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Abstract
Since specific hardware characteristics and low-level programming model are adapted to both NVIDIA GPU and new gen-
eration Sunway architecture, automatically translating mature CUDA kernels to Sunway ATHREAD kernels are realistic but 
challenging work. To address this issue, swCUDA, an auto parallel code translation framework is proposed. To that end, we 
create scale affine translation to transform CUDA thread hierarchy to Sunway index, directive based memory hierarchy and 
data redirection optimization to assign optimal memory usage and data stride strategy, directive based grouping-calculation-
asynchronous-reduction (GCAR) algorithm to provide general solution for random access issue. swCUDA utilizes code 
generator ANTLR as compiler frontend to parse CUDA kernel and integrate novel algorithms in the node of abstracted 
syntax tree (AST) depending on directives. Automatically translation is performed on the entire Polybench suite and NBody 
simulation benchmark. We get an average 40x speedup compared with baseline on the Sunway architecture, average speedup 
of 15x compared to x86 CPU and average 27 percentage higher than NVIDIA GPU. Further, swCUDA is implemented to 
translate major kernels of the real world application Gromacs. The translated version achieves up to 17x speedup.

Keywords  Code translation · CUDA · ATHREAD · Sunway architecture

1  Introduction

In recent years, heterogeneous computing architecture is 
widely applied in High Performance Computing (HPC) 
and AI domain. GPU and Sunway based architecture are 
the representative heterogeneous platforms. From the data 
of TOP500 list in November 2022, 13 supercomputer cent-
ers adopt NVIDIA GPU as accelerator in ranked top 20 
(Strohmaier et al. 2022). Sunway TaihuLight (Fu et al. 2016) 
ranks at the top of the TOP500 list in 2016-2017. The new 
generation Sunway supercomputer is published with new 
SW26010P processors recently (Liu et al. 2021), showing 
powerful computing capability. Nowadays, a broad range of 
industries with over six hundred applications have already 
been accelerated by NVIDIA GPU (Nvidia 2018), including 
climate, weather, ocean model, Molecular dynamics, quan-
tum chemistry, etc. Compute Unified Device Architecture 
(CUDA) based parallel kernel programming language is 
main stream of heterogeneous developing model. On the 
other hand, Sunway platform has very specific hardware 
characteristics and provides vendor-specific lightweight 
multi-thread library (ATHREAD) as kernel programming 
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language (Zhu et al. 2021), which is extended C-like lan-
guage. Its software ecosystem is immature. Since both 
of GPU and Sunway have exclusive kernel programming 
library interface and these library are all extended C-like 
interface, designing automatically code translator from 
mature CUDA code to ATHREAD code will significantly 
improve programming productivity in Sunway platform.

However, developing code translator from CUDA to 
ATHREAD is a challenging work. First, as accelerator of 
heterogeneous platform, the hardware architecture between 
GPU Sunway CPE is different, which determines the low-
level programming model. GPU is driven by streaming 
multiprocessors (SMs) (Nvidia 2023), but Sunway CPE is 
comprised of 8 × 8 slave core array. The hardware mapping 
model between GPU and Sunway CPE is needed to design 
as base of code translator. Second, the fine granularity of 
parallel programming model is different bewteen CUDA 
and ATHREAD. The CUDA programming model is thread 
parallel hierarchy, where three-dimensional block ID and 
thread ID is used to get data index and each thread calcu-
late exclusive data in parallel. Sunway kernel programming 
model is parallel computing within the slave cores. Third, 
the different data usage of memory hierarchy greatly impact 
on the parallel performance. There is not general criterion 
for memory hierarchy optimization in Sunway. Several mem-
ory optimizing methods (e.g., data stride and double mem-
ory cache) are presented in (Liu et al. 2022), but it doesn’t 
explain how to use in which situation. Fourth, since Sunway 
has no hardware support for atomic operation, write-conflict 
is big issue during random memory access pattern. (Chen 
et al. 2021) designs “dual-slice” partitioning algorithm to 
avoid the write-conflict in molecular dynamics simulations. 
But this solution is exclusive for specific application. There 
is not general solution for write-conflict.

To address these challenges, we propose an auto code 
translator framework swCUDA to efficiently transform 
CUDA codes to ATHREAD codes. swCUDA provides gen-
eral transforming scheme and significantly improves pro-
gramming productivity for Sunway. In summary, this paper 
makes the following contributions.

•	 Heuristic hardware mapping model between GPU and 
Sunway CPE is constructed as basis for code translation. 
Scaled affine algorithm is proposed to translate CUDA 
primitives of thread hierarchy to ATHREAD index.

•	 Directive based memory hierarchy translation and data 
redirection strategy is addressed to provide the optimal 
memory usage and data indexing transformation in ATH-
READ Kernel.

•	 Directive based GCAR scheme provides general solution 
to remove random access issue due to no hardware sup-
port for atomic operation.

We evaluate our swCUDA by PolyBench suit and NBody 
simulation, where PolyBench is benchmark suite of numeri-
cal computations (Verdoolaege et al. 2013) and NBody is 
typical application in CUDA SDK (Han and Abdelrahman 
2011). We demonstrate that translated application delivers 
an average 40x speedup compared to the baseline on the 
Sunway architecture, average speedup of 15x when com-
pared to x86 CPU and average 27 percentage higher than 
NVIDIA GPU. Furthermore, as open-sourced molecular 
dynamics (MD) simulation, Gromacs (Kutzner et al. 2019) 
is selected for in-depth code translation study. Four compli-
cated CUDA kernels are translated to ATHREAD codes. It 
shows up to 17x speedup compared to the baseline on the 
Sunway architecture.

2 � Background

2.1 � New generation sunway supercomputer

The new generation Sunway supercomputer integrates high-
performance hetergeneous many-core processor SW26010P, 
each of which includes 6 Core Groups(CGs), and network 
communication on chip is adopted. Each CG consists of 
one Management Processing Element (MPE), one 8 × 8 CPE 
cluster and one Memory Controller(MC).

In terms of storage, each CG contains 16GB DDR4 mem-
ory which can be accessed by MPE and CPE through MC. 
Meanwhile, each CPE contains a 256KB fast Local Data 
Memory(LDM) and data transfer between LDM and main 
memory can be realized by Direct Memory Access(DMA). 
The SW26010P also has a performance advantage. MPE 
operates at 2.1GHz frequency, where CPE works at 
2.25GHz. The peak performance of SW26010P processor 
is up to 14.026 TFLOP/s in double precision, correspond-
ing memory bandwidth is 307.2 GB/s (Shang et al. 2021). 
The hardware promotion further enhances the the applica-
tion performance.

2.2 � Heterogeneous architecture and programming 
model

Generally, the spirit of heterogeneous programming is that 
host offloads computing intensive kernel code to accelera-
tor unit. This model is used in both CUDA and ATHREAD 
programming language to accelerate scientific applications. 
Under the offload model, programmers need to write host 
code and device code, explicit data transfer between the host 
memory and accelerator memories. Host code is responsible 
for data organization and transmission, explicitly offloading 
kernel to computing accelerator. Device code is executed 
by many GPU threads in CUDA or by Sunway CPEs in 
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ATHREAD, in so-called Single Instruction Multiple Thread 
(SIMT) fashion.

