
Vol.:(0123456789)

CCF Transactions on High Performance Computing
https://doi.org/10.1007/s42514-023-00159-7

REGULAR PAPER

swCUDA: Auto parallel code translation framework from CUDA
to ATHREAD for new generation sunway supercomputer

Maoxue Yu1 · Guanghao Ma1 · Zhuoya Wang1 · Shuai Tang2 · Yuhu Chen1 · Yucheng Wang1 · Yuanyuan Liu1 ·
Dongning Jia1,2  · Zhiqiang Wei2

Received: 21 March 2023 / Accepted: 25 June 2023
© The Author(s) 2024

Abstract
Since specific hardware characteristics and low-level programming model are adapted to both NVIDIA GPU and new gen-
eration Sunway architecture, automatically translating mature CUDA kernels to Sunway ATHREAD kernels are realistic but
challenging work. To address this issue, swCUDA, an auto parallel code translation framework is proposed. To that end, we
create scale affine translation to transform CUDA thread hierarchy to Sunway index, directive based memory hierarchy and
data redirection optimization to assign optimal memory usage and data stride strategy, directive based grouping-calculation-
asynchronous-reduction (GCAR) algorithm to provide general solution for random access issue. swCUDA utilizes code
generator ANTLR as compiler frontend to parse CUDA kernel and integrate novel algorithms in the node of abstracted
syntax tree (AST) depending on directives. Automatically translation is performed on the entire Polybench suite and NBody
simulation benchmark. We get an average 40x speedup compared with baseline on the Sunway architecture, average speedup
of 15x compared to x86 CPU and average 27 percentage higher than NVIDIA GPU. Further, swCUDA is implemented to
translate major kernels of the real world application Gromacs. The translated version achieves up to 17x speedup.

Keywords  Code translation · CUDA · ATHREAD · Sunway architecture

1  Introduction

In recent years, heterogeneous computing architecture is
widely applied in High Performance Computing (HPC)
and AI domain. GPU and Sunway based architecture are
the representative heterogeneous platforms. From the data
of TOP500 list in November 2022, 13 supercomputer cent-
ers adopt NVIDIA GPU as accelerator in ranked top 20
(Strohmaier et al. 2022). Sunway TaihuLight (Fu et al. 2016)
ranks at the top of the TOP500 list in 2016-2017. The new
generation Sunway supercomputer is published with new
SW26010P processors recently (Liu et al. 2021), showing
powerful computing capability. Nowadays, a broad range of
industries with over six hundred applications have already
been accelerated by NVIDIA GPU (Nvidia 2018), including
climate, weather, ocean model, Molecular dynamics, quan-
tum chemistry, etc. Compute Unified Device Architecture
(CUDA) based parallel kernel programming language is
main stream of heterogeneous developing model. On the
other hand, Sunway platform has very specific hardware
characteristics and provides vendor-specific lightweight
multi-thread library (ATHREAD) as kernel programming

 *	 Dongning Jia
	 dnjia@qnlm.ac

 *	 Zhiqiang Wei
	 weizhiqiang@ouc.edu.cn

	 Maoxue Yu
	 mxyu@qnlm.ac

	 Guanghao Ma
	 ghma@qnlm.ac

	 Zhuoya Wang
	 zywang3@qnlm.ac

	 Shuai Tang
	 1737723493@qq.com

	 Yuhu Chen
	 yhchen@qnlm.ac

	 Yucheng Wang
	 ycwang@qnlm.ac

	 Yuanyuan Liu
	 yyliu@qnlm.ac

1	 Network and Information Center, Qingdao Marine Science
and Technology Center, Qingdao, China

2	 Computer Science, Ocean University of China, Qingdao,
China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-023-00159-7&domain=pdf
http://orcid.org/0000-0001-5805-4931

	 M. Yu et al.

language (Zhu et al. 2021), which is extended C-like lan-
guage. Its software ecosystem is immature. Since both
of GPU and Sunway have exclusive kernel programming
library interface and these library are all extended C-like
interface, designing automatically code translator from
mature CUDA code to ATHREAD code will significantly
improve programming productivity in Sunway platform.

However, developing code translator from CUDA to
ATHREAD is a challenging work. First, as accelerator of
heterogeneous platform, the hardware architecture between
GPU Sunway CPE is different, which determines the low-
level programming model. GPU is driven by streaming
multiprocessors (SMs) (Nvidia 2023), but Sunway CPE is
comprised of 8 × 8 slave core array. The hardware mapping
model between GPU and Sunway CPE is needed to design
as base of code translator. Second, the fine granularity of
parallel programming model is different bewteen CUDA
and ATHREAD. The CUDA programming model is thread
parallel hierarchy, where three-dimensional block ID and
thread ID is used to get data index and each thread calcu-
late exclusive data in parallel. Sunway kernel programming
model is parallel computing within the slave cores. Third,
the different data usage of memory hierarchy greatly impact
on the parallel performance. There is not general criterion
for memory hierarchy optimization in Sunway. Several mem-
ory optimizing methods (e.g., data stride and double mem-
ory cache) are presented in (Liu et al. 2022), but it doesn’t
explain how to use in which situation. Fourth, since Sunway
has no hardware support for atomic operation, write-conflict
is big issue during random memory access pattern. (Chen
et al. 2021) designs “dual-slice” partitioning algorithm to
avoid the write-conflict in molecular dynamics simulations.
But this solution is exclusive for specific application. There
is not general solution for write-conflict.

To address these challenges, we propose an auto code
translator framework swCUDA to efficiently transform
CUDA codes to ATHREAD codes. swCUDA provides gen-
eral transforming scheme and significantly improves pro-
gramming productivity for Sunway. In summary, this paper
makes the following contributions.

•	 Heuristic hardware mapping model between GPU and
Sunway CPE is constructed as basis for code translation.
Scaled affine algorithm is proposed to translate CUDA
primitives of thread hierarchy to ATHREAD index.

•	 Directive based memory hierarchy translation and data
redirection strategy is addressed to provide the optimal
memory usage and data indexing transformation in ATH-
READ Kernel.

•	 Directive based GCAR scheme provides general solution
to remove random access issue due to no hardware sup-
port for atomic operation.

We evaluate our swCUDA by PolyBench suit and NBody
simulation, where PolyBench is benchmark suite of numeri-
cal computations (Verdoolaege et al. 2013) and NBody is
typical application in CUDA SDK (Han and Abdelrahman
2011). We demonstrate that translated application delivers
an average 40x speedup compared to the baseline on the
Sunway architecture, average speedup of 15x when com-
pared to x86 CPU and average 27 percentage higher than
NVIDIA GPU. Furthermore, as open-sourced molecular
dynamics (MD) simulation, Gromacs (Kutzner et al. 2019)
is selected for in-depth code translation study. Four compli-
cated CUDA kernels are translated to ATHREAD codes. It
shows up to 17x speedup compared to the baseline on the
Sunway architecture.

2 � Background

2.1 � New generation sunway supercomputer

The new generation Sunway supercomputer integrates high-
performance hetergeneous many-core processor SW26010P,
each of which includes 6 Core Groups(CGs), and network
communication on chip is adopted. Each CG consists of
one Management Processing Element (MPE), one 8 × 8 CPE
cluster and one Memory Controller(MC).

In terms of storage, each CG contains 16GB DDR4 mem-
ory which can be accessed by MPE and CPE through MC.
Meanwhile, each CPE contains a 256KB fast Local Data
Memory(LDM) and data transfer between LDM and main
memory can be realized by Direct Memory Access(DMA).
The SW26010P also has a performance advantage. MPE
operates at 2.1GHz frequency, where CPE works at
2.25GHz. The peak performance of SW26010P processor
is up to 14.026 TFLOP/s in double precision, correspond-
ing memory bandwidth is 307.2 GB/s (Shang et al. 2021).
The hardware promotion further enhances the the applica-
tion performance.

2.2 � Heterogeneous architecture and programming
model

Generally, the spirit of heterogeneous programming is that
host offloads computing intensive kernel code to accelera-
tor unit. This model is used in both CUDA and ATHREAD
programming language to accelerate scientific applications.
Under the offload model, programmers need to write host
code and device code, explicit data transfer between the host
memory and accelerator memories. Host code is responsible
for data organization and transmission, explicitly offloading
kernel to computing accelerator. Device code is executed
by many GPU threads in CUDA or by Sunway CPEs in

swCUDA: Auto parallel code translation framework from CUDA to ATHREAD for new generation sunway…

ATHREAD, in so-called Single Instruction Multiple Thread
(SIMT) fashion.

In CUDA, threads are organized by grid. A grid contains
three-dimensional thread-blocks, each thread-block con-
tains three-dimensional threads (Nvidia 2023). Each thread
is given unique thread ID. Built-in variables blockIdx and
threadIdx is used as index of thread-blocks and threads to
specify the position of data handled. Since thread-block
in GPU has shared memory which can be accessed by its
inner thread, it is generally used as basic execution unit for
programmers. Instead of blockIdx and threadIdx usage in
CUDA, each Sunway CPE has unique ID (slaveID) as index
to handle the different data. From this point, thread-block in
CUDA and single Sunway CPE act the compatible role as
the basic execution unit in accelerator. On the other hand,
codes are executed in parallel with inner threads of thread-
block but sequentially for single CPE.

