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Abstract
A novel high-order accurate approach to the analysis of beam structures with bulk and thin-walled cross-sections is presented. 
The approach is based on the use of a variable-order polynomial expansion of the displacement field throughout both the 
beam cross-section and the length of the beam elements. The corresponding weak formulation is derived using the symmetric 
Interior Penalty discontinuous Galerkin method, whereby the continuity of the solution at the interface between contigu-
ous elements as well as the application of the boundary conditions is weakly enforced by suitably defined boundary terms. 
The accuracy and the flexibility of the proposed approach are assessed by modeling slender and short beams with standard 
square cross-sections and airfoil-shaped thin-walled cross-sections subjected to bending, torsional and aerodynamic loads. 
The comparison between the obtained numerical results and those available in the literature or computed using a standard 
finite-element method shows that the present method allows recovering three-dimensional distributions of displacement and 
stress fields using a significantly reduced number of degrees of freedom.

Keywords High-order beam models · Thin-walled structures · Discontinuous Galerkin methods

1 Introduction

Beam structures are widely employed in aeronautical and 
aerospace engineering as they enable the design of struc-
tural components with high-performance load-bearing capa-
bilities, structural stiffness and optimized load distribution. 
Generally, the geometry of a beam structure is characterized 
by its length and its cross-section, with the former being 
significantly larger than the dimensions of the latter.

Owing to their geometric features, the mechanical 
response of beam structures is typically modeled by the 
so-called classical beam theories, such as the Euler beam 
theory (EBT) or the Timoshenko beam theory (TBT), which 
are based on assuming that the displacement components 
may have up to a linear dependence on the spatial coordi-
nates spanning the beam cross-section [1]. This hypothesis 
allows expressing the mechanics of beam structures as a one-
dimensional problem, with significant reduction in terms 
of degrees of freedom with respect to three-dimensional 

models. However, although classical beam theories are 
widely employed in various engineering fields and are found 
in several finite-element software libraries, they may lose 
accuracy when the length of the considered beam becomes 
comparable to the dimensions of the cross-section; in fact, 
for these cases, the use of three-dimensional solid-mechan-
ics models is often recommended. Additionally, while three-
dimensional models directly provide the distribution of all 
stress components, classical beam theories require a few 
post-processing steps to recover the transverse stress distri-
bution throughout the cross-section.

To ameliorate these shortcomings, several researchers 
have proposed to extend classical beam theories by using 
higher order approximations of the displacement compo-
nents with respect to the cross-section coordinates. Early 
examples of higher order beam theories may be found in 
Refs. [2–4], where the authors proposed a third-order dis-
placement approximation for beams with rectangular cross-
sections and were able to recover the quadratic variation of 
the transverse shear stresses. Additional effects, such as pri-
mary and secondary torsional warping, were later addressed 
by Kim and White [5] and Taufik et al. [6] for composite 
box beams. In the aforementioned studies, the authors used 
polynomial expansions throughout the cross-section but 
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the use of trigonometric or exponential functions was also 
investigated by, e.g., Mistou et al. [7] and Karama et al. [8], 
respectively.

A generalization of these approaches has been proposed 
by Carrera and co-workers [9, 10], who developed a uni-
fied formulation where the order of approximation is a free 
parameter of the model and allows tuning the accuracy of the 
solution throughout the beam cross-section. Their approach 
has been employed to study the static response of laminated 
composite beams in both the small-strain [11] and large-
strain [12–14] regimes, the free-vibration problem of beams 
with arbitrary cross-sections [15], and the buckling problem 
of isotropic and composite beams [16]. Recently, high-order 
theories have also been coupled to fluid dynamics using the 
Vortex Lattice Method [17] and a finite-volume-based com-
putational fluid-dynamics library [18].

The solution of the equations governing the mechanical 
response of classical or higher order beam theories is gener-
ally obtained via numerical methods since analytical solu-
tions exist for special cases of boundary conditions and/or 
material properties. The most employed numerical technique 
for modeling beams, and, more generally, solid mechanics 
problems, is the finite element method (FEM). The litera-
ture offers many examples of FEM-based solutions of beam 
structures modeled by higher order theories; very recent 
contributions include the development of finite-element 
models for large-strain [19], free-vibration and buckling [20, 
21], thermo-mechanical coupling [22], non-linear dynamics 
[23] and wave-propagation [24, 25] problems, among others.

Alternatives to FEM have also been proposed to improve 
the flexibility and the performance of numerical methods. 
Among these, the discontinuous Galerkin (DG) method 
[26] has proved a powerful technique that, being based on 

a discontinuous approximations of the solution among the 
mesh elements, naturally enables the use of different basis 
functions for different elements of the same mesh, variable-
order accuracy and ease of parallelization.

