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Abstract
This study employs the circular restricted three-body problem (CR3BP) as the dynamical framework, for the purpose of 
investigating low-thrust orbit dynamics in the Earth–Moon system. First, the effect of low thrust on some dynamical structures 
that exist in the CR3BP is analyzed. Low-thrust capture and escape dynamics in the proximity of the Moon is investigated 
for preliminary mission analysis. Then, low-thrust periodic orbits—with potential practical application—are detected. To 
do this, the theorem of mirror trajectories, proven 6 decades ago, is extended to low-thrust trajectories. This represents 
the theoretical premise for the definition and use of a numerical search methodology based on modified Poincaré maps. 
This approach leads to identifying several low-thrust periodic orbits in the Earth–Moon system that are infeasible if only 
unpowered paths are considered. Two possible applications of low-thrust periodic orbits are described: (a) cycling transfer 
trajectories that connect Earth and Moon continuously, and (b) non-Keplerian periodic paths about the Moon, with potential 
use as operational orbits for satellite constellations.
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1 Introduction

In recent years, lunar missions are attracting a renewed 
interest, in the clear perspective of planning and completing 
robotic and human missions in the near future. Low-energy 
missions to the Moon were investigated for decades. Exterior 
and interior transfers to the Moon include transits through 
the regions located in the proximity of the collinear libra-
tion points. Former studies [1] established that the invari-
ant manifolds associated with planar Lyapunov orbits play 
the role of separatrices. This means that in the phase space, 
the stable invariant manifold converging into the Lyapunov 
orbit separates the trajectories that transit from the Earth 
to the Moon from those that approach the interior collinear 

libration point and then return toward the Earth. Closely 
related to this, lunar capture dynamics represents a chal-
lenging and very significant problem of practical interest. In 
fact, a great deal of effort was dedicated to the identification 
and topological description of (non-periodic) lunar capture 
orbits, since the 60 s [2–5]. A fundamental conjecture on the 
topology of asymptotic and capture orbits dates back to the 
60 s and is due to Conley [6]. A popular approach in low-
energy Earth–Moon mission analysis, followed by a success-
ful application in a real scenario, was proposed by Belbruno 
and Miller [7], and employs the concept of ballistic capture, 
leveraging the Sun gravitational influence. More recently, 
Giancotti et al. investigated lunar capture dynamics using 
isomorphic mapping [8], with the intent of relating capture 
orbits to asymptotic trajectories.

In the scientific literature, many studies employed the 
circular restricted three-body problem (CR3BP) to describe 
the spacecraft orbital dynamics in the Earth–Moon system 
[9]. This represents a suitable model for preliminary mis-
sion analysis. More recently, some studies focused on more 
sophisticated and accurate dynamical frameworks, such as 
the bicircular restricted four-body problem (BCR4BP) [10] 
and the elliptic restricted three-body problem (ER3BP) [11], 
and provided clear insights on the properties of the (ballistic) 
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dynamical structures that preserve both in BCR4BP and in 
ER3BP.