In CUDA, threads are organized by grid. A grid contains 
three-dimensional thread-blocks, each thread-block con-
tains three-dimensional threads (Nvidia 2023). Each thread 
is given unique thread ID. Built-in variables blockIdx and 
threadIdx is used as index of thread-blocks and threads to 
specify the position of data handled. Since thread-block 
in GPU has shared memory which can be accessed by its 
inner thread, it is generally used as basic execution unit for 
programmers. Instead of blockIdx and threadIdx usage in 
CUDA, each Sunway CPE has unique ID (slaveID) as index 
to handle the different data. From this point, thread-block in 
CUDA and single Sunway CPE act the compatible role as 
the basic execution unit in accelerator. On the other hand, 
codes are executed in parallel with inner threads of thread-
block but sequentially for single CPE.

Furthermore, strict access authority and latency of vari-
ous memory hierarchy has obvious contrast between CUDA 
and ATHREAD, which generates different memory access-
ing strategies. In CUDA, private registers are accessible by 
single thread and shared memory is visible to all threads 
within single thread-block. Global memory and constant 
memory is accessible for all threads. Variables defined in 
registers or shared memory in different thread-block can’t 
access each other. The registers always have the lowest 
latency, secondly shared memory, at last global memory and 
constant memory. The only way to access the data in host 
by GPU is transferring data from host and device by DMA 
in CUDA. In ATHREAD, each CPE has its own LDM with 
lowest latency. Data defined in LDM can be accessed by 
other CPEs with remote memory access (RMA) API support 
(Zhu et al. 2021). Continuous shared memory in each CPE 
can be configured as global shared mode, which is accessed 
by all CPEs. Unlike CUDA, ATHREAD has flexible meth-
ods to access data in host by CPE: DMA transfer, cache 
access and remote non-cached access. The selection criteria 
is depending on the accessed data size combined with dif-
ferent memory accessing latency.

Both CUDA and ATHREAD provide specific program-
ming API, declarator specifiers and primitives to support 
heterogeneous programming with extended C-like interface. 
The programming interface for thread hierarchy and memory 
hierarchy is foundation of heterogeneous programming and 
our focus of automatically translation framework.

2.3 � Another tool for language recognition (ANTLR)

ANTLR (Parr and Fisher 2011; Parr 2013; Parr et al. 2014) 
is a powerful cross-language syntax parsing tool developed 
based on JAVA. It adopts the LL grammar parsing mode, 
a top-down parsing method, and can be used to read, pro-
cess, execute and translate structured text or binary files. It 

is widely used in academia and industry to build all sorts of 
languages, tools, and frameworks. ANTLR parses lexical 
rules, syntax rules, and tree parsing rules by reading from 
the definition syntax file to generate corresponding lexer, 
parser, and tree-parser. The lexer converts the input character 
stream into word stream composed of phrases according to 
the lexical rules, thus obtaining the lexical analysis result of 
a specific language.The parser checks the syntax and com-
bines these phrase word streams to generate a syntax tree, 
where all lexical information is stored at the leaf nodes. The 
tree-parser is to carry out traversal analysis and operation 
on the syntax tree, which is the tree representation of the 
abstract syntax structure of the source code, and finally gen-
erate the target parsing code. The main workflow of ANTLR 
is shown in the figure Fig. 1. The character stream passes 
through the parser from top to bottom, resulting in the object 
code.

Syntax tree is an important data structure that passes 
complete source code information through the parser to the 
rest of the system. To efficiently traverse the syntax tree, 
ANTLR provides listener and visitor mechanisms, which 
make the application logic and syntax files separated, the 
application program is packaged independently, so as to 
avoid the application logic scattered in the grammar file 
rules, so that in the listener can directly write the logic code 
entering rules and leaving rules, reduce the degree of cou-
pling between programs. The ANTLR mentioned in this 
article is ANTRL4, which supports the generation of profil-
ers for C, C++, Java, JavaScript, Objective-C, Perl, Python, 
Ruby and other programming languages, with a high degree 
of language freedom.

2.4 � MD simulation application gromacs

As open-sourced molecular dynamics simulation, Gromacs is 
widely set up and run in versatile heterogeneous architecture 

Fig. 1   The main workflow of ANTLR
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of HPC center all over the world. The simulation system, com-
prising thousands to millions of atoms according to molecule 
type, is executed for millions of time steps to derive the time 
evolution of atomic movement and produce MD trajectory 
(Kutzner et al. 2019). Therefore, number of HPC nodes is 
easily occupied for weeks in one molecular simulation. How 
to improve Gromacs performance in different heterogeneous 
architecture becomes progressive research. In Gromacs, there 
are two computing intensive parts: the short-range part of Cou-
lomb and Van der Walls interactions, the long-range part of 
Coulomb interactions with PME method. By offloading these 
two computation parts to GPU, the performance is effectively 
accelerated.

Lennard–Jones potential is used to calculate Van der Waals 
interactions, shown in Eq. 1, where � and � is collision diam-
eter and the depth of potential well, r is distance of particle 
pairs. Short-range coulomb force calculation combined with 
PME method is shown in Eq. 2, where erfc(x) is the comple-
mentary error function. All the particles should be searched 
in cutoff radius. To improve the performance, nearest image 
algorithm and neighbor list search algorithm is mainly used 
under periodic boundary conditions.

Long-range coulomb force is mainly calculated by PME 
method in reciprocal space. Under the periodic boundary 
conditions, the equation of coulomb potential is shown in 
Eq. 3, where qi is coulomb charges, ri is coulomb positions, 
L is box length. Since this equitation is conditionally con-
vergent, Ewald is decomposed by three parts: a direct sum 
in Cartesian space, a reciprocal sum in Fourier space and 
correction items (Essmann et al. 1995), shown in Eq. 4, 5 
and 6. Direct space interactions are mapped to short-range 
coulomb, handled with cutoffs. Reciprocal space interactions 
are used to calculate the long-range coulomb force.
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The constant � is parameter that determines the convergence 
between the direct space sum and the reciprocal space sum. 
m is defined as the reciprocal lattice vectors of unit cell and 
its periodic images. The volume of unit cell is defined as V. 
Array Q(m1,m2,m3) is calculated and interpolated by frac-
tional coordinates and spline coefficient, shown in Eq. 7. 
F(Q)(m1,m2,m3) is the transformation of array Q by 3DFFT. 
Array B(m1,m2,m3) is transforming coefficient, calculated 
by Euler exponential spline.

In summary, the long-range Coulomb force calculation will 
experience five computing intensive parts. First, Charge 
spreading is performed to get the array Q(k1, k2, k3) by Eq. 7. 
Second, FFT is used to transform into reciprocal space to get 
array F(Q)(m1,m2,m3) . Third, Calculation of convolutions 
is executed in reciprocal space. Fourth, iFFT back to direct 
space is executed. Finally, forces are interpolated to derive 
the forces at atom position (Jing et al. 2012; Harvey and 
De Fabritiis 2009). On the other hand, short-range calcula-
tion is executed by combines the Lennard–Jones and Cou-
lomb force together in single accelerator kernel. The newest 
GPU offloading schemes is shown in Fig. 2.
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Fig. 2   Classic CPU+GPU heterogeneous parallel scheme of Gromacs
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3 � Algorithm and design

In this section, we first present the overview of swCUDA. 
Then, core mapping translation algorithm is addressed for 
CUDA to ATHREAD. After that, directive based memory 
hierarchy translation is introduced to assign optimal mem-
ory usage and data stride strategy. Finally, directive based 
GCAR scheme is presented to resolve random access issues. 
These optimization methodologies are detailed in depth in 
the following sections.