In the literature, a few examples of DG methods applied to 
the analysis of beam structures are available; these are typi-
cally limited to classical beam theories: Celiker et al. [27, 28] 
developed a DG-based solution of the Timoshenko beam prob-
lem and showed that their approach does not suffer from shear 
locking effects; Eptaimeros et al. [29] developed an Interior 
Penalty DG methods for Euler beams obeying gradient elastic-
ity; Becker and Noels [30] exploited the discontinuous nature 
of DG methods to introduce suitably-defined cohesive laws at 
the interface between contiguous elements of beam structured 
modeled by the classical EBT. On the other hand, while DG 
methods have been proposed for the analysis of multilayered 
structures modeled by higher-order structural theories in the 
context of small-strain [31–35], large-strain [36] and buckling 
[37] problems, DG methods for higher-order beam theories 
have not been investigated. Therefore, in this contribution, 
Interior Penalty DG methods for the solution of the equations 
governing the static response of beams modeled by higher 
order theories are developed and numerically tested.

The remainder of the paper is organized as follows: Sect. 2 
introduces the problem statement for the static analysis of 
beam structures modeled by variable-order beam theories; 
Sect. 3 presents the solution of the considered problem based 
on a novel DG formulation; in Sect. 4, the numerical perfor-
mance of the proposed approach is assessed by considering the 
response of a beam with a bulk square cross-section to bending 
and torsional loads, and the response of a beam with thin-
walled airfoil-shaped cross-section subjected to bending and 
aerodynamic loads. Eventually, Sect. 5 draws the conclusions.
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Fig. 1  a Three-dimensional beam structure of length L and cross-section A. b Discretization of the beam in one-dimensional elements of size h 
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2  Problem Statement

We consider a beam with length L and cross-section A as 
sketched in Fig. 1a. The beam is referred to a global refer-
ence system Ox1x2x3 located at one end of the beam such 
that the coordinates x1 and x3 span the cross-section A, the 
coordinate x2 spans the length of the beam, and the volume 
V of the beam is identified by V ≡ [0, L] × A . Eventually, 
the boundary of the beam is denoted by S.

The following mechanical fields are introduced: the dis-
placement field, denoted by the vector u ≡ (u1, u2, u3)

⊺ , and 
the strain and stress fields that, using Voigt notation, are 
described by the vectors � ≡ (�11, �22, �33, �23, �13, �12)

⊺ and 
� ≡ (�11, �22, �33, �23, �13, �12)

⊺ , respectively.
In the following, the Einstein summation convention is used 

with Latin subscripts taking values in {1, 2, 3} and Greek sub-
scripts taking values in {1, 3}.

2.1  Strain–Displacement Relationship

The beam is assumed to undergo small deformations. Follow-
ing Refs. [31, 32], this allows expressing the vector � contain-
ing the strain components as a function of the displacement 
field u as follows

where the matrices I1 , I2 and I3 are defined as

If one separates the derivatives with respect to x2 from the 
derivatives with respect to x1 and x3 , the vector � may also 
be written as

2.2  Constitutive Behavior

The beam is assumed homogeneous and linear elastic such 
that the vector � is related to the vector �

where the matrix C contains the elastic stiffness coeffi-
cients. For the explicit expression of the components of C 

(1)� = Ik
�u

�xk
,

(2)I1 ≡

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 0 0

0 0 0

0 0 0

0 0 1

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦

, I2 ≡

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 1 0

0 0 0

0 0 1

0 0 0

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

and I3 ≡

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 1

0 1 0

1 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

.

(3)� = I2
�u

�x2
+ I�

�u

�x�
.

(4)� = C �,

for isotropic, orthotropic and generally anisotropic elastic 
materials the reader is referred to Ref. [38].

2.3  High‑order Beam Theories

In the context of high-order beam theories, see, e.g., Refs. 
[10], the k-th displacement component uk is expressed as a 
series of products between functions of the cross-section 
coordinates x1 and x3 and functions of the beam length coor-
dinate x2 playing the role of generalized displacements, that 
is

In Eq. (5), Z(kn)(x1, x3) and U(kn)(x2) represent the generic n-
th cross-section function and the n-th generalized displace-
ment for the k-th component of displacement; eventually, 
Nuk

 denotes the corresponding order of the expansion. The 
expression given in Eq. (5) may be written in compact form 
as

where Z(x1, x3) is a 3 × (Nu1
+ Nu2

+ Nu3
+ 3) matrix suit-

ably collecting the cross-section functions and U is a 
(Nu1

+ Nu2
+ Nu3

+ 3) vector collecting the corresponding 
generalized displacements. To provide an example, using 
Eq. (6), the Timoshenko beam theory is obtained upon 
choosing

where (u, v,w)⊺ represents the translations of the cross sec-
tion, while �z and �x denote its rotations with respect to the 
x3 axis and the x2 axis, respectively. It is worth noting that 
additional effects, such as the torsion of the beam, may be 
included by enriching the set of cross-section functions con-
tained in Z.

