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Abstract
Changepoint detection is the problem of finding abrupt or gradual changes in time series data when the distribution of the time 
series changes significantly. There are many sophisticated statistical algorithms for solving changepoint detection problem, 
although there is not much work devoted towards gradual changepoints as compared to abrupt ones. Here we present a new 
approach to solve the changepoint detection problem using the fuzzy rough set theory which is able to detect such gradual 
changepoints. An expression for the rough-fuzzy estimate of changepoints is derived along with its mathematical properties 
concerning fast computation. In a statistical hypothesis testing framework, the asymptotic distribution of the proposed sta-
tistic on both single and multiple changepoints is derived under the null hypothesis enabling multiple changepoint detection. 
Extensive simulation studies have been performed to investigate how simple crude statistical measures of disparity can be 
subjected to improve their efficiency in the estimation of gradual changepoints. Also, the said rough-fuzzy estimate is robust 
to signal-to-noise ratio, a high degree of fuzziness in true changepoints, and also to hyperparameter values. Simulation studies 
reveal that the proposed method beats other methods of gradual changepoint detection (including MJPD, HSMUCE, fuzzy 
methods like FCP, FCMLCP etc) and also popular crisp methods like Binary Segmentation, PELT, and BOCD in detecting 
gradual changepoints. The applicability of the estimate is demonstrated using multiple real-life datasets including Covid-19. 
We have developed the python package roufcp for broader dissemination of the methods.
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1  Introduction

Changepoint Detection (CPD) is the process of detecting 
significant changes in the data generating process of a time 
series data. These changes are of two types, abrupt and grad-
ual, though many authors define changepoints as only the 
abrupt ones. Abrupt changepoints demonstrate very fast and 
rapid changes in the underlying states of the systems, thus its 
primary applications include quality control, system reliabil-
ity engineering, and fault detection and monitoring in indus-
trial plants (Basseville and Nikiforov 1993). Changepoint 
analysis is also used for time series modeling and signal 
processing, many studies rely on CPD techniques to segment 
the study period and then apply different time series meth-
odologies for each homogeneous segment (Lemire 2007). 
Changepoint detection has successfully proved its practica-
bility in various domains such as finance, sound processing, 
climatology, network traffic data, etc (see Chen and Gupta 
2012 for further references).

In contrast, gradual changepoints do not correspond to 
rapid discontinuous changes but only smooth continuous 
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ones, which allow the underlying parameters to vary 
smoothly between different regimes. In other words, the 
underlying distribution or the property of the time series 
remains approximately constant over some time, and then 
slowly starts to change into another regime followed by 
another period with constant properties. We refer to the mid-
point of the period where the smooth change takes place as 
a gradual changepoint. In different domains such as linguis-
tics (Sharma and Sankaran 2011), paleoclimatology (Trauth 
et al. 2018), paleontology (Rose and Bown 1986), and paleo-
biology (Hunt 2008), studies have shown that the changes 
in different phenomena are often gradual in nature and not 
abrupt. For example, the evolution of a language over a few 
hundred years contains only gradual changes, and it is thus 
difficult to point out any particular period where the archaic 
language has evolved into its current state. However, such 
a changepoint has its use, since without detecting such a 
changepoint it is extremely difficult to obtain a language 
model completely, while segmenting the study period into 
homogeneous regions may allow us to model the language in 
different periods more clearly. More motivating examples of 
gradual changepoint can be found in (Vogt and Dette 2015).

It has been established that the changepoint detection 
algorithms developed to tackle the abrupt changes are inef-
ficient in estimation due to relatively larger variance, in pres-
ence of a gradual changepoint (Hušková 1998). One par-
ticular problem with these algorithms is that they assume 
a definitive change in the distribution at a fixed point of 
time which is not true for a gradual changepoint. In con-
trast, modeling these points of changes in distribution using 
fuzzy set theory will allow the presence of a gradual change-
point that is difficult to pinpoint. In other words, the gradual 
changepoint is characterized by a continuum value in [0,1], 
unlike in {0,1} as in the case of abrupt changepoint. Also, 
the incorporation of rough sets in the changepoint detection 
algorithm would allow us to model the ambiguity about the 
knowledge of the distribution (as opposed to the probabilis-
tic approach). In this paper, we propose a technique that can 
incorporate these fuzzy-rough set theory-based modifica-
tions in most of the existing abrupt changepoint detection 
algorithms. As will be shown in this paper, this modifica-
tion would allow even the simple abrupt CPD algorithms to 
detect the gradual changepoints with much higher accuracy.

2 � Existing literature and our contribution

Analysis of abrupt changepoint detection for quality control 
and industrial applications dates back to the 1950’s Page 
(1955). Since then, several parametric and nonparametric 
methods for change detection have been proposed (Bas-
seville and Nikiforov 1993; Brodsky and Darkhovsky 
2013). Following Hinkley’s idea of likelihood-based single 

changepoint detection (Hinkley 1970; Scott and Knott 1974) 
extended it to the detection of multiple changepoints based 
on Binary Segmentation, which was popularized as a gen-
eral method to detect abrupt changepoints. Some recent and 
popular algorithms for CPD include Pruned Exact Linear 
Time (PELT) Killick et al. (2012), Bayesian Change-point 
Detection analysis (Turner et al. 2009; Adams and MacKay 
2007), Kernel Change-point Detection (Harchaoui et al. 
2009), Change-point detection using nonparametric statis-
tical measures (Haynes et al. 2017).

In comparison to the vast literature on the detection of 
abrupt changepoints (van den Burg and Williams 2020), the 
investigation of the gradual changepoint is scarce. Although 
some recent studies (Liang and Xu 2021) have focused on 
gradual changes in mean, they retain abrupt changes in 
variance as the defining property of a changepoint. Some 
early investigations completely in gradual changepoint setup 
used to measure the performance of control charts under 
gradual changes  (Gan 1992). Few existing parametric 
methods (Hušková 1998) consider specific forms of smooth 
changes of mean and perform likelihood-based tests to detect 
gradual changepoints. On the other hand, nonparametric 
methods based on p-value (Mallik et al. 2011) and modifi-
cations on CUSUM principle (Vogt and Dette 2015) rely on 
some suitable modifications of existing abrupt changepoint 
detection algorithms for the gradual change setup. Another 
approach to gradual changepoint detection is via the appli-
cation of abrupt CPD techniques in a multiscale setup (Wu 
and Zhou 2020), of which SMUCE (Frick et al. 2014) and 
HSMUCE (Pein et al. 2017) are two popular methods. How-
ever, there is no extensive empirical investigation of their 
performances in presence of a gradual changepoint.

Only a few investigations directed towards the detection 
of gradual changepoints are based on fuzzy techniques. A 
major portion of them (Chang et al. 2015) uses the fuzzy 
c-means clustering method or its variants to segment 
the period of study into homogeneous segments. Other 
approaches include fuzzy regression algorithms (Chang 
et al. 2015), and neural networks (Angelo et al. 2011). No 
approach considers the discernibility issues that are preva-
lent in the examples with gradual changepoints, for instance, 
observations of two close time points would naturally come 
from a similar kind of distribution, converting each of the 
segments into a rough set instead of a crisp one. The present 
paper aims to provide a general methodology based on fuzzy 
rough sets to increase the efficiency of any statistical meas-
ure that can be used to detect changepoints.

The novelty of this paper is three-fold. The first aspect 
is that we mathematically model the uncertainty associ-
ated with gradual changepoints as a fuzzy set and the 
indiscernibility between very close time points using 
rough set theory. This enables us to devise an algorithm 
to transform most of the abrupt CPD algorithms into a 
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gradual CPD algorithm, which is relatively robust to 
both the low signal-to-noise ratio of the data and the high 
degree of fuzziness of the actual changepoint. Simula-
tion studies show that our estimates remain fairly accurate 
over an extensive range of hyperparameter values further-
ing the robustness of the proposed method. The second 
aspect of this paper is that we connect the image seg-
mentation problem from the field of Pattern Recognition 
and the changepoint detection problem from the statistical 
domain. This connection was discussed by (Chatterjee 
and Kar 2017), where they formally expressed image seg-
mentation as a special case of the changepoint detection 
problem. However, our work can be interpreted as going 
in a reverse direction, by a generalization of methods pro-
posed for image segmentation by (Sen and Pal 2009) for 
the problem of changepoint detection. The third compo-
nent of novelty is reducing the computational complexity 
of the aforementioned image segmentation algorithm by 
a series of results and fitting the algorithm in the con-
text of the statistical changepoint detection problem. To 
formally present the proposed algorithm in conjunction 
with a statistical hypothesis testing framework, we derive 
the asymptotic distribution of the proposed rough-fuzzy 
estimator under some suitable regularity conditions. 
This enables us to test for false positives of the detected 
changepoints and also allows for multiple changepoint 
detections. The performance of the proposed method has 
been illustrated using extensive simulation studies, as 
well as different real-data applications, including esti-
mation of behavioral changes during the covid-19 period, 
and detection of changes in language using US presiden-
tial speech data. We also observe that our method out-
performs several existing changepoint detection methods 
in different setups. The implementation of the method is 
made available through a python package roufcp, bear-
ing the acronym for the name of the proposed algorithm 
Rough-Fuzzy CPD.

The rest of the paper is organized as follows: In Sec-
tion 3, some mathematical concepts are briefly described 
in connection to the proposed method, which is ultimately 
described in Section 4.2 in detail. Different ways to speed 
up the computation of the algorithm are described in Sec-
tion 4.1. In Section 4.3, we provide a theoretical justifica-
tion of the proposed method in the light of a hypothesis 
testing framework with an example. Section 5 provides 
support for the proposed roufCP method based on exten-
sive simulation studies and also establishes the superiority 
of the method in comparison to several existing change-
point detection techniques. Finally, Section 6 demonstrates 
its usefulness in real-life examples, which follows with 
concluding remarks in Section 7. For brevity of the pres-
entation, all the proofs of the theorems have been provided 
in the appendix.

3 � Mathematical preliminaries

3.1 � Problem statement

The mathematical setup of the problem of changepoint 
detection starts with a multivariate time series signal {
yt
}T

t=1
 , where each yt ∈ ℝ

p . There also exist some fixed 
points 1 < t∗

1
< t∗

2
< … t∗

k
< T  , such that within the inter-

val 
[
t(i−1), ti

]
 , the time series observations follow the same 

probability distributional model, but these models differ 
from one interval to another. In particular,

and Fi ≠ F(i+1) for i = 0, 1,…(k − 1) . A special case fol-
lows when the signal is assumed to be piece-wise station-
ary. The problem of CPD deals with identifying the set of 
points 

{
t1, t2,… tk

}
 where the distribution or behavior of the 

signal changes, from the knowledge of the available time 
series observations yt s. The knowledge of the number of 
changepoints k may or may not be known apriori, in which 
case it also has to be estimated from the data.