Furthermore, strict access authority and latency of vari-
ous memory hierarchy has obvious contrast between CUDA
and ATHREAD, which generates different memory access-
ing strategies. In CUDA, private registers are accessible by
single thread and shared memory is visible to all threads
within single thread-block. Global memory and constant
memory is accessible for all threads. Variables defined in
registers or shared memory in different thread-block can’t
access each other. The registers always have the lowest
latency, secondly shared memory, at last global memory and
constant memory. The only way to access the data in host
by GPU is transferring data from host and device by DMA
in CUDA. In ATHREAD, each CPE has its own LDM with
lowest latency. Data defined in LDM can be accessed by
other CPEs with remote memory access (RMA) API support
(Zhu et al. 2021). Continuous shared memory in each CPE
can be configured as global shared mode, which is accessed
by all CPEs. Unlike CUDA, ATHREAD has flexible meth-
ods to access data in host by CPE: DMA transfer, cache
access and remote non-cached access. The selection criteria
is depending on the accessed data size combined with dif-
ferent memory accessing latency.

Both CUDA and ATHREAD provide specific program-
ming API, declarator specifiers and primitives to support
heterogeneous programming with extended C-like interface.
The programming interface for thread hierarchy and memory
hierarchy is foundation of heterogeneous programming and
our focus of automatically translation framework.

2.3 � Another tool for language recognition (ANTLR)

ANTLR (Parr and Fisher 2011; Parr 2013; Parr et al. 2014)
is a powerful cross-language syntax parsing tool developed
based on JAVA. It adopts the LL grammar parsing mode,
a top-down parsing method, and can be used to read, pro-
cess, execute and translate structured text or binary files. It

is widely used in academia and industry to build all sorts of
languages, tools, and frameworks. ANTLR parses lexical
rules, syntax rules, and tree parsing rules by reading from
the definition syntax file to generate corresponding lexer,
parser, and tree-parser. The lexer converts the input character
stream into word stream composed of phrases according to
the lexical rules, thus obtaining the lexical analysis result of
a specific language.The parser checks the syntax and com-
bines these phrase word streams to generate a syntax tree,
where all lexical information is stored at the leaf nodes. The
tree-parser is to carry out traversal analysis and operation
on the syntax tree, which is the tree representation of the
abstract syntax structure of the source code, and finally gen-
erate the target parsing code. The main workflow of ANTLR
is shown in the figure Fig. 1. The character stream passes
through the parser from top to bottom, resulting in the object
code.

Syntax tree is an important data structure that passes
complete source code information through the parser to the
rest of the system. To efficiently traverse the syntax tree,
ANTLR provides listener and visitor mechanisms, which
make the application logic and syntax files separated, the
application program is packaged independently, so as to
avoid the application logic scattered in the grammar file
rules, so that in the listener can directly write the logic code
entering rules and leaving rules, reduce the degree of cou-
pling between programs. The ANTLR mentioned in this
article is ANTRL4, which supports the generation of profil-
ers for C, C++, Java, JavaScript, Objective-C, Perl, Python,
Ruby and other programming languages, with a high degree
of language freedom.

2.4 � MD simulation application gromacs

As open-sourced molecular dynamics simulation, Gromacs is
widely set up and run in versatile heterogeneous architecture

Fig. 1   The main workflow of ANTLR

	 M. Yu et al.

of HPC center all over the world. The simulation system, com-
prising thousands to millions of atoms according to molecule
type, is executed for millions of time steps to derive the time
evolution of atomic movement and produce MD trajectory
(Kutzner et al. 2019). Therefore, number of HPC nodes is
easily occupied for weeks in one molecular simulation. How
to improve Gromacs performance in different heterogeneous
architecture becomes progressive research. In Gromacs, there
are two computing intensive parts: the short-range part of Cou-
lomb and Van der Walls interactions, the long-range part of
Coulomb interactions with PME method. By offloading these
two computation parts to GPU, the performance is effectively
accelerated.

Lennard–Jones potential is used to calculate Van der Waals
interactions, shown in Eq. 1, where � and � is collision diam-
eter and the depth of potential well, r is distance of particle
pairs. Short-range coulomb force calculation combined with
PME method is shown in Eq. 2, where erfc(x) is the comple-
mentary error function. All the particles should be searched
in cutoff radius. To improve the performance, nearest image
algorithm and neighbor list search algorithm is mainly used
under periodic boundary conditions.

Long-range coulomb force is mainly calculated by PME
method in reciprocal space. Under the periodic boundary
conditions, the equation of coulomb potential is shown in
Eq. 3, where qi is coulomb charges, ri is coulomb positions,
L is box length. Since this equitation is conditionally con-
vergent, Ewald is decomposed by three parts: a direct sum
in Cartesian space, a reciprocal sum in Fourier space and
correction items (Essmann et al. 1995), shown in Eq. 4, 5
and 6. Direct space interactions are mapped to short-range
coulomb, handled with cutoffs. Reciprocal space interactions
are used to calculate the long-range coulomb force.

(1)u(r) = 4�

[(
�

r

)12

−
(
�

r

)6
]

(2)E(r) =
1

4��0

erfc(�rij)

rij
qiqj

(3)Ucoul =
1

4��0

1

2

∑

n

N∑

i=1

N∑

j=1

qiqj

|rij + nL|

(4)Edir =
1

2

∗∑

n

N∑

i,j=1

qiqjerfc(�|rj − ri + n|)
|rj − ri + n|

The constant � is parameter that determines the convergence
between the direct space sum and the reciprocal space sum.
m is defined as the reciprocal lattice vectors of unit cell and
its periodic images. The volume of unit cell is defined as V.
Array Q(m1,m2,m3) is calculated and interpolated by frac-
tional coordinates and spline coefficient, shown in Eq. 7.
F(Q)(m1,m2,m3) is the transformation of array Q by 3DFFT.
Array B(m1,m2,m3) is transforming coefficient, calculated
by Euler exponential spline.

In summary, the long-range Coulomb force calculation will
experience five computing intensive parts. First, Charge
spreading is performed to get the array Q(k1, k2, k3) by Eq. 7.
Second, FFT is used to transform into reciprocal space to get
array F(Q)(m1,m2,m3) . Third, Calculation of convolutions
is executed in reciprocal space. Fourth, iFFT back to direct
space is executed. Finally, forces are interpolated to derive
the forces at atom position (Jing et al. 2012; Harvey and
De Fabritiis 2009). On the other hand, short-range calcula-
tion is executed by combines the Lennard–Jones and Cou-
lomb force together in single accelerator kernel. The newest
GPU offloading schemes is shown in Fig. 2.

(5)
Erec =

1

2�V

∑

m≠0

exp(−
�2m2

�2
)

m2
B(m1,m2,m3)

⋅ F(Q)(m1,m2,m3)F(Q)(−m1,−m2,−m3)

(6)Edir = −
1

2

�

(i,j)M

qiqjerf (��ri − rj�)
�ri − rj�

−
�
√
�

N�

i=1

q2
i

(7)

Q(k1, k2, k3) =

N∑

i=1

∑

n1,n2,n3

qiMn(u1i − k1 − n1K1)

×Mn(u2i − k2 − n2K2) ⋅Mn(u3i − k3 − n3K3)

Fig. 2   Classic CPU+GPU heterogeneous parallel scheme of Gromacs

swCUDA: Auto parallel code translation framework from CUDA to ATHREAD for new generation sunway…

3 � Algorithm and design

In this section, we first present the overview of swCUDA.
Then, core mapping translation algorithm is addressed for
CUDA to ATHREAD. After that, directive based memory
hierarchy translation is introduced to assign optimal mem-
ory usage and data stride strategy. Finally, directive based
GCAR scheme is presented to resolve random access issues.
These optimization methodologies are detailed in depth in
the following sections.

3.1 � Overview

The architecture of swCUDA is shown in figure 3. First, high
level directives, which is embedded to describe kernel input
parameters, are used to provides accurate data management
translation of our framework. Second, the AST of CUDA
kernel code is constructed by ANTLR as compiler front-end.
As powerful parsing tool, ANTLR provide ParseTreeProp-
erty instance to associate property with a parse tree node.
By using this class instance, we rewrite and store each node
of CUDA AST and construct targeted ATHREAD AST.
Third, our novel algorithms are invoked by corresponding
to AST nodes of (1) directive declarations to store variable
attributes, (2) statement of CUDA index primitive, (3) input
parameter usage and (4) atomic operation. After rewriting
the core AST nodes, entire CUDA parallel codes are inher-
ited and organized to generate ATHREAD code. After that,

although we have designed data access redirection transla-
tion, flexible data access pattern can’t be all covered. Hence,
annotation is embedded for uncovered data access pattern
to make programmers to make quick data locality modifica-
tion. Finally, with minor modification, the final ATHREAD
kernel code is easily finalized. The powerful productivity is
shown by swCUDA.

3.2 � Core mapping translation algorithm

Core mapping translation algorithm is comprised of hard-
ware mapping model and scale affine translation. Hardware
mapping model provides the hardware mapping basis for the
translation of low-level programming model. Scale affine
translation provides data access redirection. By this algo-
rithm, CUDA index primitives are effectively translated to
ATHREAD primitives.

3.2.1 � Hardware mapping model

We construct hardware mapping model between GPU and
Sunway CPEs, shown in figure Fig. 4. First, Sunway MPE
is mapping to multi-core CPU, acting the same role as host,
responsible for overall logic and data organization of appli-
cations. Second, Sunway CPEs are mapping to NVIDIA
stream multi-processors (SMs), acting the same basic
executing unit for Single-Instruction Multi-Thread (SIMT)
parallelism. Third, LDM in Sunway CPE is mapping to the

Fig. 3   swCUDA overiew

	 M. Yu et al.

exclusive shared memory for NVIDIA SM. Both of them
are only accessed by single CPE or SM with low latency.
Forth, Sunway host memory is akin to the Dynamic Ran-
dom Access Memory (DRAM) of multi-cor CPU, where
the input and output data should be stored in. Fifth, shared
local data memory in Sunway is mapping to the on-board
global memory of GPU, which have wider data accessing
range, accessed by all SMs and Sunway CPEs. The mapping
model comprises all the key hardware requirements of low-
level programming.