Using Eq.(6) into Eq. (3) and Eq. (4), one obtains the 
expression of the strain components and stress components, 
respectively, as functions of the generalized displacements

2.4  Governing Equations

The governing equations of the beam theories introduced in 
Sect. 2.3 are derived by means of the Principle of Virtual 

(5)uk =

Nuk∑
n=0

Z(kn)(x1, x3)U
(kn)(x2).

(6)u = Z(x1, x3)U(x2),

(7)Z ≡
⎡⎢⎢⎣

1 0 0 0 0

0 1 0 x1 − x3
0 0 1 0 0

⎤⎥⎥⎦
, and U ≡ �

u v w �z �x
�⊺

,

(8)

� = I2Z
dU

dx2
+ I�

�Z

�x�
U and � = C

(
I2Z

dU

dx2
+ I�

�Z

�x�
U

)
.
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Displacements (PVD), which, for the considered beam, 
reads

where �(∙) denotes the variation of (∙) , while b ≡ (b1, b2, b3)
⊺ 

represents the body forces acting on the volume V of the 
beam and t ≡ (t1, t2, t3)

⊺ represents the traction field acting 
on its surface S.

Upon substituting the expression of � and � given in 
Eq. (8) into Eq. (9) and integrating throughout the cross-
section A, the expression of the PVD for the considered 
beam theory is obtained:

where D ≡ [0, L] is the modeling domain of the beam, Q , R , 
S are the generalized stiffness matrices, B is the generalized 
domain load, and T0 and TL are the generalized forces at the 
ends of the beam. Their expression are given as follows. The 
generalized stiffness matrices are defined as

where ckl ≡ I
⊺

k
CIl , with k, l = 1, 2, 3 , are 3 × 3 matrices col-

lecting subsets of the elastic coefficients of C , see, e.g., Ref. 
[32]. The generalized domain load stems from the body 
forces b and the surface traction acting on the lateral sur-
face of the beam as

where �A denotes the contour of the cross-section of the 
beam. Eventually, the generalized forces associated with 
the surface traction acting on the beam ends surfaces are 
defined as

Finally, by performing integration by parts in Eq. (10) and 
recalling that the variational statement must be valid for any 
�U , one obtains the following strong form of the governing 
equations

(9)∫V

��⊺� dV = ∫V

�u⊺b dV + ∫S

�u⊺t dS,

(10)

∫
D

[
d�U⊺

dx2

(
Q
dU

dx2
+ RU

)
+ �U⊺

(
R⊺ dU

dx2
+ SU

)]
dx2

= ∫
D

�U⊺B dx2 + �U⊺T0 + �U⊺TL,

(11)
Q ≡ �A

Z⊺c22Z dA, R ≡ �A

Z⊺c2�
�Z

�x�
dA,

and S ≡ �A

�Z⊺

�x�
c��

�Z

�x�
dA,

(12)B ≡ �A

Z⊺b dA + ��A

Z⊺t d�A,

(13)Ty ≡ �A

Z⊺ t
|||x2=y dA, at y = 0, L.

The governing equations given in Eq. (14) are supplemented 
by suitable boundary conditions, which are enforced at the 
ends of the beam, i.e., at x2 = y , where y = 0 or y = L . Dir-
ichlet-type boundary conditions read

where Uy is the vector of prescribed generalized displace-
ments at x2 = y ; on the other hand, Neumann-type boundary 
conditions are

where �0 = −1 and �L = 1 . It is worth noting that either Dir-
ichlet boundary conditions or Neumann boundary conditions 
may be enforced at each end of the beam.

3  Discontinuous Galerkin Formulation

The set of governing equations for high-order beam theories 
introduced in the preceding section, namely Eqs. (14)–(16), 
is a set of second-order elliptic differential equations with 
associated boundary conditions. In this section, the corre-
sponding weak form is derived following the Interior Penalty 
discontinuous Galerkin formulation developed in Refs. [31, 
32].