In the last 2 decades, due to limited propellant con-
sumption, the use of low-thrust propulsion has gained an 
increased interest, and already found application in several 
mission scenarios, e.g., the NASA Deep Space 1 and the 
ESA Smart-1 missions. Thanks to high values of the specific 
impulse, low-thrust propulsion allows substantial propellant 
savings, at the price of increasing—even considerably—the 
time of flight. In a very recent publication, Cox et al. [12] 
focus on transit and capture in the planar three-body prob-
lem, using low-thrust dynamical structures. In fact, under 
certain assumptions, periodic orbits and invariant manifolds 
can be proven to subsist even if low thrust is ignited. The 
study of low-thrust structures existing in the CR3BP offers 
many advantages over approaches that include only ballistic 
structures. In fact, the topological properties of low-thrust 
trajectories in the CR3BP can be properly shaped using 
low-thrust propulsion, making feasible some interesting 
mission scenarios that would be naturally infeasible other-
wise. Similar considerations hold if solar sail propulsion is 
employed, with the advantage of not requiring any propel-
lant expenditure [13]. In some mission scenarios, low-thrust 
can facilitate and reduce the time needed to complete orbit 
maneuvers aimed at reaching a specified operational condi-
tion [12]. Cox et al. [14] focused on obtaining a combined 
low-thrust multi-body dynamics model to guide the prelimi-
nary design process. The main challenge in the design of 
a low-thrust trajectory is in the identification of the thrust 
magnitude and direction. To address this issue, optimization 
techniques have been extensively employed in the context of 
low-thrust trajectory design. Betts [15], Conway [16], and 
Rao [17] offer excellent overviews on the available methods 
for spacecraft trajectory optimization. These approaches are 
extremely useful in preliminary mission analysis, and are 
implemented as offline algorithms. However, their conver-
gence is strongly problem-dependent and usually requires 
availability of an approximate guess solution. Nonlinear 
orbit control [18, 19] represents an alternative, very inter-
esting approach capable of identifying a feedback control 
law for the thrust direction and magnitude, in relation to the 
instantaneous spacecraft position and velocity.

This study employs the CR3BP as the dynamical frame-
work, for the purpose of investigating low-thrust orbit 
dynamics in the Earth–Moon system. More specifically, 
this research investigates the effect of low thrust on some 
dynamical structures that exist in the CR3BP, i.e., zero 
velocity curves and surfaces, and periodic orbits. As a first 
step, low-thrust capture and escape dynamics in the proxim-
ity of the Moon is investigated, in relation to the geometry 
of zero velocity curves and surfaces, which can be suita-
bly shaped with the use of low thrust. Second, low-thrust 
periodic orbits—with potential practical application—are 

detected. Previous research [20] identified a variety of peri-
odic orbits, either in the proximity of libration points or 
about the two celestial bodies (Earth and Moon). Instead, 
this study focuses on the identification of periodic orbits that 
can be traveled using low-thrust propulsion, for relatively 
long durations. To do this, the theorem of mirror trajectories 
[21, 22], proven 6 decades ago, is extended to low-thrust 
trajectories. This represents the theoretical premise for the 
definition and use of a numerical search methodology based 
on modified Poincaré maps. This approach aims at identify-
ing several low-thrust periodic orbits in the Earth–Moon sys-
tem that are infeasible if only unpowered paths are consid-
ered. Two possible applications of low-thrust periodic orbits 
are suggested: (a) cycling transfer trajectories that connect 
Earth and Moon continuously, and (b) non-Keplerian peri-
odic paths about the Moon, with potential use as operational 
orbits for satellite constellations.

The paper that follows first describes low-thrust orbit 
dynamics in the dynamical framework of the CR3BP, focus-
ing on the low-thrust Jacobi integral and zero velocity curves 
and surfaces. Section 3 is devoted to lunar capture and eva-
sion dynamics using low thrust. Section 4 addresses the 
problem of detecting low-thrust periodic orbits, and focuses 
on two applications of potential interest, i.e., (1) cycling 
orbits that connect continuously the Earth to the Moon and 
(2) satellite constellations about the Moon.

2  Low‑Thrust Circular Restricted Three‑Body 
Problem

The CR3BP models the dynamics of a massless body, i.e., 
the spacecraft, subject to the simultaneous attraction of two 
massive bodies, called the primaries. The problem is conven-
iently described in the rotating synodic reference frame (cf. 
Fig. 1), parameterized by the mass ratio µ = m2/(m1 + m2), 
where m1 and m2 are the masses of the two primaries and 
m1 ≥ m2; for the Earth–Moon system, µ = 1/82.27. Origin of 
the synodic frame is the center of mass of the Earth–Moon 
system, the x-axis connects the two primaries at all times, 
and the z-axis points toward the angular momentum of the 
system. In the synodic frame, (x, y, z) denote the spacecraft 
position coordinates.