3.2.2 � Scale affine translation

Based on hardware mapping model, three-dimensional
thread-blocks are executed by NVIDIA SM in parallel.
Correspondingly, each thread-block should be executed in
Single Sunway CPE. To map NVIDIA SM to Sunway CPE,
the major challenge is how to arrange the thread-blocks to
Sunway CPE. To address this issue, scale affine translation is
proposed to transform CUDA thread and block level address-
ing to ATHREAD index. CUDA built-in index primitives

are then transformed to ATHREAD primitive based code.
Algorithm 1 describes the main translation steps.

First, towards to flexible numbers of thread-blocks, we
partition and assign successive blocks to single CPE, refer-
ring line 3 to line 11 in Algorithm 1. The CPE index primi-
tive cpeId is incorporated in the blkStart to indicate block
stride index of each CPE. Second, for a three-dimensional
(Dx, Dy, Dz) thread-blocks in CUDA, the thread-block
id for block index (x, y, z) is (x + y × Dx + z × Dx × Dy )
(Nvidia 2023), which is also applied to thread index. By
this definition, three-dimensional block index primitives
are translated to block index variable in ATREAD as index
id for CPEs, as shown in line 17 to line 19 of Algorithm 1.
Third, threads in single block are executed in parallel in
CUDA. To map to Sunway CPE, we need to construct
sequential execution in loop, where loop size is a total
number of threads in single block. Each loop iterator rep-
resents one thread execution. Combined with loop itera-
tor, thread index primitives are translated to ATHREAD
variables, as shown in line 20 to line 26 of Algorithm 1.

Fig. 4   Hardware Mapping Model. 1) host mapping. 2) main memory mapping. 3) on-board global memory mapping. 4) exclusive memory map-
ping. 5) computing accelerator mapping

swCUDA: Auto parallel code translation framework from CUDA to ATHREAD for new generation sunway…

Algorithm 1 Scale Affine Translation

Input: cuGrid[3], cuBlk[3]: CUDA threads and
thread-block index

1: cpeId: CPE index primitive
2: cptNum: computing core numbers of CPE
3: blkSum ⇐ cuGrid[0]× cuGrid[1]× cuGrid[2]
4: thrdSum ⇐ cuBlk[0]× cuBlk[1]× cuBlk[2]
5: mod ⇐ blkSum/cptNum
6: rem ⇐ blkSum%cptNum
7: blkStart ⇐ mod× cpeId
8: if rem > 0 then
9: blkStart+ = rem > cpeId?cpeId : rem

10: end if
11: blkEnd ⇐ blkStart+mod
12: if rem > 0 then
13: blkEnd+ = rem > cpeId?1 : 0
14: end if
15: blk ⇐ blkStart
16: while blk < blkEnd do
17: blkIdz ⇐ blk/(cuGrid[0]× cuGrid[1])
18: blkIdy ⇐ (blk − blkIdz × (cuGrid[0] ×

cuGrid[1]))/cuGrid[0]
19: blkIdx ⇐ blk%cuGrid[0]
20: while thrd < thrdSum do
21: thrdIdz ⇐ thrd/(cuBlk[0]× cuBlk[1])
22: thrdIdy ⇐ (thrd − thrdIdz ×

(cuBlk[0]× cuBlk[1]))/cuBlk[0]
23: thrdIdx ⇐ thrd%cuBlk[0]
24: CUDA parallel code ...
25: thrd ⇐ thrd+ 1
26: end while
27: blk ⇐ blk + 1
28: end while

Based on scale affine translation, the main CUDA index
primitives are translated. Table 1 shows the complete trans-
lation, which is incorporated in swCUDA for auto transla-
tion. This novel algorithm build solid foundation to inherit
the general CUDA parallel kernel to ATHREAD.

3.3 � Memory hierarchy translation

Both NVIDIA GPU and Sunway CPE have flexible memory
hierarchy mapping, as shown in figure 4. Unfortunately, the
direct memory replacement to ATHREAD code is imprac-
ticable due to hardware difference. First, Sunway CPE has
specific memory usage strategy (e.g., slave L1 cache direct
access). Second, the shared local data memory in Sunway is
far lower than on-board global memory of NVIDIA GPU.
The data access redirection is required in ATHREAD. We
present directive based memory hierarchy optimization
and data redirection strategy to improve the computational
accuracy of code translation and provide better parallel
performance.

3.3.1 � Memory hierarchy optimization

As shown in Algorithm 2, we design concise directive to
illustrate the characteristics of CUDA input variables by
the format paraVarAttr(type, var, size, attr). Each directive
starts with paraVarAttr as indicator for swCUDA, which is
parsed as declarator specifier. The parameters of the para-
VarAttr describes the attribute of CUDA kernel input vari-
ables, including variable name, type, size and character of
transmission. swCUDA parse the directive and assign spe-
cific memory usage type for each kernel input variable.

CUDA input variables are categorized by readonly and
inout indicated by attr, as shown in line 2 and line 8 in Algo-
rithm 2. For readonly variable, it is unchangeable for all CPEs.
Hence, it can be loaded by DMA to LDM ( LDM_BY_DMA )
or be directly accessed from slave L1 cache ( SLAVE_CACHE )
according the size in directive parameters. Since the total
size of LDM is 256KB, we use 128KB as cut-off point to
determine if we need load data to LDM. For inout variable,
it is updated by all CPEs for parallel computing, where each
CPE is charge of partial data. Hence, global shared memory
( GLB_SHR_MEM ) or data stride by DMA ( DMA_STRIDE )
is suitable for inout variable. The advantage of global shared
memory variable is directly mapping to CUDA global mem-
ory and no extra modification for the data redirection. Here
we choose 4096KB ( 64KB × 64 ) as cut-off point since slave
cache and LDM size should be taken into account. Towards
to the variable assigned to memory type DMA_STRIDE , each
CPE executes calculation with data stride indexing. By this
situation, data redirection is required in Sunway, since CUDA

Table 1   Primitive affine translation

1 blk presents block id assigned to CPE
2 thrd presents thread id executed in single CPE

CUDA
primitive

ATHREAD
variable

Translation
formular

gridDim.x cuGrid[0] cuGrid[0] = gridDim.x

gridDim.y cuGrid[1] cuGrid[1] = gridDim.y

gridDim.z cuGrid[2] cuGrid[2] = gridDim.z

blockDim.x cuBlk[0] cuBlk[0] = blockDim.x

blockDim.y cuBlk[1] cuBlk[1] = blockDim.y

blockDim.z cuBlk[2] cuBlk[2] = blockDim.z

blockIdx.x blkIdx blk 1 % cuGrid[0]
blockIdx.y blkIdy (blk − blkIdz × (cuGrid[0]

×cuGrid[1]))∕cuGrid[0]

blockIdx.z blkIdz blk%(cuGrid[0] × cuGrid[1])

threadIdx.x thrdIdx thrd 2 % cuBlk[0]
threadIdx.y thrdIdy (thrd − thrdIdz × (cuBlk[0]

×cuBlk[1]))∕cuBlk[0]

threadIdx.z thrdIdz thrd%(cuBlk[0] × cuBlk[1])

	 M. Yu et al.

kernel can directly access the data from on-board global mem-
ory, whose capacity is above 16GB (Nvidia 2020).

3.3.2 � Data redirection strategy

The memory type DMA_STRIDE requires data redirection
in Sunway CPE, which need more manual efforts for pro-
grammers. To achieve automatically translation, data redi-
rection strategy is addressed, as shown in Fig. 5. The data
indexing pattern in CUDA is either contiguous or discrete
distributed among blocks (Garland et al. 2008; Milakov
2015). Towards to the characteristics, we design tailored
data redirection translation strategy. Data is accessed along
the arrow directed order. Identifying data stride index among

blocks and data locality in single thread-block are the key
to realize the data redirection access in each Sunway CPE.
For contiguous data indexing pattern, data stride index is
directly followed by block index ID. The data locality range
is thread organization of thread-block. On the other hand,
discrete data indexing pattern is complicated, which is com-
bined by at least two direction traverse. By parsing global
data indexing usage (e.g., data[i ∗ N + j] in Fig. 5), data
locality expression is acquired from the last combination
of threadIdx usage, since data accessing is only contigu-
ous along single thread index direction in discrete indexing
pattern. Hence, data stride index is constructed by the reset
expression of global data indexing usage, which combines
block index id, thread dimension and thread index.

Fig. 5   Data redirection strategy

swCUDA: Auto parallel code translation framework from CUDA to ATHREAD for new generation sunway…

Algorithm 2 Memory Hierarchy Optimization

Input: paraV arAttr(type, var, size, attr):
Directive for CUDA input parameter variables

Output: varMem: variable memory usage type
in Sunway

1: while paraV arAttr != NULL do
2: if attr is readonly then
3: if size less than 128KB then
4: varMem ⇐ LDM BY DMA
5: else
6: varMem ⇐ SLAV E CACHE
7: end if
8: else if attr is inout then
9: if size less than 4096KB then

10: varMem ⇐ GLB SHR MEM
11: else
12: varMem ⇐ DMA STRIDE
13: end if
14: end if
15: end while

To implement data redirect ion strategy in
swCUDA, high level directive is designed by format
dataPattern(pattern1, pattern2, usage). Parameter pattern1
and pattern2 denote global thread indexing pattern in CUDA
kernel, whose format is required to comprise blockIdx to
represent global indexing. If there is only one global index-
ing pattern, pattern2 is filled with NONE. The parameter
usage illustrates the actual data global indexing usage. As
swCUDA parsed the directives, the data stride index and data
locality usage are automatically generated. Data with global
indexing usage is translated to local indexing with DMA
transfer by data stride index in single Sunway CPE. Data
redirection strategy improves memory hierarchy optimiza-
tion, where flexible data redirecting method of the memory
type DMA_STRIDE is generated according to the different
data indexing pattern.

