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Abstract
In the framework of autonomous spacecraft navigation, this manuscript proposes a novel vision-based terrain relative navi-
gation (TRN) system called FederNet. The developed system exploits a pattern of observed craters to perform an absolute 
position measurement. The obtained measurements are thus integrated into a navigation filter to estimate the spacecraft state 
in terms of position and velocity. Recovering crater locations from elevation imagery is not an easy task since sensors can 
generate images with vastly different appearances and qualities. Hence, several problems have been faced. First, the crater 
detection problem from elevation images, second, the crater matching problem with known craters, the spacecraft position 
estimation problem from retrieved matches, and its integration with a navigation filter. The first problem was countered with 
the robust approach of deep learning. Then, a crater matching algorithm based on geometric descriptors was developed to 
solve the pattern recognition problem. Finally, a position estimation algorithm was integrated with an Extended Kalman 
Filter, built with a Keplerian propagator. This key choice highlights the performance achieved by the developed system that 
could benefit from more accurate propagators. FederNet system has been validated with an experimental analysis on real 
elevation images. Results showed that FederNet is capable to cruise with a navigation accuracy below 400 meters when a 
sufficient number of well-distributed craters is available for matching. FederNet capabilities can be further improved with 
higher resolution data and a data fusion integration with other sensor measurements, such as the lunar GPS, nowadays under 
investigation by many researchers.

Keywords Autonomous visual-based navigation · Terrain relative navigation · Deep-learning · Crater detection and 
matching

1  Background and Related Work

The autonomous vision-based navigation (VBN) is a cru-
cial issue for scheduled and future lunar exploration mis-
sions. Scientists have observed that the gravity field on the 
Moon is far away from being spherically distributed [1–3]. 
This lumpy gravitational field (Fig. 1) creates push and pull 
anomalies that deviate the spacecraft from the expected path 
thus making orbit propagation more complex and heavy.

Though, the scientific community has planned to build 
base camps [4] and extract specimens at definite areas of 
interest, including the mysterious polar regions. Indeed, the 
recent confirmation of frozen water, trapped in these not 
illuminated regions, has revived the manned lunar explo-
ration. H 2 0 can delve us a deeper understanding of lunar 
history and can be repurposed as rocket propellant or breath-
able air. Achieving the aforementioned objectives raises new 
challenges for spacecraft localization systems. As far as our 
knowledge, there is no specific requirement for a lunar posi-
tioning system. Nevertheless, the European Space Agency 
(ESA) has established 1km of accuracy as the cut-off value 
for the majority of Martian applications [5]. It is worth not-
ing that spacecrafts venturing beyond Earth need specific 
payloads or support systems, claiming the usage of facilities 
(e.g. DSN, ESTRACK). This requirement of resources trans-
lates into large mission costs at expense of limited opera-
tional capabilities. In addition, satellite link is not always 
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guaranteed, ground stations are not easily accessible, and 
most importantly telemetry commands are not available in 
real-time.

Therefore, this manuscript proposes a landmark-based ter-
rain relative navigation (TRN) system to reduce the ground 
intervention and to make the orbit control autonomous. Such 
systems are attractive because can be applied to a wide range 
of space missions, including planetary exploration (rocky 
planets), the study of moons of gaseous planets, approach 
phase of comets, asteroids, and other celestial bodies. Nowa-
days, leveraging the recent advancement in computer vision 
(CV) and artificial intelligence (AI), autonomous onboard 
optical navigation (OPNAV) is gaining huge interest for its 
small size, weight, and power requirements [6].

OPNAVs are distinguished into two classes, depending 
on the distance between spacecraft and target body. When 
a large portion of the celestial body disk is contained in the 
image, horizon-based OPNAVs are appropriate. Instead, as 
the distance between spacecraft and target surface reduces, 
it is far better to exploit specific landmarks. These latter are 
usually specific morphological features (e.g. craters or boul-
ders, see Fig. 2) or distinct portions of terrain [6]. Craters 
are a convenient option because of their distinct appearance 
among other morphological features.

The working principle of TRN is founded on pinpoint-
ing these specific features in an onboard map to gain posi-
tion knowledge to be integrated into a navigation filter. 
Their first applications were for missile technology and 
date back before the advent of the Global Positioning 
System (GPS) [7–10]. It is worth noting that the standard 

approach of OPNAV algorithms is computationally inten-
sive, requiring: (i) the real-time rendering of patches 
or complete digital elevation maps (DEMs) [9, 11–13], 
and (ii) a template-matching approach for the measure-
ment generation [14]. Contrarily, landmark-based TRN 
systems using craters do not require carrying DEMs and 
high computational burden but only require an image pro-
cessing algorithm to detect craters and a pattern matching 
algorithm to relate these observations to a database. This 
is usually followed by a navigation filter to estimate the 
spacecraft state in terms of position and velocity.