Low thrust can be introduced in the equations of motion 
as an acceleration vector, whose components are collected 
on the (3 × 1) vector a⃗lt

a⃗lt has magnitude alt , whereas α is the angle between the 
x-axis and the projection of a⃗lt in the (x, y)-plane, and β is 
measured in counterclockwise sense in the (y, z)-plane, as 
shown in Fig. 2.

(1)a⃗lt = alt[cos 𝛼 cos 𝛽 sin 𝛼 cos 𝛽 sin 𝛽]T ;
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This research assumes thrust acceleration with constant 
magnitude alt . This means that the spacecraft mass reduction 
due to propellant consumption obeys the following equation:

where T and m denote the thrust and instantaneous space-
craft mass, alt ∶= (T∕m) , t is the current time, and c is the 
constant effective exhaust velocity of the propulsion system. 
In this research, the following parameters of the propulsion 
system are assumed: alt = 2 ⋅ 10−5 g0

(
g0 = 9.8m

/
s2
)
 and 

c = 30 km∕s.

(2)ṁ = −
T

c
⇒

ṁ

m
= −

alt

c
⇒

m

m0

= exp
[
−
alt

c
t
]
,

2.1  Equations of Motion with Low‑Thrust 
Propulsion

The equations of motion are obtained taking into account 
the gravitational attraction of the two primaries on the third 
body, and are written employing canonical units, which rep-
resent a set of conveniently normalized units. The distance 
unit (DU) is the constant distance between the two prima-
ries, whereas the time unit 1/TU equals the angular velocity 
with which the two primaries rotate about their common 
barycenter. With the inclusion of the acceleration term due 
to low thrust, the equations of motion are

where Ω is the potential function, given by

2.2  Low‑Thrust Jacobi Integral, Zero Velocity Curves 
and Surfaces

It is relatively straightforward to demonstrate that a Jacobi 
integral exists also for this dynamical system, under the 
assumption that the low-thrust components are constant. The 
equations of the system (3) are multiplied, respectively, by 
ẋ, ẏ, ż and summed. Thus, one obtains [14]

leading to

This means that a constant exists, referred to as the modi-
fied Jacobi integral and denoted with C

(3)

⎧
⎪⎨⎪⎩

ẍ = 2ẏ + Ωx + altx
ÿ = −2ẋ + Ωy + alty

z̈ = Ωz + altz

,

(4)

Ω =
x2 + y2

2
+

1 − �√
(x + �)2 + y2 + z2

+
�√

(x + � − 1)2 + y2 + z2

.

(5)

ẋẍ + ẏÿ + żz̈ = ẋ
dΩ

dx
+ ẏ

dΩ

dy
+ ż

dΩ

dz
+

d
(
altxx + altyy + altz z

)

dt
,

(6)1

2

d
(
ẋ2 + ẏ2 + ż2

)
dt

=
dΩ

dt
+

d
(
altxx + altyy + altz z

)

dt
,

(7)
d

dt

(
Ω −

1

2

(
ẋ2 + ẏ2 + ż2

)
+ altxx + altyy + altz z

)
= 0.

(8)C = 2Ω + 2
(
altxx + altyy + altz z

)
−
(
ẋ2 + ẏ2 + ż2

)
.

Fig. 1  The primaries  m1 and  m2 in circular orbit, plus a third body m

Fig. 2  Thrust angles α and β 
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The value of C remains unchanged during orbital motion 
and is associated with the energy of the system.