3.4 � Grouping calculation asynchronous reduction
scheme

Nvidia GPU supports atomic operation in hardware with
low latency to remove random access issue easily. In the
contrast, there is no hardware support for atomic operation in
Sunway CPEs. Avoiding random access issue is always chal-
lenging work. In this section, we propose GCAR scheme to
provide general solution to automatically transform atomic
operation.

As shown is Algorithm 3, high level directive
is used to describe the detailed atomic attribute by
AtomOpr(type, var, size, rcvNum, copyin). Sunway
CPEs is partitioned to computing cores (cptCore) and
receiving cores (rcvCore). When the atomic directive is
parsed, swCUDA embeds cptCore and rcvCore procedure

respectively. CUDA code is inherited under cptCore proce-
dure. rcvNum is used to determine how many rcvCores is
needed, dynamically adjusted according to the size of var.
copyin indicates if atomic variable is needed to transfer to
LDM. First, Line 1 in Algorithm 3 calculate atomic data
stride at the beginning of kernel code. rcvCore uses it to
transfer atomic data, where cptCore uses it to calculate the
target core that should be sent by RMA. rcvCore is respon-
sible for accumulating the atomic variable var and its local
index transferred from computing cores by RMA. When
RMA transfer is done, the asynchronous flag will be set.
Then, receiving cores do accumulations(refers as line 11
in Algorithm 3). Once stop flag is received from all com-
puting cores, the procedure of receiving core is finished
and var is transferred back by DMA. On the other hand,
Computing core do calculation and send data to receiving
core by RMA asynchronously. Since var is transferred and
spread in receiving cores, data locality and targeted receiv-
ing core are needed to redirect and calculate by dataStride,
shown as line 24 to line 25 in Algorithm 3.

By explicit data partition method, RMA communication
and fast synchronization in CPEs, GCAR Algorithm shows
excellent performance and generality. We encapsulate the
algorithm to the application program interface (API) to
provide general solution for resolving the random access
issue.

4 � Application study

In this section, we first illustrate the translation of swCUDA
for standard matrix multiply benchmark. Then, we perform
in-depth analysis on complicated kernels in Gromacs. We
present that swCUDA is adaptive to the flexible CUDA ker-
nel programming.

Fig. 6   CUDA orginal kernel function with directive

	 M. Yu et al.

4.1 � General kernel translation

The general matrix multiplication (GEMM) computes a
scalar-matrix-matrix product and adds the result to a scalar-
matrix product with CUDA code in Polybench suite is shown
in figure 6, which calculates 512 × 512 symmetric matrix C
by general matrices A and B. The data organization is 32 × 8
for thread-blocks and 16 × 64 for blocks. The directives are
inserted to describe the attribute of kernel functional param-
eter variables. a and b are read only variables, where c is
writable variable. The size of these three variables are 1MB.

Algorithm 3 Grouping Calculation Asyn-
chronous Reduction
Input: AtomOpr(type, var, size, rcvNum, copyin):

Directive of Atomic operation
ayncF lag[cptNum]: aync status of cptCore
cptEnd[rcvNum]: done status of rcvCore

1: dataStride: number of data in each rcvCore
2: Procedure in rcvCore:
3: finish ⇐ cptCore
4: if copyin then
5: transfer var to rcvCore with dataStride
6: end if
7: while true do
8: For the i cptCore
9: if ayncF lag[i] is true then

10: get val and localPos from i cptCore
11: var[localPos] ⇐ var[localPos] + val
12: ayncF lag[i] ⇐ false
13: end if
14: if cptEnd[i] is true then
15: finish ⇐ finish− 1
16: end if
17: EndFor
18: if finish is zero then
19: break
20: end if
21: end while
22: transfer var back host with dataStride
23: Procedure in the i cptCore:
24: tarCore ⇐ size/dataStride
25: localPos ⇐ size%dataStride
26: send val and localPos to tarCore by RMA
27: RMA set ayncF lag[i] true
28: RMA set cptEnd for all rcvCore true

swCUDA executes scale affine algorithm and realizes
the code translation, as shown in Fig. 7. First, swCUDA
automatically organizes original CUDA thread-blocks
array (cuGrid[3]), threads array (cuBlock[3]) and kernel
parameter variable pointers to the structure variable of
ATHREAD kernel function. By DMA transfer, the array
value and pointer address can be accessed locally. Then,
block and thread affine translation is automatically accom-
plished and embedded in the entry of kernel function of

ATHREAD according to Algorithm 1. CUDA blocks are
spread to CPE cores equally. Each CPE executes consecutive
16 blocks in GEMM example, where block index in each
CPE is addressed by CPE index primitive cpeId. We use
loop to iterate over the blocks, and CUDA block primitive
is translated according Table 1. Within the block loop, we
further embed thread loop to iterate each thread with same
method. In this example, each block executes 256 threads
totally.

After that, directives are parsed by swCUDA to execute
memory hierarchy translation as shown in Fig. 8. We use
label userDef to indicate swCUDA that directives are pars-
ing. paraVarAttr is used to illustrate variable and its attrib-
utes, which are first aquired by swCUDA for the following
translation. When swCUDA traverses the kernel functions,
the readonly and inout variables are detected by compar-
ing with pre-saved variables from directives. Since the
size of readonly variable is larger than 128KB, described
by Algorithm 2, they are set to SLAVE_CACHE . Then the
variable is replaced with the structure variable from Para in
the node of parsing AST by ANTLR. The variable can be

Fig. 7   Scale affine translation

Fig. 8   Memory optimization with global shared Memory

swCUDA: Auto parallel code translation framework from CUDA to ATHREAD for new generation sunway…

accessed by slave cache, as shown in line 11 of Fig. 8. For
inout variable, since its size lower than 4MB, it is assigned
to GLB_SHR_MEM . Hence, swCUDA inserts specific key-
words and API for the definition and data transfers of global
shared variables.

If the matrix size of GEMM enlarges to 2048 × 2048 ,
the inout variable is assigned to DMA_STRIDE due the
limitation of LDM size. By this case, we need transfer data
by DMA with stride and redirect CUDA variable index to
meet ATHREAD indexing requirement. The data redirection
directive dataPattern is parsed to save index pattern and
data usage. The GEMM index pattern is discrete traverse
with two dimension, but DMA transfer is required for single
dimension for contiguous data. Hence, we use dataLoad to
toggle DMA discrete transfer. As shown in Fig. 9, DMA
stride index glbInx is calculated by usage and pattern of
directive dataPattern and single DMA transfer size is deter-
mined by pattern2. Hence, global data index is automatically
translated by this fixed indexing pattern. Data locality is then
redirected to one dimension of threads.

With the tailored translation algorithm and high level
directives, swCUDA successfully transforms benchmark
CUDA kernels to ATHREAD kernels. Our flexible scale
affine algorithm and memory hiearchy translation demon-
strate the productivity and effectiveness of swCUDA.

4.2 � Gromacs translation

As described in Sect. 2.4, there are totally six CUDA kernels
for short-range pair interaction and long-range coulomb cal-
culation with PME method. In this section, we select charge
spreading kernel in PME method as example to present the
practical code translation process by swCUDA. The same
process is adapted to the other CUDA kernels of Gromacs
for automatically translating to ATHREAD kernel.

Accelerating PME method in Sunway is challenging
work since the algorithm of B-Spline interpolation in charge
spreading causes memory random access issue (Lee et al.
1997). To get around the problem, PME method is recon-
structed by local grid reordering in previous work (Zeng
et al. 2021). This method needs further verification for gen-
erality. In this section, we presents how the charge spreading
kernel is automatically translated to ATHREAD kernel by
swCUDA.

In charge spreading method, each charge is mapped to
grid location by scaled fractional coordinates of particle,
and then distributed to surrounding grid volume, depend-
ent on the spline interpolation order n (fixed at 4). Each
charge is spread over n3 = 64 grid points. In another word,
each dimension of coordinate per particle has 4 spline
parameters. In CUDA kernel implementation, each par-
ticle is assigned 4 threads for calculation. With the block
size of 128 threads, atom number per block (atomsPer-
Block) is 32 (128/4). The index of thread-blocks is organ-
ized by total atoms divided atomsPerBlock. CUDA threads
organization is cuBlock[3] = {order, 1, atomsPerBlock} and
cuGrid[3] = {totalAtoms∕atomsPerBlock, 1, 1} . Charge
spreading kernel is decomposed to two parts: spline data
calculation and spread charge. Spline calculation is used
to calculate spline data with fractional coordinates. Then
spread charge uses calculated spline data to execute n3 = 64
interpolations in three dimensions per particle. It unrolls
Z axis to 4 threads and loop x and y axis to calculate dis-
tributed charge with 64 interpolations. Due to large scaled
paralleling charge spread calculation of multi-atoms and
periodic boundary of simulation box, accumulating charge
in one grid point would inevitably encounter random access
issue (Kutzner 2008). It is solved by using atomic API in
CUDA implementation.

With our novel algorithm, swCUDA completely translates
charge spreading kernel with high efficiency, as shown in
Fig. 10. First, atomic directive is parsed and translated as
it brings code structure change in ATHREAD kernel. As
result, API writeConflictInit is embedded to calculate the
data stride indexing. Then, cptCore and rcvCore proce-
dure is embedded. API rcvCoreGetData is main function
of rcvCore procedure, which accumulates atomic data from
cptCore by RMA, described in Algorithm 3. Main CUDA
kernel code is inherited in cptCore procedure. CUDA atomic
API operation is parsed and data offset and updated value is
split, as shown in line 41 and 42 of Fig. 10b. The spreadVal
contains global index and updated value. Then, asynchro-
nous API sendDataToRcvCore sends it to target rcvCore by
RMA. After all data sent to rcvCore, API finishDataSend is
used to notify rcvCore to end receiving work. The above API
functions are manually developed with high performance.