However, the development of a crater-based TRN 
requires addressing several issues. One is the crater detec-
tion problem since sensors can generate various outputs 
depending on changes in the surface radiation, electronic 
element warming, or the inherent fluctuation of discrete 
photons [15, 16]. Though also the pattern recognition 
problem of matching craters with a catalogue of known 
craters is a troubling task. In past, this led to navigation 
with unknown landmarks [6, 17–20] and the extensive 
applications of horizon-based OPNAVs also at close dis-
tances. The crater matching problem is generally divided 
into two main types of problems. The first category is 
based on a least-square approach and requires precise 
knowledge of spacecraft position to perform matches. The 
second category, challenged in this research, does not rely 
upon this assumption and goes under the name of the lost-
in-space problem. To solve this issue robustly, a crater 
matching algorithm based on geometric invariant descrip-
tors has been implemented [6, 21, 22]. Finally, a third 

Fig. 1  Lunar gravity model (LGM2011). Gravity acceleration at the surface of the Moon in m∕s2 . Map from [1]
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problem consists in the position retrieval from matches 
and its integration into an EKF.

One of the latest TRN was released by Downes et al. 
[15, 16], proposing a transfer-learning procedure. Using the 
same U-Net architecture [23], already trained by [24], they 
fine-tuned the weights on their custom dataset of intensity 
images. In this way, the network thus obtained can segment 
craters from monocular images. However, their approach 
relies on a semantic segmentation method and so they need 
an additional step on the output mask to separate each crater 
rim. Then, craters are matched, and their positions are fed in 
input into an Extended Kalman Filter (EKF). This methodol-
ogy constrains the usage of an additional image processing 
chain to separate each crater rim (e.g. dilation, erosion, and 
convex-hull operators). Besides, as in other previous works 
[25, 26] their matching algorithm is not robust because relies 
on a least-square approach (RANSAC filtered). This can cre-
ate situations where corrupted navigation states render oth-
erwise good images ineffectual, leading to unnecessary filter 
reinitializations, trajectory aborts (e.g. during lunar descent), 
or other undesirable events [6].

To overcome all these limitations, this manuscript pro-
poses a novel crater-based TRN, namely “FederNet”. Such 
a system is robust in its design since exploits the projective 
invariants framework, and is simple in its implementation, 
not requiring additional image processing steps. Indeed, 

the crater detection problem has been innovatively chal-
lenged training a region-based CNN (Convolutional Neu-
ral Network), i.e. a two-stage Deep Learning (DL) archi-
tecture for object detection and instance segmentation. The 
choice fell on Mask R-CNN [27] with ResNet-101+FPN 
(Feature Pyramid Network) [27, 28] backbone as feature 
extractor. This contribution can certainly be exploited in 
other research fields, such as planetary geology. In addi-
tion, a completely novel solution is proposed for measure-
ment generation.

It is important to point out that a standard method of treat-
ing crater matches is to directly include their positions in 
the state vector and to estimate them along with the vehi-
cle’s trajectory [15, 16]. This is the well-known Simultane-
ous Localization and Mapping (SLAM) problem. SLAM 
with visual measurements and inertial sensors has attracted 
significant interest in the robotics community [8, 29, 30]. 
However, SLAM needs to keep in memory the landmark 
estimates resulting in increased time-varying computational 
complexity (quadratic in the number of features for EKF-
SLAM). Moreover, the main benefit of performing SLAM 
is the ability to achieve “loop closing” when revisiting an 
area, a circumstance which is not always true in practice 
[31]. This work proposes a novel solution since the quadratic 
computational complexity of SLAM does not appear to be 
acceptable.

Fig. 2  Proposed system acquir-
ing an elevation image from 
the lunar surface. Crater triad 
reported on the right
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Concluding this section, the main contributions of this 
paper can be recollected as follows: a) the first implementa-
tion of an object detector for TRN, b) a robust development 
of a matching algorithm widening the work of Hanak et. al 
[21, 22] to deal with the more recent crater catalogues, and 
c) a simple but effective position estimation algorithm for 
measurement generation, integrated into an EKF.

The remainder of this paper is organized as follows. Sec-
tion 2 describes in detail each sub-module of the developed 
system. Thanks to experiments on real elevation images 
of a simulated orbit, Sect. 3 discusses the setup and the 
results achieved both in terms of detection, matching, and 
position accuracy reached by the proposed framework. In 
the end, Sect. 4 concludes this paper, illustrating future 
recommendations.

2  System Architecture

A general understanding of FederNet system is provided 
through the flowchart in Fig. 3.

