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Abstract
Effectively detecting defects in wafer buffer zones is crucial in semiconductor manufacturing processes. If defects are not 
detected in the middle of the semiconductor manufacturing process, the semiconductor eventually becomes a defective 
product after all processes are completed. To solve this problem, rule-based vision algorithms have been used to identify 
defects in the wafer buffer zone. After photographing the wafer buffer zone using a high-speed camera, defects are detected 
using the pixel values of the images. However, because of the resin bleed in the wafer, which is an epoxy compound, it is 
difficult to detect defects. Therefore, we introduced a deep learning method for semiconductor inspection and created a 
high-performance semiconductor inspection algorithm. The defects in the wafer buffer zone should be detected accurately 
and quickly. Furthermore, the approximate size of the defects must be extracted. We modified the Xception model to fit the 
wafer data characteristics considering both accuracy and speed. We proposed to extract the size of the defect using class 
activation mapping (CAM). We obtained an accuracy of 96.9% from the actual wafer dataset through this framework, and 
then managed to extract the size of the defect through CAM.
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Introduction

Semiconductor wafers undergo various packaging pro-
cesses and unwanted defects must be accurately and quickly 
detected during each process. However, epoxy molding com-
pounds (EMC) used to protect semiconductor devices from 
external impact, vibration, moisture, and radiation as well as 
the protection cover in the bottom of wafers make the visual 
and in-process detection of defects difficult (Fig. 1). While 

defects in wafers can be checked after all processes are com-
pleted, the manufacturing loss due to reduced yield becomes 
non-negligible. Fortunately, there is a narrow region not cov-
ered with EMC mold called the wafer buffer zone which can 
be observed during the process. Hence, real-time inspection 
of this zone for detecting wafer defects during the process 
is important.

Images obtained from the inspection of the wafer buffer 
zone can be classified into four types: Normal, Crack, 
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EMC defect, and Notch (Fig. 2). Notch (Fig. 2a) is the 
reference point of the wafer and hence is not a defect. We 
would like to detect cracks and EMC defects when inspect-
ing the wafer buffer zone during the packaging processes. 
It is relatively easy to detect cracks when they exist on a 
clean surface (Fig. 2b). However, the detection becomes 
difficult when cracks appear on a surface with resin bleed-
ing (Fig. 2c), especially if they are relatively small. EMC 
defects occur when they are not properly cover the mold 
area where the semiconductor die is located (Fig. 2d, e). 
If EMC excessively invades the buffer zone, the protect-
ing cover can stick to it and cause damages to the wafer. If 
EMC in the mold area is insufficient, the semiconductor 
die cannot be fully protected. These EMC defects are not 

easy to be detected as they can be confused with notch or 
resin bleeding, which is normal.

For the detection of these wafer defect, rule-based com-
puter vision algorithms can be used. For example, the Sobel 
operator can be used to detect edges of images and identify 
defects [1]. However, it is difficult to extract cracks using 
this operator if the wafer buffer zone is covered with resin 
bleeding because too many edges are extracted. Another 
popular approach is the Canny algorithm which extracts the 
meaningful edges by thresholding after denoising images 
using Gaussian filters [2]. While this algorithm generally 
provides better results than the Sobel operator, it suffers 
from the same difficulty in distinguishing cracks from resin 
bleeding.

Recently, various deep learning models that use high level 
features have been developed in computer vision. For exam-
ple, object detection models recognize an object from an 
image by indicating its location in a bounding box [3–10]. 
Semantic segmentation models classify objects more densely 
than the detection model using the pixels within an image 
[11–15]. While we can know the location and size of defects 
with these models, they require bounding-box annotations or 
segmented labels for training. Also, these models are heavy 
in terms of the number of model parameters and require a 
long time for training and inference. Since the detection of 
wafer defects needs to be done quickly during the packaging 
processes, these models cannot be used directly in practice.