A general framework for existing CPD algorithms is 
provided in a comprehensive review by (Truong et al. 
2020). Most of the existing algorithms involve minimiza-
tion of a criterion function V(T, y) to obtain the best set of 
changepoints T ,

3.2 � Fuzzy set

Fuzzy sets, proposed by (Zadeh 1965), provide a math-
ematical means of modeling vagueness and imprecise 
information. They are a generalization of crisp sets or 
normal sets. A fuzzy set is represented by an ordered pair 
⟨X,�⟩ . Denoting � as the universe of objects, and X ⊆ � , 
the membership function for the set X can be described 
as � ∶ � → [0, 1] , indicating the degree of inclusion of an 
element x ∈ � into the set X. Consequently, three cases are 
possible based on the value of �(x):

1.	 Not included in ⟨�,�⟩ if �(x) = 0.
2.	 Partially included in ⟨�,�⟩ if 0 < 𝜇(x) < 1.
3.	 Fully included in ⟨�,�⟩ if �(x) = 1.

(1)yt ∼

⎧
⎪⎪⎨⎪⎪⎩

F0(t) if 1 ≤ t < t1
F1(t) if t1 ≤ t < t2
… …

F(k−1)(t) if t(k−1) ≤ t < tk
Fk(t) if tk ≤ t ≤ T

,

(2)V(T, y) =

k∑
i=1

c
({

yt
}ti

t(i−1)

)
+ Penalty(T).
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While fuzzy sets have been extensively used in fields like 
control systems for electronic devices, decision-making sup-
port systems in businesses, prediction systems in finance, 
quantitative pattern analysis for industrial quality assurance, 
and uncertainty modeling in pattern recognition, image 
processing and vision (see Pal and Dutta-Majumder 1986; 
Pathak and Pal 1986 for references), its use in changepoint 
analysis and statistics, in general, has been very limited. In 
this paper, we shall model the membership of a data point 
to a particular distribution as the membership function of a 
fuzzy set to characterize the ambiguity in the data genera-
tion process.

3.3 � Rough set

The notion of rough sets, as introduced by (Pawlak 1982), is 
defined as follows: Let A = ⟨�,A⟩ be an information system, 
where � is the universe of all objects as mentioned before, 
and A be the set of attributes which are used to identify two 
elements of � . Let B ⊆ A be a subset of attributes and X ⊆ � . 
We can approximate the set X using only the information 
contained in B by constructing lower and upper approxima-
tions of X. Let [x]B denote the equivalence class of object x 
relative to IB (equivalence relation induced by the variables 
in B). In rough set theory, the upper and lower approxima-
tions of the set X under IB are defined below,

•	 BX = B-Lower  approximat ion  of  X  in  � 
= {x ∈ � ∶ [x]B ⊆ X}

•	 BX  = B-upper approximation of X  in � = 
{x ∈ � ∶ [x]B ∩ X ≠ �}

So, the lower approximation of a set X relative to B in � are 
the elements in � which can be certainly classified as ele-
ments of X based on B. Intuitively, it is the set of all elements 
x in � such that the equivalence class containing x is a subset 
of the target set X. In other words, the lower approximation 
is the set of objects that are certainly members of the target 
set X. On the other hand, the upper approximation is the 
complete set of objects x such that the equivalence class 
containing x has a non-empty intersection with X. Intuitively, 
it is the set of elements in �∕B that cannot be positively (i.e., 
unambiguously) classified as belonging to the complement 
of the target set X. In contrast to the lower approximation, 
the upper approximation is the complete set of objects that 
are certainly as well as possible members of the target set X.

The pair ⟨BX,BX⟩ denotes the rough representation of 
the crisp set X with respect to B. This rough representation 
actually captures the uncertainty in defining X because of the 
incomplete information provided by the subset of attributes 
B. Numerical characterization of the roughness of X can be 
obtained as follows (Pal and Skowron 1999)

Therefore, �B = 0 means, the set X is crisp or exact (with 
respect to B) and conversely, 𝜌B > 0 means, X is rough, i.e. 
ambiguous, with respect to B. This vague definition of X in 
� (in terms of lower and upper approximations) signifies 
incompleteness of knowledge about �.

An amalgamation of fuzzy theory and rough theory can 
be used to characterize systems in which the sets and their 
elements themselves are ambiguous due to partial knowl-
edge about their attributes, as well as the elements them-
selves can belong to the set partially. Similar to the lower 
and upper approximations of a crisp set, the definition of 
such approximations for a fuzzy set can also be established. 
While the definition of lower and upper approximations of a 
set may vary based on the nature of set X (crisp or fuzzy) as 
well as the nature of the relationship between elements of the 
universe � , here, we are only concerned with approximations 
of a fuzzy set X with respect to an indiscernibility relation R 
which is either an equivalence relation (crisp or fuzzy) or a 
tolerance relation (crisp or fuzzy). The expressions of upper 
and lower approximations for both these cases have been 
derived by Sen and Pal (2009). Since the set approximations 
obtained using equivalence relations are not always smooth, 
we will restrict our consideration only to the tolerance rela-
tions. The general implicit expressions of these approxima-
tions are given below, while a more explicit form of such 
approximations will be derived later in Eq. 4.1.

A tolerance relation (crisp or fuzzy) is a (crisp or fuzzy) 
relation that satisfies (crisp or fuzzy) reflexivity and sym-
metry. Unlike equivalence relations, tolerance relations are 
not necessarily transitive. When R is a tolerance relation, the 
space ⟨�,R⟩ is called tolerance approximation space. Asso-
ciated with a tolerance relation R, there is a membership 
function SR of the relation itself, where SR(u, v) denotes the 
membership value of the pair (u, v) belonging to the relation 
R. With the help of these, the lower and upper approxima-
tions of any crisp or fuzzy set X are obtained as follows;

where the approximations of the membership functions are 
based on the tolerance function SR of the relation R  Sen and 
Pal (2009);

where �X , which takes values in the interval [0,  1], is 
the membership function associated with set X and 

(3)�B(X) = 1 −
|BX|
|BX|

(4)
RX ={(u,M(u))|u ∈ �}

RX ={(u,M(u))|u ∈ �}

(5)
M(u) = inf

�∈�
max(SR(u,�),�X(�))

M(u) =sup
�∈�

min(SR(u,�),�X(�))
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SR(u,�) = 1 − SR(u,�) . When X is a crisp set, �X would 
take values only from the set {0, 1} . Similarly, when R is 
a crisp tolerance function, SR(u,�) would take values only 
from the set {0, 1}.

3.4 � Entropy measures

Using the definitions of upper and lower approximations of 
a set, entropy can be defined to quantify the ambiguity in the 
description of X. While the roughness measure �B(X) as in 
Eq. 3 gives a measure of ambiguity in the description of X, 
they are needed to be transformed to properly describe the 
information gain. In this regard, two types of gain functions 
as defined by Pal and Pal (1991) are considered.

One choice to use a logarithmic function to measure the 
gain in incompleteness results in a formula of entropy simi-
lar to “gain in information” in Shannon’s entropy. The loga-
rithmic entropy measure for quantifying the incompleteness 
of knowledge about � with respect to the definability of a 
set X ∈ � is given as

where for any set D ∈ � , �(D) = �R(D) log�

(
�R(D)

�

)
 . Note 

that the “gain in incompleteness” term is taken as 
log�

(
�R(D)

�

)
 and for 𝛽 > 1 it takes values in [1,∞].

In contrast, the other kind of entropy measure is 
defined using the exponential function for the “gain in 
incompleteness”. This class of entropy is derived using 
�(D) = �R(D)�

�R(D) where �R(D) = 1 − �R(D) . So the 
expression of entropy becomes

Here the gain in incompleteness term is taken as �(1−�R) 
which takes values in [1, �] when 𝛽 > 1 . This class of expo-
nential entropy functions possesses various desirable prop-
erties which are not present in the usual Shannon’s entropy, 
as illustrated by Pal and Pal (1991). Some of them are men-
tioned below.

1.	 In Shannon’s entropy, the gain in information 
log(1∕p) → ∞ as p → 0 and is undefined for p = 0 . 
However, in real life, gain in information from an event, 
whether highly unlikely or highly probable is expected to 
be finite. However, the exponential gain function ensures 
that such a gain in information is bounded between 1 and 
�.

2.	 Logarithmic entropy is very sensitive to outliers due to 
the nature of the log function. In contrast, exponential 
entropy is more robust to outliers. Particularly, a small 
probability relative to the other probabilities will bias 

(6)HL
R
(X) = −

1

2

(
�(X) + �(XC)

)

(7)HE
R
(X) = −

1

2

(
�R(X)�

�R(X) + �R(X
C)��R(X

C)
)

the entropy towards the small probability event since the 
weight function log(1∕p) in logarithmic entropy has an 
unbounded derivative. In comparison, the weight func-
tion �(1−p) used in exponential entropy has a bounded 
derivative.

We have considered � = e in the subsequent sections, but 
any value greater than 1 is suitable.

4 � Proposed RoufCP algorithm

4.1 � Precomputation

In terms of mathematical setup, we consider 
{
y1, y2,… yT

}
 

as the time series data with yt ∈ ℝ
p for any t = 1, 2,…T  . 

With the number of changepoints equal to 1, we assume that 
the data comes from a distribution F  at first and then gradu-
ally comes from a different distribution G after some time. 
Since the location of the changepoint is ambiguous in nature, 
this creates the possibility of splitting the set of time points 
� = {1, 2, ..., T} into two fuzzy partitions, �F = ⟨�,�F⟩ and 
�G = ⟨�,�G⟩ . Here, �F  and �G denote the membership func-
tion of the respective partitions with observations coming 
from F  and G respectively. Clearly, an obvious restriction is 
that �F(t) + �G(t) = 1 . This is related to the incompleteness 
in knowledge about � and can be quantified by the entropy 
measures described by Sen and Pal (2009).

To formalize this notion of fuzziness, for t ∈ � , for an 
estimated changepoint s and bandwidth Δ , we define a fuzzy 
measure similar to that in Sen and Pal (2009).

On the basis of this estimated changepoint s, the partitions �F  
and �G can be reformalized as �s = �F = {(t,�s,Δ(t))| t ∈ �} 
and �C

s
= �G = {(t, 1 − �s,Δ(t))| t ∈ �} , which captures the 

fuzzy nature of the two partitions due to the estimation of 
changepoint by a fixed quantity s.