As stated above, elevation images are captured by a 3D 
sensor such as Interferometric Synthetic Aperture Radar 
(InSAR) images, Light Detection and Ranging (LiDAR) 
technology, or high-resolution satellite stereo imagery. Then, 
the DL-based crater detector collects all craters from the 
elevation image and transmits them to the crater matching 

algorithm. The pipeline of this detector implements one of 
the latest DL architectures for instance segmentation and 
object detection, i.e. Mask R-CNN [27]. Among previous 
works [15, 15, 26], this technique allows reducing compu-
tational burden, not requiring additional image processing 
steps to extract craters’ rims, at cost of difficult model train-
ing. Once craters are detected in an image and their loca-
tions and radii estimated, those values are sent to the crater 
matching algorithm. The matching algorithm developed is 
an updated version of the Hanak et al. work [21, 22] that 
accounts for the significantly higher number of entries of 
modern crater catalogues. It is worth noting that [21, 22] 
worked with the USGS lunar crater database [32], contain-
ing 8673 craters, while FederNet deals with the Robbins cra-
ter catalogue [33], incorporating more than 1 million entries.

The following subsections explain in detail the proposed 
framework.

2.1  Crater Detection Algorithm

Before describing the algorithm, the reader should know 
that crater counting and shape retrieval from orbital imagery 
have always been a key for understanding planetary age and 
evolution [34–40] since they provide the relative age of the 
surface unit and information on the surface geology. For 
this reason, in the past crater, detectors have been intended 
for geological surveys. First methods largely used image 
processing techniques [25, 36, 41–43] experiencing signifi-
cant sensitivity to image quality, brightness, and shadows. 
The difficulty to predict these qualities from camera and 
noise models poses an insurmountable problem and requires 
human intervention for each scenario. As a result, these 
crater detectors are not reliable or suitable for autonomous 
operations. DL algorithms offer promising opportunities 
because CNNs are capable of extracting low-, mid- and high-
level features from images stacking together convolutional 
and pooling layers. The extracted features can be applied 
to various computer vision tasks, such as large-scale image 
recognition, object detection, semantic segmentation, and 
instance segmentation. Previous crater detectors were based 
on U-net architecture [23], one of the most commonly used 
networks for image segmentation. Conversely, the detector 
proposed implements Mask R-CNN, a network developed 
for instance segmentation and object detection. This helped 
to eliminate the usage of template matching approaches of 
methodologies based on popular image feature descriptors 
such as SIFT [44], SURF [45], BRIEF [46], or ORB [47]. As 
stated above, being the segmentation output distinguished 
for each instance, the usage of additional image processing 
steps are not required. The main innovation of this detector 
is its specific tuning for navigation: the recollection of all 
the craters from an image is not necessary. A pre-processing 
strategy was applied following the approach of [38], thus Fig. 3  Illustration of FederNet system architecture
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using the CLAHE algorithm to boost contrast. Even if FPN 
[48] neck is used to capture the multi-scale local features, in 
several but rare cases, the model the model has completely 
gone wrong estimating craters with a huge diameter. Thus, 
post-processing was also applied to filter out invalid detec-
tions. The filter is based on an adaptive threshold of the 
confidence score, depending on crater size. Each step of the 
detector is reported in Fig. 4, where it is possible to notice 
the variation of craters detected at each step, in comparison 
with the ground truth data coming from the Head et al. [49] 
& Povilaitis et al. [50] merge crater catalogue.

2.1.1  Model Training

Mask R-CNN has been trained on the same datasets of 
the DeepMoon project [24]. Over the years, these datasets 
have been largely used to evaluate different crater detec-
tion architectures. The datasets comprise more than 30.0000 
real lunar tiles obtained cropping the LRO-Kaguya merged 
118 m/pixel DEM [51], downsampled in 8-bit with GDAL 
library. For ground truth labeling, the crater catalogues of 
Head et al. & Povilaitis et al. [49, 50] have been used. This 
choice is purposely done to compare FederNet with other 
DL-based crater detectors. It is worth noting that Mask 
R-CNN required completely different labels. As transfer 
learning is a common practice in deep-learning, COCO 
[52] pre-trained weights have been used for fine-tuning our 
model. The model has been trained for 100 epochs following 
the original paper [27] with a multi-stage training (30 heads 
& 70 all) using the standard Stochastic Gradient Descent 
optimizer with a learning rate of 10−3 . The other relevant 
training parameters can be found in Table 1.

Even with a modest hardware (GTX 1060 6GB VRAM) 
used, the model completed his training after about 24 h. It 
should be pointed out that this does not affect the inference 
burden since the training phase is accomplished on ground 
while the weights can be updated to the onboard model to 
increase its accuracy.