3.1 � Overview

The architecture of swCUDA is shown in figure 3. First, high 
level directives, which is embedded to describe kernel input 
parameters, are used to provides accurate data management 
translation of our framework. Second, the AST of CUDA 
kernel code is constructed by ANTLR as compiler front-end. 
As powerful parsing tool, ANTLR provide ParseTreeProp-
erty instance to associate property with a parse tree node. 
By using this class instance, we rewrite and store each node 
of CUDA AST and construct targeted ATHREAD AST. 
Third, our novel algorithms are invoked by corresponding 
to AST nodes of (1) directive declarations to store variable 
attributes, (2) statement of CUDA index primitive, (3) input 
parameter usage and (4) atomic operation. After rewriting 
the core AST nodes, entire CUDA parallel codes are inher-
ited and organized to generate ATHREAD code. After that, 

although we have designed data access redirection transla-
tion, flexible data access pattern can’t be all covered. Hence, 
annotation is embedded for uncovered data access pattern 
to make programmers to make quick data locality modifica-
tion. Finally, with minor modification, the final ATHREAD 
kernel code is easily finalized. The powerful productivity is 
shown by swCUDA.

3.2 � Core mapping translation algorithm

Core mapping translation algorithm is comprised of hard-
ware mapping model and scale affine translation. Hardware 
mapping model provides the hardware mapping basis for the 
translation of low-level programming model. Scale affine 
translation provides data access redirection. By this algo-
rithm, CUDA index primitives are effectively translated to 
ATHREAD primitives.

3.2.1 � Hardware mapping model

We construct hardware mapping model between GPU and 
Sunway CPEs, shown in figure Fig. 4. First, Sunway MPE 
is mapping to multi-core CPU, acting the same role as host, 
responsible for overall logic and data organization of appli-
cations. Second, Sunway CPEs are mapping to NVIDIA 
stream multi-processors (SMs), acting the same basic 
executing unit for Single-Instruction Multi-Thread (SIMT) 
parallelism. Third, LDM in Sunway CPE is mapping to the 

Fig. 3   swCUDA overiew
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exclusive shared memory for NVIDIA SM. Both of them 
are only accessed by single CPE or SM with low latency. 
Forth, Sunway host memory is akin to the Dynamic Ran-
dom Access Memory (DRAM) of multi-cor CPU, where 
the input and output data should be stored in. Fifth, shared 
local data memory in Sunway is mapping to the on-board 
global memory of GPU, which have wider data accessing 
range, accessed by all SMs and Sunway CPEs. The mapping 
model comprises all the key hardware requirements of low-
level programming.

3.2.2 � Scale affine translation

Based on hardware mapping model, three-dimensional 
thread-blocks are executed by NVIDIA SM in parallel. 
Correspondingly, each thread-block should be executed in 
Single Sunway CPE. To map NVIDIA SM to Sunway CPE, 
the major challenge is how to arrange the thread-blocks to 
Sunway CPE. To address this issue, scale affine translation is 
proposed to transform CUDA thread and block level address-
ing to ATHREAD index. CUDA built-in index primitives 

are then transformed to ATHREAD primitive based code. 
Algorithm 1 describes the main translation steps.

First, towards to flexible numbers of thread-blocks, we 
partition and assign successive blocks to single CPE, refer-
ring line 3 to line 11 in Algorithm 1. The CPE index primi-
tive cpeId is incorporated in the blkStart to indicate block 
stride index of each CPE. Second, for a three-dimensional 
(Dx, Dy, Dz) thread-blocks in CUDA, the thread-block 
id for block index (x, y, z) is (x + y × Dx + z × Dx × Dy ) 
(Nvidia 2023), which is also applied to thread index. By 
this definition, three-dimensional block index primitives 
are translated to block index variable in ATREAD as index 
id for CPEs, as shown in line 17 to line 19 of Algorithm 1. 
Third, threads in single block are executed in parallel in 
CUDA. To map to Sunway CPE, we need to construct 
sequential execution in loop, where loop size is a total 
number of threads in single block. Each loop iterator rep-
resents one thread execution. Combined with loop itera-
tor, thread index primitives are translated to ATHREAD 
variables, as shown in line 20 to line 26 of Algorithm 1.

Fig. 4   Hardware Mapping Model. 1) host mapping. 2) main memory mapping. 3) on-board global memory mapping. 4) exclusive memory map-
ping. 5) computing accelerator mapping
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Algorithm 1 Scale Affine Translation

Input: cuGrid[3], cuBlk[3]: CUDA threads and
thread-block index

1: cpeId: CPE index primitive
2: cptNum: computing core numbers of CPE
3: blkSum ⇐ cuGrid[0]× cuGrid[1]× cuGrid[2]
4: thrdSum ⇐ cuBlk[0]× cuBlk[1]× cuBlk[2]
5: mod ⇐ blkSum/cptNum
6: rem ⇐ blkSum%cptNum
7: blkStart ⇐ mod× cpeId
8: if rem > 0 then
9: blkStart+ = rem > cpeId?cpeId : rem

10: end if
11: blkEnd ⇐ blkStart+mod
12: if rem > 0 then
13: blkEnd+ = rem > cpeId?1 : 0
14: end if
15: blk ⇐ blkStart
16: while blk < blkEnd do
17: blkIdz ⇐ blk/(cuGrid[0]× cuGrid[1])
18: blkIdy ⇐ (blk − blkIdz × (cuGrid[0] ×

cuGrid[1]))/cuGrid[0]
19: blkIdx ⇐ blk%cuGrid[0]
20: while thrd < thrdSum do
21: thrdIdz ⇐ thrd/(cuBlk[0]× cuBlk[1])
22: thrdIdy ⇐ (thrd − thrdIdz ×

(cuBlk[0]× cuBlk[1]))/cuBlk[0]
23: thrdIdx ⇐ thrd%cuBlk[0]
24: CUDA parallel code ...
25: thrd ⇐ thrd+ 1
26: end while
27: blk ⇐ blk + 1
28: end while

Based on scale affine translation, the main CUDA index 
primitives are translated. Table 1 shows the complete trans-
lation, which is incorporated in swCUDA for auto transla-
tion. This novel algorithm build solid foundation to inherit 
the general CUDA parallel kernel to ATHREAD.

3.3 � Memory hierarchy translation

Both NVIDIA GPU and Sunway CPE have flexible memory 
hierarchy mapping, as shown in figure 4. Unfortunately, the 
direct memory replacement to ATHREAD code is imprac-
ticable due to hardware difference. First, Sunway CPE has 
specific memory usage strategy (e.g., slave L1 cache direct 
access). Second, the shared local data memory in Sunway is 
far lower than on-board global memory of NVIDIA GPU. 
The data access redirection is required in ATHREAD. We 
present directive based memory hierarchy optimization 
and data redirection strategy to improve the computational 
accuracy of code translation and provide better parallel 
performance.