Fig. 9   Data redirection translation

	 M. Yu et al.

Second, scale affine translation is embedded in the cpt-
Core procedure. Third, memory hierarchy optimization is
executed by parameter directive. Since parameter variables

are readonly and size is beyond 128KB, memory type
SLAVE_CACHE is assigned. CUDA shared memory vari-
ables with label __share__ , only accessed in single thread-
block. Hence, these variables are treated as local LDM vari-
able in ATHREAD. At last, CUDA primitive syncthreads
means all the data in thread-blocks should be updated here.
Hence, the thread loop is ended by parsing syncthreads and
start next thread loop here, as shown in line 20 of Fig. 10b.
By our novel algorithm, the core CUDA parallel function
calculate_splines and spread_charge is inherited with high
translation efficiency.

5 � Evaluation

In this section, we firstly describe the experimental setup and
simulation systems. Then, we conduct comprehensive exper-
iments to validate the performance of automatically trans-
lated benchmark by swCUDA. After that, we evaluate the
performance of translated ATHREAD kernels of Gromacs
in single core group of Sunway. Finally, we demonstrate the
strong scalability by different nodes and particle size.

5.1 � Experimental setup

In order to evaluate swCUDA, Polybench suite1 and NBody
simulation (Cheng et al. 2014) are used as CUDA input
benchmark to demonstrate the productivity and perfor-
mance. Then, we choose Gromacs 2021.1 stable version
as real world application to validate the performance of
auto translated kernels by swCUDA. All the translated
applications are performed on the new generation Sunway
supercomputer.

Benchmark application and implementation. As shown
in table 2, Polybench suite contains linear algebra solvers,
data-mining and stencil (Grauer-Gray et al. 2012), extracted
from operations in various application domains and writ-
ten with different programming languages. NBody simula-
tion contains CUDA implementation for GPU and OpenMP
implementation for X86 CPU, which is used to validate the
performance of atomic operation. In our experiments, we
first use swCUDA to automatically translate CUDA kernels
to ATHREAD kernels. This implementation is labeled as
TransVer for comparison. Furthermore, based on the Trans-
Ver, we manually optimize readonly variables with memory
type SLAVE_CACHE for contiguous accessing order, which
effectively enhance cache hit rate of Sunway and improve the

Fig. 10   Charge spreading translation

1  http://​web.​cse.​ohio-​state.​edu/​~pouch​et.2/​softw​are/​polyb​ench/​GPU/​
index.​html.

http://web.cse.ohio-state.edu/%7epouchet.2/software/polybench/GPU/index.html
http://web.cse.ohio-state.edu/%7epouchet.2/software/polybench/GPU/index.html

swCUDA: Auto parallel code translation framework from CUDA to ATHREAD for new generation sunway…

performance significantly. This version is labeled as OptVer.
Both TransVer and OptVer are used for evaluation.

Accuracy verification Since Polybench suite and NBody
simulation both support CPU and GPU, they have imple-
mented their own accuracy examination. Polybench com-
pares each value of output matrix and NBody use mean
square error (MSE) for examination with preset precision
error. We use the same method to evaluate our translated
many-core version. All the accuracy examination result
shows corrected for different combination: between Sunway
MPE and CPE, Intel CPU and Sunway CPE.

Compilation settings. The translated application is com-
piled with several cross compile toolchains for Sunway plat-
form. Main compiler SWGCC v1307 is vendor-provided tool
chain based on GCC 7.1.0. It provides hybrid compilation
and link for MPE and CPE program. SWMPI v20220608
is dedicated message passing library for Sunway platform.
Special optimization flags for SWGCC are -O3, -msimd,
-mieee, -mfma.

Gromacs simulation systems. To better evaluate the
performance and generality of our translated ATHREAD
kernels, several representative bio-molecular systems are
selected from Gromacs official website,2 ranged from 16k
to 3 million atoms as shown in Table 3. Protein RNAse
comprises 16k atoms with dodecahedron box. Protein ADH
comprises 95k atoms with dodecahedron box. Water-bare-
hbonds system has several different simulating sizes. We
choose 384k atoms and 3 million atoms systems from it. The
RNAse, ADH and WBH_KB systems are used to validate the

performance for Sunway single core group. The WBH_M is
used to validate the strong scalability. These MD systems
cover major simulating size in practical usage.

5.2 � Benchmark performance

In this section, First we evaluate the many-core acceleration
of entire ATHREAD kernels of Polybench suites by using
version TransVer and OptVer respectively. NBody simula-
tion can’t be used for the evaluation of many-core Accelera-
tion, since Sunway MPE does not support OpenMP. It is
used to compare with Intel CPUs and NVIDIA GPU. Then
we further conduct comprehensive comparison with Intel
CPU and NVIDIA GPU by all translated benchmarks.

5.2.1 � Performance of many‑core acceleration

All the tests are performed on single core group in new
generation Sunway platform. We use sequential CPU
implementation as base version of Polybench suites,
which is executed on Sunway MPE. As shown in Fig. 11,
We get the average 18x speedup for direct translated

Table 2   Typical parameters of
translated benchmark

Code
name

Size of array
dimension

Number of
kernels

Memory
type

CUDA
code size

Translated
code size

Total
MFLOPs

2DCONV 4096 1 DMA_STRIDE 79 188 436.1
2 MM 2048 2 DMA_STRIDE 132 319 35184.6
3DCONV 256 1 DMA_STRIDE 75 165 625.4
3 MM 512 3 GLB_SHR_MEM 141 345 805.3
ATAX 4096 2 DMA_STRIDE 98 262 67.1
BICG 4096 2 DMA_STRIDE 106 266 352.3
CORR 2048 4 DMA_STRIDE 254 568 8837.1
COVAR 2048 3 DMA_STRIDE 131 398 8806.4
DOITGEN 128 2 DMA_STRIDE 99 297 538.9
GEMVER 4096 3 DMA_STRIDE 166 456 201.3
GESUMMV 4096 1 DMA_STRIDE 52 148 67.1
GRAMSCHM 2048 3 DMA_STRIDE 142 365 17776.6
MVT 4096 2 DMA_STRIDE 88 255 67.1
SYR2K 2048 1 DMA_STRIDE 49 147 61583.4
SYRK 1024 1 GLB_SHR_MEM 50 122 3307.5
NBody 30720 2 DMA_STRIDE 168 493 4308

Table 3   Gromacs simulation system

Simulation
name

Size of
atom

Description

RNAse 16k with dodecahedron box
ADH 95k with dodecahedron box
WBH_M 3million water-bare-hbonds with 3 million atoms
WBH_KB 384k water-bare-hbonds with 384k atoms

2  https://​ftp.​groma​cs.​org/​bench​marks/.

https://ftp.gromacs.org/benchmarks/

	 M. Yu et al.

kernel version TransVer of entire Polybench suites and
40x speedup for further optimized version OptVer. For
the version TransVer, the acceleration performance
depends on the ratio of compute-to-memory operation.
SYR2K achieves the maximum 80x speedup, since its
floating point operation (FLOPs) is the biggest, as shown
in Table 2. Benefiting from our memory hierarchy opti-
mization, matrix array is effectively transferred to LDM
with data stride index for multiply and coefficient opera-
tion. On the other hand, CORR achieve the minimum 2x
speedup, The reason is readonly variable is assigned to
SLAVE_CACHE but the reading pattern is discrete. CUDA
kernels don’t need to consider if data accessing order is
contiguous or not, since GPU usually have big enough
independent memory. This causes that accessing single
readonly variable by SLAVE_CACHE will re-flush cache
in Sunway, which decrease the cache hit rate and further
decrease performance seriously. Hence, our OptVer trans-
pose the matrix for readonly variable to make it contigu-
ous accessed. From our experiments, 10 benchmarks adopt
this manual optimization and significantly improved the
performance.

5.2.2 � Comparisons with intel CPU

To compare with CPU, we select Intel® Core I5-8300
CPU at 2.4GHZ with 4 cores as the target hardware. We
evaluate the performance of the single process in Sunway
and Intel CPU respectively. The executing time of all the
benchmark programs run on this target CPU is used as
baseline and version OptVer on Sunway is used for com-
parison. Polybench suite can be executed without modifi-
cation run on Intel CPU, where NBody simulation requires
OpenMP multi-thread parallelization strategy in Intel CPU
to avoid random access issue. As shown in Fig. 12, version

OtpVer run on Sunway CPE achieves average 15x speedup
than baseline.

For the performance of translated NBody simulation, we
get 12x speedup than OpenMP version. The main contribu-
tion is that our novel GCAR algorithm effectively eliminates
random access issue and asynchronous reduction guarantees
the high acceleration performance.

5.2.3 � Comparisons with NVIDIA GPU

We select NVIDIA GTX 1050 Ti as the target hardware.
Its Theoretical FP32 performance is up to 2.138 TFLOPS,
which is two times than single CG of Sunway (1.16
TFLOPS). We evaluate the Polybench suite and NBODY
performance on Sunway and NVIDIA GPU respectively.