Following the footsteps of grayness ambiguity, as formu-
lated in Sen and Pal (2009), we consider a tolerance function 
Sw(u, v) such that,

1.	 Sw(u, u) = 1 for any u ∈ � = {1, 2,…T}.
2.	 Sw(u, v) is a decreasing function in |u − v|.
3.	 Sw(u, v) = 0 if |u − v| ≥ 2w , where w is a chosen window 

length. This means that sufficiently spaced timepoints 
can be distinguished quite nicely.

(8)𝜇s,Δ(t) =

⎧
⎪⎪⎨⎪⎪⎩

1 t ≤ s − Δ

1 − 2
�
t−(s−Δ)

Δ

�2
s − Δ < t ≤ s

2
�
(s+Δ)−t

Δ

�2
s < t ≤ s + Δ

0 t > s + Δ
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Then, the lower and upper approximations of the fuzzy set 
�s can be constructed as �s =

{
(u,M�s

) ∶ u ∈ �

}
 and 

�s =
{
(u,M�s

) ∶ u ∈ �
}
 , where M�s

 and M�s
 are obtained 

using Eq. 5 with the tolerance function Sw and membership 
function �s,Δ(t) . In a similar way, lower and upper approxi-
mations of the fuzzy complement set �C

s
 can also be 

obtained. However, there is a much easier formula that 
allows one to obtain expressions of upper and lower approxi-
mations under set complementation.
Lemma 1 

The proof of Lemma 1 is quite simple and can be found 
in Appendix A.1. Note that, since the computation of the 
lower and upper approximations M�s

(t) and M�s
(t) is inde-

pendent of the data, it can be pre-computed for the change-
point analysis problems, given the knowledge of the number 
of timepoints T. However, if T is large, computation of Eq. 5 
poses a high memory and computational complexity. How-
ever, it is possible to obtain exact expressions of these lower 
and upper approximations under a very general setup, which 
greatly reduces both the computational and storage cost 
complexities of the whole process. For instance, according 
to  Eq.  5 M�

s

(t) is a minimizer of the function 

max
(
Sw(t,�),�s,Δ(�)

)
 with respect to � . This is shown by 

the upper envelope curve of Sw(t,�) and �s,Δ(�) in Fig. 1. 
Thus, it is easy to see that the minimizer would appear at a 
point t∗ where the fuzzy membership function and the toler-
ance function cross each other, i.e., Sw(t, t∗) = �s,Δ(t

∗) . These 
observations lead us to the following theorem.

M�
s

(t) =1 −M
�
C

s

(t)

M�s
(t) =1 −M�C

s

(t)

Theorem 1  If the membership function �s,Δ(t) is given as in 
Eq. 8 and the tolerance function Sw(u, v) is continuous in its 
both arguments, then lower and upper approximations of the 
left partition of a chosen changepoint s are expressed by 
�s =

{
(u,M�s

) ∶ u ∈ �

}
 and �s =

{
(u,M�s

) ∶ u ∈ �
}
 respec-

tively, where

and

The derivation of the above expressions has been outlined 
in Appendix A.2. It is possible to obtain a closed form solu-
tion of Sw(t, t∗) = �s,Δ(t

∗) and similar equations for some 
specific tolerance functions. One such specific choice is pro-
vided in the following corollary.

Corollary 1 Let the membership function �s,Δ(t) be given 
as in Eq. 8, and a tolerance function be given as

M𝛾
s
(t) =

⎧⎪⎪⎨⎪⎪⎩

1 if t < (s − 2w − Δ)

1 − max
{t∗∶S

w
(t,t∗)+𝜇

s,Δ(t
∗)=1}

S
w
(t, t∗) if (s − 2w − Δ) ≤ t < (s + Δ)

0 if t ≥ (s + Δ)

M𝛾s
(t) =

⎧
⎪⎨⎪⎩

1 if t < (s − Δ)

max
{t∗∶Sw(t,t

∗)=𝜇s,Δ(t
∗)}
Sw(t, t

∗) if (s − Δ) ≤ t < (s + 2w + Δ)

0 if t ≥ (s + 2w + Δ)

(9)Sw(t, t
�) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0 if �t − t�� ≥ 2w

2
�
t�−(t−2w)

2w

�2
if (t − 2w) < x < (t − w)

1 − 2
�
x−t

2w

�2
if �t − t�� ≤ w

2
�
(t+2w)−t�

2w

�2
if (t + w) < x < (t + 2w).

Fig. 1   Lower Approximation 
Curves
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Then the lower and upper approximations of the left and 
right partitions for a chosen changepoint s can be obtained 
a s  �s =

{
(u,M�s

) ∶ u ∈ �

}
 ,  �s =

{
(u,M�s

) ∶ u ∈ �
}

 , 

�C
s
=
{
(u,M�C

s
) ∶ u ∈ �

}
 and �C

s
=
{
(u,M

�C
s

) ∶ u ∈ �

}
 , 

where

and

while the approximations for the complementary set can be 
obtained using Lemma 1.

Another very general result for symmetric tolerance func-
tions is expressed in Theorem 2. It uses the symmetry of the 
tolerance function to reduce the computation of obtaining 
the upper (or lower) approximations M�s

 (or M�
s

 ) by half. 
The proof of the theorem has been deferred till Appendix 
A.3.

Theorem  2  If the tolerance function Sw(u, v) can be 
expressed as a function of the absolute difference of its argu-
ments, i.e. Sw(u, v) = g(|u − v|) such that g(⋅) is symmetric 
about 0, then;

4.2 � The final algorithm

The proposed algorithm Rough-Fuzzy CPD (RoufCP) first cal-
culates a regularity measure based on the input, whose work-
ing is similar to that of the usual criterion V(T, y) in Eq. 2. 
In other words, for each timepoint t, a two-sample test sta-
tistic R(t) is computed to detect the changes in the samples 
{y(t−�+1), y(t−�+2),… yt} and {y(t+1), y(t+2),… y(t+�)} . We expect 
the regularity measure R(t) to take a higher value when there 
is no change in distribution and take a lower value when there 
is a detected change in distribution, hence it could be taken 
as some suitable transformation of the usual two-sample test 
statistics used in statistics. For example, one such regular-
ity measure to detect the changes in mean could be based on 
Hotelling’s T 2 test statistic.

M𝛾
s

(t) =

⎧
⎪⎪⎨⎪⎪⎩

0 if t ≥ (s + Δ)

2
�
(s+Δ)−t

2(w+Δ)

�2
if (s − w) ≤ t < (s + Δ)

1 − 2
�
(t+2w)−(s−Δ)

2(w+Δ)

�2
if (s − 2w − Δ) ≤ t < (s − w)

1 if t < (s − 2w − Δ)

M𝛾s
(t) =

⎧
⎪⎪⎨⎪⎪⎩

0 if t ≥ (s + 2w + Δ)

2
�
(s+Δ)−(t−2w)

2(w+Δ)

�2
if (s + w) ≤ t < (s + 2w + Δ)

1 − 2
�
t−(s−Δ)

2(w+Δ)

�2
if (s − Δ) ≤ t < (s + w)

1 if t < (s − Δ),

M𝛾
s

(t) = 1 −M𝛾s
(2s − t) ∀ t ∶ max{1, 2s − T} < t < max{2s,T}

where

Combining the pre-computed upper and lower approxima-
tions of the two fuzzy partitions �s and �C

s
 by the proposed 

changepoint s, with the regularity measure R(t) obtained 
from the data, one can create roughness measures for these 
two partitions as follows:

These roughness measures can be efficiently computed due 
to the results mentioned in Section 4.1. In particular, to 
obtain the roughness measures �Δ,�,w(�s) and �Δ,�,w(�Cs ) as 
given in Eq. 10, it is enough to focus the computation on 
only one of these terms, since the other can be obtained as 
a byproduct of Lemma 1. Also, Theorem 2 tells us that in 
the case of symmetric and location invariant tolerance func-
tion, only one, either lower or upper, approximation curve is 
required to be computed, thus reducing the computational 
complexity to one-fourth of the naive implementation. 
Finally, Theorem 1 and Corollary 1 can be used to obtain 
closed-form expressions for the upper (or lower) approxima-
tion for the particular choice of tolerance function given in 
Eq. 9.

Based on these roughness measures, entropy quantifying 
the ambiguity for the fuzzy partitions of the period for the spe-
cifically chosen changepoint s can be expressed using Eqs. 6 
or 7, with �R(X) replaced by the roughness measure given in 
Eq. 10. Thus, we obtain

Our proposed method minimizes this entropy (or uncer-
tainty) HE

Δ,�,w
(s) to obtain the changepoints.

This estimated changepoint t∗ shown in Eq.  12 will be 
denoted as the rough-fuzzy CP, and the method will be 
called Rough-Fuzzy CPD. Note that while the global 

R(t) =
1

1 + (ȳ1 − ȳ2)
⊺Σ−1(ȳ1 − ȳ2)

,

ȳ1 =𝛿
−1

t∑
t�=(t−𝛿+1)

yt� ȳ2 = 𝛿−1
(t+𝛿)∑

t�=(t+1)

yt�

Σ =𝛿−1
(t+𝛿)∑

t�=(t−𝛿+1)

(
yt� −

1

2
(ȳ1 + ȳ2)

)(
yt� −

1

2
(ȳ1 + ȳ2)

)⊺

(10)

�Δ,�,w(�s) =1 −

∑T

t=1
M�s

(t)R(t)

∑T

t=1
M�s

(t)R(t)

�Δ,�,w(�
c
s
) =1 −

∑T

t=1
M�c

s
(t)R(t)

∑T

t=1
M�c

s
(t)R(t)

(11)
HE

Δ,�,w
(s) = �Δ,�,w(�s)e

(1−�Δ,�,w(�s)) + �Δ,�,w(�
C
s
)e(1−�Δ,�,w(�

C
s
))

(12)t∗ = min
t∈{1,2,…T}

HE
Δ,�,w

(t).
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minimum serves as the estimate of a single changepoint, the 
local minima of the entropy function, after suitable testing, 
can be used for multiple changepoint detections. A detailed 
analysis of how these detected changepoints can be tested 
using a statistical hypothesis to reduce any false positive 
detection is described in Section 4.3. The complete algo-
rithm is shown in Algorithm 1.

In contrast to minimizing the entropy, the usual change-
point detection method using the regularity measure 
R(t) Truong et al. (2020) can be broadly expressed as

where t∗ is the estimated changepoint and V(⋅, ⋅) is a cost 
function as shown in Eq. 2, which can be interpreted as a 
regularity measure. While in this way, the regularity measure 

(13)t∗ = min
t∈{1,2,…T}

R(t) = min
t∈{1,2,…T}

V(({1, 2,… t}, {(t + 1), (t + 2),… T}), y).