3.3.1 � Memory hierarchy optimization

As shown in Algorithm 2, we design concise directive to 
illustrate the characteristics of CUDA input variables by 
the format paraVarAttr(type, var, size, attr). Each directive 
starts with paraVarAttr as indicator for swCUDA, which is 
parsed as declarator specifier. The parameters of the para-
VarAttr describes the attribute of CUDA kernel input vari-
ables, including variable name, type, size and character of 
transmission. swCUDA parse the directive and assign spe-
cific memory usage type for each kernel input variable.

CUDA input variables are categorized by readonly and 
inout indicated by attr, as shown in line 2 and line 8 in Algo-
rithm 2. For readonly variable, it is unchangeable for all CPEs. 
Hence, it can be loaded by DMA to LDM ( LDM_BY_DMA ) 
or be directly accessed from slave L1 cache ( SLAVE_CACHE ) 
according the size in directive parameters. Since the total 
size of LDM is 256KB, we use 128KB as cut-off point to 
determine if we need load data to LDM. For inout variable, 
it is updated by all CPEs for parallel computing, where each 
CPE is charge of partial data. Hence, global shared memory 
( GLB_SHR_MEM ) or data stride by DMA ( DMA_STRIDE ) 
is suitable for inout variable. The advantage of global shared 
memory variable is directly mapping to CUDA global mem-
ory and no extra modification for the data redirection. Here 
we choose 4096KB ( 64KB × 64 ) as cut-off point since slave 
cache and LDM size should be taken into account. Towards 
to the variable assigned to memory type DMA_STRIDE , each 
CPE executes calculation with data stride indexing. By this 
situation, data redirection is required in Sunway, since CUDA 

Table 1   Primitive affine translation

1 blk presents block id assigned to CPE
2 thrd presents thread id executed in single CPE

CUDA
primitive

ATHREAD
variable

Translation
formular

gridDim.x cuGrid[0] cuGrid[0] = gridDim.x

gridDim.y cuGrid[1] cuGrid[1] = gridDim.y

gridDim.z cuGrid[2] cuGrid[2] = gridDim.z

blockDim.x cuBlk[0] cuBlk[0] = blockDim.x

blockDim.y cuBlk[1] cuBlk[1] = blockDim.y

blockDim.z cuBlk[2] cuBlk[2] = blockDim.z

blockIdx.x blkIdx blk 1 % cuGrid[0]
blockIdx.y blkIdy (blk − blkIdz × (cuGrid[0]

×cuGrid[1]))∕cuGrid[0]

blockIdx.z blkIdz blk%(cuGrid[0] × cuGrid[1])

threadIdx.x thrdIdx thrd 2 % cuBlk[0]
threadIdx.y thrdIdy (thrd − thrdIdz × (cuBlk[0]

×cuBlk[1]))∕cuBlk[0]

threadIdx.z thrdIdz thrd%(cuBlk[0] × cuBlk[1])
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kernel can directly access the data from on-board global mem-
ory, whose capacity is above 16GB (Nvidia 2020).

3.3.2 � Data redirection strategy

The memory type DMA_STRIDE requires data redirection 
in Sunway CPE, which need more manual efforts for pro-
grammers. To achieve automatically translation, data redi-
rection strategy is addressed, as shown in Fig. 5. The data 
indexing pattern in CUDA is either contiguous or discrete 
distributed among blocks (Garland et al. 2008; Milakov 
2015). Towards to the characteristics, we design tailored 
data redirection translation strategy. Data is accessed along 
the arrow directed order. Identifying data stride index among 

blocks and data locality in single thread-block are the key 
to realize the data redirection access in each Sunway CPE. 
For contiguous data indexing pattern, data stride index is 
directly followed by block index ID. The data locality range 
is thread organization of thread-block. On the other hand, 
discrete data indexing pattern is complicated, which is com-
bined by at least two direction traverse. By parsing global 
data indexing usage (e.g., data[i ∗ N + j] in Fig. 5), data 
locality expression is acquired from the last combination 
of threadIdx usage, since data accessing is only contigu-
ous along single thread index direction in discrete indexing 
pattern. Hence, data stride index is constructed by the reset 
expression of global data indexing usage, which combines 
block index id, thread dimension and thread index.

Fig. 5   Data redirection strategy
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Algorithm 2 Memory Hierarchy Optimization

Input: paraV arAttr(type, var, size, attr):
Directive for CUDA input parameter variables

Output: varMem: variable memory usage type
in Sunway

1: while paraV arAttr != NULL do
2: if attr is readonly then
3: if size less than 128KB then
4: varMem ⇐ LDM BY DMA
5: else
6: varMem ⇐ SLAV E CACHE
7: end if
8: else if attr is inout then
9: if size less than 4096KB then

10: varMem ⇐ GLB SHR MEM
11: else
12: varMem ⇐ DMA STRIDE
13: end if
14: end if
15: end while

To implement  data redirect ion strategy in 
swCUDA, high level directive is designed by format 
dataPattern(pattern1, pattern2, usage). Parameter pattern1 
and pattern2 denote global thread indexing pattern in CUDA 
kernel, whose format is required to comprise blockIdx to 
represent global indexing. If there is only one global index-
ing pattern, pattern2 is filled with NONE. The parameter 
usage illustrates the actual data global indexing usage. As 
swCUDA parsed the directives, the data stride index and data 
locality usage are automatically generated. Data with global 
indexing usage is translated to local indexing with DMA 
transfer by data stride index in single Sunway CPE. Data 
redirection strategy improves memory hierarchy optimiza-
tion, where flexible data redirecting method of the memory 
type DMA_STRIDE is generated according to the different 
data indexing pattern.

3.4 � Grouping calculation asynchronous reduction 
scheme

Nvidia GPU supports atomic operation in hardware with 
low latency to remove random access issue easily. In the 
contrast, there is no hardware support for atomic operation in 
Sunway CPEs. Avoiding random access issue is always chal-
lenging work. In this section, we propose GCAR scheme to 
provide general solution to automatically transform atomic 
operation.

As shown is Algorithm  3, high level directive 
is used to describe the detailed atomic attribute by 
AtomOpr(type,  var,  size,  rcvNum,  copyin). Sunway 
CPEs is partitioned to computing cores (cptCore) and 
receiving cores (rcvCore). When the atomic directive is 
parsed, swCUDA embeds cptCore and rcvCore procedure 

respectively. CUDA code is inherited under cptCore proce-
dure. rcvNum is used to determine how many rcvCores is 
needed, dynamically adjusted according to the size of var. 
copyin indicates if atomic variable is needed to transfer to 
LDM. First, Line 1 in Algorithm 3 calculate atomic data 
stride at the beginning of kernel code. rcvCore uses it to 
transfer atomic data, where cptCore uses it to calculate the 
target core that should be sent by RMA. rcvCore is respon-
sible for accumulating the atomic variable var and its local 
index transferred from computing cores by RMA. When 
RMA transfer is done, the asynchronous flag will be set. 
Then, receiving cores do accumulations(refers as line 11 
in Algorithm 3). Once stop flag is received from all com-
puting cores, the procedure of receiving core is finished 
and var is transferred back by DMA. On the other hand, 
Computing core do calculation and send data to receiving 
core by RMA asynchronously. Since var is transferred and 
spread in receiving cores, data locality and targeted receiv-
ing core are needed to redirect and calculate by dataStride, 
shown as line 24 to line 25 in Algorithm 3.

