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Abstract
This paper revisits a classical economic topic of exhaustible resource use on the 
basis of recent developments in time preference and discount factor models. An 
analysis of the effects of endogenous time preferences on the dynamic properties of 
resource use is conducted, contrasting the classical Hotelling results. More specifi-
cally, we develop an analytical model that incorporates endogenous time preference 
into the decision framework of resource consumption. It is expected that the results 
obtained here not only contribute to the literature of pure economic theory, but also 
to recent climate policy debates on discounting factors.

Keywords Habit formation · Hotelling’s rule · Discounting · Social time preference · 
Backstop technology

JEL Classification E43 · O13 · Q32

Introduction

Hotelling’s well-known rule is that scarcity rents for exhaustible resources increase 
at the rate of interest. Although there are many variations of the rule that derive sim-
ilar rules, the implication remains the same. The dynamics of exhaustible resource 
use is driven by interest rates. Consequently, we face the following question: in what 
way are these interest rates determined? This question has never been answered in 
the framework of Hotelling and his successors.
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Unlike in resource economics, debates about interest rates and time preferences 
have been intense in other fields of economics. In particular, in welfare econom-
ics, specifying discount factors falls under the topic of moral philosophy (e.g., [1]). 
Recent studies within this topic include those on hyperbolic discounting (e.g., [13]).

In macroeconomic theory, many studies have been conducted on models in which 
time preference depends on endogenous economic variables. Among those, habit 
formation models in which a history of consumption determines the time preference 
have recently become popular (e.g., [10]). A classical topic in this category includes 
the Uzawa–Epstein formulation of time preference [4, 5, 12].

This paper revisits a classical economic topic of exhaustible resource use on the 
basis of recent developments in time preference and discount factor models. An 
analysis of the effects of endogenous time preferences on the dynamic properties of 
resource use is conducted, contrasting the classical Hotelling results. More specifi-
cally, we develop an analytical model that incorporates endogenous time preference 
into the decision framework of resource consumption. The basic model structure 
consists of three parts: cake-eating economy, availability of a backstop technology, 
and the Uzawa–Epstein formulation of time preference. As an advanced model, a 
concept of minimum consumption requirement is incorporated.

There is a caveat before moving on to sections that follow: on the same topic and 
similar analytical framework, the authors have reported some related results in two 
papers written in Japanese as Nagaya and Maeda [8] and Maeda and Nagaya [7]. 
The present paper is different from these previous papers on two points: first, we 
revised all the calculations and provide a complete set of proofs for propositions that 
were omitted before. Second, we added a new proposition as Proposition 4.4 and 
made minor changes in propositions, especially in Proposition 5.1. We admit there 
are overlaps in descriptions between this paper and previous ones, albeit different 
languages. However, to reach the above-mentioned new or revised Propositions, it is 
necessary to provide detailed model explanation and preparatory propositions even 
if overlaps are significant. Thus, we decided not to skip them.

The rest of the paper is organized as follows. First three sections focus on the 
basic structure. The next section develops the analytical model. The subsequent sec-
tion analyzes the dynamic properties followed by which the main results regarding 
the optimal timing of the switch from exhaustible resource use to a backstop tech-
nology are addressed. The penultimate section extends the framework of analysis by 
introducing a concept of minimum consumption requirement to the model. The final 
section is the conclusion of the discussion.

Model basis

Consider a closed economy in which an exhaustible resource and a backstop tech-
nology are available. Now assume there is no production sector. More specifi-
cally, the economic activity of the economy is restricted to consume the resource 
or utilize the available backstop technology. Further, assume the population is 
constant. Consequently, we introduce a representative agent who expects to 
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maximize the sum of the discounted instantaneous utilities for the consumption 
of the exhaustible resource and the equivalent resource consumption supplied by 
the backstop technology.

We introduce the following notations:
t: Time.
E(t): Exhaustible resource use at t.
S(t): Stock of exhaustible resource at t.
S0: Initial exhaustible resource stock.
Δ(t): Cumulated discount rate at t.
u(*): Representative agent’s instantaneous utility.
r(*): Instantaneous discount rate.
PB: The price of the backstop technology.
ε(t): Resource use supplied by the backstop technology at t.
q(t): Scarcity rent of the exhaustible resource at time t.
T: The time to switch from the exhaustible resource to the backstop technology.
Due to the limited stock of the exhaustible resource, the representative agent is 

supposed to use up the entire stock of the exhaustible resource by a certain time, 
after that the agent will begin using a backstop technology. The time to switch 
from the exhaustible resource to the use of the backstop technology (T) is endog-
enously determined, as we will see in the next section.

u is an increasing and concave function of E(t) (or ε(t)). We assume that u has 
the following functional form:

where η is the magnitude of the elasticity of the marginal utility and known as the 
reciprocal of the elasticity of the intertemporal substitution. For large η, consump-
tion is said to be “inelastic” along the time horizon. Conversely, for small η, con-
sumption is “elastic” along the time horizon. We will observe later that this con-
cept plays an important role in extracting insights from our resulting mathematical 
expressions.