When low thrust is included in the CR3BP model, the 
natural dynamics of the system is perturbed. As shown by 
Cox and Howell [12], in this case, the equilibrium points 
move in the (x, y)-plane, depending upon α; in particular, 
the collinear points near the Moon remain close to the natu-
ral libration points. The Zero Velocity Curves and Surfaces 
(ZVCs and ZVSs) define the regions where the spacecraft 
motion is allowed. These curves change as α varies, due to 
low thrust. The gateways at the libration points can open in 
an order that is different from the ballistic one. For the pla-
nar case, a graphical study of the ZVC, based on selecting 
different values of α, equally spaced by 0.1 degree leads to 
finding that.

• the ZVC that includes the libration point  L1 is open at  L2 
if − 69.8° < α < 69.8°, unlike what occurs in the ballistic 
case. This makes feasible the transfers from the Moon 

to the outer space (cf. Fig. 3a). Moreover, transfers from 
the Earth realm to the outer space become feasible if 
− 180° < α < − 114.9° or 114.9° < α < 180°, as shown in 
Fig. 3b.

• the ZVC that includes the libration point  L2 is 
open at both  L1 and  L3 if −  180° < α < −  103.6° or 
103.6° < α < 180°, as shown in Fig. 4a. Earth–Moon 
transfers remain feasible if −  180° < α < −  69.6° or 
69.6° < α < 180.°, as shown in Fig. 4b, although the ZVC 
are no longer symmetric (except if α =  ± 180° or α = 0°)

It is worth remarking that symmetry of the ZVCs (with 
low thrust) with respect to the x-axis preserves only if the 
thrust direction is aligned with the latter, i.e., if α =  ± 180° 
or α = 0°. This is apparent by inspecting Figs. 3a, b and 4a. 
Moreover, the preceding bounds on α depend upon the spe-
cific value of the thrust acceleration magnitude.

Fig. 3  ZVC when α = 0° (a) and 
when α = 180° (b)

Fig. 4  ZVC when α = 180° (a) 
and when α = 90° (b)



175Low-Thrust Orbit Dynamics and Periodic Trajectories in the Earth–Moon System  

1 3

The zero velocity surfaces can be regarded as the three-
dimensional counterparts of the ZVCs. Two examples of 
ZVS at  L1 using low thrust are shown in Figs. 5 and 6. In 
the first case, the gateway at  L2 is open, while the gateway 
at  L1 is closed. Instead, in the second case, the gateway at  L3 
is open, while both gateways at  L1 and  L2 are closed. Two 
examples of ZVS at  L2 are shown in Figs. 7 and 8. In the first 
one, the peculiarity of the surface is that the  L3 gateway is 
wider than that at  L1. From inspection of Figs. 7 and 8, it is 
apparent that the corresponding ZVC is not symmetric with 
respect to the x-axis, unlike what occurs in the ballistic case. 
This feature is related to the specific value of α.

3  Lunar Capture Dynamics Using Low‑Thrust

This section considers a two-dimensional trajectories lying 
in the plane of the two primaries, and addresses the prob-
lem of using low thrust for lunar capture, taking advantage 

of the geometrical properties of the zero velocity curves, 
illustrated in the previous section. Moreover, the use of low-
thrust propulsion allows shaping the zero velocity curves in 
a way, such that escape becomes feasible, while return paths 
toward the Earth do not exist. This scenario cannot occur for 
ballistic trajectories.

3.1  Capture

At the end of a low-energy ballistic transfer from Earth to 
Moon, the spacecraft is assumed to reach the first perisele-
nium, at altitude of 2255 km over the lunar surface. In this 
phase, the Jacobi integral equals 3.184 DU/TU2. The latter 
value is only slightly less than the limiting value that allows 
transits from the Earth to the Moon through the region where 
 L1 is located. At the first periselenium, low thrust is ignited, 
with an angle α = 70°, and the gateways at  L1 and  L2 close 
as a result (cf. Fig. 9a). This means that the spacecraft is 
captured about the Moon, and cannot escape until the low-
thrust propulsion remains ignited. In 25.4 days, which is the 

Fig. 5  L1  ZVS, with α = 0° and β = 30°

Fig. 6  L1  ZVS, with α = 180° and β = 30°

Fig. 7  L2  ZVS, with α = 135° and β = 30°

Fig. 8  L2  ZVS, with α = 270° and β = 30°
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(planned) duration of the capture phase, the space vehicle 
travels at a distance of closest approach of 759 km from the 
lunar surface (cf. Fig. 9b).