By explicit data partition method, RMA communication 
and fast synchronization in CPEs, GCAR Algorithm shows 
excellent performance and generality. We encapsulate the 
algorithm to the application program interface (API) to 
provide general solution for resolving the random access 
issue.

4 � Application study

In this section, we first illustrate the translation of swCUDA 
for standard matrix multiply benchmark. Then, we perform 
in-depth analysis on complicated kernels in Gromacs. We 
present that swCUDA is adaptive to the flexible CUDA ker-
nel programming.

Fig. 6   CUDA orginal kernel function with directive



	 M. Yu et al.

4.1 � General kernel translation

The general matrix multiplication (GEMM) computes a 
scalar-matrix-matrix product and adds the result to a scalar-
matrix product with CUDA code in Polybench suite is shown 
in figure 6, which calculates 512 × 512 symmetric matrix C 
by general matrices A and B. The data organization is 32 × 8 
for thread-blocks and 16 × 64 for blocks. The directives are 
inserted to describe the attribute of kernel functional param-
eter variables. a and b are read only variables, where c is 
writable variable. The size of these three variables are 1MB.

Algorithm 3 Grouping Calculation Asyn-
chronous Reduction
Input: AtomOpr(type, var, size, rcvNum, copyin):

Directive of Atomic operation
ayncF lag[cptNum]: aync status of cptCore
cptEnd[rcvNum]: done status of rcvCore

1: dataStride: number of data in each rcvCore
2: Procedure in rcvCore:
3: finish ⇐ cptCore
4: if copyin then
5: transfer var to rcvCore with dataStride
6: end if
7: while true do
8: For the i cptCore
9: if ayncF lag[i] is true then

10: get val and localPos from i cptCore
11: var[localPos] ⇐ var[localPos] + val
12: ayncF lag[i] ⇐ false
13: end if
14: if cptEnd[i] is true then
15: finish ⇐ finish− 1
16: end if
17: EndFor
18: if finish is zero then
19: break
20: end if
21: end while
22: transfer var back host with dataStride
23: Procedure in the i cptCore:
24: tarCore ⇐ size/dataStride
25: localPos ⇐ size%dataStride
26: send val and localPos to tarCore by RMA
27: RMA set ayncF lag[i] true
28: RMA set cptEnd for all rcvCore true

swCUDA executes scale affine algorithm and realizes 
the code translation, as shown in Fig. 7. First, swCUDA 
automatically organizes original CUDA thread-blocks 
array (cuGrid[3]), threads array (cuBlock[3]) and kernel 
parameter variable pointers to the structure variable of 
ATHREAD kernel function. By DMA transfer, the array 
value and pointer address can be accessed locally. Then, 
block and thread affine translation is automatically accom-
plished and embedded in the entry of kernel function of 

ATHREAD according to Algorithm 1. CUDA blocks are 
spread to CPE cores equally. Each CPE executes consecutive 
16 blocks in GEMM example, where block index in each 
CPE is addressed by CPE index primitive cpeId. We use 
loop to iterate over the blocks, and CUDA block primitive 
is translated according Table 1. Within the block loop, we 
further embed thread loop to iterate each thread with same 
method. In this example, each block executes 256 threads 
totally.

After that, directives are parsed by swCUDA to execute 
memory hierarchy translation as shown in Fig. 8. We use 
label userDef to indicate swCUDA that directives are pars-
ing. paraVarAttr is used to illustrate variable and its attrib-
utes, which are first aquired by swCUDA for the following 
translation. When swCUDA traverses the kernel functions, 
the readonly and inout variables are detected by compar-
ing with pre-saved variables from directives. Since the 
size of readonly variable is larger than 128KB, described 
by Algorithm 2, they are set to SLAVE_CACHE . Then the 
variable is replaced with the structure variable from Para in 
the node of parsing AST by ANTLR. The variable can be 

Fig. 7   Scale affine translation

Fig. 8   Memory optimization with global shared Memory
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accessed by slave cache, as shown in line 11 of Fig. 8. For 
inout variable, since its size lower than 4MB, it is assigned 
to GLB_SHR_MEM . Hence, swCUDA inserts specific key-
words and API for the definition and data transfers of global 
shared variables.

If the matrix size of GEMM enlarges to 2048 × 2048 , 
the inout variable is assigned to DMA_STRIDE due the 
limitation of LDM size. By this case, we need transfer data 
by DMA with stride and redirect CUDA variable index to 
meet ATHREAD indexing requirement. The data redirection 
directive dataPattern is parsed to save index pattern and 
data usage. The GEMM index pattern is discrete traverse 
with two dimension, but DMA transfer is required for single 
dimension for contiguous data. Hence, we use dataLoad to 
toggle DMA discrete transfer. As shown in Fig. 9, DMA 
stride index glbInx is calculated by usage and pattern of 
directive dataPattern and single DMA transfer size is deter-
mined by pattern2. Hence, global data index is automatically 
translated by this fixed indexing pattern. Data locality is then 
redirected to one dimension of threads.

With the tailored translation algorithm and high level 
directives, swCUDA successfully transforms benchmark 
CUDA kernels to ATHREAD kernels. Our flexible scale 
affine algorithm and memory hiearchy translation demon-
strate the productivity and effectiveness of swCUDA.

4.2 � Gromacs translation

As described in Sect. 2.4, there are totally six CUDA kernels 
for short-range pair interaction and long-range coulomb cal-
culation with PME method. In this section, we select charge 
spreading kernel in PME method as example to present the 
practical code translation process by swCUDA. The same 
process is adapted to the other CUDA kernels of Gromacs 
for automatically translating to ATHREAD kernel.

Accelerating PME method in Sunway is challenging 
work since the algorithm of B-Spline interpolation in charge 
spreading causes memory random access issue (Lee et al. 
1997). To get around the problem, PME method is recon-
structed by local grid reordering in previous work (Zeng 
et al. 2021). This method needs further verification for gen-
erality. In this section, we presents how the charge spreading 
kernel is automatically translated to ATHREAD kernel by 
swCUDA.

In charge spreading method, each charge is mapped to 
grid location by scaled fractional coordinates of particle, 
and then distributed to surrounding grid volume, depend-
ent on the spline interpolation order n (fixed at 4). Each 
charge is spread over n3 = 64 grid points. In another word, 
each dimension of coordinate per particle has 4 spline 
parameters. In CUDA kernel implementation, each par-
ticle is assigned 4 threads for calculation. With the block 
size of 128 threads, atom number per block (atomsPer-
Block) is 32 (128/4). The index of thread-blocks is organ-
ized by total atoms divided atomsPerBlock. CUDA threads 
organization is cuBlock[3] = {order, 1, atomsPerBlock} and 
cuGrid[3] = {totalAtoms∕atomsPerBlock, 1, 1} .  Charge 
spreading kernel is decomposed to two parts: spline data 
calculation and spread charge. Spline calculation is used 
to calculate spline data with fractional coordinates. Then 
spread charge uses calculated spline data to execute n3 = 64 
interpolations in three dimensions per particle. It unrolls 
Z axis to 4 threads and loop x and y axis to calculate dis-
tributed charge with 64 interpolations. Due to large scaled 
paralleling charge spread calculation of multi-atoms and 
periodic boundary of simulation box, accumulating charge 
in one grid point would inevitably encounter random access 
issue (Kutzner 2008). It is solved by using atomic API in 
CUDA implementation.