2.2  Crater Matching Algorithm

The crater matching algorithm developed is based on the work 
of [21, 22]. This research is well known in the space commu-
nity for proposing a re-visitation of a star tracker algorithm 
based on projective invariants, i.e. geometric feature independ-
ent from camera pose. The matching scheme can be summa-
rized in three steps, using the same assumptions of [21, 22]. 
In the first step, crater triads are generated by taking into con-
sideration all the possible sets of three different craters. This 
is the main difference between a star tracker algorithm, and it 
is required to deal with false detection to not exclude possible 
matchable craters from the procedure. The invariants chosen 
are the interior angles and the ratio between crater radii and 
centroid distance. These two descriptors preserve the angular 
and spatial distribution of a crater triad, respectively. Projective 

Fig. 4  Crater detections (green) at each pipeline step, paired with ground truth data (red) from Head et al. [49] & Povilaitis et al. [50] merge cra-
ter catalogue

Table 1  Mask R-CNN model training parameters

Network parameter Value

Backbone Resnet-101+FPN
Backbone strides [4, 8, 16, 32, 64]
Detection max instances 400
Detection min confidence 0.5
Detection Nms threshold 0.4
Image shape [512 512 3]
Learning momentum 0.9
Learning rate 0.001
Max Gt instances 400
Mean pixel [165.32, 165.32, 165.32]
RPN anchor ratios [0.5, 1, 2]
RPN anchor scales (4, 8, 16, 32, 64)
RPN Bbox Std Dev [0.1 0.1 0.2 0.2]
RPN Nms threshold 0.7
RPN train anchors per image 256
Validation steps 16
Weight decay 0.0001
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invariants are computed for each triad. This is done for both 
the craters detected from the image and extracted from a crater 
catalogue query. Is essential to note that the number of the 
crater triads computed is approximately N3 of the craters under 
investigation; to speed up this process, functions have been 
rewritten in machine language. This implementation highly 
reduced the computational time. In the second step, two data-
frames are generated, belonging, respectively, to the image cra-
ters and catalogue craters. The dataframes contain in columns 
the unique id value of each crater and the projective invariants 
of the triad. In the third step, the crater matching problem is 
rearranged as an “inner join” merging of two dataframes. This 
operation is translated from the homonymous in SQL data-
bases where two tables are joined according to the matching 
of certain criteria using a comparison operator. In our case, an 
indexed search is performed in the two dataframes, and two tri-
ads are matched if their invariants descriptors are equal within 
certain tolerances. These tolerances are needed because the 
crater detector could output crater locations and sizes that can 
slightly differ from the ones recollected in the crater catalogue. 
Moreover, the criteria on which craters are catalogued may 
vary. Although tolerances are required, the drawback is that 
they introduce also false matches to the query. False matches 
are filtered out through the implementation of two validation 
functions. These latter use the information coming from an 
attitude sensor to reject the triads matched with a wrong spa-
tial orientation. The first function checks the orientation of 
the triad about the direction of motion, while the second one 
checks the correctness of the crater disposal in the triad. This 
approach accounts for one of the intrinsic problems of detec-
tors, i.e. the false positives. Indeed, the main difference from a 
star tracker algorithm is that all possible triads are considered 
for not discriminating good detections. Matches thus validated 
are then fed in input to the position estimation algorithm.

2.3  Position Estimation Algorithm

This algorithm exploits the positions of the craters known 
both in the images and in the database to prompt the space-
craft position. With the help of the matched triads, it is pos-
sible to establish a scale factor between pixels and degrees 
(S=1px/1◦ ), due to the fact that the relative distances 
between craters are known both in pixels and latitude/lon-
gitude degrees. Assuming known the sensor’s spatial reso-
lution, the calculation of the footprint (d) can be obtained 
through S. Finally, the altitude of the spacecraft can be easily 
retrieved through the linear equation:

which relates the footprint and the field of view (FOV) of 
the sensor with the altitude (H). Whereas latitude and lon-
gitude of the spacecraft position are prompted differently: 

(1)d = 2H tan(
FOV

2
)

the relative distances (in pixels) between craters and image 
center are acquired and re-scaled through S to generate 
residuals. The spacecraft in-plane localization is finally 
carried out exploiting the residuals which relates the sen-
sor’s center position to each crater position. Once a triad 
is matched a single position is estimated. Assuming that 
most matches are correct, the localization measurements 
coming from each triad on the same image are then filtered 
with interquartile method (40-60) and averaged out. Finally, 
measurements are incorporated into the EKF, built with a 
Keplerian propagator.

2.4  Extended Kalman Filter

The EKF incorporates an orbital propagator with PEA (Posi-
tion Estimation Algorithm) measurements to calculate the esti-
mated state of the spacecraft. The state vector includes satellite 
position and velocity vectors in selenographic coordinates. At 
each time step, the EKF propagate the spacecraft state from 
the previous estimated state to the current state. The position 
measurements are used to generate a measurement residual, 
which is exploited by the EKF to correct the propagated state. 
Orbit propagation was approached as two-body motion, thus 
a simple Keplerian propagator was selected. A propagator of 
such a type determines the motion due solely two-body grav-
ity acceleration, not taking into account non-sphericity effect 
of central body, gravitational interaction with other objects, 
solar radiation pressure, and lunar angular velocity. This sim-
ple propagator is key choice motivated to highlight the capa-
bilities of the developed system. The satellite dynamic model 
used for satellite orbit propagation is:

where ̈̄r(t) is the acceleration vector, � is moon gravitational 
constant, r̄(t) is the orbital position vector, and w̄(t) is vector 
of the process noise.