We introduce the Uzawa–Epstein formulation of time preference. That is, we 
assume that the instantaneous discount rate is a function of resource consumption 
and that the sum of the discounted instantaneous utilities is described as

Note that Eq. (3) is equivalent to

(1)
u(E) =

E1−𝜂

1 − 𝜂
, 𝜂 > 0, 𝜂 ≠ 1

u�(E) > 0, u��(E) < 0,

(2)max
{E(t)} ∫

T

0

u(E(t)) ⋅ e−Δ(t)dt + e−Δ(T)V ,

(3)Δ(t) = ∫
t

0

r(E(s))ds.
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Following Uzawa [12], Epstein [5], and Epstein and Hynes [4], we assume the 
following properties1:

In the last term of (2), V represents the sum of the discounted instantaneous utili-
ties accruing from the use of the backstop technology that starts being operational 
at time T. It is a result of the following optimization problem to be solved at time T:

Discounting V back to the initial time (i.e., t = 0) of exhaustible resource con-
sumption, by the factor e−Δ(T) , we obtain its present value for the initial time 
expressed as the last term of (2).

The use of the exhaustible resource must adhere to the following dynamics:

As an integral form, the dynamics can also be written as

A backstop technology is that technology whose unlimited reserve is a substitute 
for the exhaustible resource stock. Although it is physically available, it is too expen-
sive to use currently. It may become economically feasible to use in the future when 
the price of the backstop technology becomes cheaper than that of the exhaustible 
resource.2 The switch from the exhaustible resource use to the use of the backstop 
technology is intuitively understood as follows: let q(t) denote the scarcity rent of 
the exhaustible resource at time t. Suppose that the backstop technology becomes 
economically available at time T. Then, the condition for these prices for the switch 
at time T is

(4)
dΔ(t)

dt
= r(E(t)).

r > 0, r�(E(t)) > 0, r��(E(t)) ≤ 0.

V = max
{�(�)}∫

∞

0

(
u(�(�)) − PB�(�)

)
⋅ e−Δ(�)d�.

(5)
dS(t)

dt
= −E(t).

(6)∫
T

0

E(t)dt = S0 − S(T).

(7)q(T) = PB.

1 In the literature, some studies investigate alternative settings: Das [3], Chang [2], and Hirose and Ikeda 
[6] proposed the use of decreasing functions for the instantaneous discount rates. Because such alterna-
tive settings are known to create technical difficulties, it is beyond the scope of this paper to deal with 
them in our model setting.
2 Scientists and engineers have proposed many advanced power generation technologies. One of the 
most popular technologies among physicists may be nuclear fusion reactors. Electricity generation in 
space (e.g., photovoltaic technology) with wireless power transmission (e.g., microwaves) to the Earth 
(i.e., solar power satellites) is also considered a prospective technology.
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Notice that once the backstop technology becomes economically available at time T, 
the exhaustible resource will never be used again. If the exhaustible resource remains at 
the time, it can be used before the time at cheaper prices. This means that the exhaust-
ible resource must be exhausted exactly at the time (i.e., S(T) = 0). As such, the time 
T, at which Eq. (7) holds true, is said to be the time of the switch from the exhaustible 
resource to the backstop technology. Figure 1 depicts the switch.

Dynamics

In this section, we examine the model developed in the previous section. In the model, 
the maximization of the sum of the discounted instantaneous utilities by the representa-
tive agent is formulated as the following optimization problem:

                                s.t. dΔ(�)
d�

= r(�(�)) for 0 ≤ 𝜏 < ∞.
To solve the problem, let us introduce the present-valued Hamiltonian for 0 ≤ t ≤ T  

as follows:

max
{E(t)} ∫

T

0

u(E(t)) ⋅ e−Δ(t)dt + e−Δ(T)V

s.t.
dS(t)

dt
= −E(t) for 0 ≤ t ≤ T ,

dΔ(t)

dt
= r(E(t)) for 0 ≤ t ≤ T ,

S(0) = S0, which is given,

V = max
{�(�)}∫

∞

0

(
u(�(�)) − PB�(�)

)
⋅ e−Δ(�)d�

Fig. 1  The time of the switch 
from the exhaustible resource to 
the backstop technology
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q̃ represents the present-valued shadow prices for the exhaustible resource. �̃� rep-
resents the present-valued shadow prices for the cumulated discount rate defined as 
in Eq. (3).

The first order necessary conditions for 0 ≤ t ≤ T  are the following3:

The transversality conditions at T are:

and 

For analytical purposes, we transform Eqs. (9)−(11) into the current-valued form 
as follows. Let q and ϕ denote the current-valued shadow prices for the exhaustible 
resource and the cumulated discount rate, respectively. The following relationships 
hold true:

With these transformations, Eqs. (9)−(11) are equivalent to the following set of 
equations:

Following a similar procedure, we can estimate the value of V. In particular, an 
optimal condition for the resource flow is

(8)H̃ = u(E(t)) ⋅ e−Δ(t) + q̃(t) ⋅ {−E(t)} − �̃�(t) ⋅ r(E(t)).

(9)u�(E(t)) ⋅ e−Δ(t) − q̃(t) − �̃�(t) ⋅ r�(E(t)) = 0,

(10)0 = ̇̃q(t), and

(11)u(E(t)) ⋅ e−Δ(t) = − ̇̃𝜙(t).