With our novel algorithm, swCUDA completely translates 
charge spreading kernel with high efficiency, as shown in 
Fig. 10. First, atomic directive is parsed and translated as 
it brings code structure change in ATHREAD kernel. As 
result, API writeConflictInit is embedded to calculate the 
data stride indexing. Then, cptCore and rcvCore proce-
dure is embedded. API rcvCoreGetData is main function 
of rcvCore procedure, which accumulates atomic data from 
cptCore by RMA, described in Algorithm 3. Main CUDA 
kernel code is inherited in cptCore procedure. CUDA atomic 
API operation is parsed and data offset and updated value is 
split, as shown in line 41 and 42 of Fig. 10b. The spreadVal 
contains global index and updated value. Then, asynchro-
nous API sendDataToRcvCore sends it to target rcvCore by 
RMA. After all data sent to rcvCore, API finishDataSend is 
used to notify rcvCore to end receiving work. The above API 
functions are manually developed with high performance. 

Fig. 9   Data redirection translation
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Second, scale affine translation is embedded in the cpt-
Core procedure. Third, memory hierarchy optimization is 
executed by parameter directive. Since parameter variables 

are readonly and size is beyond 128KB, memory type 
SLAVE_CACHE is assigned. CUDA shared memory vari-
ables with label __share__ , only accessed in single thread-
block. Hence, these variables are treated as local LDM vari-
able in ATHREAD. At last, CUDA primitive syncthreads 
means all the data in thread-blocks should be updated here. 
Hence, the thread loop is ended by parsing syncthreads and 
start next thread loop here, as shown in line 20 of Fig. 10b. 
By our novel algorithm, the core CUDA parallel function 
calculate_splines and spread_charge is inherited with high 
translation efficiency.

5 � Evaluation

In this section, we firstly describe the experimental setup and 
simulation systems. Then, we conduct comprehensive exper-
iments to validate the performance of automatically trans-
lated benchmark by swCUDA. After that, we evaluate the 
performance of translated ATHREAD kernels of Gromacs 
in single core group of Sunway. Finally, we demonstrate the 
strong scalability by different nodes and particle size.

5.1 � Experimental setup

In order to evaluate swCUDA, Polybench suite1 and NBody 
simulation (Cheng et al. 2014) are used as CUDA input 
benchmark to demonstrate the productivity and perfor-
mance. Then, we choose Gromacs 2021.1 stable version 
as real world application to validate the performance of 
auto translated kernels by swCUDA. All the translated 
applications are performed on the new generation Sunway 
supercomputer.

Benchmark application and implementation. As shown 
in table 2, Polybench suite contains linear algebra solvers, 
data-mining and stencil (Grauer-Gray et al. 2012), extracted 
from operations in various application domains and writ-
ten with different programming languages. NBody simula-
tion contains CUDA implementation for GPU and OpenMP 
implementation for X86 CPU, which is used to validate the 
performance of atomic operation. In our experiments, we 
first use swCUDA to automatically translate CUDA kernels 
to ATHREAD kernels. This implementation is labeled as 
TransVer for comparison. Furthermore, based on the Trans-
Ver, we manually optimize readonly variables with memory 
type SLAVE_CACHE for contiguous accessing order, which 
effectively enhance cache hit rate of Sunway and improve the 

Fig. 10   Charge spreading translation

1  http://​web.​cse.​ohio-​state.​edu/​~pouch​et.2/​softw​are/​polyb​ench/​GPU/​
index.​html.

http://web.cse.ohio-state.edu/%7epouchet.2/software/polybench/GPU/index.html
http://web.cse.ohio-state.edu/%7epouchet.2/software/polybench/GPU/index.html
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performance significantly. This version is labeled as OptVer. 
Both TransVer and OptVer are used for evaluation.

Accuracy verification Since Polybench suite and NBody 
simulation both support CPU and GPU, they have imple-
mented their own accuracy examination. Polybench com-
pares each value of output matrix and NBody use mean 
square error (MSE) for examination with preset precision 
error. We use the same method to evaluate our translated 
many-core version. All the accuracy examination result 
shows corrected for different combination: between Sunway 
MPE and CPE, Intel CPU and Sunway CPE.

Compilation settings. The translated application is com-
piled with several cross compile toolchains for Sunway plat-
form. Main compiler SWGCC v1307 is vendor-provided tool 
chain based on GCC 7.1.0. It provides hybrid compilation 
and link for MPE and CPE program. SWMPI v20220608 
is dedicated message passing library for Sunway platform. 
Special optimization flags for SWGCC are -O3, -msimd, 
-mieee, -mfma.

Gromacs simulation systems. To better evaluate the 
performance and generality of our translated ATHREAD 
kernels, several representative bio-molecular systems are 
selected from Gromacs official website,2 ranged from 16k 
to 3 million atoms as shown in Table 3. Protein RNAse 
comprises 16k atoms with dodecahedron box. Protein ADH 
comprises 95k atoms with dodecahedron box. Water-bare-
hbonds system has several different simulating sizes. We 
choose 384k atoms and 3 million atoms systems from it. The 
RNAse, ADH and WBH_KB systems are used to validate the 

performance for Sunway single core group. The WBH_M is 
used to validate the strong scalability. These MD systems 
cover major simulating size in practical usage.

5.2 � Benchmark performance

In this section, First we evaluate the many-core acceleration 
of entire ATHREAD kernels of Polybench suites by using 
version TransVer and OptVer respectively. NBody simula-
tion can’t be used for the evaluation of many-core Accelera-
tion, since Sunway MPE does not support OpenMP. It is 
used to compare with Intel CPUs and NVIDIA GPU. Then 
we further conduct comprehensive comparison with Intel 
CPU and NVIDIA GPU by all translated benchmarks.

5.2.1 � Performance of many‑core acceleration

All the tests are performed on single core group in new 
generation Sunway platform. We use sequential CPU 
implementation as base version of Polybench suites, 
which is executed on Sunway MPE. As shown in Fig. 11, 
We get the average 18x speedup for direct translated 

Table 2   Typical parameters of 
translated benchmark

Code
name

Size of array
dimension

Number of
kernels

Memory
type

CUDA
code size

Translated
code size

Total
MFLOPs

2DCONV 4096 1 DMA_STRIDE 79 188 436.1
2 MM 2048 2 DMA_STRIDE 132 319 35184.6
3DCONV 256 1 DMA_STRIDE 75 165 625.4
3 MM 512 3 GLB_SHR_MEM 141 345 805.3
ATAX 4096 2 DMA_STRIDE 98 262 67.1
BICG 4096 2 DMA_STRIDE 106 266 352.3
CORR 2048 4 DMA_STRIDE 254 568 8837.1
COVAR 2048 3 DMA_STRIDE 131 398 8806.4
DOITGEN 128 2 DMA_STRIDE 99 297 538.9
GEMVER 4096 3 DMA_STRIDE 166 456 201.3
GESUMMV 4096 1 DMA_STRIDE 52 148 67.1
GRAMSCHM 2048 3 DMA_STRIDE 142 365 17776.6
MVT 4096 2 DMA_STRIDE 88 255 67.1
SYR2K 2048 1 DMA_STRIDE 49 147 61583.4
SYRK 1024 1 GLB_SHR_MEM 50 122 3307.5
NBody 30720 2 DMA_STRIDE 168 493 4308