Fig. 1   Schematic representation of inspection area

Fig. 2   Types of images obtained during inspection
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Alternatively, we can use the classification model which 
classifies images into the defined types [16–18]. It is lighter 
than detection and semantic segmentation models, and 
hence, is advantageous in terms of speed. In addition, there 
is no need to annotate labels in images when building the 
datasets for training. However, this model is unable to local-
ize the defects within an image and measure their character-
istic features such as the size and the area.

In this study, we develop a deep learning-based inspection 
method for detecting defects in the wafer buffer zone. The 
model was designed to find and localize a defect quickly, 
and infer its size as well (Fig. 3). We employed a classi-
fication model, Xception [19], and modified it to be suit-
able for inspecting the wafer buffer zone. To accelerate the 
inspection, we changed eight repetitions of middle flow of 
the original Xception model to one. In addition, the feature 
pyramid network (FPN) [20] was used to effectively han-
dle various sizes of defects. We utilized the class activation 
map (CAM) [21] to generate a heat map of a specific class 
image, and hence, estimate the size of defects without any 
additional supervised learning. The length of cracks and 
the area of EMC defects can be approximately obtained 
while inspecting the wafer buffer zone. The proposed model 
showed higher detection accuracy and faster inference speed 
than baseline models.

Dataset

We constructed a dataset by taking images of the wafer 
buffer zone for 300 mm wafers. Each wafer was placed 
on a YASKAWA pre-aligner that held it using the vac-
uum chuck method and rotated it once at a high speed. A 
high-speed camera (Basler acA1300-200 μ m, Mono, 203 
fps) synchronized with the rotational speed of wafers was 
used to photograph the wafer buffer zone. An area cov-
ering approximately 700–1000 μ m from the wafer edge 
was inspected. We obtained 250–255 images per wafer 
for 51 wafers leading to 12,869 images in total. They were 
divided into 12,381 training and 488 test images (Table 1). 
The pixel size of each image is 1080 × 1440.

Fig. 3   Overall workflow. The 
training flow and inference 
flow are represented with black 
solid lines and red dashed lines, 
respectively

Table 1   Composition of 
training and test dataset

Training Test

Crack 1047 105
EMC defect 905 107
Normal 10,322 262
Notch 107 16
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Method

Inspection model consists of the image classification for 
identifying defects and the estimation of their size (Fig. 4). 
The Xception deep learning model was employed for clas-
sification with modification to enhance the efficiency in 
detecting defects. The class imbalance problem was allevi-
ated by adopting the focal loss [8]. The identified region of 
defects in the wafer buffer zone was inspected with CAM to 
estimate the size of cracks and EMC defects.

Classification for Identifying Defects

Several classification models have been proposed by consid-
ering both accuracy and speed of inference [22–24]. We used 
Xception as the base structure for our classification model 
as it is effective to enhance the accuracy without increasing 
the model capacity. This model uses a depthwise separable 
convolution layer to completely separate cross-channel cor-
relation and spatial correlation. Through decoupling chan-
nel from spatial, the computation time and parameter were 
reduced compared to the conventional convolution method. 

So Xception showed a better performance than Inception V3 
[22] while it has a similar number of parameters. Further-
more, Xception has eight repetitions of the middle flow with 
depthwise separable convolution layer enabling it to learn 
richer features and its high performance has been demon-
strated for several datasets such as ImageNet dataset with 
1000 classes [25] and JFT dataset with 17,000 classes [26].

Unlike other public datasets, our wafer buffer zone data-
set has four classes only. As a result, we do not need to 

Fig. 4   Our framework structure. Crack is determined in a. And then using feature maps in a, class activation map is obtained through b 

Table 2   Results according to the number of iterations of the middle 
flow on test dataset

Number of 
iteration

Accuracy Parameter Inference time

1 94.3% 9,495,564 24.73 s
2 94.7% 11,105,172 26.12 s
3 94.9% 12,714,780 26.82 s
4 94.9% 14,324,388 28.48 s
5 96.3% 15,933,996 31.77 s
6 96.3% 17,543,604 32.46 s
7 96.3% 19,153,212 34.07 s
8 96.3% 20,813,076 35.09 s
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use an iterative structure of the middle flow in the original 
Xception model for classification. We tested the model by 
changing the number of iterations of the middle flow from 
eight to one. While the decrease in the model accuracy was 
acceptable (from 96.3 to 94.3%), a significant reduction in 
the number of parameters (from 20,813,076 to 9,520,744) 
and hence in the inference time (from 35.09 to 24.73 s) could 
be achieved without using the iterative structure (Table 2). 
Hence, the revised model for our dataset uses the middle 
flow only once without repetition.