The modeling domain of the beam is divided into Ne non-
overlapping elements such that the domain De of the generic 
e-th element is identified by the interval De ≡ [ye

−
, ye

+
] , where 

ye
−
 and ye

+
 represent the two ends of the same element. It is 

clear that ye
+
≡ ye+1

−
 and, if the elements have the same size h, 

ye
−
= (e − 1)h and ye

+
= eh . The collection of all the elements 

defines the mesh of the beam, whose discretized domain is 
denoted by Dh ≡ ⋃Ne

e=1
D

e . The discretization also introduces 
the set Ih of the inter-elements interfaces, which collects the 
boundary points between adjacent elements, i.e. Ih ≡ {yi

+
} 

with i = 1,… ,Ne − 1 . Eventually, the ends of the beam, 
namely the points x2 = 0 and x2 = L , are collected into the 
set BD of Dirichlet boundary conditions points or into the set 
BN of Neumann boundary conditions points based on which 
types of boundary conditions are enforced at these boundary 
points. For instance, in Sect. 4, the numerical results will be 
focused on cantilever beams, which means that BD = {0} 
and BN = {L} . A sample mesh of the beam of Fig. 1a is 
shown in Fig. 1b.

Once the mesh has been defined, the approximation of 
the solution over each element needs to be introduced. 

(14)

−
d

dx2

(
Q
dU

dx2
+ RU

)
+ R⊺ dU

dx2
+ SU = B for x2 ∈ D.

(15)U|x2=y = Uy

(16)�y

(
Q
dU

dx2
+ RU

)
= Ty
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The typical feature of DG formulations is the use of dis-
continuous basis functions over the mesh. In general, this 
would allow selecting different spaces of basis functions 
for different elements of the same mesh, which in turn 
would enable different hp-refinement strategies to improve 

the numerical solution, see, e.g., Ref. [39, 40]. However, 
these aspects are outside the scope of the present research 
study and the same space of discontinuous polynomials 
is considered for all the mesh elements. In particular, let 
us introduce the space Vhp of discontinuous polynomials 
defined as

where Pp(De) is the space of polynomials of degree p 
defined over the element De . Then, the approximate solu-
tion Uh of Eqs. (14)–(16) is sought within the space (Vhp)NU 
of discontinuous vector fields, where NU is the number of 
generalized displacements introduced by the considered 
beam theory.

To obtain the DG-based weak form of Eqs. (14)–(16), 
Eq. (14) is first rewritten as the following equivalent first-
order set of differential equations

(17)
V
hp ≡ {v ∶ D

h
→ ℝ | v(x2 ∈ D

e) ∈ P
p(De) ∀e = 1,… ,Ne},

(18)

⎧

⎪

⎨

⎪

⎩

− d�
dx2

+ R⊺ dU
dx2

+ SU = B

� = Q dU
dx2

+ RU

The first row and the second row of Eq. (18) are then mul-
tiplied by V⊺ and � ⊺ , respectively, where V and �  are test 
functions taken from the space (Vhp)NU of discontinuous 
vector fields, i.e. V,� ∈ (Vhp)NU . Upon integrating over the 
generic e-th element and using integration by parts, Eq. (18) 
is stated in weak sense as follows

where: the terms Ue and �e denote the approximate solution 
of U and � over the element e; Be ≡ {ye

−
, ye

+
} ; �y denotes the 

unit normal at the element’s boundary points, which, being 
the beam model one dimensional, has values �ye

−
= −1 and 

�ye+ = 1 ; and Û and �̂ are the so-called numerical fluxes [26], 
which represent approximate expressions of U and � at the 
elements boundaries.

The numerical fluxes are the characteristic ingredi-
ents of DG formulations because they are responsible for 
linking adjacent elements. In general, at the i-th inter-
face between two contiguous elements e and e + 1 , Û and 
�̂ are functions of Ue , �e , Ue+1 and �e+1 . Their explicit 
expression depend on the considered DG method: here, 
upon introducing the approximate solution Uh such that 
Uh(x2 ∈ D

e) ≡ Ue , the numerical fluxes are chosen accord-
ing to the symmetric Interior Penalty DG formulation 
developed in Refs. [31, 32] as follows

(19)
⎧

⎪

⎨

⎪

⎩

∫e

[

dV⊺

dx2
�e + V⊺

(

R⊺ dUe

dx2
+ SUe

)]

dx2 = ∫e V⊺B dx2 +
∑

y∈e V⊺�̂�y

∫e � ⊺�e dx2 = ∫e � ⊺(Q dUe

dx2
+ RUe)dx2 +

∑

y∈e(� ⊺Q + V⊺R⊺)(Û − Ue)�y
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Fig. 2  Geometry, boundary conditions and loads for a a beam with a square cross-section and b a beam with an airfoil cross-section
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where {∙} and [[∙]] are the average operator and jump opera-
tor, respectively, that are defined at the i-th interface between 
the elements e and e + 1 as

respectively. Additionally, in Eq. (20), � is the so-called pen-
alty parameter that must be suitably chosen. As customary 
in Interior Penalty DG formulations, see, e.g., Ref. [26], and 