2D
CO

NV 2M
M

3D
CO

NV 3M
M
AT
AX

BI
CG

CO
RR

CO
VA
R

DO
IT
GE

N

GE
M
VE

R

GE
SU
M
M
V

GR
AM

SC
HMM

VT

SY
R2
K
SY
RK

0

100

200

8 13 10 13 6 7 2 3
19 15

32

5
21

80

148

210

18
31

16 10

30 30
19 26 32 32

121

80

14

Sp
ee
du

p
TransVer OptVer

Fig. 11   many-core acceleration for translated Polybench suite

2D
CO

NV2M
M

3D
CO

NV3M
M
AT
AX
BI
CG

CO
RR

CO
VA
R

DO
IT
GE

N

GE
M
VE

R

GE
SU
M
M
V

GR
AM

SC
HMM

VT

SY
R2
K
SY
RK

NB
od
y

0

20

40

60

19.1

54.3

8.3
6.5

9.3
11.1

21.7 21.4

4.7

10.1

3.8
7.2

35

12.7

4.4

12.6

Sp
ee
du

p

Fig. 12   Performance comparison between sunway CPE and intel
CPU

2D
CO

NV2M
M

3D
CO

NV3M
M
AT
AX
BI
CG

CO
RR

CO
VA
R

DO
IT
GE

N

GE
M
VE

R

GE
SU
M
M
V

GR
AM

SC
HMM

VT

SY
R2
K
SY
RK

NB
od
y

0

1

2

3

1.22

0.89

1.88

0.91

1.13

0.86

2.5 2.47

1.1

0.78
0.9

0.77

1.15 1.14

0.72 0.7

Sp
ee
du

p

Fig. 13   Performance comparison between sunway CPE and NVIDIA
GPU

swCUDA: Auto parallel code translation framework from CUDA to ATHREAD for new generation sunway…

GPU test result is used as baseline. As shown in Fig. 13,
version OptVer executed on Sunway platform gets aver-
age 27 percentage higher than GPU version. From the test
result, there are part of benchmarks which executing time
on GPU is a little bit faster than Sunway. The main reason is
that these benchmarks are required to access more readonly
variables by cache and brings lower cache hit rate. Another
important reason is that the computing capacity of NIVIDIA
GPU is two times faster than Sunway. If we get same com-
puting capacity for single CG of Sunway, the performance
will enhance a lot. The overall performance of our optimized
version on Sunway is better than NVIDIA GPU.

5.3 � Gromacs performance

In this section, We evaluate the performance of major trans-
lated kernels in Gromacs by swCUDA with different MD
system size. First, we present the acceleration performance
in single node of Sunway platform. Then, we demonstrate
the parallel efficiency of our translated Gromacs.

5.3.1 � Single node evaluation

In the experiment, original Gromacs run on Sunway MPE is
used as baseline without modification. all the tests are run on a
single node with 6 CGs. Figure 14 shows performance speedup
for different translated kernels of Gromacs with three differ-
ent simulation systems. The result shows up to 17x speedup
performance. The acceleration performance is improved along
the atom size of simulation systems. Hence, WBH_KB system
gets the maximum speedup than other systems.

Non-bonded force kernel achieves 9x speedup compared
with MPE version in WBH_KB system. The translated ker-
nel shows up to 80% memory access bandwidth for each
super i-cluster interaction, improving the compute to mem-
ory access ratio. RNAse system only gets 5x speedup due
to its smaller atom size, which decreases memory access
band-width.

For PME spread kernel, the spatial randomness of charge
griding causes more possibility that computing cores update
data to same rcvCore by RMA communication. Thereby,
the synchronization time of rcvCore is longer. Hence PME
spread kernel only gets average 2x speedup. PME gather ker-
nel gets more than 10x speedup regardless the difference of
atom size, presenting the stable performance improvement
by our translation framework.

5.3.2 � Scalability

To evaluate the scalability for our translated kernels of
Gromacs, we choose WBH_M simulating system with 3 mil-
lion atoms. Figure 15 shows the strong scalability for our
translated kernels, using performance of 1200 processes as
baseline. As the number of Sunway processes increase from
1200 to 7200, the average parallel efficiency of these four
kernels is up to 63%. Gromacs parallel algorithm constructs
complex message passing interface (MPI) mechanism, which
includes domain decomposition grid and dynamic load bal-
ancing (Hess et al. 2008). Each CPE handles less number
of particles and the communication time consumption is
increased along the increase of processes. Benefiting from
our translating optimization for both long-range coulomb
force calculation and short-range non-bonded calculation,
the performance of load balance is improved between PME
processes and non-bonded processes. The result of strong
scalability is better than Zhang’s work (Zhang et al. 2019).

5.4 � Limitations and discussions

The translated kernels by swCUDA have proven outstanding
performance, but it still has space to improve speedup. Since
translated kernels are based on the algorithm of CUDA, they
are suitable for SIMD parallelism (Chen et al. 2021). The
performance can be speedup if we further optimize them.

Spread Solve Gather Force
0

10

20

2.45

10.44

6.46
5.15

2.62

11.68
10.12

8.46

3.1

13.93

17.26

9.07Sp
ee
du

p
RNAse ADH WBH KB

Fig. 14   major kernels acceleration in Gromacs

1,200 2,400 3,600 4,800 7,200

0.2

0.4

0.6

0.8

1

Number of Processes

P
ar
al
le
l
E
ffi
ci
en
cy

Spread
Solve
Gather
Force

Fig. 15   Strong scalability for water-bare-bonds with 3 million atoms

	 M. Yu et al.

Meanwhile, the double buffer technology (Chu et al. 2021)
can be leveraged by advanced code modification, which is
proven the effectiveness for improving performance. By
these optimizations, programmers can further improve the
performance based on the translated code framework.

6 � Related work

6.1 � Code translator

Along with the rapid increase for variable heterogeneous
accelerator, the research for programming language auto
translation focuses on the two aspects recently: inter trans-
lation for heterogeneous low level programming languages
(e.g., CUDA, OPENCL) and automatic parallelization for
heterogeneous architecture. Gabriel Martinez proposed an
AST-Driven auto code translator CU2CL to translate CUDA
to OPENCL (Martinez et al. 2011). Since the program-
ming model and hardware architecture has high similarity
between these two languages, CU2CL is mainly focusing
on the primitive translation, based on the Clang framework.
Targeting to Sunway architecture, Li et al. propose a transla-
tor from OpenMP to ATHREAD (Li et al. 2021). It maps
the thread in OpenMP to single CPE, where parses and
translates OpenMP directives. It provides simple memory
mapping strategy. The mapping from shared memory to
host main memory decreases the performance. For mutual
exclusion primitive translation, it proposes master–slave dis-
tributed lock mechanism. Since it requires synchronization
between host and slave, the overhead is up to 1000 cycles
from its data. On the other hand, swCUDA provides auto
diverse memory optimization algorithm to effectively assign
data to different memory type. Global memory of CUDA
is mapping to several memory type depending on different
circumstance. Our general write-conflict scheme efficiently
resolves the mutual exclusion issue, where the average over-
head is only 130 cycles. The closest approach to swCUDA is
OPENCL compiler for Sunway (Lee et al. 2010), whereas its
key mapping algorithm and memory optimization method is
relative fixed and only can handle basic matrix operations.
swCUDA provides high level directives based complicated
data affine algorithm and memory hierarchy optimization,
successfully applied to the multi kernel translations in
molecular dynamics simulation software.

Automatic parallelization is used to translate sequential
computing intensive codes to paralleling code suitable for
heterogeneous architecture. The representative translators
are PPCG (Verdoolaege et al. 2013), DawnCC (Mendonça
et al. 2017) and HIPAcc (Membarth et al. 2016). PPCG
automatically translates static control loop nest to data
parallel computation codes based on the polyhedral model
of compiler, by implementing multi-level tiling strategy

and combined affine transformation. C code fragment is
translated to CUDA with memory hierarchy optimization,
validated in PolyBench suite. DawnCC is source-to-source
compiler, built on top of the LLVM framework. It automati-
cally inserts OpenACC or OpenMP directives in sequential
C/C++ code which is interpreted by compilers. Symbolic
range and dependence analysis are used for intermediate rep-
resentation as input to infer the memory boundary of data
movement directives. HIPAcc is source-to-source compiler
for image processing based on Domain-Specific Languages
(DSL). A suite of DSL is designed and embedded in C++.
Image processing algorithms written in DSL code can be
captured and translated to targeting CUDA, OpenCL and
Renderscript. Besides, the memory hierarchy is optimized
according predefined feature in DSL. Heuristic for kernel
configuration and tiling dependence results in good mem-
ory bandwidth utilization. Although these works focus on
sequential to parallel code translation, they are profoundly
heuristic for methodology to swCUDA.

6.2 � Porting MD simulations in sunway

Molecular dynamic softwares, e.g., Gromacs, LAMMPS,
Amber and NAMD, are wildly used in versatile heteroge-
neous architecture of HPC centers. Porting them to Sun-
way architecture mainly aims to the computing intensive
parts: PME method and short-range pair interaction. The
PME method is first ported for Gromacs to Sunway recently
(LIN Zeng and Jun-shi 2021). To resolve the random mem-
ory access issue in charge spreading and force interpola-
tion of PME method, blocking strategy based on local grid
order and data reorganization algorithm are addressed. This
method redesigns the B-spline algorithm and can’t be univer-
sal to resolve memory access issue for other applications. On
the other hand, swCUDA provides general GCAR scheme
to resolve memory access issue and completely inherits the
parallel codes of B-spline algorithm and force interpolation
method. This solution is validated in both charge spreading
and short-range interaction kernels. Meanwhile, the accu-
racy and performance are both guaranteed.