The major difficulty in classifying defects in the wafer 
buffer zone is that the size of defects varies a lot. Cracks 
are usually thin and small while EMC defects are large to 
occupy most part of an image. Various methods have been 
proposed to improve the detection of objects with various 
sizes. For example, Lin et al. presented FPN to recognize 
objects of various sizes while consuming fewer computing 
resources [20]. FPN was able to extract features of multi 
sizes using image pyramid. But this structure is for object 
detection not for classification. This is particularly created 
for object detection task, where objects can appear at dif-
ferent scales and resolutions in the input image. We incor-
porated FPN into our modified Xception model to make it 
be able to respond to various defect sizes while using as 
small memory as possible for classification problem. Feature 
maps were extracted from the entry, middle, and exit flows 
(Fig. 4a). The exit flow feature map doubled in its size was 
merged into the middle flow feature map, which was then 
merged into the entry flow feature map again. Each of these 
combined feature maps went through global average pooling 
(GAP) and fully connected (FC) layers. Thereafter, the final 
classification results are presented by combining results of 
all FC layers.

Finally, we adopted the focal loss to address the prob-
lem of class imbalance. Actual industrial data often shows 
a severe class imbalance because the number of defective 
cases is much smaller than that of normal ones. Our dataset 
suffers from the same issue as it has 10,707 normal images 
(normal and notch cases) and 2164 defect images (crack and 
EMC defect cases). The focal loss relieves it by putting a 
higher weight to defect images more difficult to be classified 

Table 3   Model comparison results on test dataset

Bold values indicate the best accuracy with the smallest number of 
model parameters and inference time among tested models

Model Accuracy Parameter Inference time

ResNet-101 94.1% 42,508,356 52.35 s
Xception 96.3% 20,813,076 35.09 s
EfficientNet-B4 96.9% 17,555,788 40.98 s
Our model 96.9% 9,520,744 24.96 s

Table 4   Recall and precision 
results on test dataset

Bold values indicate the model with the highest recall scores for detecting crack and EMC defects

Model Crack EMC defect Normal Notch

Recall Precision Recall Precision Recall Precision Recall Precision

ResNet-101 85.7% 98.9% 88.8% 97.9% 99.6% 91.6% 93.8% 100%
Xception 85.7% 98.9% 98.1% 100% 99.6% 94.2% 100% 94.1%
EfficientNet-B4 97.1% 90.3% 99.1% 100% 95.8% 98.4% 100% 100%
Our Model 98.1% 89.6% 99.1% 100% 95.4% 98.8% 100% 100%

Fig. 5   Schematic representation of inspection area

Table 5   Results on defect size 
estimation

Defect MAPE

Length of crack 20.92%
Invasion depth of 

EMC defect
18.77%
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correctly while giving a lower weight to normal images. As a 
result, the model can intensively learn the features of defect 
images with a relatively small number of data.

Size Estimation of Defects

After identifying defects using the classification model, the 
size of defects should be estimated in order to check their 
severity. We need to measure the horizontal and vertical 
lengths of cracks and the invasion depth for EMC defects. 
We applied the CAM for this purpose, showing which region 
of the input image was mainly viewed by the model when 
it determined the class. In the classification model, the last 
feature map before GAP contains the most important infor-
mation of each class. By multiplying the weight of FC layer 
and the feature maps of a specific class, regions mostly influ-
encing the decision of that class appear in the heatmap. In 
our case, when a wafer buffer zone image was classified as 
defective by the classification part of the model, the feature 
maps from each scale were multiplied by the weights of cor-
responding FC layers. Then, their summation represented a 
heatmap revealing the most crucial parts for defect identifi-
cation or defects.