3.2  Permanent Escape from the Earth–Moon 
System

At the end of the capture phase, a new thrust angle is 
selected, such that the  L2 gateway opens while  L1 remains 
closed. Among all the possible values of α, the one that 
minimizes the altitude over the Moon (before escape) is 
chosen. The value at hand is αout = − 21.6°, and the space-
craft remains in the proximity of the Moon for additional 
16.5 days, with a distance of closest approach of 843 km 
over the lunar surface. When the thrust angle is set to 
αout = − 21.6° (at point (x2, y2)), the Jacobi integral becomes

(9)Cph3 = 2Ω
(
x2, y2

)
+ 2

(
altxx2 + altyy2

)
−
(
ẋ2
2
+ ẏ2

2

)
= 3.3062DU∕TU2.

Then, the spacecraft passes through the gateway at  L2 (cf. 
Fig. 10) and escapes the Earth–Moon system. After escaping 
the Earth–Moon system, permanent escape is pursued, to avoid 
that the spacecraft enters the system at future times. This is 
possible only if the zero velocity curve, obtained after switch-
ing off the thrust, exhibits no opening at  L2. In the absence 
of thrust, the opening at  L2 depends upon the Jacobi integral 
(evaluated for ballistic trajectories). Hence, the value of C after 
switching off low-thrust must be greater than the characteristic 
value of C at the libration point  L2, denoted with  C2 = 3.1721 
 DU2/TU2.

Let (x3, y3) denote the point at which the thrust is switched 
off. As a result, the Jacobi integral changes to

(10)Cph4 = Cph3 − 2altx3 cos �out − 2alty3 sin �out.

Fig. 9  Spacecraft trajectory 
in the capture phase (a), with 
zoom (b); ZVC is in blue

Fig. 10  Escape phase (a), with 
zoom (b)
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To obtain a permanent escape, Cph4 > C2 . The line associ-
ated with the equality Cph4 = C2 is shown in Fig. 11, high-
lighted in blue, together with the point at which the thrust is 
switched off. This point corresponds to the intersection of 
the blue line with the outgoing path. The final mass ratio is 
obtained using Eq. (2) and equals 0.977.

4  Low‑Thrust Periodic Orbits

A wide variety of periodic orbits were proven to exist in the 
CR3BP, starting from the nineteenth century [23]. Differ-
ent analytical and numerical approaches were adopted for 
detecting ballistic periodic orbits, for decades. Because the 
theorem of mirror trajectories holds also with low thrust, 
this section focuses on the detection of low-thrust periodic 
orbits in the Earth–Moon system. In this study, the prob-
lem is addressed by means of modified Poincaré maps [20], 
selecting values of α spaced by 15° and a maximum number 
of crossings of the x-axis equal to 6. Moreover, for all the 
orbits presented in this section, a mission duration of 5 years 
is considered, corresponding to a final mass ratio equal to 
0.357 (using Eq. (2)).

4.1  Low‑Thrust Mirror Trajectories

The theorem of mirror trajectories was proven in 1960 by 
Miele [21], and establishes the symmetry properties of bal-
listic trajectories in CR3BP. The theorem can be extended 
to low-thrust trajectories.