To get better performance of short-range pair interac-
tion in Sunway for LAMMPS, (Dong et al. 2016) proposed
double-buffering mechanism to overlaps memory access
and calculation time. SIMD vectorization is further used to
speed up. But the optimization is only focus on the neighbor
list builder and the coulomb force calculation is not related.
(Duan et al. 2018) redesign LAMMPS by hybrid memory
update strategy to solve write-conflict, software cache
strategy to optimize memory bandwidth, customized math
functions to eliminate searching lookup tables and pipeline
acceleration targeting interactions and neighbor list build-
ing. (Yu et al. 2017; Zhang et al. 2019) propose a parallel
pipeline model between MPE and CPE clusters to refactor

swCUDA: Auto parallel code translation framework from CUDA to ATHREAD for new generation sunway…

Gromacs in Sunway. MPE is responsible for task partition-
ing and data updating, CPE is responsible for calculation.
Since force array is updated serially by CPEs, write-conflict
is avoided. Moreover, CPEs are divided to scheduling group
and computing group to decrease the main-memory access.
(Chen et al.. 2021) present a highly efficient short-range
force kernel of Gromacs in Sunway with super cluster-based
neighbor list. Dual-slice partitioning scheme is addressed
to solve the write-conflict issue and reduce the data reduc-
tion overhead. SIMD paralleling and instruction reordering
is used optimize the performance. All of these works are
needed to redesign the paralleling algorithm for original MD
software. Meanwhile, memory hierarchy optimization and
write-conflict solution are totally different, which can’t be
leveraged in other applications. All of these draw-backs are
overcome by swCUDA. Moreover, the previous works only
focus on either PME method or short-range pair interaction.
Our work is first time to port both of these two sections by
unified translating interface, which is productive.

7 � Conclusion

In this paper, we present a novel parallel code transforma-
tion framework swCUDA, greatly enhancing the efficiency
of ATHREAD programming. In this framework, three
fundamental algorithms are presented. The algorithm of
scaled data affine translation provides the transformation
from CUDA primitive of thread-blocks and thread to ATH-
READ index, the foundation for CUDA code translation.
The GCAR algorithm resolves the central issue towards to
the hardware drawback in Sunway CPE. The algorithm of
memory hierarchy optimization automatically assigns the
appropriate memory usage for variable with different size
to improve the compute to memory access ratio. Based on
these algorithms, we design concise high level directives to
enhance the translation efficiency. By these effective method,
swCUDA expresses strong productivity and applicability.

To validate the practicability and performance of
swCUDA, we conduct comprehensive experiments under
entire Polybench benchmark suite and NBody simulation.
When compared to the baseline, multiple benchmarks
achieve an average speedup of 18x. When compared with
Intel CPU, we get an average 3x speedup. Further, we choose
molecular dynamics simulation Gromacs as real world appli-
cation. Towards to complicated CUDA kernels of PME
method and short-range pair list interaction, swCUDA suc-
cessfully translates the CUDA codes to ATHREAD codes.
Experiments show up to up to 17x speedup performance and
average 63% scalability.

As a part of future work, we plan to extend the capa-
bilities of swCUDA to support more parallel architecture
conversions, such as Heterogeneous Interface for Portabil-
ity (HIP) programming for AMD GPU platforms. With the
exception of a few functions that are not commonly used,
HIP copies almost the entire CUDA API, including function
names, keywords, etc. In most cases, CUDA-to-HIP porta-
bility can be accomplished at the source level by substituting
’cuda’ and ’hip’ characters. After supporting HIP transla-
tion with swCUDA, programs on more extensive hardware
platforms will be able to quickly translate to run on Sunway
platform and improve programming productivity.

Acknowledgements  This work was supported in part by National
Key Research and Development Program of China (Grant No.
2021YFF0704000). The corresponding author are Dongning Jia (email:
dnjia@qnlm.ac) and Zhiqiang Wei (email: weizhiqiang@ouc.edu.cn).

Data availability  Furthermore, new data availability algorithm is
considered as the main research interests to improve the speedup for
translated codes.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Chen, J.S., An, H., Han, W.T., et al.: Towards efficient short-range
pair interaction on sunway many-core architecture. J. Comput.
Sci. Technol. 36(1), 123–139 (2021). https://​doi.​org/​10.​1007/​
s11390-​020-​9826-z

Cheng, J., Grossman, M., McKercher, T.: Professional CUDA C Pro-
gramming, 1st edn. Wrox Press Ltd (2014)

Chu, G., Li, Y., Zhao, R.: et al Md simulation of hundred-billion-
metal-atom cascade collision on sunway taihulight. ArXiv
(2021) https://arxiv.org/abs/2107.07866

Dong, W., Kang, L., Quan, Z.: et al Implementing molecular dynam-
ics simulation on sunway taihulight system. In: 2016 IEEE 18th
International Conference on High Performance Computing and
Communications. In: IEEE 14th International Conference on
Smart City; IEEE 2nd International Conference on Data Science
and Systems (HPCC/SmartCity/DSS), pp 443–450, https://​doi.​
org/​10.​1109/​HPCC-​Smart​City-​DSS.​2016.​0070 (2016)

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11390-020-9826-z
https://doi.org/10.1007/s11390-020-9826-z
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0070
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0070

	 M. Yu et al.

Duan, X., Gao, P., Zhang, T.: et al. Redesigning lammps for peta-
scale and hundred-billion-atom simulation on sunway taihulight.
In: SC18: International Conference for High Performance Com-
puting Networking, Storage and Analysis Doi: https://​doi.​org/​
10.​1109/​SC.​2018.​00015(2018)

Essmann, U., Perera, L., Berkowitz, M., et al.: A smooth particle
mesh ewald method. J. Chem. Phys. 103, 8577 (1995). https://​
doi.​org/​10.​1063/1.​470117

Fu, H., Liao, J., Yang, J., et al.: The sunway taihulight supercom-
puter: system and applications. Sci. China Informat. Sci. 59,
1–16 (2016). https://​doi.​org/​10.​1007/​s11432-​016-​5588-7

Garland, M., Le Grand, S., Nickolls, J., et al.: Parallel comput-
ing experiences with cuda. IEEE Micro 28(4), 13–27 (2008).
https://​doi.​org/​10.​1109/​MM.​2008.​57

Grauer-Gray, S., Xu, L., Searles, R. et al.: Auto-tuning a high-level
language targeted to gpu codes. In: 2012 Innovative Parallel
Computing (InPar), pp 1–10, https://​doi.​org/​10.​1109/​InPar.​
2012.​63395​95 (2012)

Han, T.D., Abdelrahman, T.S.: hicuda: High-level gpgpu program-
ming. IEEE Transact. Parall. Distribut. Syst. 22(1), 78–90
(2011). https://​doi.​org/​10.​1109/​TPDS.​2010.​62

Harvey, M., De Fabritiis, G.: An implementation of the smooth par-
ticle mesh ewald method on gpu hardware. J. Chem. Theory
Comput. (2009). https://​doi.​org/​10.​1021/​ct900​275y

Hess, B., Kutzner, C., van der Spoel, D., et al.: Gromacs 4: Algo-
rithms for highly efficient, load-balanced, and scalable molecu-
lar simulation. J. Chem. Theory Comput. 4(3), 435–447 (2008).
https://​doi.​org/​10.​1021/​ct700​301q

Jing, S., Li, X., Liu, Z., et al.: Gpu-enabled implementations of par-
ticle-mesh-ewald method. Comp. Appl. Chem. (2012). https://​
doi.​org/​10.​1021/​acs.​jctc.​0c007​44

Kutzner, C.: Improving pme on distributed computer systems. (2008)
https://​www.​mpinat.​mpg.​de/​632110/​kutzn​er08t​alk-​works​hop.​
pdf

Kutzner, C., Páll, S., Fechner, M.: More bang for your buck Improved
use of gpu nodes for gromacs 2018. J. Comput. Chem. 40, 2418–
2431 (2019). https://​doi.​org/​10.​48550/​arXiv.​1903.​05918

Lee, J., Kim, J., Seo, S et al.: (2010) An opencl framework for het-
erogeneous multicores with local memory. In: Proceedings of the
19th International Conference on Parallel Architectures and Com-
pilation Techniques. Association for Computing Machinery, New
York, NY, USA, PACT ’10, p 193-204, (2010) https://​doi.​org/​10.​
1145/​18542​73.​18543​01

Lee, S., Wolberg, G., Shin, S.: Scattered data interpolation with mul-
tilevel b-splines. IEEE Transact. Visualizat. Comp. Graph. 3(3),
228–244 (1997). https://​doi.​org/​10.​1109/​2945.​620490

Li, M., Pang, J., Yue, F. et al.: Openmp automatic translation frame-
work for sunway taihulight. In: 2021 International Conference on
Communications, Information System and Computer Engineer-
ing (CISCE) (2021) Doi: https://​doi.​org/​10.​1109/​CISCE​52179.​
2021.​94459​16

Liu, F., Ma, W., Zhao, Yea.: xmath2.0: a high-performance extended
math library for sw26010-pro many-core processor. CCF Trans-
actions on High Performance Computing pp 2524–4930. (2022)
https://​doi.​org/​10.​1007/​s42514-​022-​00126-8

Liu, Y., Liu, X., Li, F. et al.: Closing the "quantum supremacy" gap:
Achieving real-time simulation of a random quantum circuit using
a new sunway supercomputer. In: Proceedings of the International
Conference for High Performance Computing, Networking, Stor-
age and Analysis. Association for Computing Machinery, New
York, NY, USA, SC ’21, (2021) https://​doi.​org/​10.​1145/​34588​
17.​34873​99

Martinez, G., Gardner, M., Feng, Wc.: Cu2cl: A cuda-to-opencl trans-
lator for multi- and many-core architectures. In: 2011 IEEE 17th
International Conference on Parallel and Distributed Systems, pp
300–307, (2011) https://​doi.​org/​10.​1109/​ICPADS.​2011.​48