(12)S(T) ⋅ q̃(T) = 0.

(13)Δ(T) ⋅ �̃�(T) = 0.

q(t) = q̃(t) ⋅ eΔ(t) and

𝜙(t) = �̃�(t) ⋅ eΔ(t).

(14)u�(E(t)) − q(t) − �(t) ⋅ r�(E(t)) = 0,

(15)q̇(t) = q(t) ⋅ r(E(t)), and

(16)�̇�(t) = r(E(t)) ⋅ 𝜙(t) − u(E(t)).

(17)u�(�(�)) − PB − �(�) ⋅ r�(�(�)) = 0.

3 As is custom in mathematics and related fields, the dot notation denotes derivatives with respect to 
time, i.e., ẋ ≡ dx(t)∕dt.
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In Eq.  (17), φ(τ) denotes the current-valued shadow prices for the cumulated 
discount rate for 0 ≤ 𝜏 < ∞ . For continuity between these two time regions, 
0 ≤ t ≤ T  and 0 ≤ 𝜏 < ∞ , the following relationships must hold: E(T) = �(0) and 
�(T) = �(0) . Thus, for Eqs. (14) and (17) to simultaneously hold true at time T, 
the following condition must hold:

Note that we have obtained the same in Eq. (7) of the previous section.
To solve the above set of equations analytically, we assume a specific form of 

the instantaneous discount rate r as in the following assumption:

Assumption 3.1 The instantaneous discount rate at time t is linearly correlated with 
exhaustible resource consumption at time t. We call the coefficient β the “time pref-
erence coefficient.” That is

With Assumption 3.1, Eqs. (14) –(16) for 0 ≤ t ≤ T  are rewritten as

From the terminal conditions, Eqs. (12) and (13), we have

To solve for the dynamics of resource consumption, we take the derivatives of 
both sides of (19) w.r.t. time t. Using Eqs. (20) and (21) and arranging the terms 
we obtain the following differential equation:

Solving Eq.  (24) with the conditions of Eqs.  (6) and (22), we obtain the fol-
lowing dynamics for resource consumption:

For more detail about the derivation, see Appendix 1.
The dynamics of the shadow price for the exhaustible resource use, q(t), is 

obtained from Eq. (20) as

q(T) = PB.

(18)r(E(t)) = 𝛽E(t), 𝛽 > 0.

(19)u�(E(t)) − ��(t) = q(t),

(20)q̇(t) = q(t) ⋅ 𝛽E(t), and

(21)�̇�(t) = 𝛽E(t) ⋅ 𝜙(t) − u(E(t)).

(22)S(T) = 0 and

(23)�(T) = 0.

(24)
dE

dt
=

�

1 − �
E(t)2.

(25)
E(t) =

1

�

1−�
⋅

(
e

�
1−�

S0

e
�

1−�
S0−1

T − t

) .
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Using Eq. (25) and arranging the terms, we obtain:

where C =
�

1−�
⋅

e
�

1−�
S0

e
�

1−�
S0−1

T .

At the same time, Eq.  (21), with the terminal condition, Eq.  (23), can also be 
specified as

Using Eq. (25) and arranging the terms, we have

Equations (19), (26) and (27) yield the following:

Then, we obtain the dynamics of the shadow price for the exhaustible resource 
use, q(t), as follows:

For more detail of the derivation, see Appendix 2.
Notice that Eq. (28) still contains the undetermined constant T. To fix the value, 

we employ Eq. (7).4 That is, due to Eqs. (25) and (28), Eq. (7) leads to:

Replacing T in Eq. (25) with that of Eq. (29) and arranging the terms, we finally 
obtain the trajectory of E(t):

q(t) = Ae� ∫ t

0
E(s)ds(A ∶ undetermined constant).

(26)q(t) = AC1−�E(t)1−� ,

�(t) = �
T

t

u(E(v)) ⋅ e−� ∫ v

t
E(s)dsdv.

(27)�(t) =
1

1 − �
E(t)1−� ⋅ (T − t).

AC1−� =
1

e
�

1−�
S0 − 1

⋅

�

1 − �
T .

(28)q(t) =
1

e
�

1−�
S0 − 1

⋅

�

1 − �
T ⋅ E(t)1−� .

(29)T = P

1

�

B
⋅

(
�

1 − �

)−1

⋅

(
e

�

1−�
S0 − 1

)
.

4 Note that T is not assumed to play the role of a control variable in the optimization problem of (2) 
under Assumption 3.1 because the value of the last term, e−Δ(T)V  , in (2), is not affected by the change 
in T. More specifically, with Assumption 3.1, the value of e−Δ(T) is proven to be independent of T as fol-
lows:
 e−Δ(T) = e−� ∫ T

0
E(t)dt = e−�S0 .

 The value of V does not depend on T either. Thus, we find that the value of e−Δ(T)V  is independent of T.
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To examine how the trajectory is shaped, we need to consider two cases for the 
values of η. In the case of 1 < 𝜂 , it is easy to see that E(t) is decreasing in t: the con-
sumption of exhaustible resource each time declines as time goes on. In contrast, in 
the case of 1 > 𝜂 , E(t) is increasing in t: the consumption of exhaustible resource 
each time grows as time goes on.