Proposition 1. The initial conditions for the spacecraft posi-
tion and velocity are specified, and the following equation 
describes a feasible path (with �, �,� , �, and � denoting 
generic functions of time):

The returning trajectory described by the following equa-
tion, is feasible, as well (τ is an arbitrary time constant):

Proof The preceding statement can be demonstrated in a 
way similar to the proof of the theorem of mirror trajectories 
[21, 22] by substituting Eq. (11) in Eq. (3). This leads to

It is straightforward to recognize that the equation system 
of Eq. (13) is identical to the one that holds for T1, which is 
obtained by inserting Eq. (11) into Eq. (3). This proves that 
T2 is feasible, as well as T1.  □

4.2  Modified Poincaré maps

As a preliminary step, the variable C0 is introduced as 
the value of the Jacobi integral in the absence of low-
thrust propulsion. Modified Poincaré maps are obtained 
by considering α, C0, the interval along the x-axis, and the 
maximum number of crossings of the x-axis as the input 
parameters. For each point in the interval, the starting 

(11)T1

⎧
⎪⎨⎪⎩

x = 𝜉(t)

y = 𝜂(t)

z = 𝜁(t)

ẋ = �̇�(t)

ẏ = �̇�(t)

ż = �̇�(t)

𝛼 = 𝛿(t)

𝛽 = 𝜒(t)

altx = altc𝛼c𝛽
alty = alts𝛼c𝛽

altz = alts𝛽 .

(12)

T2

⎧
⎪⎨⎪⎩

x = 𝜉(𝜏 − t)

y = −𝜂(𝜏 − t)

z = 𝜁(𝜏 − t)

ẋ = −�̇�(𝜏 − t)

ẏ = �̇�(𝜏 − t)

ż = −�̇� (𝜏 − t)

𝛼 = −𝛿(t − 𝜏)

𝛽 = 𝜒(t − 𝜏)

altx = altc𝛼c𝛽
alty = −alts𝛼c𝛽
altz = alts𝛽.

(13)

𝜉 − 2𝜔�̇� − 𝜔2𝜉 = −
(1−𝜇)(𝜉+𝜇)

r3
1

−
𝜇(𝜉+𝜇−1)

r3
2

+ altc𝛼c𝛽

−�̈� − 2𝜔�̇� + 𝜔2𝜂 = +
(1−𝜇)𝜂

r3
1

+
𝜇𝜂

r3
2

− alts𝛼c𝛽

𝜁 = −
(1−𝜇)𝜁

r3
1

−
𝜇𝜁

r3
2

+ alts𝛽 .

Fig. 11  Permanent escape: in 
a the low-thrust trajectory is 
shown in green, the final bal-
listic trajectory in red, and the 
line associated with the equality 
Cph4 = C2 in blue, with the cor-
responding ZVC (b)
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conditions correspond to an initial velocity, denoted with 
ẏ0, orthogonal to the x-axis and an initial position along 
the x-axis, denoted with x0. Starting from these condi-
tions, Eq. (3) is integrated numerically. After processing 
all the initial values in the x-intervals [− 0.1,0.1] DU and 
[0.7,1.2] DU, the Poincaré map is built by representing the 
velocity vx = ẋ, as a function of x, at each crossing point. If 
there exists a point at which ẋ is zero, then it corresponds 
to a vertical crossing, which is associated with a periodic 
trajectory. Visual inspection of the Poincaré maps leads to 
detecting a variety of periodic orbits. Figure 12 illustrates 
an example of Poincaré map. The arrow corresponds to 
an interesting periodic orbit, i.e., the orbit illustrated in 
Fig. 13c. 

This study is specifically focused on the identification 
of periodic orbits that do not exist in the ballistic CR3BP, 
divided into two categories: (1) Earth–Moon cycling orbits 
and (2) lunar periodic orbits.

4.3  Earth–Moon Cycling Orbits

The study of periodic orbits that encircle both the Earth 
and the Moon leads to the identification of orbits that have 
long periods and show close approaches to the two prima-
ries. These orbits could be particularly useful as transfer 
paths between the two bodies. Some examples of these 
orbits are shown in Fig. 13 and their features are reported 
in Table 1; the value of α refers to the trajectory arc before 
the (midway) orthogonal crossing, and the initial velocity 
has positive component along y, in all cases. The first orbit 
exhibits very close approaches to both primaries, while 

the second one includes many flybys, especially near the 
Earth.