R(t) itself becomes an indicator of the changepoint, it can 
be greatly enhanced with the help of fuzzy and rough set 
theory, by constructing the entropy as given in Eq. 11 and 
then focusing on its minimizer. Hence, the inclusion of 
fuzzy-rough set theory simply serves the purpose of vari-
ance reduction instead of a completely new algorithm. We 
shall show later that this simple tweak is extremely ben-
eficial if the changes in the time series are smooth. Intui-
tively, since the underlying distribution of the time series 
data is unknown, all the information about the changepoint 
must be gathered in terms of the available observations yt , 
which is now summarized only through a single attribute 
R(t), the regularity measure. Along with this loss of infor-
mation, as the regularity measure R(t) is computed based 
on overlapping windows, any information about the locality 

Algorithm 1 Rough-Fuzzy 
CPD (RoufCP)
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of a timepoint will permeate to its neighboring timepoints 
as well, resulting in incomplete information about the time-
points themselves. This rough resemblance between differ-
ent time points is modeled by the tolerance relation which 
eventually leads to the rough set formulation.

4.3 � Asymptotic analysis

While the Rough-Fuzzy CPD can be employed and a single 
changepoint can be detected using Eq. 12, multiple change-
points can be detected by local minima of the curve HE

Δ,�,w
(s) 

as a function of s. However, a reference curve must be com-
puted to select the true changepoints from many local min-
ima. In statistical language, these reference curve is usually 
computed based on the distribution of the statistic under a 
suitably chosen null hypothesis, by modifying the problem 
into a hypothesis testing framework.

Considering the mathematical framework given in Eq. 1, 
we can formulate the problem of detecting changepoint as a 
hypothesis testing problem.

Since the regularity measure R(t) is an indicator of a possible 
changepoint, hence under the null hypothesis H0 ; �(R(t)) is a 
constant independent of the time t. Based on this, we obtain 
the asymptotic null distribution of the proposed statistic 
under some reasonable assumptions on the asymptotic null 
distribution of the regularity measure. Clearly, the asymp-
totic follows when the number of samples for constructing 
R(t) i.e. � is tended to infinity, which forces the total number 
of timepoints T to tend to infinity as well. Thus, in order 
to talk about asymptotics, we restrict ourselves to an infi-
nite dimensional normed space, which without any loss of 
generality, can be taken as l∞(ℕ) , the set of all uniformly 
bounded functions from ℕ to ℝ . Also, while the number of 
timepoints T increases to infinity, the intervals between suc-
cessive observations tend to zero, in order to make the total 
period of observation constant pertaining to most practical 
situations.

Let us denote the regularity measure R�n
 as a l∞(ℕ) val-

ued random element defined on some probability measure 
space (Ω,A,ℙ) such that R�n

(t) is a ℝ-valued random vari-
able denoting the regularity measure based on the 2�n sub-
samples centered at t for each t = 1, 2,…∞.

Theorem 3  Assume that under the null hypothesis there is no 
changepoint, the regularity measure R�n

 has an asymptotic 
distribution such that for some sequence a�n → ∞,

H0 ∶ F0 = F1 = ⋯ = Fk = F

H1 ∶ There is at least one inequality

a�n(R�n
− �1(⋅)) ⇝ Z

where 1 ∈ l∞(ℕ) is the identity function 1(x) = x , Z is an 
infinite dimensional Gaussian process with mean func-
tion identically equal to 0 and covariance function 
� ∶ ℕ × ℕ → [0,∞) . Also, assume the following regularity 
conditions:

1.	 � ≠ 0.
2.	 For the proposed changepoint s, the series 

∑∞

t=1
M�s

(t) 
and 

∑∞

t=1
M

�C
s

(t) are convergent.

Define,

Then, the exponential entropy based statistic HE
Δ,�n,w

(s) 
defined in Eq. 11 has an asymptotic distribution with the 
same normalizing constant, a�n such that as a�n → ∞,

where

and Z∗ is a univariate normally distributed random variable 
with mean 0 and variance �∗ where;

and;

provided that the series expression of �∗ is convergent.

For the detailed proof of the above theorem please 
refer to Appendix A.4. In the above Theorem 3, even if 
Z is not an infinite-dimensional Gaussian process but fol-
lows some other process, Z∗ can be modified accordingly 
to accommodate such changes. In view to the functional 
delta method described in Römisch (2014), Z∗ has the 
same distribution as Ψ�

s
|�1(⋅)(Z) . An immediate extension 

of Theorem 3 is the analogous result for multiple proposed 

b(s) =

∑∞

t=1
M�s

(t)

∑∞

t=1
M�s

(t)

b(s) =

∑∞

t=1
M�C

s
(t)

∑∞

t=1
M

�C
s

(t)

a�n(H
E
Δ,�n,w

(s) − H∗(s)) ⇝ Z∗

H∗(s) = (1 − b(s))eb(s) + (1 − b(s))eb(s)

�∗ =

∞∑
m=1

∞∑
n=1

As(m)�(m, n)As(n)

(14)

A
s
(n) =

⎡⎢⎢⎢⎣
b(s)eb(s)

⎧⎪⎨⎪⎩

∑∞

t=1
M�

s
(n)M�

s
(t) −

∑∞

t=1
M�

s
(n)M�

s
(t)

�
�∑∞

t=1
M�

s
(t)
�2

⎫⎪⎬⎪⎭
+

b(s)eb(s)

⎧⎪⎨⎪⎩

∑∞

t=1
M

�C
s

(n)M�C
s

(t) −
∑∞

t=1
M�C

s

(n)M
�C
s

(t)

�

�∑∞

t=1
M

�C
s

(t)
�2

⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎦
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changepoints, which can also be accordingly modified for 
the case when Z does not follow a Gaussian process.

Corollary 2 Under the same assumptions and conditions 
of Theorem 3, the vector of exponential entropy based 
statistic HE

Δ,�n,w
(s) for multiple proposed changepoints 

s1, s2,… sk has the following asymptotic distribution as 
a�n → ∞;

where 0k is the k dimensional null vector, and the entries of 
the k × k dispersion matrix are given as;

In particular, if |si − sj| > (4w + 2Δ) , then 
(
Σ∗
k×k

)
(i,j)

= 0.
The conditions mentioned in Theorem 3 hold for a mul-

titude of regularity measures. In particular, for almost any 
usual two-sample test statistic, a suitable transformation 
can be performed to create a regularity measure satisfy-
ing the conditions. To illustrate the applicability of Theo-
rem 3, we consider a simple example here. Take the two 
sample-based U-statistic

where h(yt−i, yt+j) = (yt−i − yt+j)
2  .  We assume that 

y1, y2,… yn follow a normal distribution N(�, �2) . Under the 
null hypothesis that there is no changepoint, yt−i − yt+j fol-
lows a normal distribution N(0, 2�2) . An application of two 
sample U-statistics theorem Serfling (2009) can be employed 
to show that

Generalizing this for all timepoints t yields

where Z is an infinite dimensional Gaussian process with 
mean function identically equal to 0 and covariance function 
�(t, t + s) = 4max{(2 − �), 0}�4 for any s and t satisfying 
lim�n→∞ s∕�n = � . Also, one can easily verify that

a�n

⎡
⎢⎢⎢⎢⎣

HE
Δ,�n,w

(s1) − H∗(s1)

HE
Δ,�n,w

(s2) − H∗(s2)

…

HE
Δ,�n,w

(sk) − H∗(sk)

⎤
⎥⎥⎥⎥⎦
⇝ Nk(0k,Σ

∗
k×k

)

(
Σ∗
k×k

)
(i,j)

=

∞∑
m=1

∞∑
n=1

Asi
(m)�(m, n)Asj

(n) i, j = 1, 2,… k

(15)u�n(t) =
1

�2
n

�n∑
i=1

�n∑
j=1

h
(
yt−i, yt+j

)

√
2�n(u�n(t) − 2�2) ⇝ N(0, 8�4)

√
2�n(u�n − 2�2

1(⋅)) ⇝ Z

1

�2
n

�n∑
i=1

�n∑
j=1

(yt−i − yt+j)
2 = s2

t,−
+ s2

t,+
+ (yt,− − yt,+)

2

where yt,−, s2t,− are respectively the sample mean and sam-
ple variance of {yt−�n , yt−�n+1,… yt−1} and yt,+, s2t,+ are 
respectively the sample mean and sample variance of 
{yt+1, yt+2,… yt+�n} . This shows that the U-statistic consid-
ered in Eq. 15 is a suitable transformation of the mean dif-
ference statistic used for changepoint detection.

5 � Simulation studies

In this section, we analyze the numerical performance of 
our proposed changepoint detection method. The section is 
organized as follows. First, we quantify how much Rough-
Fuzzy CPD improves upon the usual changepoint detection 
methods (hereon, refers to as the base method) based on 
Eq. 13, using the same regularity measures. Then, we check 
the performance of our method under different parameters of 
the underlying true changepoint. Specifically, we address the 
effect of the fuzziness of the true change point and signal-to-
noise ratio of the data on the performance of Rough-Fuzzy 
CPD as compared to the base methods. Following this, we 
provide an extensive comparison between the performances 
of the proposed method with various existing CPD methods. 
A variety of methods including standard methods for abrupt 
changepoint detection, multiscale methods, and different 
fuzzy clustering-based techniques have been chosen for this 
purpose. Finally, we perform a sensitivity analysis to study 
the dependence of the performance of our proposed method 
with varying choices of hyperparameters. All the following 
simulations and real data applications have been performed 
by the python package roufcp developed by us.

5.1 � Improvement upon base method

To demonstrate how incorporating fuzzy rough set theory 
into the usual CPD methods improves its performance, we 
consider two variants of the same CPD methods. In the 
first variant, Eq. 13 is used to obtain the estimate of the 
changepoint based on the regularity measure R(t), whereas, 
in the second variant, the regularity measure is combined 
with roughness measures to estimate the changepoint using 
Eq. 12. To compare the performances, we consider three 
simulation setups of the form

where �(t) is the mean function dependent on time, while �t 
denotes a standard Gaussian white noise process. Three dif-
ferent choices of the mean curve �(t) are assumed. As shown 
in Fig. 2a, scenario (S1) considers an abrupt changepoint in 
the mean function which corresponds to the usual definition 
of a changepoint. On the other hand, scenarios (S2) and (S3) 

yt = �(t) + �t
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consider gradual changes in the mean function, denoting a 
piecewise linear continuous jump and smooth jump respec-
tively. Figures 2b and c show the mean functions and one 
simulated data for these scenarios.