Some initial assumptions are needed to fulfill the filter’s 
requirement when implementing an EKF. Initial state estimate 
and initial state error covariance matrix are required to start the 
EKF process. The initial state vector is given by:

A diagonal apriori covariance matrix Pk−1 with standard 
deviations ( � ) of 50 km (position), 35 m/s (velocity) is 
assumed. With these assumptions at the first time instant 
the apriori covariance matrix P0 is given by:

(2)̈̄r(t) = −
𝜇

|r|3 r̄(t) + w̄(t)

(3)x(t0) =
[
x y z Vx Vy Vz

]
6x1
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Following [53], the state transition matrix [54, 55] �k,k−1 is 
used to propagate covariance matrix given by:

where F(tk − 1) =

[
03x3 I3x3
J3x3 03x3

]
 and ′T ′ denotes the matrix 

transposes.
In F(tk − 1) , J3x3 is the Jacobian coefficient matrix given in:

To cope with deficiencies of the employed propagation 
model, a fixed diagonal process noise matrix Qk−1 is consid-
ered in the time update of the covariance matrix as given in:

Representative process noise values used in the present 
application are (1km)2 (position), 

(
10−1km∕s

)2 (velocity). 
These values, more specifically the position ones, are the 
most significant on the filter behaviour and were determined 
with a tuning process based on a trial and error approach. 
Tuning was aimed at keeping the filter reactive to new meas-
urements while making it able to correctly estimate state 
and state covariances when measurements from PEA are not 
available or are of low quality.

As far as the correction step is concerned, at time k a meas-
urement zk of the position state xk is prompted through PEA. 
The residual vector ỹ is obtained from:

where Hk is the measurement matrix at kth time instant:

Based on P(k,k−1) , Hk and Rk matrixes, the covariance matrix 
Sk and the Kalman gain Kk is calculated according to:

(4)P0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�2
x

0 0 0 0 0

0 �2
y

0 0 0 0

0 0 �2
z

0 0 0

0 0 0 �2
vx

0 0

0 0 0 0 �2
vy

0

0 0 0 0 0 �2
vz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5)�k,k−1 ≈ I + F(tk − 1)T

(6)

J3x3 =

⎡⎢⎢⎣

3�x2r−5 − �r−3 3�xyr−5 3�xzr−5

3�xyr−5 3�y2r−5 − �r−3 3�zyr−5

3�xzr−5 3�zyr−5 3�z2r−5 − �r−3

⎤⎥⎥⎦

(7)P(k|k−1) = �k,k−1Pk−1�
T
k,k−1

+ Qk−1

(8)ỹk = zk − Hkx(k|k−1)

(9)Hk =

⎡⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

⎤⎥⎥⎦

(10)S
k
=H

k
P(k|k−1)Hk

T + R
k

where Rk is measurement noise covariance matrix which 
is in general a Gaussian zero-mean noise—representative 
measurement noise values used in the present application are 
(1km) (position). The updated (a posteriori) state estimate at 
time kth is obtained from:

And updated (a posteriori) estimate covariance matrix Pk 
is obtained from:

3  Results

This section describes the setup used to conduct the experi-
mental test as well as the numerical results achieved. Two 
crater catalogues will be analyzed in this study: Robbins [33] 
and the merge of Head et al. [56] & Povilaitis et al. [50].

3.1  Reference Orbit

For testing the system, a reference orbit (Fig. 5) has been 
generated at 50 km altitude. Equatorial inclination was 
preferred to characterize the performance of the developed 
system on very different scenarios from the point of view 
of crater density and distribution. The altitude instead was 
set as a standard value for lunar orbiters such as LRO [57]. 
Based on the designed trajectory, it is possible to identify 
different regions: as shown in Fig. 5, the first one ranges 
from -60◦ to 23◦ of longitude (A), a second one from 105◦ to 
-147◦ of longitude (B), and other regions show intermediate 
characteristics. The region A has a coarse crater coverage, 
while region B shows high sample number of craters. The 
initial orbit parameters, have been set according to Table 2.

Orbit propagation has been performed through 7th order 
Runge-Kutta integrator. Force model includes a lunar grav-
ity field model (LP100K [58]), solar radiation pressure, and 
third body effects (Sun & Earth).