4.4  Lunar Periodic Orbits for Satellite Constellations

The study of low-thrust periodic orbits around the Moon 
leads to the identification of non-Keplerian orbits, with a 
short orbital period and with many passes near the Moon 
and the Lagrange points. It is worth remarking that these 
paths are infeasible in the absence of low-thrust propulsion. 
In mission scenarios of practical interest, these orbits could 
be traveled with modest propellant amounts. Some examples 
are shown in Fig. 14, while Table 2 reports some character-
istic parameters of these trajectories.

To study the ground track of these orbits and the visibility 
properties, three reference frames are introduced:

• the Earth Centered Inertial Frame (ECI) 
(
ĉ1, ĉ2, ĉ3

)
 is a 

Cartesian inertial reference frame defined as follows. Its 
origin O is the center of the Earth. The unit vector ĉ3 is 
aligned with the Earth axis of rotation and is positive 
northward, whereas ĉ1 is aligned with the vernal axis, 
which corresponds to the intersection of the Earth equa-
torial plane and the ecliptic plane.

• the Heliocentric Frame 
(
ĉ
(S)

1
, ĉ

(S)

2
.ĉ
(S)

3

)
 is obtained from 

ECI by means of a rotation of ε = 23.4° (ecliptic obliq-
uity) about axis ĉ1 [24]. In particular, the third axis is 
defined as ĉ(S)

3
= − sin 𝜀ĉ2 + cos 𝜀ĉ3 . Under the approxi-

mating assumption that the lunar equatorial plane coin-
cides with the ecliptic plane, then ĉs

3
 identifies both the 

ecliptic pole and the rotation axis of the Moon.
• the Moon Frame 

(
î
(M)

1
, î
(M)

2
, î
(M)

3

)
 is centered at the Moon 

center with axes defined in the following way: î(M)

3
 coin-

cides with ĉ(S)
3
;î
(M)

1
 identifies the lunar prime meridian, 

and is aligned with the line that connects the center of the 
Earth to the center of the Moon; finally, î(M)

2
 completes 

the right-hand sequence.

From Table 2, it is evident that orbit (a) has an orbital 
period very close to the rotation period of the Moon, 
which approximately coincides with the orbital rate of the 
Moon about the Earth. For this reason, the related ground 
track is repeating. It is possible to study the visibility prop-
erties of this orbit, by considering that the inclination of 
the orbit of the Moon varies between 28.74° and 18.16°. 
Assuming that the inclination of the orbit of the Moon is 
28.74°, the maximum visibility time of different locations 
over the lunar surface is shown in Fig. 15, from which the 
minimum number of satellites needed to guarantee con-
tinuous coverage over a certain site can be identified. In 
Fig. 16 the elevation of a constellation of three satellites 
is shown, over a single orbital period, with respect to a 

Fig. 12  Poincarè map obtained with C = 3.00, n = 4 (4th crossing of 
the x-axis). The arrow points the crossing on the y-axis that corre-
sponds to a periodic orbit
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Fig. 13  Earth–Moon cycling orbits; primaries are denoted with a pink dot, while the collinear libration points are marked with an asterisk
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Table 1  Parameters of orbits 
(a–f) of Fig. 13 in terms of C0, 
thrust angle α, initial point on 
the x-axis x0, minimum distance 
D☾ from the lunar surface, 
minimum distance D⊕ from the 
Earth surface, and repetition 
period T 

Orbit C0  (DU2/TU2) α (°) x0 (DU) D☾ (km) D⊕ (km) T (day)