(20)

Û =

⎧

⎪

⎨

⎪

⎩

{Uh}, at x2 = y ∈ h

Uy, at x2 = y ∈ D

Ue, at x2 = y ∈ N

and

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̂ =
{

Q dUh

dx2
+ RUh

}

− �[[Uh]], at x2 = y ∈ h

�̂ = Q dUe

dx2
+ RUe − �(Ue − Uy), at x2 = y ∈ D

�̂�y = Ty, at x2 = y ∈ N

(21){∙} ≡ 1

2
(∙e + ∙e+1) and [[∙]] ≡ ∙e − ∙e+1

consistently with the numerical tests performed in Refs. [31, 
32], the penalty parameter � appearing in Eq. (20) is chosen 
as � ∼ Q∕h , where Q is a positive constant of one or two 
orders of magnitude larger than the terms in the generalized 
matrix Q and h is the mesh size.

The interested reader is referred to Ref. [26] for a thor-
ough analysis regarding the effect of different numerical 
fluxes and the choice of the penalty parameter on the prop-
erties of the corresponding DG methods.

As the last step, using Eq. (20) into Eq. (19), setting 
� ≡ dV∕dx2 and summing over all the mesh elements, the 
weak form of symmetric Interior Penalty DG methods 
for high-order beam theories considered in this paper is 
expressed as follows: find Uh ∈ (Vhp)NU such that

for any V ∈ (Vhp)NU . In Eq. (22), the bilinear form B
��
(V,Uh) 

is defined as

(22)B
��
(V,Uh) = L

��
(V,B,T,U)
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Fig. 3  Magnitude of the displacement u3 at x = (0,L, 0)⊺ for the beam 
with the square cross-section subjected to bending as a function of 
the selected beam theory, polynomial degree and total degrees of 

freedom. Reference values (the thick dashed lines) are taken from 
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tion from the dashed line
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Fig. 4  Comparison between the solution obtained via a 3D FEM model and the proposed DG formulation: effect of the mesh size on the cross-
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whereas the term L
��
(V,B,T,U) reads

To conclude this section, it is worth noting that the Interior 
Penalty formulation given in Eq. (22) verifies the Galerkin 
orthogonality, i.e. B

��
(V,Uh − U) = 0 , ∀V ∈ V

hp , where U 
is the exact solution of Eqs. (14)–(16).

4  Results

The accuracy and capabilities of the formulation presented 
in the preceding section are assessed by investigating the 
effect of number of elements, selected beam theory and 
order of length-wise polynomial basis functions on the static 
response of beam structures. We employ tensor-product Leg-
endre polynomials defined in the rectangle enclosing the 
cross-section of the beam as the cross-section functions 
appearing in Eq. (5); we use the same order of expansion for 
all the displacement components, i.e. Nu1

= Nu2
= Nu3

= N , 
and denote the corresponding N-th order beam theory by 
��N . Legendre polynomials of order p are also employed to 
define the space Vhp and the corresponding DG method is 
denoted by ��p . Eventually, the considered beam structures 

(23)

B
��
(V,Uh) ≡ �

D
h

[
dV⊺

dx2

(
Q
dUh

dx2
+ RUh

)

+V⊺

(
R⊺ dU

h

dx2
+ SUh

)]
dx2+

−
∑
y∈Ih

(
[[V]]⊺

{
Q
dUh

dx2
+ RUh

}

+

{
dV⊺

dx2
Q + V⊺R⊺

}
[[Uh]]

)
+

−
∑
y∈BD

(
�yV

⊺

(
Q
dU

dx2
+ RU

)
+

(
dV⊺

dx2
Q

+V⊺R⊺
)
Uh�y

)
+

+
∑
y∈Ih

�[[V]]⊺[[Uh]] +
∑
y∈BD

�V⊺Uh

(24)

L
��
(V,B,T,U) ≡ �

D
h

V⊺B dx2 +
∑
y∈BN

V⊺Ty

−
∑
y∈BD

(
dV⊺

dx2
Q + V⊺R⊺

)
Uy�y +

∑
y∈BD

�V⊺Uy.

are isotropic and characterized by the Young’s modulus 
E = 75GPa and Poisson’s ratio � = 0.33.