(11)K
k
=P(k|k−1)Hk

T

S
k

−1

(12)X(k|k) = X(k|k−1) + K(k)ỹ(k)

(13)Pk =
(
I − KkHk

)
P(k|k−1)

(
I − KkHk

)T
+ KkRkK

T
k

Table 2  Initial orbital 
parameters

Orbital parameter Value

a 1787.1 km
e 0
i 0.0◦

� 0.0◦

Ω 0.0◦

� 270.0◦
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3.2  Crater Detection Results

Herein the developed detector is compared to other crater 
detectors on the dataset of [24]. As stated above, all of them 
have been likewise trained and evaluated on the same data-
set with the same metrics. The metrics used are precision 
and recall. Precision is a measure of result relevancy, while 
recall is a measure of how many truly relevant results are 
returned. The recall of a given class is defined as the ratio 
of true positive and the sum of true positive and false nega-
tive, therefore as:

In a similar way precision of a given class in classification is 
given as the ratio of true positive and the sum of true posi-
tive and false positive. The formula is given as:

(14)R =
Tp

Tp + Fn

F1-score is instead the harmonic mean between precision 
and recall, thus given as:

 Precision, recall and F1-score metrics results are summa-
rized in Table 3 where it is possible to notice the results 
achieved by FederNet.

The model detects on average almost double (231.14%) 
the craters stored in the catalogue ( [50, 56]), this is mainly 
due to the conservative way in which craters have been 
classified by remote scientists. Thus, lower recall has to 
be interpreted as the algorithm identifying more new real 
craters with respect to the ground truths. While the results 

(15)P =
Tp

Tp + Fp

(16)F1 = 2
P ∗ R

P + R

Fig. 5  Reference Orbit in which are evidence two region: (yellow) region A and (blue) region B

Table 3  The recognition results of different network comparing the 
test set precision (P), recall (R), F1-score (F1), and fractional errors 
on craters coordinates (x,y,r) of Mask R-CNN [38], Mask R-CNN 

(FederNet), DeepMoon [24], ERU-Net [59], ERU-Net-2 (i.e., 
ERU-Net with two Res-Blocks), DRU-Net [59], Aris-CNN [59] to 
D-LinkNet [60]

Metric Mask R-CNN   DeepMoon      FederNet  

R 87.6 ± 8% 57 ± 20% 43.1 ± 20%

P 66.5 ± 17% 80 ± 15% 81.1 ± 13%

F1          0.75 0.66 0.53
x 10.5% 10 ± 2% 10%

y 7.5% 10 ± 2% 7%

r 7% 8 ± 1% 7%

ERU-Net ERU-Net-2 DRU-Net Aris-CNN D-Link

81.2% 80.2% 76.7% 76.1% 68.3%

75, 4% 77.5% 77.9% 83.2% 77.2%

9.9% 9.6% 7.6% 9.6% 10.1%

10.0% 9.1% 7.0% 9.2% 10.0%

7.8% 7.7% 4.8% 7.2% 7.3%
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can be considered in general similar, it is worth noting that 
FederNet achieved the top score for the precision which is 
fundamental for the matching phase.

3.3  Crater Matching Results

In this section, matching results between the two afore-
mentioned crater catalogues are compared on the reference 
orbit. The field of view (FOV) of the sensor has been set to 
90◦ while the catalogue crater query has a search area of 
100km × 100km , centered around the sensor position. Images 
recollected as by an onboard imaging system have a spatial 
resolution of 512 x 512 px, and are acquired with a time step 
of 10 s. This step was chosen in consideration of the mean 
required time for processing the entire pipeline. However, a 
lower time step would allow a more frequent measurement 
update which is beneficial for the developed system. The 
number of craters detected by CDA (Crater Detection Algo-
rithm) on the reference orbit are computed, in this calcula-
tion, the confidence score threshold of the CDA has been 
set to 0.90 to filter the crater instances. This choice tunes 
the CDA for TRN, since finding all craters is hard for the 
computational burden of the matching phase. In addition, 
this choice makes the predictions accurate and reliable. In 
the Fig. 6, the behaviors of the aforementioned crater cata-
logues as well as the craters detected during the orbit are 
reported. In the last part of graphs of Fig. 6, it is possible to 
notice a small region of undetected craters, this is not due 
to the CDA rather to the difficulty of properly handling the 
gigapixel size of the DEM. Thus, this small region was not 
processed by the system.

In region A, the average number of catalogued craters by 
Head et al. & Povilaitis et al. merge (H & P) is below 5, thus 

resulting in a huge impact on the system performances: it 
is crucial to have at least three craters to perform a match. 
Besides, some regions evidenced a complete absence of 
craters catalogued. On the other side, H & P has showed 
in region B a good deal of matches. The same considera-
tions can be repeated for the Robbins crater catalogue. The 
average number of crater catalogued is far beyond the previ-
ous catalogue, showing no regions of complete absence of 
craters. However, especially in region B, having a so large 
number of craters catalogued turned out into longer compu-
tational times for the matching phase. Still, it is clear that 
Robbins crater catalogue has demonstrated better matching 
capabilities.

3.4  Position Estimation Results

This section reviews PEA results output of position estima-
tion algorithm. Referring to the reference orbit, measure-
ment errors have been prompted, re-projected in local refer-
ence frame East-North-Up (ENU) and reported in Figs. 7, 
8. Notably, the middle graphs show also a magnification 
(0÷ 1 km) of the PEA results highlighting regions not having 
a proper crater coverage. Concerning these ones, how it is 
possible to notice from the graphs they are more extended in 
the merged crater catalogue than in the Robbin’s one.