The shapes of the trajectories are closely related to the time of the switch, T. As a 
hyperbolic function, Eq. (30) has its asymptote:

Thus, by examining the sign of the value, T − t∗ = −P

1

�

B
⋅

(
�

1−�

)−1

 , we determine 
the following relationships:

(1) for the case of 1 < 𝜂 , T > 0 > t∗.
(2) for the case of 1 > 𝜂 , 0 < T < t∗.
The former case indicates that when 1 < 𝜂 , E(t) declines as time goes on, and 

stops at the time of the switch T. In contrast, the latter case indicates that when 
1 > 𝜂 , E(t) increases as time goes on, and stops at the time of the switch T that 
should come before the asymptote. These former and latter cases are depicted as 
Figs. 2 and 3, respectively.

Finally, let us examine the trajectory of q(t). It is obtained from Eqs. (28) and (29) 
as

(30)
E(t) =

1

P

1

�

B
⋅ e

�

1−�
S0 −

�

1−�
t

.

t∗ = P

1

�

B
⋅

(
�

1 − �

)−1

⋅ e
�

1−�
S0 .

(31)q(t) = P

1

�

B
⋅ E(t)1−� .

Fig. 2  The trajectory of E and 
the switching time T for the case 
of 1 < 𝜂



232 International Journal of Economic Policy Studies (2023) 17:223–248

1 3

Notice that q is increasing in t. Namely, dq∕dt > 0 . As the exhaustible resource 
becomes scarce, its economic value becomes high. This fact is consistent with the 
idea behind the conventional Hotelling’s rule. However, it should be emphasized 
that the actual trajectory is completely different from that of Hotelling’s rule in 
which it follows hyperbolic functions, rather than exponential functions. In addition, 
notice that the trajectory of Eq. (31) is dependent on the price of the backstop tech-
nology, PB. To observe this, let us focus our attention on the relationship between 
q(0) and PB as

Thus, we have

This indicates that these variables are positively correlated. In other words, the 
increase in the price of the backstop technology raises the initial value of the scar-
city rent of the exhaustible resource, which results in a shift of the entire path. This 
situation is depicted in Fig. 4.

q(0) = PBe
−�S0 .

dq(0)

dPB

= e−𝛽S0 > 0.

Fig. 4  The shift of the scarcity 
rent path due to the increase in 
the backstop price

Fig. 3  The trajectory of E and 
the switching time T for the case 
of 1 > 𝜂
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These results are summarized in Proposition 3.1.

Proposition 3.1 In the case of 1 < 𝜂, exhaustible resource consumption (E) declines 
as time goes on. In the case of 1 > 𝜂, E grows as time goes on. The scarcity rent of 
the exhaustible resource (q) grows in all cases. These trajectories follow the hyper-
bolic functions in time (t).

Time to switch

Based on the model and the analysis in the previous sections, we obtain four propo-
sitions in this section. The first proposition (Proposition 4.1) addresses the positive 
correlation between the time to switch and the initial exhaustible resource stock.

Proposition 4.1 The increase (decline) in the initial exhaustible resource stock, S0, 
leads to the delay (early arrival) in the time to switch from the exhaustible resource 
use to the use of the backstop technology, T. The relationship is determined as

The proof is self-evident. Take the derivative of Eq. (29) w.r.t. S0.
The proposition is depicted in Fig.  5. The intuition is clear: when the stock of 

the exhaustible resource is large, the economy is allowed to keep consuming that 
resource, which results in the delay of the time to switch to the backstop tech-
nology. This result is consistent with the indication of the conventional Hotel-
ling’s rule. Notice that the result is not directly affected by our introduction of the 
Uzawa–Epstein formulation of time preference. Even if the time preference changes, 
depending on the current resource consumption, the redundancy of the exhaustible 
resource always facilitates the delay of the introduction of substitutes.

The next proposition addresses the positive correlation between the time to switch 
and the price of the backstop technology.

(32)
dT

dS0
= P

1

𝜂

B
e

𝛽

1−𝜂
S0 > 0.

Fig. 5  The time to switch and 
the initial exhaustible resource 
stock



234 International Journal of Economic Policy Studies (2023) 17:223–248

1 3

Proposition 4.2 The increase (decline) in the price of the backstop technology, PB, 
leads to the delay (early arrival) in the time to switch from the exhaustible resource 
use to the use of the backstop technology, T. The relationship is determined as

The proof is self-evident. Take the derivative of Eq. (29) w.r.t. PB.
The interpretation of the proposition is clear in that it is consistent with the indi-

cations of the conventional Hotelling’s rule, where the increase in the price of the 
backstop technology makes the switch to the technology more difficult. The diffi-
culty appears as the increase in the scarcity rent of the existing exhaustible resource. 
The higher scarcity rent creates price incentives for the economy to conserve the 
resource. The result is the delay in resource exhaustion. The situation is depicted in 
Fig. 6.