We estimated the size of defects from binarized heatmaps. 
In the case of cracks, the largest grain was selected from the 
binarized image, and its horizontal and vertical lengths were 
measured. In the case of EMC defects, the vertical distance 
(or depth) between the grain and the EMC mold layer edge 
was measured.

Experiments

Our classification model was trained using a real industrial 
wafer buffer-zone dataset. The 12,381 train set and 490 test 
set consisted of cracks, EMC defects, notches, and normal. 
Because there were significantly more normal images than 
other classes, many normal images were not included in the 

test set. The detailed data configuration is presented in [27]. 
Single RTX 3080 was used.

Classification Performance

We used accuracy, recall, and precision, which are widely 
used for classification models, to measure the performance 
of our model. Accuracy is the value obtained by dividing 
the number of correct answers by the total number of test 
sets. Recall is the ratio of what the model predicts to be true 
among what is true. Precision is the ratio of what the model 
classifies as true to what is classifies as true. To compare the 
speed of the model, the number of parameters of the model 
and inference time for the test set were compared. The infer-
ence time was measured as the time taken from the start of 
the model to produce the final result of the test set.

We chose EfficientNet-B4, Xception, and ResNet-101 
as the baseline models. Since the number of parameters 
increases from the model above EfficientNet-B5, Efficient-
Net-B4 is a practical model owing to its good memory effi-
ciency and accuracy. ResNet-101 uses skip connections to 
create a deep neural network, and is used as a backbone for 
many deep learning models with high accuracy. We also 
proposed an efficient model for wafer buffer zone detection. 
Therefore, it performed better than the other models in terms 
of accuracy, model parameters, and inference time. First of 
all, ResNet-101 accuracy was 94.1%, Xception was 96.3%, 
and EfficientNet-B4 was 96.9%, so our model was better in 
accuracy than ResNet-101 and Xception, and we obtained 
the same result as EfficientNet-B4. But even with the same 
accuracy, recall score is more important. In particular, the 
defect recall score should be considered acceptable. This is 
because there is a large loss to be obtained after classifying 
the defect as normal. The performance of our model was also 
good for both the crack recall score and EMC defect recall 
score than other baseline models. Second, it is a lighter 
model when the parameter number is small, so the inference 

Table 6   Ablation study for FPN

Bold values indicate the effect of employing FPN on accuracy, model 
size, and inference time

FPN Accuracy Parameter Inference time

No 94.3% 9,495,564 24.73 s
Yes 96.9% 9,520,744 24.96 s

Table 7   Recall and precision 
results on test dataset

Bold values indicate the effect of employing FPN on recall and precision for each class

FPN Crack EMC defect Normal Notch

Recall Precision Recall Precision Recall Precision Recall Precision

No 85.7% 90% 98.1% 97.2% 95.8% 94.4% 100% 100%
Yes 98.1% 89.6% 99.1% 100% 95.4% 98.8% 100% 100%

Table 8   Ablation study for Focal loss

Bold values indicate the effect of using focal loss on accuracy and 
recall

Focal loss Accuracy Crack recall EMC defect recall

No 96.1% 87.6% 97.2%
Yes 96.9% 98.1% 99.1%
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time can be shorter. Our model was able to inspect more effi-
ciently due to the decrease in the number of parameters and 
inference time than other models. Tables 3 and  4 present the 
performance of our model and the baseline models.