4.1  Square Cross‑section Beam

The first set of numerical tests are performed on the beam 
shown in Fig. 2a. The beam has a bulk square cross-section 
and is referred to a coordinate system located at the center 
of gravity of the square. The side of the cross-section is 
b = 0.2m , whereas two different beam lengths are consid-
ered: L∕b = 100 , which represent the case of a slender beam, 
and L∕b = 10 , which represents the case of a relatively short 
beam. The beam is clamped at x2 = 0 and is subjected to two 
different loading configurations, namely bending and tor-
sion. As illustrated in Fig. 2a, bending is achieved by apply-
ing a force Fb ≡ (0, 0,−50N)⊺ at x = (0, L, 0)⊺ , while torsion 
is achieved by applying the forces Ft ≡ (0, 0, 250 kN)⊺ and 
−Ft at x = (b∕2, L, 0)⊺ and x = (−b∕2, L, 0)⊺ , respectively.

The magnitude of the displacement component u3 com-
puted at x = (0, L, 0)⊺ for the beam subjected to bending is 
reported in Fig. 3 as a function of the overall number of 
degrees of freedom for different beam theories, different 
DG methods and the two considered beam lengths. In the 
figure, each curve corresponds to a given beam theory and 
DG method and is obtained by changing the number of mesh 
elements; more specifically, each curve contains four mark-
ers which correspond to four meshes with size h = L∕Ne , 
where Ne = 1, 2, 4 and 8. The obtained results are compared 
with those provided in Ref. [9] and denoted by the thick 
dashed lines in Fig. 3. From the comparison, it is possible to 
notice that the results computed using the DG methods ��

�
 , 

��
�
 and ��

�
 fall within the gray area reported in the plots, 

which represents the region of less than 5% deviation from 
the dashed line, for all the considered meshes and the con-
sidered beam theories; on the other hand, using second-order 
polynomial basis functions as in the ��

�
 method requires 

a finer mesh to achieve the same level of accuracy. In fact, 
the numerical computations confirm that a higher order DG 
method provides a more accurate result than a lower order 
DG method using the same mesh. Eventually, as expected, 
changing the beam theory has as no effect on the computed 
values of displacement for the case of the slender beam, 
while it has a slightly noticeable effect for the case of the 
short beam.

The effect of changing the order of the beam theory or 
of the DG method is more evident by analyzing the distri-
bution of the displacement and stress fields throughout the 
cross-section of the beam. In Figs. 4 and 5, we report the 
contour plots of selected components of displacement and 
stress fields computed using a 3D FEM code and the present 
DG formulation at x2 = L∕2 for the short beam ( L∕b = 10 ) 
subjected to bending. For each image, the contour plots are 
overlaid with solid black lines, which denote the contour 

Fig. 7  Magnitude of the displacement u3 at x = (c∕4,L, 0)⊺ for the 
beam with the airfoil cross-section subjected to bending as a function 
of the selected beam theory, polynomial degree and total degrees of 
freedom. The light gray area and dark gray area denote the regions of 
less than 5% deviation and less than 1% deviation, respectively, from 
the dashed line

◂
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levels obtained with the 3D FEM model with mesh size 
h = b∕20 and an overall number of degrees of freedom larger 
than 106 . The number of degrees of freedom ��� is also 
reported above each image.

The first rows of Figs. 4a, b and 5 show the displace-
ment component u2 , the displacement component u1 and the 
shear stress component �23 , respectively, obtained with four 
successively refined finite-element meshes with mesh size 
h = b∕2 , b/4, b/10 and b/20. The same fields are computed 
using the ��

�
 theory, the ��

�
 method and four successively 

refined DG meshes with mesh size h = L∕4 , L/8, L/16 and 
L/32; they are reported in the second rows of Figs. 4a, b and 
5. The comparison between the FEM solution and the DG 

solution shows that the displacement component u2 is well 
captured by both the coarsest FEM mesh ( ��� = 1863 ) and 
the coarsest DG mesh ( ��� = 576 ); the displacement com-
ponent u1 reaches convergence for the FEM model with mesh 
size h = b∕4 ( ��� = 10995 ) while the coarsest DG mesh 
is still able to capture it; the stress components �23 reaches 
convergence for the FEM model with mesh size h = b∕10 
( ��� = 139623 ), whereas the DG model appears to require 
a finer mesh than h = L∕32 ( ��� = 4608 ) to fully recover 
it. The third row of Fig. 5 shows the contour plot of the �23 
computed using the ��

�
 theory, a DG mesh size h = L∕8 

and four different DG methods; from the figures, it is pos-
sible to see that the numerical solution reaches convergence 
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Fig. 8  Comparison between the solution obtained via a shell-assem-
bly FEM model and the proposed DG formulation: effect of the 
selected beam theory on the distribution of the axial component u2 for 

the short beam with a one spar and b two spars subjected to bending. 
DG results are computed using p = 4 and h = L∕8
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with the ��
�
 method ( ��� = 1536 ) but continues to show 

discrepancies with respect to the 3D FEM solution even with 

the ��
�
 method ( ��� = 2304 ). This is due to the low order 

of the beam theory; in fact, as shown in the fourth row of 
Fig. 5, increasing the order of the beam theory is required 
to converge to the 3D FEM solution.