Again, notice that the result is unchanged in the presence of the Uzawa–Epstein 
formulation of time preference. Even with the endogenous discount rate, the 
increase in the price of the backstop technology always facilitates the conservation 
of exhaustible resources.

The third proposition (Proposition 4.3) highlights the role of the endogenous dis-
count rates, addressing the bipolar relationships between the time to switch and the 
time preference coefficient, β.

Proposition 4.3 The increase in the time preference coefficient, β, facilitates either 
the earlier introduction or the delay of the use of the backstop technology, depend-
ing on the value of the reciprocal of the elasticity of the intertemporal substitution, 
η. That is, the following relationships hold true:

(1) in the case of 1 < 𝜂, dT
d𝛽

< 0.

(2) in the case of 1 > 𝜂, dT
d𝛽

> 0.

Proof: See Appendix 3.

(33)
dT∕T

dPB∕PB

=
1

𝜂
> 0.

Fig. 6  The time to switch 
and the price of the backstop 
technology
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The time of the switch to the backstop technology is negatively (positively) 
correlated with the time preference coefficient, β, when 1 < 𝜂 ( 1 > 𝜂 ) holds true. 
To understand this result better, the analysis in Sect. 3 on the trajectory of E(t) 
is helpful. In the case of 1 < 𝜂 , E(t) declines as time goes on, while in the case 
of 1 > 𝜂 , it grows as time goes on (Proposition 3.1). The property of the trajec-
tory helps to explain the proposition as follows. When 1 < 𝜂 holds (the “inelastic” 
case), because exhaustible resource consumption accumulates faster in an ear-
lier time, the short-sighted consumption habit is formed in an earlier time and 
remains until the end. The situation is depicted in Fig. 7. Due to Assumption 3.1, 
the cumulated discount rate Δ(t) is proportional to the integral of E(t). That is, 
the following relationships hold true:

The integral of E(t) is depicted by the shaded region in Fig.  7 in which we 
observe that the area largely expands at the beginning and holds its size until the 
end although it gains small increments in the middle. This means that the short-
sighted consumption habit is fixed from the very beginning.

As a result of such a short-sighted consumption habit formation, resource 
depletion may occur earlier, which leads to an earlier transition from the exhaust-
ible resource to the backstop technology (dT∕d𝛽 < 0).

On the other hand, when 1 > 𝜂 holds (the “elastic” case), two effects may exist. 
First, because of a small � , exhaustible resource consumption (E) is elastic. Thus, 
it can be easily shifted along the time horizon. This means that the representative 
agent can make an effort to stay away from resource depletion as long as possi-
ble. Second, because of the shape of the resource consumption trajectory, a short-
sighted consumption habit is formed gradually, as is shown in Fig. 8, in which we 
observe that the shaded area grows slowly. This allows the representative agent to 

Δ(t) = � ∫
t

0

E(s)ds = −(1 − �) ⋅ ln

(
1 −

(
1 − e

−�

1−�
S0
)
⋅

t

T

)
.

Fig. 7  The integral of E and the 
cumulated discount rate Δ for 
the case of 1 < 𝜂
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try to reserve exhaustible resources. As a result of these two effects, depletion is 
delayed (dT∕d𝛽 > 0).

These interpretations are supported by Proposition 4.4.

Proposition 4.4 The increase in the time preference coefficient, β, leads to either an 
appreciation or a depreciation of the values of the exhaustible resource stock at T, 
q(T), depending on the value of the reciprocal of the elasticity of intertemporal sub-
stitution, η. That is, the following relationships hold true:

(1) in the case of 1 < 𝜂, dq(t)
d𝛽

|||t=T > 0.

(2) in the case of 1 > 𝜂, dq(t)
d𝛽

|||t=T < 0.

Proof: See Appendix 4.
Let us examine the implication of Proposition 4.4. We have two cases. The first 

case is that when 1 < 𝜂 holds (the “inelastic” case), the derivative of the values of 
the exhaustible resource stock at T, q(T), w.r.t. the time preference coefficient, β, 
is positive. This illustrates that the increase in the time preference coefficient, β, 
leads to an appreciation of the values of the exhaustible resource stock at T, q(T). 
As a result, the value of the backstop technology is relatively cheap compared 
to the values of the exhaustible resource stock at T. It means the time to switch 
comes earlier. The second case is that when 1 > 𝜂 holds (the “elastic” case), the 
derivative of the values of the exhaustible resource stock at T, q(T), w.r.t. the 
time preference coefficient, β, is negative. This shows that the increase in the time 
preference coefficient, β, leads to a depreciation in the values of the exhaustible 
resource stock at T, q(T). As a result, the value of the backstop technology is 
relatively expensive compared to the values of the exhaustible resource stock at T. 
This means the time to switch moves forward. These observations are depicted in 
Fig. 9. This proposition is consistent with Proposition 4.3.

Fig. 8  The integral of E and the 
cumulated discount rate Δ for 
the case of 1 > 𝜂
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Minimum consumption requirement

In this section, we extend our analysis shown in the previous sections by introducing 
the concept of minimum consumption requirement to our analytical framework.