To establish the comparison, we consider three test sta-
tistics that are well used in a two-sample setup to detect the 
changes in the mean. The parametric statistics as the square 
of the two sample t-test statistic, nonparametric Kolmogo-
rov-Smirnov test statistic, and Augmented Dickey-Fuller test 
statistic among unit root tests were chosen. In each case, the 
regularity measure R(t) is obtained by taking the reciprocal 
of the test statistics, to make sure R(t) has a higher value in 
absence of changepoints and a lower value in presence of 
changepoint. Both Eqs. 13 and 12 were used to obtain the 
estimates of the changepoints as mentioned before, and the 
process was repeated for 200 Monte Carlo resamples and 
used to obtain error measures. In applying Rough-Fuzzy 
CPD, � = 50 was chosen to compute the regularity measure, 
while different values of w and Δ were used in the experi-
ment to see their effects.

Table 1 summarizes the result for all three simulation set-
ups described above. We begin analyzing the results with 
the changepoint of type (S1), where a discrete jump in the 
mean function has occurred. Note that, the hyperparameters 
w and Δ control the amount of fuzziness and roughness to 

incorporate when detecting changepoints. Clearly, w = Δ = 0 
would entail just a transformation of R(t) as the exponen-
tial entropy, and both the estimating Eqs. 13 and 12 would 
yield the same changepoint. Thus, in general, increasing w 
and Δ would increase RMSE (root mean square error) if the 
true model has a discrete jump change in the mean func-
tion. Indeed, for w = Δ = 5 , for the KS test, we have a 74% 
decrease in MSE while with higher values of w and Δ , we 
see higher RMSE for Rough-Fuzzy CPD compared to the 
base methods using t-test and KS-test. For ADF test statistic, 
however, the proposed method outperforms the base method 
across all hyperparameter values, achieving more than 70% 
reduction in MSE. Hence, we see it is important to use appro-
priate values of hyperparameters. Overall, for discrete jump 
type changepoints, Rough-Fuzzy CPD performs poorly, giv-
ing higher MSE than the base model for t-test and Kolmogo-
rov Smirnov tests, and higher values of w and Δ will decrease 
the estimation accuracy. This is because the fundamental 
assumption of the proposed method viz. “change is fuzzy in 
nature and not abrupt” is violated in this case. Now, we look 
at the other 2 types of changepoints where the change is not 
abrupt and occurs gradually over some time.

From Table 1 we observe the performance of Rough-
Fuzzy CPD for situation (S2) with continuous change 
in mean function. For both the t-test statistic and the 

Fig. 2   Different Scenarios of changepoints with Changes in mean of the data
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Kolmogorov-Smirnov statistic, the RMSE is much lower 
in Rough-Fuzzy CPD relative to the base method based on 
the regularity measure R(t). However, with an increase in 
w and Δ , the RMSE reduces first and then increases, pos-
sibly suggesting the existence of optimal hyperparameters 
in between. Because of the specific parametric setup, the 
Augmented Dickey-Fuller (ADF) test and nonparametric 
Kolmogorov Smirnov test generally perform worse than the 
parametric t-test. However, in practical applications when 
the data generating processes are not known, ADF and KS 
test statistics might perform better in conjunction with our 
proposed improvement. An interesting phenomenon occurs 
when we use the ADF test statistic-based regularity meas-
ure. As shown in Figure 3, the ADF test usually outputs two 
changepoints around the true changepoint at 666; but as the 
fuzziness is incorporated into the model by increasing w and 
Δ , the bimodal distribution gradually becomes unimodal. 

However, there possibly remains a negative bias in the esti-
mation, as indicated by the mode of the density curve of the 
Rough-Fuzzy CPD for w = Δ = 50.

Turning to the situation (S3) with a smooth change in 
mean function, the results are found to be similar to those 
in scenario S2. Here also Rough-Fuzzy CPD has reduced 
the MSE by more than 50% in most cases. However, we see 
that for w = Δ = 100 the efficacy of the model is greatly 
reduced and it even performs slightly worse than the t-test-
based method. Again, as mentioned earlier, it is of utmost 
importance to choose the values of the hyperparameters w 
and Δ carefully to obtain accurate estimates of the change-
point even in situations where the mean function is gradual 
and the underlying assumption of the method is not violated. 
However, as shown by Table 1, Rough-Fuzzy CPD generally 
obtains a higher reduction in MSE for S2 (continuous jump) 
and S3 (smooth jump) compared to S1 (discrete jump). So, 

Table 1   Comparison of Rough-
Fuzzy CPD (proposed) vs usual 
(base) methods based on cost 
minimization for 3 types of 
mean shift changepoints

Simulation setup Base test statistic Parameters 
for proposed 
method

RMSE Relative 
Decrease in 
MSEProposed Base

Discrete Jump in Mean (S1) t-test w = Δ = 5 1.591 1.752 17.53%
w = Δ = 25 4.961 -701.81%
w = Δ = 50 6.567 -1436.26%
w = Δ = 100 21.446 -14883.88%

KS-test w = Δ = 5 2.001 3.928 74.08%
w = Δ = 25 4.926 -57.27%
w = Δ = 50 7.404 -255.29%
w = Δ = 100 25.533 -4125.33%

ADF-test w = Δ = 5 38.115 106.684 87.23%
w = Δ = 25 41.395 84.94%
w = Δ = 50 43.843 83.11%
w = Δ = 100 55.305 73.12%

Continuous Jump in Mean (S2) t-test w = Δ = 25 25.232 35.501 49.48%
w = Δ = 50 11.326 89.82%
w = Δ = 100 17.419 75.92%

KS-test w = Δ = 25 26.881 79.723 88.63%
w = Δ = 50 15.071 96.42%
w = Δ = 100 23.778 91.10%

ADF-test w = Δ = 25 207.811 347.614 64.26%
w = Δ = 50 197.768 67.63%
w = Δ = 100 189.827 70.18%

Smooth Jump in Mean (S2) t-test w = Δ = 25 12.242 18.001 53.75%
w = Δ = 50 9.596 71.58%
w = Δ = 100 18.768 -8.70%

KS-test w = Δ = 25 11.640 37.714 90.47%
w = Δ = 50 10.127 92.78%
w = Δ = 100 22.936 63.01%

ADF-test w = Δ = 25 197.282 286.67 52.64%
w = Δ = 50 187.246 57.33%
w = Δ = 100 181.6 59.87%
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with a greater degree of ambiguity in the changepoint, the 
relative performance of our model increases as expected. We 
shall illustrate this phenomenon in greater detail and more 
rigorously in Section 5.2.

5.2 � Effect of fuzziness of the true changepoint 
and SNR of the data

In our earlier simulations, scenarios (S2) and (S3) depict 
such situations where a gradual change has occurred. To 
check how Rough-Fuzzy CPD performs under different 
levels of graduality or “fuzziness” in change, we consider 
different cases of scenario S2 where the mean function is 
defined as follows;

where s0 is the true changepoint and the parameter F  defines 
the degree of graduality or “fuzziness” of the changepoint. 
To see the effect of F  on the estimate of Rough-Fuzzy CPD, 
we consider 1000 resamples of scenario S2 with true change-
point at s0 = 666 , for 15 different values of F  ranging from 
10 to 150. The MSE for each level of fuzziness F  is calcu-
lated using a Monte Carlo method, for the estimated change-
point obtained by Rough-Fuzzy CPD as well as the under-
lying base method with the Kolmogorov-Smirnov statistic.

Figure 4 shows the RMSE of estimated changepoints 
by Rough-Fuzzy CPD and its base counterpart for differ-
ent values of fuzziness F  , along with the relative decrease 
obtained by Rough-Fuzzy CPD. As shown in Fig. 4a, a 
higher degree of fuzziness leads to higher error in estima-
tion for both methods, though Rough-Fuzzy CPD is not as 
severely affected as the base method. Figure 4b depicts that 
the relative performance gain by the proposed rough-fuzzy 

𝜇s,Δ(t) =

⎧⎪⎨⎪⎩

0 t ≤ s0 − F
t−(s0−F)

F
s0 − F < t ≤ s0 + F

2 t > s0 + F

improvement is only possible when the fuzziness in the true 
changepoint crosses a certain threshold, about F = 31 for 
our specific setup. However, as the fuzziness increases, due 
to the extremely sensitive performance of the base method, 
Rough-Fuzzy CPD could achieve nearly 95 − 99% perfor-
mance gain in terms of MSE.

While detecting fuzzy changepoints is a hard problem, 
doing so in noisy data with a low Signal-to-Noise Ratio 
(SNR) is even harder. Signal-to-Noise Ration (SNR) is 
defined as the ratio of �(S2) and �(N2) where N is the noise 
component of the data and S is the true signal component 
of the data, which mainly comprises the mean function in 
the time series observations. To check the performance of 
Rough-Fuzzy CPD under different SNRs, we keep noise N 
the same as the standard Gaussian white noise and vary the 
value of signal S by changing the size of the jump in the 
mean function. To illustrate its effect, we consider scenario 
(S2) with continuous linear change in mean function, with 
different jump sizes ranging 1∕5, 1∕4,… 1∕2, 1, 2,… 10 . 
For each such setup, we use the Kolmogorov-Smirnov test 
statistic to estimate the changepoints using the proposed 
method and the base method for 1000 resamples, and Monte 
Carlo estimate of MSE is obtained. In each resample, the 
true changepoint value is kept fixed at 666. Figure 5 shows 
the variation of RMSE of the estimated changepoint for the 
proposed Rough-Fuzzy CPD as well as the base method. 
We observe that Rough-Fuzzy CPD has obtained lower 
RMSE than the base method for all values of SNR. While 
SNR increases, the predictive capabilities of both methods 
increase. However, it is important to note that while the base 
method performs very badly for lower values of SNR ( < 1 ), 
the performance of Rough-Fuzzy CPD using the same regu-
larity measure is not so severely affected. In fact, throughout 
the low and high values of SNR, the relative improvement of 
MSE achieved by Rough-Fuzzy CPD remains fairly uniform 
ranging from 88 − 97% , with the highest reduction achieved 
when SNR is 2 or 3.