Defect Size Inspection Performance

If our classification model predicted images as defects, the 
proposed framework obtained a heatmap using the CAM. The 
heatmap had a value between 0 and 1, and we binarized the 
images. Using binarized images, we can obtain the lengths of 
the cracks and EMC defects. Figure 5 shows the performance of 
defect size inspection. And Table 5 present the error results of 
the lengths of the cracks and the invasion depth of EMC defects. 
We used mean absolute percentage error (MAPE) to calculate 
performance of our model. In line with our purpose of detect-
ing the approximate size of defects, the crack error was 20.92% 
and the EMC defect was 18.77% in the invasion depth. An error 
occurred because the thin and vertical crack was detected to have 
a thick horizontal length due to the CAM.

Ablation Study

We introduced an FPN to distinguish cracks, EMC defects, 
normal, and notches of various sizes in the wafer buffer 
zone. In addition, we used focal loss to learn stable models 
for class imbalance. To determine the importance of each 
factor, we compared the differences in the accuracy of the 
model according to the use of the FPN and focal loss.

FPN

We tested the accuracy, parameter number, and inference 
time of our classification model with and without an FPN as 
shown in Table 6. We extracted three feature maps from the 
model and used them in pyramid format to detect defects. 
The model without an FPN is a modified Xception model 
that uses middle flow only once. The accuracy performance 
of our model was 2.6% better than that of the model with-
out FPN. There was no significant difference between the 
parameter numbers and inference time. In particular, Table 7 
shows the increase in recall scores for crack and EMC defect 
is more remarkable than the increase in accuracy.

Focal Loss

We tested whether the focal loss improved the accuracy of 
our model as shown in Table 8. The accuracy was 0.8% bet-
ter with focal loss. Note that the defect recall score is sig-
nificantly improved because the focal loss is strong against 
the class imbalance.

Conclusion

In this study, we proposed a wafer buffer zone defect detec-
tion framework that can accurately and quickly detect defects 
and infer their size. In Table 3, it is demonstrated that our 
model achieves performance prity with EfficientNet; how-
ever, it offers advantages in terms of speed. And our model, 
particularly in terms of the recall score for defects, demen-
strates higher performance compared to other models as 
can be seen in Table 4. We simplified Xception for speed 
and we improved the performance of our model in problem 
of detecting various sizes of defects using an FPN without 
increasing the model capacity for accuracy as presented in 
Tables 6 and 7. The recall score for defects was increased 
by applying focal loss to solve the problem of imbalance in 
actual industrial data in Table 8. In addition, we managed 
to extract the size of the defect using CAM without using a 
semantic segmentation or detection model. Although there is 
a limitation in not being able to extract accurate defect sizes, 
it has the advantage of being able to infer the approximate 
size without label because it is difficult to make a ground 
truth label of data. In conclusion, it is expected that our 
framework will be able to accurately and quickly inspect 
the existence of wafer defects inside semiconductor manu-
facturing equipment and contribute to the improvement of 
semiconductor manufacturing yield.

Acknowledgements  This work was partly supported by Korea Institute 
for Advancement of Technology (KIAT) Grant of MOTIE (P0008697) 
and the Technology development Program of MSS (S2952758).

Funding  Open Access funding enabled and organized by Seoul 
National University.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 O.R. Vincent, O. Folorunso et al., A descriptive algorithm for 
Sobel image edge detection. in Proceedings of Informing Science 
& IT Education Conference (InSITE), vol. 40, pp. 97–107 (2009)

	 2.	 J. Canny, A computational approach to edge detection. IEEE 
Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

	 3.	 Q. Zhao, T. Sheng, Y. Wang, Z. Tang, Y. Chen, L. Cai, H. Ling, 
M2Det: a single-shot object detector based on multi-level feature 

http://creativecommons.org/licenses/by/4.0/


	 Multiscale Science and Engineering

pyramid network. in Proceedings of the AAAI Conference on 
Artificial Intelligence, vol. 33, pp. 9259–9266 (2019)

	 4.	 B. Singh, M. Najibi, L.S. Davis, SNIPER: efficient multi-scale 
training. Adv. Neural Inf. Process. Syst. 31, 9310–9320 (2018)

	 5.	 S. Zhang, L. Wen, X. Bian, Z. Lei, S.Z. Li, Single-shot refine-
ment neural network for object detection. in Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition, 
pp. 4203–4212 (2018)