An implicit, but typical assumption in economic models is that consumption of 
goods is a non-negative variable. This assumption was naturally presumed in our 
analytical framework in the previous sections. More specifically, our analysis in 
previous sections was based on the assumption that the required minimum level of 
resource consumption is zero. However, this assumption can be considered as unre-
alistic in that energy and resource use is indispensable in any economic activities. 
To make our analysis more realistic and general, we need to introduce to our model 
a positive lower limit for resource consumption.

We hereafter reconsider our analysis of previous sections by replacing the utility 
function of Eq. (1) with the following form:

This form of utility function indicates the following limit:

This means that E > m must hold true. Thus, m represents minimum consumption 
requirement. It should be emphasized that Eq. (1) is a special case of Eq. (34) when 
m = 0.5

With the replacement of utility function, we can repeat the same calculation of 
Sect. 3 to obtain a revised version of Eq. (29) as follows:

(34)u(E) =
(E − m)1−𝜂

1 − 𝜂
, 𝜂 > 0, 𝜂 ≠ 1, m ≥ 0.

u�(E) =
1

(E − m)�
→ ∞ as E → m.

Fig. 9  The time to switch as β 
changes

5 Note that this form of utility function (34) can be considered as a simplified version of Stone-Geary 
utility function that has the following form:

 u
�
x1, x2,… , xn

�
=

n∏
j=1

�
xj − mj

��j
.
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Notice that the derivation of this equation is elaborated in Appendix 5. Solving 
this equation for T would yield the optimal time T as an explicit function of PB, S0, 
and m. Unfortunately, it is impossible to obtain an analytical solution for it. In the 
remainder of this section, we instead explore implications of Eq. (35) in contrast to 
Eq. (29).

Recall that Eq. (29) is considered as a result of the case that m = 0. Thus, when m 
is set to be zero for Eq. (35), the equation is expected to coincide with Eq. (29). Such 
coincidence may not be apparent from the current form of equation, but it is verified 
as follows: Applying the l’Hôpital’s rule to the right hand side of Eq. (35), we deter-
mine the following:

Replacing m to zero for the left hand side, Eq. (35) reduces to the following:

Arranging terms, we obtain the following, which is exactly same with Eq. (29).

Having confirmed the coincidence of Eqs. (29) and (35) at m = 0, a next question 
of our interest is to determine the effect of the increase of m from zero to a positive 
value on T. Comparative statics analysis is a useful tool to deal with it. The result is 
summarized as the following proposition:

Proposition 5.1 The increase in the minimum consumption requirement, m, in 
the neighborhood of zero leads to the early arrival in the time to switch from the 
exhaustible resource use to the use of the backstop technology, T. The relationship is 
determined as

dT

dm
< 0 for m ≥ 0 and m ≈ 0.

Proof: See Appendix 6.
The above proposition seems natural in that it seems consistent with our intui-

tion. In fact, when the minimum consumption requirement increases from zero to 
a positive value, instantaneous consumption requirement of resources at each time 
increases as well. It will naturally lead to the increase of total consumption require-
ment. However, the available stock of the exhaustible resource is limited. Thus, the 
time of depletion of the stock comes earlier than before.

(35)
(
1 − �

�

)
⋅ P

1

�

B
⋅

(
1 − e

�

1−�
⋅(S0−mT)

)
=

1 − e
�mT

�

m
.

lim
m→0

1 − e
�mT

�

m
= lim

m→0

−
�T

�
e

�mT

�

1
= −

�T

�
.

(
1 − �

�

)
⋅ P

1

�

B
⋅

(
1 − e

�

1−�
⋅S0
)
= −

�T

�
.

T = P

1

�

B
⋅

(
�

1 − �

)−1

⋅

(
e

�

1−�
S0 − 1

)
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This interpretation of the earlier time to switch is plausible at a glance, but is not 
correct. To see this, we need to recall the shape of consumption path in the case of 
m = 0. It is described by Eq. (30) and is depicted as Figs. 2 and 3. As is apparent 
from these figures, instantaneous resource consumption at each time (E(t)) keeps 
away from the level of zero until the end of resource use. That is, E(t) > 0 always 
holds true. This indicates that even if the lower limit of the resource consumption, 
which is zero in this case, slightly increases with a very small amount, the increase 
does not impose an additional constraint to the value of E(t). Such situation is shown 
in Figs. 10 and 11.

These figures naturally allow us to surmise that the following equation holds true:

In this respect, Proposition 5.1 addresses an interesting result that declines our 
initial expectation.

The claim of Proposition 5.1 is not natural or self-explanatory. Rather, it is dif-
ficult to prepare a comprehensive explanation for the claim. A possible explanation 
will be that once we introduce the concept of minimum consumption requirement to 

dT

dm
= 0 for m ≈ 0.