Fig. 3   Base method along with 
proposed Rough-Fuzzy CPD 
based on the regularity measure 
with Augmented Dickey Fuller 
statistic for continuous jump 
changepoint (S2)
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Fig. 4   Performance of proposed 
Rough-Fuzzy CPD and base 
method (KS-test)for differ-
ent values of fuzziness of true 
changepoint

Fig. 5   Performance of proposed 
Rough-Fuzzy CPD and base 
method (KS-test)for different 
values of signal-to-noise ratio
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5.3 � Comparison with existing methods

To compare the performance of the Rough-Fuzzy CPD with 
existing changepoint detection algorithms, we have chosen 
different changepoint detection methods. The chosen meth-
ods can be broadly classified into 3 main categories - state-
of-the-art abrupt changepoint detection algorithms, fuzzy 
changepoint detection algorithms, and finally some other 
gradual changepoint detection algorithms. For the abrupt 
changepoint detection algorithms, we have chosen Binary 
Segmentation Scott and Knott (1974), Pruned Exact Lin-
ear Time (PELT) Killick et al. (2012) and Bayesian Online 
changepoint Detection (Adams and MacKay 2007). To com-
pare the performance of the Rough-Fuzzy CPD with exist-
ing fuzzy changepoint detection algorithms, we have cho-
sen three such methods, namely the FCP algorithm Chang 
et al. (2015) for regression models, Fuzzy shift changepoint 
(FSCP) algorithm Lu et al. (2016) and Fuzzy classifica-
tion maximum likelihood changepoint (FCMLCP) algo-
rithm Lu and Chang (2016). Finally, we have considered 
3 gradual changepoint detection methods which do not use 
fuzzy methods. They are Multiscale Jump Point Detection 
(MJPD) Wu and Zhou (2020), Simultaneous Multiscale 
Changepoint Estimator (SMUCE) Frick et al. (2014) and 
the Heterogeneous Simultaneous Multiscale Changepoint 
Estimator (H-SMUCE) Pein et al. (2017). To compare the 
performances between Rough-Fuzzy CPD and these existing 
methods, we consider Rough-Fuzzy CPD with the tuning 
parameters w = Δ = 50 in combination with the standard 

t-test statistic. While the choice of parameters is subjective, 
sensitivity analysis (see Section ) for w and Δ show that the 
performance of the proposed method is quite robust to the 
choice of these hyperparameters.

Since we are only dealing with gradual changepoint 
detection, we consider the mean functions from scenarios 
(S2) and (S3) for comparison. To perform a more compre-
hensive comparison, we consider 6 different models for the 
errors �t.

(Gaussian) �t ∼ iid N(0, 1)

(Gamma) �t ∼ iid Gamma(�, k) with � = k = 1

(t−distribution) �t ∼ iid t5.
(AR) �t =

√
0.91Xt where Xt − 0.3Xt−1 = �t with �t being 

standard Gaussian white noise process.
(MA) �t = Xt∕

√
1.25 where Xt = �t + 0.5�t−1 with �t 

being standard Gaussian white noise process.
(ARMA) Combining the AR and MA models above, 
we consider �t generated from an ARMA(1,1) process 
with long run variance 1, i.e. �t = Xt∕2.142857 where 
Xt − 0.3Xt−1 = �t + 0.5�t−1 and �′

t
 s are iid N(0, 1).

Table 2 shows the RMSE in estimating the true change-
point. We see that for the continuous jump in mean (setup 
S2), the proposed method, RoufCP, performs best in 3 out 
of the 6 cases while for the smooth jump in mean (setup 
S3), roufCP performs best in 3 out of the 6 cases. We 
observe that for both (S2) and (S3), Roufcp has the lowest 

Table 2   Performance comparison of the proposed Rough-Fuzzy CPD (or RoufCP) with existing fuzzy changepoint detection methods under the 
simulation setups

Values indicate RMSE in estimating the true changepoint. The lowest values in each row are colored red

    

Mean Setup Error Setup RoufCP BS PELT BOCD FCP FSCP FCML SMUCE HSMUCE MJPD

Cont. Jump (S2) Gaussian 18.46 20.27 32.47 16.84 211.66 27.49 50.37 46.93 39.44 37.73

Gamma 19.68 20.56 31.9 71.34 209.6 27.56 54.41 335.56 62.32 45.94

t5 26.92 23.44 30.35 109.13 250.05 30.51 55.07 315.73 35.46 38.24

AR 16.64 16.17 32.93 11.91 167.28 25.46 50.22 39.81 37.54 37.4

MA 22.58 24.85 30.71 31.97 241.33 29.97 51.25 277.67 63.31 38.13

ARMA 8.94 14.18 33.89 32.42 43.53 18.55 58.8 55.5 43.42 37.37

Smooth Jump (S3) Gaussian 13.66 14.11 22.31 11.17 131.85 19.27 37.83 30.16 22.54 33.31

Gamma 13.51 13.58 21.67 65.21 126.75 19.08 43.41 322.71 39.66 41.22

t5 18.14 16.4 21.57 111.84 187.78 22.33 43.75 315.77 20.63 34.03

AR 11.02 11.33 22.82 8.71 70.27 17.2 35.33 19.44 18.61 32.88

MA 15.6 16.98 21.8 20.83 178.21 21.42 38.05 267.03 44.97 33.74

ARMA 7.03 8.46 22.75 17.54 10.33 11.79 42.46 53.74 32.81 32.81
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Fig. 6   Heatmap showing RMSE 
in estimating changepoint in 
scenarios S2 and S3 for different 
values of w and Δ

Fig. 7   Performance of proposed Rough-Fuzzy CPD and base method 
(KS-test) on Nile dataset

RMSE for Gamma, MA, and ARMA models. Furthermore, 
the proposed RoufCP method achieves the second lowest 
RMSE value for Gaussian and t-distributed errors under 
both setups (S2) and (S3), and for autoregressive errors 
for setup (S3).

5.4 � Sensitivity analysis

The proposed method Rough-Fuzzy CPD depends on 3 
main factors viz. the regularity measure R(t), the tunable 
hyperparameters w and Δ . w denotes the degree of rough-
ness of the tolerance function with higher values indicating 
greater roughness. Similarly, the parameter Δ determines 
the fuzziness of the membership function with higher values 
corresponding to greater fuzziness. While we do not have 
control over the regularity measure R(t) as it is exogenous to 
Rough-Fuzzy CPD, we need to choose the values of w and 
Δ judiciously to obtain better estimates. To understand the 
effect of parameters w and Δ we perform some sensitivity 
analysis.

We consider two special scenarios to study the effect of 
hyperparameters. Figure 6a shows the variation of RMSE 
for scenario (S2) with continuous jump in mean function 
and Fig. 6b shows the variation of RMSE for scenario 
(S3) with smooth jump in mean function with standard 
Gaussian white noise errors. In both the cases, we vary the 
ordered pair ⟨w,Δ⟩ in {10, 20,… , 140} × {10, 20,… , 140} 
and estimate the changepoints using RoufCP. It is evident 
from Fig. 6 that there exists a wide range of optimal values 
of w and Δ , and too high or too low values of both these 
parameters together are detrimental to the efficacy of the 
model. The difference in the range of values of RMSE 
between Fig. a and b can be attributed to the difference in 
the mean curve of the data. As shown by using a shared 
color scale, Rough-Fuzzy CPD achieves a lower RMSE for 
scenario (S3) than in scenario (S2) with their correspond-
ing optimal hyperparameter values. One possible reason 

could be the resemblance of the chosen membership func-
tion for Rough-Fuzzy CPD with the change in the mean 
function for the scenario (S3).

6 � Application to real data

We consider three real data sets to show the performance 
of our method Rough-Fuzzy CPD over the usual regularity 
measure-based methods. Two popular benchmark datasets in 
changepoint analysis, namely “Flow of the River Nile” data 
and “Seatbelts” data regarding monthly Road Casualties in 
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Great Britain 1969 − 84 , collected from datasets pack-
age Durbin et al. (2001) in R, provide the first example. For 
the second illustration, changepoints are estimated from the 
time-varying reproduction rate from the coronavirus disease 
of 2019 (COVID-19) incidence dataset. The final example 
tries to analyze the gradual changes in the language in the 
speeches of the presidents of the United States of America. 
The last example illustrates the applicability of the proposed 
method Rough-Fuzzy CPD for multivariate datasets.

6.1 � Benchmark datasets

The very well-known “Flow of the river Nile” dataset com-
prises measurements of the annual flow of the Nile river at 
Aswan from 1871 to 1970. The data has a possible change-
point near 1898 which is associated with the Fashoda inci-
dent (Bickley and Bates 1984) in the same year.

The result for the Nile dataset is shown in Figure 7, 
where we use a transformation of the t-test statistic as a 
regularity measure. As shown in Fig. 7a, there are multiple 
minima detected by the base method, while the proposed 
rough-fuzzy improvement smooths out these minima, and 
the false positives are automatically removed. The estimated 
changepoint by our Rough-Fuzzy CPD turns out to be at 
1902, which coincides with the completion of Zifta Barrage 
and Assiut Barrage Wegmann (1922) and is close to the 
commonly believed changepoint at 1898.

Another popular benchmark dataset “Seatbelts” consists 
of the number of drivers in Great Britain wearing seatbelts 
during the period January, 1969 to December, 1984. There 
are possibly two evident changepoints present in the data, 
the first one corresponds to the start of seat belt legislation 
movements from 1972 when the seatbelts were enforced 
compulsory in newly manufactured cars, and the second 

Fig. 8   Performance of proposed 
Rough-Fuzzy CPD and base 
method (KS-test) on Seatbelts 
dataset
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one corresponds to the compulsory enforcement of seat belt 
wearing while driving in 1983 van den Burg and Williams 
(2020).

Figure  8 explains the performance of Rough-Fuzzy 
CPD in detecting changepoints for Seatbelts data. Similar 
to Nile data, the regularity measure based on the nonpara-
metric Kolmogorov Smirnov test tends to have too many 
local minima, each of which can be possibly thought of as 
an estimate of changepoint. However, in conjunction with 
the rough-fuzzy improvement, the prominent local minima 
appear in 1975 and 1983, both of which are close to the true 
changepoints.

6.2 � COVID‑19 data

The coronavirus disease of 2019 (COVID-19) is an infec-
tious disease caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) virus. First detected in Wuhan, 
China in December 2019, it has spread across the globe and 
has infected nearly 200 Million cases by 4th August 2021. 
There has been a multitude of epidemiological models try-
ing to estimate the spread of COVID-19 in various coun-
tries and states (Purkayastha et al. 2020). However, many 
such models fail to predict the case counts accurately due 
to the frequently changing public health measures aimed 
at simultaneously controlling the spread of the disease and 
preventing economic crises. This makes the identification of 
changepoints in the epidemic data of particular importance. 
Another use of identifying changepoints in the spread of 
COVID-19 is inference regarding the efficacy of non-phar-
maceutical interventions.

