2.1 Heterogeneous platforms and programming model
	2.2 Concurrency control of oneAPI
	2.3 Out-of-memory graph processing on GPUs
	2.4 Related works

	3 System design and implementation
	3.1 System overview
	3.2 Concurrent execution of CPU and GPU
	3.3 GPU memory partition

	4 Experiment and evaluation
	4.1 Experiment settings
	4.2 Performance analysis and evaluation
	4.3 Breakdown of the optimization
	4.4 Graceful balance between portability and performance

	5 Conclusion
	Acknowledgements
	References