In the majority of cases, results showed errors below 1km 
with some spurious measurement to be rejected through the 
EKF implementation. Both crater catalogues have proven 
a scant coverage in the first half of the orbit, on contrary 
the second half of the orbit has shown a good amount of 
measurements. More in detail, into the second half of the 
orbit it was possible to obtain position measurements with 
an error below 500m. Results also evidenced some critical 

Fig. 6  Crater matching results comparing: (top) detected craters with 
matched triads by (middle) Head et al. & Povilaitis et al. crater cata-
logue and (bottoms) Robbins crater catalogue, respectively. [Differ-

ent crater covered regions marked in red while values in [1,100] (blue 
line) and in (100,∞ ) (green line) highlighted]
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zones without measurements. One in particular being around 
−39◦ longitude is easily referable to the absence of craters, 
while another one around −90◦ longitude is caused by the 
failure of CMA. The statistical distributions of PEA meas-
urements errors for the aforementioned catalogues have been 
computed and reported in Table 4, in which is evidenced 
how Robbins catalogue has experienced a larger dispersion 

of the data on the entire orbit, mainly due to the more fre-
quent false matches that causes larger errors.

3.5  EKF Results

This section reviews the EKF accuracy results on the refer-
ence orbit. To reduce the influence of bad PEA measure-
ments, a simple but effective approach based on gating and 
extended Kalman filtering (EKF) has been implemented. To 
make the approach more general, the initial state vector has 
been initialized with a random error on position between 0 
and 15 km for each of its component: (X, Y , Z) in seleno-
graphic coordinates. The error distribution prompted have 
shown a Gaussian behavior, this justifies the introduction of 
a gating based detection method determined by the statisti-
cal properties of the PEA measurements. Most of the PEA 
measurements can be effectively selected from all mixture 
measurements using the properly defined confidence region 

Fig. 7  Position errors prompted with the Head et al. [56] & Povilaitis et al. [50] merge crater catalogue. No measurement regions highlighted in 
yellow

Fig. 8  Position errors prompted with the Robbins [33] crater catalogue. No measurement regions highlighted in yellow

Table 4  Statistical comparison of PEA measurements errors in ENU 
frame between Head et al. & Povilaitis et al. merge and Robbins cra-
ter catalogue

Catalogue East North Up

H &P � 400.64 m 337.85 m 438.90 m
� 536.36 m 312.95 m 622.33 m

Robbins � 602.10 m 990.71 m 727.67 m
� 2587.73 m 5186.64 m 2896.89 m



345A Novel Visual‑Based Terrain Relative Navigation System for Planetary Applications Based…

1 3

of 3 standard deviations prompted at each step during the 
orbit. Once again, the two crater catalogues have been sub-
mitted for investigation.

Figure 9 shows the errors on position estimation in sele-
nographic coordinates (LCLF) with covariance bands ( ±3� ) 
prompted on Head et al. & Povilaitis et al. Crater Catalogue.

It is possible to notice how errors and covariance bands 
largely increase in regions with scant crater coverage. On 
other hand, the last part of the orbit—having much more 
measurements—showed the best results, reaching a sort 
of convergence. Repeating what was done for the previous 
catalogue, errors on position estimation in selenographic 

coordinates have been computed for Robbins crater cata-
logue and reported in Fig. 10.

In this case, the initial error is promptly taken down 
thanks to the Kalman filter that now has more measurements 
available in the initial stretch of orbit. Also this catalogue 
has shown in the last stretch of the orbit the best results, 
being capable to perform the measurement update of EKF 
in almost every time step, reaching a sort of convergence. 
Pairing the results achieved by the aforementioned crater 
catalogues, the Tables 5, 6, 7 are obtained. The reader should 
observe that the high error on the east component is largely 
influenced by the areas with poor crater coverage.

Fig. 9  EKF accuracy results prompted on Head et al. & Povilaitis et al. Crater Catalogue

Fig. 10  EKF accuracy results prompted on Robbins Crater Catalogue
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The tables demonstrate the higher performance reached 
by Robbins catalogue in EKF estimation and emphasize 
the error divergence of system in low coverage conditions. 
As stated above, Robbins PEA errors are highly affected 
by false matches, due to the huge number of entries which 
“confuse” the algorithm. Indeed, analyzing these false 
matches, it is possible to notice craters arranged as on 
a grid. This does not surprise because in Robbins crater 
catalogue many of the entries come from sources unrelated 
to the DEM, e.g. Surface Reflectivity Models (SRMs), 
Cameras, Thermal Cameras (TC), and so on, and there-
fore not identifiable by the CDA. Even though, Robbins 
crater catalogue has achieved the best scores. This can be 
explained by the catalogue being capable to correct the 
drift of the propagator more frequently. In addition, results 
showed how the combined approach of gating and EKF 
proved to be effective in filtering out bad measurements.