Such work has been done for some countries like 
USA  Zhang et  al. (2020) and Germany  Dehning et  al. 
(2020). To identify changepoints, Dehning et al. (2020) 
calculated the time-varying rate of transmission �(t) in the 

usual Susceptible Infected Recovered (SIR) model Dehning 
et al. (2020) and detected changepoints in �(t) through the 
course of the pandemic. For the SIR model, the transmission 
rate is defined as the rate of transmission of infection from 
an infected individual to a susceptible individual Dehning 
et al. (2020).

While the SIR model and its parameters are relatively 
straightforward to understand and easy to estimate, the 
dynamics of transmission of COVID-19 are much more 
complex due to the presence of factors like undetected 
asymptomatic transmissions, latency period, incubation 
period, delay in reporting, under-reporting, different trans-
mission rates for asymptomatic and symptomatic individu-
als, quarantined and hospitalized individuals, and erroneous 
testing resulting in false negatives, to name a few Zimmer-
mann et al. (2021). So, �(t) alone might not be a suitable 
representative of the spread of the disease.

So, we look at another related parameter which is the 
basic reproduction number R0 . While the SIR model 
assumes constant R0 we estimate the time-varying repro-
duction number Rt . Rt can be defined as the expected number 
of cases directly generated by one case in the population at 
time t Purkayastha et al. (2020). We estimate Rt using the 
EpiEstim package in R based on the incidence curve from 
15th March, 2020 to 1st June, 2021 in India. The required 
data on the number of confirmed cases of COVID-19 has 
been collected from an API made by the volunteer-driven 
covid19india group. We then apply Rough-Fuzzy CPD on 
the estimated Rt to identify the changepoints. Note that mod-
eling the changepoints in a fuzzy manner, instead of crisp, is 
logical and appropriate here as interventions and measures 
rolled out by the government are impossible to be imple-
mented throughout a vast country like India instantaneously.

Figure 9 shows the estimated changepoints along with 
the estimates of Rt . We see that our method detects 7 

Fig. 9   Changepoints in esti-
mated R

t
 for India
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changepoints on 12th April, 28th May, 28th July, 14th Septem-
ber and 27th November in 2020 and 12th February and 23rd 
April in 2021. The first changepoint (on 12th April, 2020) 
corresponds to the initial elbow in the estimate of Rt and it 
is very close to the end of the 1st Lockdown in India (on 14th 
April, 2020). This shows that the effect of the Lockdown was 
not immediate and it took the entire 1st Lockdown to bring 
down the value of Rt substantially and check the unrestricted 
spread of the disease. Further, the changepoint detected on 
12th February, 2021, is very close to 10th February, 2021 
which is regarded as the start of the 2nd wave in India Covid-
19 in India (2021). Also, the changepoint detected on 12th 
April 2021, marks the date after which there is a substan-
tial decrease in the value of Rt . In fact, immediately after 
this date, the value of Rt comes below 1 which is followed 
by a sharp decline in new cases. Among the other detected 
changepoints, those on 12th April, 28th May, 28th July and 27th 
November are very close to the date of commencement of 
Lockdown 2, Unlock 1, Unlock 3 and Unlock 7 respectively. 
There are no detected changepoints near the other lockdowns 
and unlock phases. This implies that the effects of Unlock 

1, Unlock 3, and Unlock 7 were much more pronounced on 
Rt than in the other nationwide intervention phases in India.

6.3 � US President Speech Data

From the presidency of George Washington (April 30, 
1789) to Joe Biden (current), 46 presidents of the United 
States have delivered countless speeches during their 
presidency to address contemporary political, economi-
cal, and social issues. Among them, more than a thou-
sand speeches have been recorded in the UVA Miller 
Center database (Presidential Speeches 2021). Starting 
from George Washington’s first inaugural speech “Fellow 
citizens of the senate and the house of representatives, 
among the vicissitudes incident to life no event could 
have filled me...” to Franklin D. Roosevelt’s “iffy” or 
Donald Trump’s “covfefe”, the English language spo-
ken by the US presidents have undergone countless 
changes. While some of the sophisticated archaic words 
have transformed into more natural colloquial synonyms, 
the topics addressed by the presidents also varied over 

Fig. 10   Analysis of change-
point detection of US President 
speeches data
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time with relevance to contemporary political, economi-
cal, and social issues. This linguistic shift is obviously 
gradual in nature, hence the proposed RoufCP method 
can be used to segment the time from 1789 to 2021 into 
several homogeneous regions, where the languages are 
similar and are expected to have simpler homogeneous 
linguistic models. One important thing to note here is 
that the presidential speech dataset poses a particular 
challenge in identifying changepoints owing to its high 
dimensionality because of the huge number of words in 
the corpus. Such a challenge was not present in the other 
datasets we considered earlier.

Figure 10b shows the gradual shift in usage of different 
words. A darker color indicates a higher incidence of a 
word in a particular period. The words have been chosen 
to represent different topics that presidents across differ-
ent periods addressed in their speeches. The topics range 
from slavery, and war to domestic and international poli-
tics, economy, etc. The proposed RoufCP detects 3 change-
points in the years 1848, 1921, and 1957 respectively. Now, 
in Fig. 10b, we can see that before 1848 higher usage of 
words like “public”, “power”, “bank” etc. while immedi-
ately after 1848 speeches of presidents included words like 
“slave”, “Missouri” etc. in higher frequencies which cor-
responds to the movement against slavery and the eventual 
abolition of slavery in 1865. After that, the second change-
point in 1921 marks a shift in politics and a decrease in 
usage of words like “Panama canal”, “Mexico”, and “ter-
ritory”. Finally, we can see that after the last changepoint 
in 1957, there is a stark increase in the frequency of words 
like “war”, “tax”, “America”, and “economy”, which is 
related to various events like the cold war and space race. 
In this way, using RoufCP, we can detect the major change-
points in US politics and linguistics of the English lan-
guage from the Presidential speech dataset.

7 � Conclusion

Though gradual changepoints are present in various time 
series data, they are usually overlooked. Our study aims 
to contribute in this direction by enriching the existing 
methodologies using the principles of the Fuzzy Rough 
set theory. The biggest strength of our approach is that it 
is independent of the base method, and thus any change-
point detection algorithm expressed as shown in Fig. 13 
can be subjected to improvement by our proposal. Here, 
we have presented only 3 cases of base methods for com-
puting the regularity measure - parametric two-sample 
test, nonparametric two-sample tests, and stationarity 
tests (unit root test). However, our choices are not limited 
to the aforementioned cases. Any method for detecting 
changepoint which provides any type of anomaly score 

or regularity score can be used in our framework with 
suitable transformation. Thus rough-fuzzy CPD allows 
one to utilize the rich collection of methods existing for 
crisp changepoint detection for the problem of fuzzy 
changepoint detection.

As various simulations show, even for very simple 
regularity measures, like t-test statistic and Kolmogorov-
Smirnov test statistic, combining them with the rough-
fuzzy CPD increases their efficiency by far. In all cases, 
except for the discrete jump models (where the assumption 
of fuzziness in changepoint is violated), rough-fuzzy CPD 
reduces the MSE in detecting the changepoints. In com-
parison to existing fuzzy and crisp changepoint detection 
algorithms, rough-fuzzy CPD turns out to be more efficient 
in the estimation of continuous and smooth changes in the 
mean. Furthermore, under a gradual change in the mean 
function, our method outperforms several existing change-
point detection methods by achieving smaller MSE, for 
different error distributions.

The asymptotic distribution mentioned in Theorems 3 
and 2 connects the rough-fuzzy CPD to a hypothesis testing 
framework, allowing one to output the statistical signifi-
cance of the estimated changepoints as well. Since Theo-
rem 2 allows us to derive the joint asymptotic distribution 
of the proposed entropy at multiple time points, we can rule 
out the false positives and apply the rough-fuzzy CPD for 
multiple changepoint detection problems.

From a computational point of view, this paper addresses 
the issue of obtaining closed-form expressions for upper 
and lower approximations of the rough fuzzy partitions, 
described by an estimated changepoint, thus allowing the 
overall algorithm to be much faster. In general, the time 
and space complexity of the overall algorithm will be dom-
inated by the cost of computing the regularity measures.

Our approach of using fuzzy and rough set theory has 
definite advantages which are reflected in the robustness 
of the rough-fuzzy CPD. Under changes in the signal-to-
noise ratio, this method gives a steady improvement over 
the regularity measure-based changepoint detection. We 
observe that for a diverse range of SNR, the improve-
ment in accuracy of estimates obtained by the rough-
fuzzy CPD over that of the base model remains fairly 
uniform ranging from 88% to 96%. On the other hand, 
increasing the fuzziness F  in the continuous change in 
mean function increases the efficiency of the rough-
fuzzy CPD in comparison to the base statistic used. As 
fuzziness increases, a rapid increment in the efficiency 
in estimation can be observed. Also, rough-fuzzy CPD 
rarely outputs an outlying or spurious false positive esti-
mate of changepoint, precisely because the entropy curve 
HE

Δ,�,w
(s) possesses more smoothness properties than its 

regularity measure R(t) counterpart. Even in the cases 
when the base model predicts a bimodal distribution 
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of estimated changepoints, our model shrinks the two 
modes towards the true changepoint, as illustrated in 
Fig.  3. Finally, through sensitivity analysis, we have 
shown that the rough-fuzzy CPD performs reasonably 
well on a wide range of hyperparameter values.

On the flip side, there are some obvious limitations. The 
rough-fuzzy CPD may not perform well if the assumption 
of fuzziness in the true changepoint is violated (i.e., there 
is a discrete jump discontinuity in the mean function), or if 
the regularity measure R(t) is a bad indicator for the type of 
changepoint that we are trying to detect. Another limitation 
could be the choice of the hyperparameters w,Δ , and �.

A future possibility for extension of this investigation 
may consider building a probabilistic view of the detected 
changepoint, which should enable one to provide a confi-
dence interval for the estimate of the changepoint, which 
is more meaningful in terms of gradual change. Further, 
rough-fuzzy CPD can be viewed as an extension of an image 
segmentation algorithm Sen and Pal (2009) into the domain 
of changepoint detection. A future endeavor in this direc-
tion could be to generalize a family of image segmentation 
algorithms to fit perfectly in the context of a changepoint 
detection problem.

8 � Software

For broader dissemination of our work, we have developed 
the python package roufcp which is available at pypi.org/
project/roufcp/. All codes for the package has been open 
sourced and are made available at a github respository 
github.com/subroy13/roufcp.

Appendix A: Section title of first appendix

A.1: Proof of Lemma 1

Starting with the lower approximation;

The other equality proceeds in an exactly similar way.