	 6.	 J. Redmon, A. Farhadi, YOLOv3: an incremental improvement. 
arXiv preprint arXiv:​1804.​02767 (2018)

	 7.	 K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN. in 
Proceedings of the IEEE International Conference on Computer 
Vision, pp. 2961–2969 (2017)

	 8.	 T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for 
dense object detection. in Proceedings of the IEEE International 
Conference on Computer Vision, pp. 2980–2988 (2017)

	 9.	 W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, 
A.C. Berg, SSD: single shot multibox detector. in Computer 
Vision–ECCV 2016: 14th European Conference, Amsterdam, The 
Netherlands, October 11–14, 2016, Part I 14, pp. 21–37 (Springer, 
2016)

	10.	 T. Kong, A. Yao, Y. Chen, F. Sun, HyperNet: towards accurate 
region proposal generation and joint object detection. in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern 
Recognition, pp. 845–853 (2016)

	11.	 O. Ronneberger, P. Fischer, T. Brox, U-Net: convolutional net-
works for biomedical image segmentation. in Medical Image 
Computing and Computer-Assisted Intervention–MICCAI 2015: 
18th International Conference, Munich, Germany, October 5–9, 
2015, Part III 18, pp. 234–241 (Springer, 2015)

	12.	 J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks 
for semantic segmentation. in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 3431–3440 
(2015)

	13.	 H. Noh, S. Hong, B. Han, Learning deconvolution network for 
semantic segmentation. in Proceedings of the IEEE International 
Conference on Computer Vision, pp. 1520–1528 (2015)

	14.	 H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing 
network. in Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, pp. 2881–2890 (2017)

	15.	 L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, J. Adam, Encoder–
decoder with atrous separable convolution for semantic image 
segmentation. in Proceedings of the European Conference on 
Computer Vision (ECCV), pp. 801–818 (2018)

	16.	 C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, 
D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with 

convolutions. in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1–9 (2015)

	17.	 K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image 
recognition. in Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, pp. 770–778 (2016)

	18.	 K. Simonyan, A. Zisserman, Very deep convolutional networks 
for large-scale image recognition. arXiv preprint arXiv:​1409.​1556 
(2014)

	19.	 F. Chollet, Xception: deep learning with depthwise separable con-
volutions. in Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, pp. 1251–1258 (2017)

	20.	 T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, 
Feature pyramid networks for object detection. in Proceedings of 
the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 2117–2125 (2017)

	21.	 B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning 
deep features for discriminative localization. in Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition, 
pp. 2921–2929 (2016)

	22.	 C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethink-
ing the inception architecture for computer vision. in Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 2818–2826 (2016)

	23.	 E. Real, A. Aggarwal, Y. Huang, Q.V. Le, Regularized evolu-
tion for image classifier architecture search. in Proceedings of the 
AAAI Conference on Artificial Intelligence, vol. 33, pp. 4780–
4789 (2019)

	24.	 M. Tan, Q. Le, EfficientNet: rethinking model scaling for convo-
lutional neural networks. in International Conference on Machine 
Learning, pp. 6105–6114 (PMLR, 2019)

	25.	 O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, 
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., ImageNet 
large scale visual recognition challenge. Int. J. Comput. Vis. 115, 
211–252 (2015)

	26.	 G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neu-
ral network. arXiv preprint arXiv:​1503.​02531 (2015)

	27.	 D.P. Kingma, J. Ba, Adam: a method for stochastic optimization. 
arXiv preprint arXiv:​1412.​6980 (2014)

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1412.6980

	Deep Learning-Based Detection of Defects in Wafer Buffer Zone During Semiconductor Packaging Process
	Abstract
	Introduction
	Dataset
	Method
	Classification for Identifying Defects
	Size Estimation of Defects

	Experiments
	Classification Performance
	Defect Size Inspection Performance
	Ablation Study
	FPN
	Focal Loss


	Conclusion
	Acknowledgements 
	References