Membarth, R., Reiche, O., Hannig, F., et al.: Hipacc: a domain-spe-
cific language and compiler for image processing. IEEE Transact.
Parall. Distribut. Syst. 27(1), 210–224 (2016). https://​doi.​org/​10.​
1109/​TPDS.​2015.​23948​02

Mendonça, G., Guimarães, B.: Dawncc: Automatic annotation for data
parallelism and offloading. ACM Trans. Archit. Code Optim.
(2017). https://​doi.​org/​10.​1145/​30845​40

Milakov, M.: Gpu pro tip: Fast dynamic indexing of private arrays in
cuda. https://​devel​oper.​nvidia.​com/​blog/​fast-​dynam​ic-​index​ing-​
priva​te-​arrays-​cuda/ (2015)

Nvidia, C.: Gpu-accelerated applications. (2018) https://​www.​nvidia.​
cn/​conte​nt/​gpu-​appli​catio​ns/​PDF/​gpu-​appli​catio​ns-​catal​og.​pdf

Nvidia, C.: Nvidia v100 tensor core gpu. (2020) https://​images.​nvidia.​
cn/​conte​nt/​techn​ologi​es/​volta/​pdf/​volta-​v100-​datas​heet-​update-​
us-​11653​01-​r5.​pdf

Nvidia, C.: Cuda c++ programming guide. (2023) https://​docs.​nvidia.​
com/​cuda/​cuda-c-​progr​amming-​guide/​index.​html

Parr, T.: The definitive antlr 4 reference. The Definitive ANTLR 4
Reference pp 1–326 (2013)

Parr, T., Fisher, K.: Ll(*): The foundation of the antlr parser generator.
SIGPLAN Not 46(6), 425–436 (2011). https://​doi.​org/​10.​1145/​
19933​16.​19935​48

Parr, T., Harwell, S., Fisher, K.: Adaptive ll(*) parsing: the power of
dynamic analysis. SIGPLAN Not 49(10), 579–598 (2014). https://​
doi.​org/​10.​1145/​27140​64.​26602​02

Shang, H., Li, F., Zhang, Y. et al.: Extreme-scale ab initio quantum
raman spectra simulations on the leadership hpc system in china.
In: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. Associa-
tion for Computing Machinery, New York, NY, USA, SC ’21,
(2021) https://​doi.​org/​10.​1145/​34588​17.​34874​02

Strohmaier, E., Dongarra, J., Simon, H. et al.: Top 500 supercomputer
lists. https://​top500.​org/ (2022)

Verdoolaege, S., Carlos Juega, J., Cohen, A.: Polyhedral parallel
code generation for cuda. ACM Trans. Archit. Code Optim.
10(1145/2400682), 2400713 (2013)

Yu, Y., An, H., Chen, J. et al.: Pipelining computation and optimization
strategies for scaling gromacs on the sunway many-core processor.
In: Ibrahim, S., Choo, K.K.R., Yan, Z., et al. (eds.) Algorithms
and Architectures for Parallel Processing, pp. 18–32. Springer
International Publishing, Cham (2017)

Zeng, L., Zheng, W., Hong, A.: Porting and optimizing pme algorithm
on sunway taihulight system. J. Chin. Comp. Syst. 42(1), 9 (2021)

Zeng, L.I.N., Zheng, A.H.W.U., Jun-shi, C.: Porting and optimizing
pme algorithm on sunway taihulight system. J. Chin. Comp. Syst.
42(1), 9 (2021)

Zhang, T., Li, Y., Gao, P. et al.: Sw_gromacs: Accelerate gromacs on
sunway taihulight. In: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and
Analysis. Association for Computing Machinery, New York, NY,
USA, SC ’19, (2019) https://​doi.​org/​10.​1145/​32955​00.​33561​90

Zhu, Q., Luo, H., Yang, C. et al.: Enabling and scaling the hpcg bench-
mark on the newest generation sunway supercomputer with 42
million heterogeneous cores. In: SC21: International Conference
for High Performance Computing, Networking, Storage and Anal-
ysis, pp 1–13, (2021) https://​doi.​org/​10.​1145/​34588​17.​34761​58

https://doi.org/10.1109/SC.2018.00015
https://doi.org/10.1109/SC.2018.00015
https://doi.org/10.1063/1.470117
https://doi.org/10.1063/1.470117
https://doi.org/10.1007/s11432-016-5588-7
https://doi.org/10.1109/MM.2008.57
https://doi.org/10.1109/InPar.2012.6339595
https://doi.org/10.1109/InPar.2012.6339595
https://doi.org/10.1109/TPDS.2010.62
https://doi.org/10.1021/ct900275y
https://doi.org/10.1021/ct700301q
https://doi.org/10.1021/acs.jctc.0c00744
https://doi.org/10.1021/acs.jctc.0c00744
https://www.mpinat.mpg.de/632110/kutzner08talk-workshop.pdf
https://www.mpinat.mpg.de/632110/kutzner08talk-workshop.pdf
https://doi.org/10.48550/arXiv.1903.05918
https://doi.org/10.1145/1854273.1854301
https://doi.org/10.1145/1854273.1854301
https://doi.org/10.1109/2945.620490
https://doi.org/10.1109/CISCE52179.2021.9445916
https://doi.org/10.1109/CISCE52179.2021.9445916
https://doi.org/10.1007/s42514-022-00126-8
https://doi.org/10.1145/3458817.3487399
https://doi.org/10.1145/3458817.3487399
https://doi.org/10.1109/ICPADS.2011.48
https://doi.org/10.1109/TPDS.2015.2394802
https://doi.org/10.1109/TPDS.2015.2394802
https://doi.org/10.1145/3084540
https://developer.nvidia.com/blog/fast-dynamic-indexing-private-arrays-cuda/
https://developer.nvidia.com/blog/fast-dynamic-indexing-private-arrays-cuda/
https://www.nvidia.cn/content/gpu-applications/PDF/gpu-applications-catalog.pdf
https://www.nvidia.cn/content/gpu-applications/PDF/gpu-applications-catalog.pdf
https://images.nvidia.cn/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.cn/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.cn/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.1145/1993316.1993548
https://doi.org/10.1145/1993316.1993548
https://doi.org/10.1145/2714064.2660202
https://doi.org/10.1145/2714064.2660202
https://doi.org/10.1145/3458817.3487402
https://top500.org/
https://doi.org/10.1145/3295500.3356190
https://doi.org/10.1145/3458817.3476158

swCUDA: Auto parallel code translation framework from CUDA to ATHREAD for new generation sunway…

Maoxue Yu  is senior engineer in
Network and Information Center
of Qingdao Marine Science and
Technology Center. His research
interests include the high perfor-
mance computing and auto
parallelization.

Guanghao Ma  is senior engineer
in Network and Information
Center of Qingdao Marine Sci-
ence and Technology Center. His
research interests include the
high performance computing and
scientific visualization.

Zhuoya Wang  is engineer in Net-
work and Information Center of
Qingdao Marine Science and
Technology Center. Her research
interests include the Computer
Aided Drug Design and AI-
Driven Drug Design.

Shuai Tang  is postgraduate in the
faculty of Computer Science and
Technology of the Ocean Uni-
versity of china. His research
interests include high perfor-
mance computing and auto
parallelization.

Yuhu Chen  is engineer in Net-
work and Information Center of
the Qingdao Marine Science and
Technology Center. His research
interests include HPC and global
climate model simulation

Yucheng Wang  is senior engineer
in Network and Information
Center of Qingdao Marine Sci-
ence and Technology Center. He
received PH. D degree in Ehime
University, Japan. His research
interests include big data analyt-
ics and regional ocean modeling
simulation.

Yuanyuan Liu  is an engineer at
Network and Information Center
of Qingdao Marine Science and
Technology Center. Her research
interests include the high perfor-
mance computing and bigdata.

Dongning Jia  is professor in Fac-
ulty of Information Science and
Engineering, Ocean University
of China and director in Network
and Information Center of Qing-
dao Marine Science and Tech-
nology Center. He received PH.
D degree in Ocean University of
China. His main research inter-
ests include pattern recognition,
parallel computing and machine
learning.

	 M. Yu et al.

Zhiqiang Wei  received the Ph.D.
degree from Tsinghua Univer-
sity, China, in 2001. He is cur-
rently a Professor with the Ocean
University of China. His current

research interests are in the fields of intelligent information processing,
social media, and big data analytics.

	swCUDA: Auto parallel code translation framework from CUDA to ATHREAD for new generation sunway supercomputer
	Abstract
	1 Introduction
	2 Background
	2.1 New generation sunway supercomputer
	2.2 Heterogeneous architecture and programming model
	2.3 Another tool for language recognition (ANTLR)
	2.4 MD simulation application gromacs

	3 Algorithm and design
	3.1 Overview
	3.2 Core mapping translation algorithm
	3.2.1 Hardware mapping model
	3.2.2 Scale affine translation

	3.3 Memory hierarchy translation
	3.3.1 Memory hierarchy optimization
	3.3.2 Data redirection strategy

	3.4 Grouping calculation asynchronous reduction scheme

	4 Application study
	4.1 General kernel translation
	4.2 Gromacs translation

	5 Evaluation
	5.1 Experimental setup
	5.2 Benchmark performance
	5.2.1 Performance of many-core acceleration
	5.2.2 Comparisons with intel CPU
	5.2.3 Comparisons with NVIDIA GPU

	5.3 Gromacs performance
	5.3.1 Single node evaluation
	5.3.2 Scalability

	5.4 Limitations and discussions

	6 Related work
	6.1 Code translator
	6.2 Porting MD simulations in sunway

	7 Conclusion
	Acknowledgements
	References