M�
s

(t) = inf
�∈�

max
(
Sw(t,�),�s,Δ(�)

)

= inf
�∈�

[
1 −min

(
1 − Sw(t,�), 1 − �s,Δ(�)

)]

= inf
�∈�

[
1 −min

(
Sw(t,�),�s,Δ(�)

)]

=1 − sup
�∈�

min
(
Sw(t,�),�s,Δ(�)

)

=1 −M
�
C

s

(t)

A.2: Proof of Theorem 1

To establish an explicit formula for lower and upper approxi-
mations, we first consider the situation when M�

s

(t) = 0 , 
which happens if and only if there exists a � ∈ � such that, 
both Sw(t,�) and �s,Δ(�) are equal to 0. While the comple-
mentary tolerance function Sw is 0, if and only if Sw is 1, i.e. 
the two arguments satisfy t = �  . On the other hand, 
�s,Δ(�) = 0 if and only if � ≥ (s + Δ) , combining this with 
t = � yields, t ≤ (s + Δ).

On the other extreme, M�
s

(t) = 1 , if and only if, either 
Sw(t,�) = 0 or �Δ,s(�) = 1 . The former happens when 
|t − �| ≥ 2w , and the latter happens if � ≤ (s − Δ) . Thus, 
for any t ≤ (s − 2w − Δ) , M�

s

(t) = 1.
By symmetry, M�s

(t) = 0 if t ≥ (s + 2w + Δ) and 
M�s

(t) = 1 if t ≤ (s − Δ).
To  s e e  t h e  b e h av i o u r  o f  M�

s

(t)  w h e n 
(s − 2w − Δ) ≤ t ≤ (s + Δ) , we note that M�

s

(t) is a mini-

mizer of max
(
Sw(t,�),�s,Δ(�)

)
 with respect to � . Since 

both of these functions Sw(t,�) and �s,Δ(�) are continuous, 
the minimax value must be attained at a point t∗ where the 
fuzzy membership function and the tolerance function 
crosses each other, i.e., Sw(t, t∗) = �s,Δ(t

∗).

A.3: Proof of Theorem 2

We can rewrite Theorem 1, as follows,

To prove this lemma, we consider the 3 cases separately.

1.	 t < s − 2w − Δ

2.	 t ≥ s + Δ

3.	 t ∈ [s − 2w − Δ, s + Δ)

1.	 Case 1:  t < s − 2w − Δ Here ,  M�
s

(t) = 1 and 
(2s − T) > (s + Δ + 2w)   .  T h u s , 
M�s

(2s − t) = 0 = 1 −M�
s

(t) which proves Lemma 2 for 
this case.

2.	 C a s e  2 :  t ≥ s + Δ  H e r e ,  M�
s

(t) = 0  a n d 
(2s − T) ≤ (s − Δ) . Again, symmetric to the previous 
case,  M�s

(2s − t) = 1 = 1 −M�
s

(t) which proves 
Lemma 2 for case 2 also.

3.	 Case 3: (s − Δ) ≤ t < (s + 2w + Δ) In this case, 
(2s − T) ∈ (s − Δ, s + Δ + 2w] . Hence, 

M𝛾s
(t) =

⎧⎪⎨⎪⎩

1 if t < (s − Δ)

max
{t∗∶Sw(t,t

∗)=𝜇s,Δ(t
∗)}
𝜇s,Δ(t

∗) if (s − Δ) ≤ t < (s + 2w + Δ)

0 if t ≥ (s + 2w + Δ)
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 So, Lemma 2 also holds for case 3, proving that the 
result is true in general.

A.4: Proof of Theorem 3

We first fix the parameters Δ,w and fix the proposed change-
point s. Let us define, �Δ,�n,w(�s) as a function from l∞(ℕ) to 
ℝ , denoted by �(s);

We would first compute the Fréchet derivative of this at �1(⋅)
.

where | ⋅ | represents the usual absolute value norm on real 
numbers. Now, since � ≠ 0 , without loss of generality 
assume that, 𝜇 > 𝜖 > 0 for some small non-negative � . With 
‖h‖∞ → 0 , we can thus make,

for sufficiently small ‖h‖∞ and some finite real number B. 
On the other hand,

M�s
(2s − t) = max

{t∗∶Sw (2s−t,t
∗ )=�s,Δ(t

∗ )}
�s,Δ(t

∗)

= max
{t∗∶Sw (2s−t,t

∗ )=1−�s,Δ(2s−t
∗ )}

(
1 − �s,Δ(2s − t∗)

)

Since, �s,Δ(t
∗) = 1 − �s,Δ(2s − t∗)

= max
{t∗∶Sw (2s−t,t

∗ )+�s,Δ(2s−t
∗ )=1}

Sw(2s − t, t∗)

= max
{z∗∶Sw (2s−t,2s−z

∗ )+�s,Δ(z
∗ )=1}

Sw(2s − t, 2s − z∗)

Putting z∗ = 2s − t∗

= max
{z∗∶Sw (t,z

∗ )+�s,Δ(z
∗ )=1}

Sw(t, z
∗)

Since, Sw(⋅, ⋅) is location invariant and

g(⋅) is symmetric about 0

=1 −M�
s

(t)

(16)�(s)(R�n
) = 1 −

∑∞

t=1
M�s

(t)R(t)

∑∞

t=1
M�s

(t)R(t)

�������
�(s)(�1 + h) − �(s)(�1) −

∑∞

n=1

�∑∞

t=1
M�

s
(n)M�

s
(t) −

∑∞

t=1
M�

s
(n)M�

s
(t)
�
h(n)

�
�∑∞

t=1
M�

s
(t)
�2

�������

=

�������

∑∞

n=1

�∑∞

t=1
M�

s
(n)M�

s
(t) −

∑∞

t=1
M�

s
(n)M�

s
(t)
�
h(n)

�
�∑∞

t=1
M�

s
(t)
�2

+
�∑∞

t=1
M�

s
(t)
��∑∞

t=1
M�

s
(t)h(t)

�

−

∑∞

n=1

�∑∞

t=1
M�

s
(n)M�

s
(t) −

∑∞

t=1
M�

s
(n)M�

s
(t)
�
h(n)

�
�∑∞

t=1
M�

s
(t)
�2

�������

=

�������

∑∞

n=1

�∑∞

t=1
M�

s
(n)M�

s
(t) −

∑∞

t=1
M�

s
(n)M�

s
(t)
�
h(n)

�
�∑∞

t=1
M�

s
(t)
�2

�������

�����

∑∞

t=1
M�

s
(t)h(t)

∑∞

t=1
M�

s
(t)(� + h(t))

�����

�����

∑∞

t=1
M�s

(t)h(t)
∑∞

t=1
M�s

(t)(� + h(t))

�����
≤

�����

∑∞

t=1
M�s

(t)h(t)
∑∞

t=1
M�s

(t)(�∕2)

�����
≤ B‖h‖∞

Thus,

which goes to 0 as ‖h‖∞ → 0 , where �(s)� (�1) ∶ l∞(ℕ) → ℝ is;

To see that the derivative given in Eq. 17 is well defined, 
note that

which shows that the infinite series is convergent as 
h ∈ l∞(ℕ).

This shows that the function �(s) given in Eq. 16 is Fré-
chet differentiable (see de Miranda and Fichmann 2005 for 
definition) at �1 and the derivative is given by Eq. 17. In a 
very similar way, the roughness measure corresponding to 
the completement set �C

s
 can also be shown to be Fréchet 

differentiable at �1 as a function of {R(t) ∶ t = 0, 1, 2,…}.
Now, in order to obtain the exponential entropy as shown in 

Eq. 11, we consider the function g ∶ [0, 1]2 → ℝ defined as;

Clearly, g is Fréchet differentiable at every point of the 
domain. Finally, a chain rule can be applied on the composi-
tion of g and the roughness measures to show that, Ψs is 
Fréchet differentiable at �1 where Ψs ∶ l∞(ℕ) → ℝ is such 
that Ψs(R�n

) = HE
Δ,�n,w

(s).
Since Fréchet differentiability implies Hadamard differen-

tiability (see discussion followed by Definition 2.1 of Shao 
1993), and outputs a linear operator as the derivative, Ψs is 
also Hadamard differentiable with the derivative given by;

�������

∑∞

n=1

�∑∞

t=1
M�

s
(n)M�

s
(t) −

∑∞

t=1
M�

s
(n)M�

s
(t)
�
h(n)

�
�∑∞

t=1
M�

s
(t)
�2

�������

≤

∞�
n=1

�������

�∑∞

t=1
M�

s
(n)M�

s
(t) −

∑∞

t=1
M�

s
(n)M�

s
(t)
�
h(n)

�
�∑∞

t=1
M�

s
(t)
�2

�������
by triangle inequality

≤
2‖h‖∞

�
�∑∞

t=1
M�

s
(t)
�2

∞�
n=1

�����

∞�
t=1

M�
s
(n)M�

s
(t)
�����

since, �h(n)� ≤ ‖h‖∞

≤
2‖h‖∞

�
�∑∞

t=1
M�

s
(t)
�2

∞�
n=1

∞�
t=1

���M�
s
(n)M�

s
(t)
���

≤
2‖h‖∞

�
�∑∞

t=1
M�

s
(t)
�2

�
∞�
n=1

M�
s
(t)

�2

(∵M�
s
(t) ≤ M�

s
(t) and both are nonnegative)

=
2

�
‖h‖∞

1

‖h‖∞
���𝜌

(s)(𝜇1 + h) − 𝜌(s)(𝜇1) − 𝜌(s)
�

(𝜇1)(h)
��� <

2B

𝜇
‖h‖∞

(17)

�(s)
�

(�1)(h) =

∞�
n=1

⎡⎢⎢⎣

∑∞

t=1
M�s

(n)M�s
(t) −

∑∞

t=1
M�s

(n)M�s
(t)

�
�∑∞

t=1
M�s

(t)
�2

⎤⎥⎥⎦
h(n)

����
(s)� (�1)(h)

��� ≤
2

�
‖h‖∞,

g(x, y) = xe(1−x) + ye(1−y)
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where the function A(n) is as given in Eq. 14. Clearly, this is 
a linear and continuous map.

The proof of the result now follows from an infinite 
dimensional generalization of the delta method (Theorem 1 
and Section 1.4 of Römisch 2014). Based on the discussion 
above, we see that due to the assumption, Z is a Gaussian 
process, and also the Hadamard derivative of the function 
Ψs is linear. Thus, Ψ�

s
(Z) is a normally distributed random 

variable with the mean 0 and variance �∗ , as given in the 
statement of the theorem.
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