Fig. 10  Small increase in the 
lower limit, m, for Fig. 2

Fig. 11  Small increase in the 
lower limit, m, for Fig. 3
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the framework of analysis, the optimal behavior of resource use changes completely. 
Setting a lower limit to consumption level influences the dynamics of exhaustible 
resource use as a whole, and thus changes the optimal plan that identifies the time to 
switch from the exhaustible resource use to the use of the backstop technology,

Conclusions

In this paper, we investigated a classical model of the optimal use of an exhaustible 
resource with the availability of a backstop technology. The new feature added to 
our model is an endogenous time preference determined by the history of resource 
consumption. The dependence of the time preference on consumption is interpreted 
as a form of habit formation, and is known as the Uzawa–Epstein formulation of 
time preference. By investigating the optimal trajectory of exhaustible resource con-
sumption, we found that the reciprocal of the elasticity of the intertemporal sub-
stitution (η) in the instantaneous utilities plays a significant role in identifying the 
shapes of the trajectories. As addressed in Proposition 3.1, when 1 < 𝜂 ( 1 > 𝜂 ), the 
consumption of the exhaustible resource at each time is declining (growing) in time 
t. This affects the property of the time to switch from the exhaustible resource use to 
the utilization of the backstop technology.

Our primary results regarding the time of the switch are addressed as four propo-
sitions. Proposition 4.1 shows that the increase in the initial exhaustible resource 
stock leads to a delay in the time of the switch. The result is consistent with our 
intuition as well as the indication of the classical Hotelling’s rule. It is interesting 
that the result is unaffected by the parameters that represent the intertemporal sub-
stitutions as well as the endogenous discount rates. Proposition 4.2 shows that the 
increase in the price of the backstop technology leads to a delay in the time of the 
switch. Moreover, this result is consistent with our intuition and interestingly unaf-
fected by other parameters.

The indication of Proposition 4.3 is novel in that the increase in the time prefer-
ence coefficient, β, influences the time of the switch in two directions, depending 
on the value of the reciprocal of the elasticity of intertemporal substitution, η: The 
increase in β leads to an incentive for consuming the exhaustible resource slower 
(faster) and switching to the backstop technology later (earlier) as much as possible 
in the case of 1 > 𝜂 ( 1 < 𝜂 ). Proposition 4.4 illustrates that the sensitivity of the val-
ues of the exhaustible resource stock at the time of the switch w.r.t. β depends on the 
sign of 1 − � , which supports Proposition 4.3.

Finally, to extend the above basic model, we introduced a concept of minimum 
consumption requirement to the framework of analysis. It is based on an idea that 
energy and resource use is indispensable in any economic activities, and thus it is 
not allowed to fall to zero. As a modeling technique, the extension is just to modify 
the instantaneous utility function. However, this modification turned out to dramati-
cally change the shape of exhaustible resource consumption path as well as the opti-
mal time to switch to the backstop technology. Proposition 5.1 points out this result.

In this paper, we focused only on a theoretical foundation of the endogenous 
time preference, leaving its policy implications aside. However, our analysis is not 
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irrelevant to the economic policies. The effects of the time preference and discount-
ing factors on the properties of the economic dynamics have been a central issue 
in economic policy debates. In particular, in policies for climate change, discount-
ing has been one of most important issues. For example, in the reports prepared by 
Working Group 3 of the Intergovernmental Panel on Climate Change (IPCC) of the 
United Nations; published in 1995, 2001, and 2007; certain chapters are devoted to 
the discussion on discounting in economic models.

The book published by Stern [11], known as the “Stern Review,” triggered a con-
troversy about the economic assessment of climate change policy, advocating that 
prompt action for climate change is the need of the hour. In his Summary of Conclu-
sions, Stern wrote:

“In contrast, the costs of action—reducing greenhouse gas emissions to avoid 
the worst impacts of climate change—can be limited to around 1 % of global 
GDP each year.”
“Using the results from formal economic models, the Review estimates that if 
we don’t act, the overall costs and risks of climate change will be equivalent to 
losing at least 5% of global GDP each year, now and forever. If a wider range 
of risks and impacts is taken into account, the estimates of damage could rise 
to 20% of GDP or more.”
“So prompt and strong action is clearly warranted.”

The proposals addressed in the Stern Review created strong pros and cons not 
only in the policy arena but also in academia. One of the most debatable issues was 
the treatment of discount factors. Nordhaus [9], for example, criticized the Stern 
Review, stating that it was assuming very low discount rates and that the setting 
helps to explain most of its unusual conclusions.

Such debate between Stern and Nordhaus illustrated that discounting is a long-
standing issue, not only in economic theory, but also in policy-making, and that the 
theory and practice are currently getting much closer to each other. That is why we 
believe that the results obtained in this theoretical paper contribute to such recent 
policy debates on discounting factors.

Appendices

Appendix 1: The dynamics of the exhaustible resource consumption

Taking the derivative of Eq. (19) w.r.t. t, we obtain:

Using Eqs. (20) and (21), the right side of above equation leads to

−𝜂E(t)−𝜂−1
dE(t)

dt
= 𝛽�̇�(t) + q̇(t).
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Then,

Solving Eq.  (24), we obtain the following dynamics for resource consumption 
with an undetermined constant, C:

Taking the integrals of both sides of Equation (A1.1), we obtain:

From ∫ T

0
E(t)dt = S0 − ST (Eq. (6)) and ST = 0 (Eq. (22)), we obtain: 

.
Then, we obtain C as

Appendix 2: The dynamics of the scarcity rent of the exhaustible 
resource

From Eq. (20), we obtain the following equation with the undetermined constant, A:

Integrating both sides of Equation (A1.1), we obtain:

�2E(t)�(t) −
�

1 − �
E(t)1−� + �q(t)E(t)

= �E(t) ⋅ (q(t) + ��(t)) −
�

1 − �
E(t)1−�

= �E(t) ⋅ u�(E(t)) −
�

1 − �
E(t)1−�

=
−�

1 − �
�E(t)1−� .