A similar analysis is performed for the short beam sub-
jected to torsional loads. The comparison between the 3D 
FEM solution and the DG solution is reported in Figs. 6a 
and b for the displacement component u2 and the shear stress 
� ≡ √

�2

13
+ �2

23
 , respectively, computed at x2 = L∕2 . Also 

in this case, the contour plots are overlaid with solid black 
lines, which denote the contour levels obtained with the fin-
est 3D FEM model. As shown in Fig. 6, the 3D finite-ele-
ment model provides convergence for u2 and � with a mesh 
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Fig. 9  Comparison between the solution obtained via a shell-assem-
bly FEM model and the proposed DG formulation: effect of the 
selected beam theory on the distribution of the stress component �22 

for the short beam with a one spar and b two spars subjected to bend-
ing. DG results are computed using p = 4 and h = L∕8

Table 1  Effect of the selected beam theory on the displacement |u3| at 
x = (c∕4,L, 0)⊺ for the short beam with two spars subjected to aero-
dynamic loading

Reference values are taken from Ref. [17] while the present results 
are obtained using the ��

�
 method and a mesh size h = L∕8

��
�

��
�

��
�

Ref 8.5285 8.6607 8.6854
Present 8.7913 8.8488 8.8949
Error [%] 3.0814 2.1719 2.4121
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characterized by size h = b∕10 and ��� = 139623 , whereas 
the proposed formulation fully recovers the 3D solution 
using the ��5 theory, the ��4 method and mesh size 
h = L∕8 , which ultimately consist of a system of 4320 
degrees of freedom.

4.2  Airfoil Cross‑section Beam

The second set of tests are performed on the beam dis-
played in Fig. 2b. The beam has a thin-walled, airfoil-
shaped cross-section and is referred to a coordinate 
system located at one quarter of the airfoil chord. The 
cross-section consists of a skin, whose profile is the profile 
of the NACA 2415 airfoil, and two spars placed at one 
quarter and three quarters of the chord, i.e. at x1 = 0 and 
x1 = −c∕2 , respectively. Referring to the inset of Fig. 2b, 
the chord of the airfoil is c = 1m , the skin has thickness 
�s∕c = 0.006 , the spar placed at one quarter of the chord 
has thickness �1∕c = 0.015 , and the spar placed at three 
quarters of the chord has thickness �2∕c = 0.0105 . The 
beam is clamped at x2 = 0 and is subjected to two loading 
conditions: either a concentrated force Fb ≡ (0, 0,−50N)⊺ 
applied at x = (0, L, 0)⊺ or a set of aerodynamic forces Fa 
computed using the Vortex Lattice Methom (VLM) [41], 
i.e. as the result of a vortex-lattice simulation of potential 
flow around a flat plate occupying the surface defined by 
the chords of the airfoil cross-sections.

For the concentrated force loading case, four differ-
ent beam configurations are considered: a slender beam 
having L∕c = 25 and only the spar at x1 = 0 , a slender 
beam having L∕c = 25 and both spars, a short beam hav-
ing L∕c = 5 and only the spar at x1 = 0 , and a short beam 
having L∕c = 5 and both spars. The displacement compo-
nent u3 computed at x = (c∕4, L, 0)⊺ is shown in Fig. 7 as a 
function of the number of degrees of freedom for different 
beam theories, different DG methods and the considered 

beam configurations. Similar to the convergence results 
reported in Fig. 3, each curve corresponds to a given 
beam theory and DG method and is obtained by changing 
the number of mesh elements: the results corresponding 
to the ��

�
 and ��

�
 methods are computed using mesh 

size h = L∕Ne where Ne = 1 , 2, 4, 8, 16 and 32, whereas 
the results corresponding to the ��

�
 method are computed 

using mesh size h = L∕Ne where Ne = 1 , 2, 4, 8. Figure 7 
also shows the results obtained using four successively 
refined FEM models with mesh size h = c∕10 , c/20, c/40, 
and c/80; in this case the FEM model consists an assem-
bly of shell regions. The comparison between the results 
obtained with the FEM models and the present DG for-
mulation shows that the DG formulation reaches conver-
gence using two to three orders of magnitude of degrees 
of freedom less than reference FEM model. Moreover, as 
expected, the first and the second rows of Fig. 3 show that 
varying the order of the beam theory has very little effect 
on the results computed for slender beams; on the other 
hand, a fifth-order beam theory is required to ensure that 
the converged DG solution fall within the dark gray area, 
which corresponds to the region of less than 1% devia-
tion from the solution obtained via the most refined FEM 
model. Nevertheless, all solutions obtained with the ��

�
 

and ��
�
 methods fall within the light gray area, i.e. the 

region of less than 5% deviation from the reference FEM 
solution, even using the coarsest mesh, whereas the solu-
tion obtained using the ��

�
 method requires more ele-

ments to convergence.
The contour plots of the displacement component u2 

for the short beams subjected to the concentrated force 
are displayed in Fig. 8a, for the one-spar configuration, 
and in Fig. 8b, for the two-spar configuration. The first, 
second, third and fourth row of the figure show the results 
computed using the beam theories ��2 , ��3 , ��4 and ��5 , 
respectively, while keeping p = 4 in the �� formulation 

u2 [m]

(b)(a)

x1

x2

x3

σ22 [Pa]

−1.84 · 10−4 +1.66 · 10−4 −9.12 · 106 +8.60 · 106

Fig. 10  a Displacement component u2 and b stress component �22 for the short beam with two spars subjected to aerodynamic loads computed 
using the ��

�
 theory, the ��

�
 method and a mesh size h = L∕8
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and h = L∕8 as mesh size. The plots are reported over the 
deformed beam configuration and are overlaid with solid 
black lines, which denote the contour levels obtained via 
the finest FEM model. The comparison between the solu-
tion obtained via the DG method and the solution obtained 
via FEM shows that small differences are noticeable 
between the two methods when the beam theories ��2 or 
��3 are employed, whereas the solution obtained using the 
beam theories ��4 or ��5 matches excellently the refer-
ence FEM solution. A similar observation can be made 
for contour plots of the stress component �22 , which are 
displayed in Fig. 9 for the same beam configurations, DG 
method, mesh size and beam theory of Fig. 8. Also in this 
case, all beam theories well reproduce the distribution of 
�22 with the beam theory ��5 providing the best matching 
with the reference FEM model.

The last set of results focuses on the response of a 
wing, modeled by the present DG formulation as a beam, 
subjected to aerodynamic loads. These loads are com-
puted using the VLM, which is based on replacing a lift-
ing surface by a collection of elemental solutions, such as 
horseshoe or ring vortices, of the potential flow equation, 
and is valid for low-speed, high-Reynolds attached flow 
conditions [41]. The coupling between the present DG 
formulation and the VLM goes beyond the scope of this 
paper but it will be comprehensively discussed in a future 
study. Here, we reproduce one of the tests reported in Ref. 
[17], where the short beam ( L∕c = 5 ) with two spars is 
exposed to a free-stream velocity V∞ = 50m∕s with an 
angle of attack � = 3◦ at standard sea-level conditions. 
Unlike the preceding tests, note that the Young’s modulus 
of the beam is E = 69GPa . Regarding the employed VLM, 
the surface of the chords of the airfoil cross-sections is 
chosen as the lifting surface, which is discretized using 
an aerodynamic mesh grid of 4 ring vortices along the 
chord and 40 ring vortices along the length of the beam; 
the symmetry condition with respect to the x1-x3 plane is 
also considered for the aerodynamic computations.

The displacement component u3 of the leading edge of 
the tip cross-section is computed using the ��

�
 method 

and a mesh size h = L∕8 and is reported in Table. 1 as 
a function of the selected beam theory. The table also 
reports the solution obtained in Ref. [17] where the 
authors also employed various higher order beam theories 
but used the FEM to solve the corresponding equations. 
The comparison between the solution computed using 
the present DG formulation and the solution obtained via 
FEM shows that the maximum error does not exceed 3.1% 
and confirms the accuracy of the proposed approach. 
Eventually, Fig. 10a and b show the contour plots of the 
displacement component u2 and the stress component �22 , 
respectively, obtained with the present approach using 
the ��

�
 theory, the ��

�
 method and a mesh size h = L∕8.

5  Conclusions

A novel tool for the elastic analysis of beam structures with 
general cross-sections has been presented. The proposed 
method is based on the combined use of high-order beam 
theories to express the displacement components throughout 
the beam cross-section and high-order discontinuous Galer-
kin methods along the length of the beam. The accuracy 
of the method has been assessed by modeling cantilever 
beams with a square cross-section and by modeling canti-
lever beams with thin-walled airfoil-shaped cross-sections. 
Bending, torsional and aerodynamic loading cases have 
been considered. The obtained numerical results shows that 
the proposed tool is able to recover three-dimensional dis-
placement and stress distributions using considerably fewer 
degrees of freedom than standard FEM approaches based on 
three-dimensional or two-dimensional shell elements.
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