Table 3   Gromacs simulation system

Simulation
name

Size of
atom

Description

RNAse 16k with dodecahedron box
ADH 95k with dodecahedron box
WBH_M 3million water-bare-hbonds with 3 million atoms
WBH_KB 384k water-bare-hbonds with 384k atoms

2  https://​ftp.​groma​cs.​org/​bench​marks/.

https://ftp.gromacs.org/benchmarks/
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kernel version TransVer of entire Polybench suites and 
40x speedup for further optimized version OptVer. For 
the version TransVer, the acceleration performance 
depends on the ratio of compute-to-memory operation. 
SYR2K achieves the maximum 80x speedup, since its 
floating point operation (FLOPs) is the biggest, as shown 
in Table 2. Benefiting from our memory hierarchy opti-
mization, matrix array is effectively transferred to LDM 
with data stride index for multiply and coefficient opera-
tion. On the other hand, CORR achieve the minimum 2x 
speedup, The reason is readonly variable is assigned to 
SLAVE_CACHE but the reading pattern is discrete. CUDA 
kernels don’t need to consider if data accessing order is 
contiguous or not, since GPU usually have big enough 
independent memory. This causes that accessing single 
readonly variable by SLAVE_CACHE will re-flush cache 
in Sunway, which decrease the cache hit rate and further 
decrease performance seriously. Hence, our OptVer trans-
pose the matrix for readonly variable to make it contigu-
ous accessed. From our experiments, 10 benchmarks adopt 
this manual optimization and significantly improved the 
performance.

5.2.2 � Comparisons with intel CPU

To compare with CPU, we select Intel® Core I5-8300 
CPU at 2.4GHZ with 4 cores as the target hardware. We 
evaluate the performance of the single process in Sunway 
and Intel CPU respectively. The executing time of all the 
benchmark programs run on this target CPU is used as 
baseline and version OptVer on Sunway is used for com-
parison. Polybench suite can be executed without modifi-
cation run on Intel CPU, where NBody simulation requires 
OpenMP multi-thread parallelization strategy in Intel CPU 
to avoid random access issue. As shown in Fig. 12, version 

OtpVer run on Sunway CPE achieves average 15x speedup 
than baseline.

For the performance of translated NBody simulation, we 
get 12x speedup than OpenMP version. The main contribu-
tion is that our novel GCAR algorithm effectively eliminates 
random access issue and asynchronous reduction guarantees 
the high acceleration performance.

5.2.3 � Comparisons with NVIDIA GPU

We select NVIDIA GTX 1050 Ti as the target hardware. 
Its Theoretical FP32 performance is up to 2.138 TFLOPS, 
which is two times than single CG of Sunway (1.16 
TFLOPS). We evaluate the Polybench suite and NBODY 
performance on Sunway and NVIDIA GPU respectively. 
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GPU test result is used as baseline. As shown in Fig. 13, 
version OptVer executed on Sunway platform gets aver-
age 27 percentage higher than GPU version. From the test 
result, there are part of benchmarks which executing time 
on GPU is a little bit faster than Sunway. The main reason is 
that these benchmarks are required to access more readonly 
variables by cache and brings lower cache hit rate. Another 
important reason is that the computing capacity of NIVIDIA 
GPU is two times faster than Sunway. If we get same com-
puting capacity for single CG of Sunway, the performance 
will enhance a lot. The overall performance of our optimized 
version on Sunway is better than NVIDIA GPU.

5.3 � Gromacs performance

In this section, We evaluate the performance of major trans-
lated kernels in Gromacs by swCUDA with different MD 
system size. First, we present the acceleration performance 
in single node of Sunway platform. Then, we demonstrate 
the parallel efficiency of our translated Gromacs.

5.3.1 � Single node evaluation

In the experiment, original Gromacs run on Sunway MPE is 
used as baseline without modification. all the tests are run on a 
single node with 6 CGs. Figure 14 shows performance speedup 
for different translated kernels of Gromacs with three differ-
ent simulation systems. The result shows up to 17x speedup 
performance. The acceleration performance is improved along 
the atom size of simulation systems. Hence, WBH_KB system 
gets the maximum speedup than other systems.

Non-bonded force kernel achieves 9x speedup compared 
with MPE version in WBH_KB system. The translated ker-
nel shows up to 80% memory access bandwidth for each 
super i-cluster interaction, improving the compute to mem-
ory access ratio. RNAse system only gets 5x speedup due 
to its smaller atom size, which decreases memory access 
band-width.

For PME spread kernel, the spatial randomness of charge 
griding causes more possibility that computing cores update 
data to same rcvCore by RMA communication. Thereby, 
the synchronization time of rcvCore is longer. Hence PME 
spread kernel only gets average 2x speedup. PME gather ker-
nel gets more than 10x speedup regardless the difference of 
atom size, presenting the stable performance improvement 
by our translation framework.

5.3.2 � Scalability

To evaluate the scalability for our translated kernels of 
Gromacs, we choose WBH_M simulating system with 3 mil-
lion atoms. Figure 15 shows the strong scalability for our 
translated kernels, using performance of 1200 processes as 
baseline. As the number of Sunway processes increase from 
1200 to 7200, the average parallel efficiency of these four 
kernels is up to 63%. Gromacs parallel algorithm constructs 
complex message passing interface (MPI) mechanism, which 
includes domain decomposition grid and dynamic load bal-
ancing (Hess et al. 2008). Each CPE handles less number 
of particles and the communication time consumption is 
increased along the increase of processes. Benefiting from 
our translating optimization for both long-range coulomb 
force calculation and short-range non-bonded calculation, 
the performance of load balance is improved between PME 
processes and non-bonded processes. The result of strong 
scalability is better than Zhang’s work (Zhang et al. 2019).

5.4 � Limitations and discussions

The translated kernels by swCUDA have proven outstanding 
performance, but it still has space to improve speedup. Since 
translated kernels are based on the algorithm of CUDA, they 
are suitable for SIMD parallelism (Chen et al. 2021). The 
performance can be speedup if we further optimize them. 
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Meanwhile, the double buffer technology (Chu et al. 2021) 
can be leveraged by advanced code modification, which is 
proven the effectiveness for improving performance. By 
these optimizations, programmers can further improve the 
performance based on the translated code framework.