A final remark regards the computational time required 
by the proposed system. While the PEA and EKF calcula-
tion can be considered instantaneous, the detection time 
depends on the model implemented and hardware used. 
More in depth, the inference time of this model has been 
estimated in general below 0.45 s for the specific hardware 
used. Different considerations must be pointed out for the 
matching times which assume a different order of magni-
tude. Indeed, the demanded time grows exponentially with 
the number of matched triads. In the Fig. 11 the average 
matching time has been reported by crater catalogue and 
region under inspection. As it possible to notice, for the 
Robbins crater catalogue the time required for matching 
exceeds the step time in the region B. This is mainly due 
to the high number of triads (> 200) that are matched in 
that region. However, this does not happen for the merged 
catalogue which shows an acceptable level of accuracy 
in that region. Nonetheless, in region A, where the crater 
coverage is scant, the scenario changes and the Robbins 
catalogue is the only one capable of providing a sufficient 
amount of craters for the matching.

Table 5  Comparison of EKF positions errors in ENU frame between 
Head et  al. & Povilaitis et  al. merge and Robbins crater catalogues; 
Mean errors

Catalogue Region East North Up

H &P A 6.24 km −0.01 km −0.56 km
B −0.41 km 0.25 km 0.27 km
Entire orbit 2.91 km 0.18 km −0.36 km

Robbins A 2.90 km −0.07 km 0.39 km
B −0.25 km 0.10 km 0.20 km
Entire orbit 0.95 km 0.03 km 0.21 km

Table 6  Comparison of EKF positions errors in ENU frame, between 
Head et  al. & Povilaitis et  al. merge and Robbins crater catalogues; 
Standard deviations

Catalogue Region East North Up

H &P A 6.66 km 0.24 km 1.71 km
B 0.31 km 0.22 km 0.50 km
Entire orbit 5.37 km 0.49 km 2.58 km

Robbins A 4.04 km 0.26 km 0.85 km
B 0.26 km 0.14 km 0.42 km
Entire orbit 2.63 km 0.22 km 1.13 km

Table 7  Comparison of EKF positions errors in ENU frame, between 
Head et  al. & Povilaitis et  al. merge and Robbins crater catalogues; 
Root mean square errors

Catalogue Region East North Up

H &P A 9.07 km 0.21 km 1.83 km
B 1.23 km 0.28 km 1.02 km
Entire orbit 6.38 km 0.25 km 3.58 km

Robbins A 4.99 km 0.28 km 0.93 km
B 0.36 km 0.16 km 0.47 km
Entire orbit 2.80 km 0.23 km 1.15 km

Fig. 11  Average time required 
by the matching algorithm 
reported by region and crater 
catalogue under inspection
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Concluding this section, while for a region with a regu-
lar number of craters both the crater catalogue are valid, it 
is necessary to create a targeted crater catalogue for work-
ing in high/scant crater coverage conditions.

4  Conclusion

A novel TRN system has been introduced to enable auton-
omous navigation in lunar and planetary missions. Despite 
the usage of a medium-resolution DEM coupled with a 
simple Keplerian propagator, results showed that the pro-
posed approach is able to cover the new requirements for 
a planetary positioning system. Furthermore, the system 
results autonomous being able to operate independently 
of Earth-based operators. This translates into a reduc-
tion of resources and costs. Its capabilities can be fur-
ther improved with higher resolution data and data fusion 
integration with other sensor measurements, e.g. the lunar 
GPS nowadays under investigation by many researchers. 
Another possibility is to incorporate in the pipeline also 
the Visual Odometry, a functionality which has been tested 
through CMA between two subsequent frames. Although 
this implementation turned out to be robust, further work 
is required to achieve a flight-capable system. The DL 
model is still too heavy to be deployed onboard. There is 
a need of compress the model to use limited computation, 
power, and memory resources. Indeed, ResNets networks 
with more than 50 layers must be shrinked and distilled 
[61] to properly work onboard a satellite. In the end, 
the evidence from this study highlighted how the crater 
catalogues, built with different objectives, are generally 
suboptimal for TRN applications. Thus, the creation of 
a purpose-built TRN crater catalogue is recommended. 
Ongoing and future activities are planned to increase the 
detection & matching capabilities through the latest deep-
learning models and new matching schemes. The aim is 
to exploit also the 3D morphological features contained in 
Robbins crater catalogue. Besides, triad interior angles are 
not projective invariants under a general perspective, they 
require camera in nadir pointing mode and restriction on 
the altitude. This restricts the orbital regimes of work of 
the system. Future work is going to eliminate this assump-
tion. Last but not least, the effect of sensor footprint vari-
ability should be also evaluated, as well as the variability 
of the scanned area in the catalogue query.
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