(a) 2.5 270 0.013236 9135 3384 107.3
(b) 2.3 225 0.013133 55,400 3345 133.1
(c) 2.3 270 0.0084402 19,941 1459 129.6
(d) 2.5 225 0.024058 94,234 7542 156.9
(e) 2.5 0 0.023955 4575 741 63.7
(f) 2.3 135 0.025739 1068 8189 84.7

Fig. 14  Low-thrust lunar periodic orbits
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Table 2  Parameters of orbits (a), (b), (c), and (d) of Fig. 14 in terms of C0, thrust angle α, initial point on the x-axis x0, initial velocity compo-
nent ẏ

0
 , minimum distance D☾ from the Moon surface, and repetition period T 

Orbit C0  (DU2/TU2) α (°) x0 (DU) ẏ
0

D☾ (km) T (day)

(a) 3.17 0 0.99505  > 0 1033 27.4
(b) 3.21 135 1.0799  > 0 5168 31.3
(c) 3.00 90 0.79661  > 0 21,420 54.3
(d) 2.91 315 0.95500  < 0 10,790 70.6

Fig. 15  Maximum visibility time from the lunar surface for a satellite 
deployed in orbit (a)

Fig. 16  Elevation graph of a 3-satellite constellation deployed in orbit 
(a) referred to a station located at − 30° of longitude and 70° of lati-
tude (inclination of the lunar orbit equal to 28.74°)

Fig. 17  Elevation graph of a 3-satellite constellation deployed in orbit 
(a) referred to a station located at + 30° of longitude and 70° of lati-
tude (inclination of the lunar orbit equal to 18.16°)

Fig. 18  Low-thrust special orbit in blue, Lagrangian points marked 
with an asterisk
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station located at -30° of longitude and 70° of latitude. 
This site corresponds to the maximum continuous visibil-
ity, equal to 9.149 days (single satellite). If the inclina-
tion of the Moon orbit equals 18.16°, a similar (mirrored) 
graph is obtained, with respect to a station located at 30° 
of longitude and 70° of latitude (cf. Fig. 17). If the inclina-
tion of the Moon orbit equals the intermediate value 23.4°, 
then the constellation performance slightly worsens. In 
this case, the most advantageous point has longitude equal 
to 0. From this discussion, it is apparent that the constella-
tion at hand, composed of 3 satellites, is particularly effec-
tive to provide continuous coverage over a relatively large 
latitudinal region located in the dark side of the Moon.

4.5  Other Special Orbits

The study of low-thrust periodic orbits around the Moon 
leads to the identification of another particular orbit shown in 
Fig. 18, which has the remarkable property of traveling near 
three libration points:  L2,  L4, and  L5. This orbit can be useful 
for missions directed toward the triangular libration points and 
its parameters are reported in Table 3.

5  Concluding Remarks

This research investigates low-thrust orbit dynamics in the 
Earth–Moon system. Some dynamical structures that exist 
in the natural CR3BP are proven to persist, but with differ-
ent—and rather interesting—topological properties. In fact, 
low-thrust zero velocity curves and surfaces exhibit a variety 
of configurations that are otherwise infeasible in the absence of 
low-thrust propulsion. As a first contribution of this research, 
these remarkable topological properties can be profitably 
leveraged in preliminary mission analysis. With this regard, 
this work investigates low-thrust lunar capture dynamics, and 
identifies a strategy that allows the temporary capture and 
the subsequent permanent escape of the spacecraft from the 
Earth–Moon system. A simple relation leads to identifying 
the region where low thrust must remain ignited to obtain 
subsequent permanent (ballistic) escape. Moreover, as further 
contributions, this study proves the existence of a variety of 
low-thrust periodic orbits, encircling either the two primaries 
or the Moon. Modified Poincaré maps are used to do this. 
Similar orbits may be useful for either (a) establishing a con-
tinuous Earth–Moon connection using spacecraft equipped 
with low-thrust propulsion and traveling cycling paths or (b) 

designing satellite constellations about the Moon with interest-
ing coverage properties.
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