6 � Related work

6.1 � Code translator

Along with the rapid increase for variable heterogeneous 
accelerator, the research for programming language auto 
translation focuses on the two aspects recently: inter trans-
lation for heterogeneous low level programming languages 
(e.g., CUDA, OPENCL) and automatic parallelization for 
heterogeneous architecture. Gabriel Martinez proposed an 
AST-Driven auto code translator CU2CL to translate CUDA 
to OPENCL (Martinez et al. 2011). Since the program-
ming model and hardware architecture has high similarity 
between these two languages, CU2CL is mainly focusing 
on the primitive translation, based on the Clang framework. 
Targeting to Sunway architecture, Li et al. propose a transla-
tor from OpenMP to ATHREAD (Li et al. 2021). It maps 
the thread in OpenMP to single CPE, where parses and 
translates OpenMP directives. It provides simple memory 
mapping strategy. The mapping from shared memory to 
host main memory decreases the performance. For mutual 
exclusion primitive translation, it proposes master–slave dis-
tributed lock mechanism. Since it requires synchronization 
between host and slave, the overhead is up to 1000 cycles 
from its data. On the other hand, swCUDA provides auto 
diverse memory optimization algorithm to effectively assign 
data to different memory type. Global memory of CUDA 
is mapping to several memory type depending on different 
circumstance. Our general write-conflict scheme efficiently 
resolves the mutual exclusion issue, where the average over-
head is only 130 cycles. The closest approach to swCUDA is 
OPENCL compiler for Sunway (Lee et al. 2010), whereas its 
key mapping algorithm and memory optimization method is 
relative fixed and only can handle basic matrix operations. 
swCUDA provides high level directives based complicated 
data affine algorithm and memory hierarchy optimization, 
successfully applied to the multi kernel translations in 
molecular dynamics simulation software.

Automatic parallelization is used to translate sequential 
computing intensive codes to paralleling code suitable for 
heterogeneous architecture. The representative translators 
are PPCG (Verdoolaege et al. 2013), DawnCC (Mendonça 
et al. 2017) and HIPAcc (Membarth et al. 2016). PPCG 
automatically translates static control loop nest to data 
parallel computation codes based on the polyhedral model 
of compiler, by implementing multi-level tiling strategy 

and combined affine transformation. C code fragment is 
translated to CUDA with memory hierarchy optimization, 
validated in PolyBench suite. DawnCC is source-to-source 
compiler, built on top of the LLVM framework. It automati-
cally inserts OpenACC or OpenMP directives in sequential 
C/C++ code which is interpreted by compilers. Symbolic 
range and dependence analysis are used for intermediate rep-
resentation as input to infer the memory boundary of data 
movement directives. HIPAcc is source-to-source compiler 
for image processing based on Domain-Specific Languages 
(DSL). A suite of DSL is designed and embedded in C++. 
Image processing algorithms written in DSL code can be 
captured and translated to targeting CUDA, OpenCL and 
Renderscript. Besides, the memory hierarchy is optimized 
according predefined feature in DSL. Heuristic for kernel 
configuration and tiling dependence results in good mem-
ory bandwidth utilization. Although these works focus on 
sequential to parallel code translation, they are profoundly 
heuristic for methodology to swCUDA.

6.2 � Porting MD simulations in sunway

Molecular dynamic softwares, e.g., Gromacs, LAMMPS, 
Amber and NAMD, are wildly used in versatile heteroge-
neous architecture of HPC centers. Porting them to Sun-
way architecture mainly aims to the computing intensive 
parts: PME method and short-range pair interaction. The 
PME method is first ported for Gromacs to Sunway recently 
(LIN Zeng and Jun-shi 2021). To resolve the random mem-
ory access issue in charge spreading and force interpola-
tion of PME method, blocking strategy based on local grid 
order and data reorganization algorithm are addressed. This 
method redesigns the B-spline algorithm and can’t be univer-
sal to resolve memory access issue for other applications. On 
the other hand, swCUDA provides general GCAR scheme 
to resolve memory access issue and completely inherits the 
parallel codes of B-spline algorithm and force interpolation 
method. This solution is validated in both charge spreading 
and short-range interaction kernels. Meanwhile, the accu-
racy and performance are both guaranteed.

To get better performance of short-range pair interac-
tion in Sunway for LAMMPS, (Dong et al. 2016) proposed 
double-buffering mechanism to overlaps memory access 
and calculation time. SIMD vectorization is further used to 
speed up. But the optimization is only focus on the neighbor 
list builder and the coulomb force calculation is not related. 
(Duan et al. 2018) redesign LAMMPS by hybrid memory 
update strategy to solve write-conflict, software cache 
strategy to optimize memory bandwidth, customized math 
functions to eliminate searching lookup tables and pipeline 
acceleration targeting interactions and neighbor list build-
ing. (Yu et al. 2017; Zhang et al. 2019) propose a parallel 
pipeline model between MPE and CPE clusters to refactor 



swCUDA: Auto parallel code translation framework from CUDA to ATHREAD for new generation sunway…

Gromacs in Sunway. MPE is responsible for task partition-
ing and data updating, CPE is responsible for calculation. 
Since force array is updated serially by CPEs, write-conflict 
is avoided. Moreover, CPEs are divided to scheduling group 
and computing group to decrease the main-memory access. 
(Chen et al.. 2021) present a highly efficient short-range 
force kernel of Gromacs in Sunway with super cluster-based 
neighbor list. Dual-slice partitioning scheme is addressed 
to solve the write-conflict issue and reduce the data reduc-
tion overhead. SIMD paralleling and instruction reordering 
is used optimize the performance. All of these works are 
needed to redesign the paralleling algorithm for original MD 
software. Meanwhile, memory hierarchy optimization and 
write-conflict solution are totally different, which can’t be 
leveraged in other applications. All of these draw-backs are 
overcome by swCUDA. Moreover, the previous works only 
focus on either PME method or short-range pair interaction. 
Our work is first time to port both of these two sections by 
unified translating interface, which is productive.

7 � Conclusion

In this paper, we present a novel parallel code transforma-
tion framework swCUDA, greatly enhancing the efficiency 
of ATHREAD programming. In this framework, three 
fundamental algorithms are presented. The algorithm of 
scaled data affine translation provides the transformation 
from CUDA primitive of thread-blocks and thread to ATH-
READ index, the foundation for CUDA code translation. 
The GCAR algorithm resolves the central issue towards to 
the hardware drawback in Sunway CPE. The algorithm of 
memory hierarchy optimization automatically assigns the 
appropriate memory usage for variable with different size 
to improve the compute to memory access ratio. Based on 
these algorithms, we design concise high level directives to 
enhance the translation efficiency. By these effective method, 
swCUDA expresses strong productivity and applicability.

To validate the practicability and performance of 
swCUDA, we conduct comprehensive experiments under 
entire Polybench benchmark suite and NBody simulation. 
When compared to the baseline, multiple benchmarks 
achieve an average speedup of 18x. When compared with 
Intel CPU, we get an average 3x speedup. Further, we choose 
molecular dynamics simulation Gromacs as real world appli-
cation. Towards to complicated CUDA kernels of PME 
method and short-range pair list interaction, swCUDA suc-
cessfully translates the CUDA codes to ATHREAD codes. 
Experiments show up to up to 17x speedup performance and 
average 63% scalability.

As a part of future work, we plan to extend the capa-
bilities of swCUDA to support more parallel architecture 
conversions, such as Heterogeneous Interface for Portabil-
ity (HIP) programming for AMD GPU platforms. With the 
exception of a few functions that are not commonly used, 
HIP copies almost the entire CUDA API, including function 
names, keywords, etc. In most cases, CUDA-to-HIP porta-
bility can be accomplished at the source level by substituting 
’cuda’ and ’hip’ characters. After supporting HIP transla-
tion with swCUDA, programs on more extensive hardware 
platforms will be able to quickly translate to run on  Sunway 
platform and improve programming productivity.
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