(24)
dE(t)

dt
=

�

1 − �
E(t)2.

(A1.1)E(t) =
1

−�

1−�
t + C

.

∫
T

0

E(t)dt = −
1 − �

�
ln

(
−�

1 − �
⋅

T

C
+ 1

)
.

S0 = −
1 − �

�
ln

(
−�

1 − �
⋅

T

C
+ 1

)

C =
�

1 − �
⋅

e
�

1−�
S0

e
�

1−�
S0 − 1

T .

q(t) = Ae� ∫ t

0
E(s)ds.
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Thus, we have:

From Eq. (21), with the condition of Eq. (23), we have:

From Equation (A1.1), we also have:

Thus, we obtain:

that is,

Using Eqs. (26) and (27), Eq. (19) leads to the following:

or 

or 

or 

∫
t

0

E(s)ds = ∫
t

0

(
−�

1 − �
s + C

)−1

ds

= −
1 − �

�
ln

(
−�

1 − �

t

C
+ 1

)

=
1 − �

�
ln (C ⋅ E(t)).

(26)q(t) = AC1−�E(t)1−� .
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Thus, we obtain:

Appendix 3: Proof of Proposition 4.3

Taking the derivative of Eq. (29) w.r.t. β, we obtain the following:

From Lemma A1, −1 + e
−𝛽

1−𝜂
S0 +

𝛽

1−𝜂
S0 > 0 holds true for any � . Thus, the sign of dT

d�
 

is the same as it is with the sign of 1 − � . This completes the proof.
Lemma A1: The following inequality holds:

Proof:
Define the following function:

Then,

This means that f(x) is a continuous, concave function attaining its maximum 
f (0) = 0 at x = 0. Thus, f (x) < 0 ∀x(≠ 0) and f (0) = 0.

Appendix 4: Proof of Proposition 4.4

Taking the derivative of Eq. (31) w.r.t. β, we obtain the following:
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From Eq. (30), we have

Then, we obtain

Using Eq. (29), the above equation leads to

From Lemma A1 in Appendix 3, we know 1 − �

1−�
S0 − e

−�

1−�
S0 < 0 for any � . Thus, 

the sign of dq(t)
d�

|||t=T is the opposite of the sign of 1 − � . This completes the proof.

Appendix 5: The derivation of Eq. (35)

With the replacement of utility function from (1) to (34), we can repeat the same cal-
culation of Sect. 3 from Eqs. (8) to (23). Then, Eq. (24) is revised to the following:

This differential equation can be solved for the revision of Eq. (25) as follows:

where D is a constant of the following:

Using Equation (A5.2), Eqs. (26) and (27) are revised to the following:

dq(t)

d�
= P

1

�

B
⋅ (1 − �) ⋅ E(t)−�

dE(t)

d�
.

dE(t)

d�
= E(t)2 ⋅

(
−

S0

1 − �
P

1

�

B
⋅ e

�

1−�
S0 +

1

1 − �
t

)
.

dq(t)

d�

||||t=T = P

1

�

B
⋅ E(T)2−� ⋅

(
−S0P

1

�

B
⋅ e

�

1−�
S0 + T

)
.

dq(t)

d�

||||t=T = P

2

�

B
⋅ E(T)2−� ⋅

(
�

1 − �

)−1

e
�

1−�
S0

(
1 −

�

1 − �
S0 − e

−�

1−�
S0

)
.

(A5.1)
dE(t)

dt
=

�

1 − �
(E(t) − m)

(
E(t) −

m

�

)
.

(A5.2)E(t) =
m

�
⋅

{
1 −

1 − �

1 − De
−�m

�
t

}
,

(A5.3)D =
1 − e

�

1−�
(S0−mT)

1 − e
�

1−�

(
S0−

m

�
T

) .

(A5.4)q(t) = Ae�mt ⋅

(
1 − D

1 − �

)1−�

⋅

(
1 −

�

m
E(t)

)1−�

,



246 International Journal of Economic Policy Studies (2023) 17:223–248

1 3

Applying Equations (A5.4) and (A5.5) to Eq.  (19) leads to the following 
equations:

An endogenous variable T is determined by the use of Eq. (7): Replacing t with 
T for Equation (A5.7), and using Eqs.  (7) and (A5.6), the following equation is 
obtained:

Using Eq. (A5.3), this is arranged to the following:

Appendix 6: Proof of Proposition 5.1

We consider an approximation of Eq. (35). Exponential functions are approximated 
as follows:

Using these relations, Eq. (35) is approximated to the following:

Arranging terms, we obtain the following:
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Taking derivatives of T with respect to m, we obtain the following:

This is arranged to the following, which completes the proof:
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