Skip to main content

Advertisement

Log in

Optimal allocation of regional water resources under water saving management contract

  • Original Article
  • Published:
Journal of Data, Information and Management Aims and scope Submit manuscript

Abstract

Water Saving Management Contract (WSMC) is a novel market-oriented business model, which can effectually allay the pressure of the regional water crisis. However, the imbalance of water demand and supply affecting the water-saving effect of WSMC will arise with the improvement of relevant water standards. Consequently, reallocating the regional water resources under WSMC is one of the crucial issues that should be solved imminently. An uncertain multi-objective programming (UMOP) model is formulated to rationally allocate the regional water resources under WSMC, taking into account the trade-offs among bene?ts of water consumption while satisfying the double control actions and water environment capacity constraints. In the model, the bene?ts of water consumption, the cost of water supply, and other parameters are considered as uncertain variables for the case of lacking sufficient data. Then, the model is transformed into the deterministic multi-objective model via inverse uncertainty distribution, which is worked out with the non-dominated sorting genetic algorithm-II (NSGA-II). Finally, the central area of Handan City in China is taken as a case study to con?rm the feasibility of the model. The results showed that the condition of water shortage has improved dramatically and which suggests the potential application in similar regions for water resources management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chen S, Xu J, Li Q, Tan X, Nong X (2019) A copula-based interval-bistochastic programming method for regional water allocation under uncertainty. Agric Water Manag 217:154–164

    Article  Google Scholar 

  • Chen X, Liu Y, Ralescu DA (2013) Uncertain stock model with periodic dividends. Fuzzy Optim Decis Making 12(1):11– 123

    Article  MathSciNet  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolutionary Comput 6(2):182C197

    Article  Google Scholar 

  • Der Kiureghian A, Ditlevsen O (2009) Aleatory or epistemic? Does it matter?. Struct Saf 31 (2):105–112

    Article  Google Scholar 

  • Fu J, Zhong P, Chen J, Xu B, Zhu F, Zhang Y (2019) Water resources allocation in transboundary river basins based on a game model considering inflow forecasting errors. Water Resour Manag 33 (8):2809C2825

    Article  Google Scholar 

  • Fu Z., Wang Y., Lu W., Zhao H., Liu J., Guo H. (2018) An inexact stochastic optimization model for multi-conflict regional water resources allocation in the south-to-north water benefited area. J Hydroinform 20(4):946C959

    Google Scholar 

  • Guo H, Shi H, Wang X (2016) Dependent-chance goal programming for water resources management under uncertainty. Sci Program 2016

  • Hannah C (2011) Performance contracting finances water loss reduction program. Water World. https://www.waterworld.com/municipal/water-utility-management/energy-management/article/16192276/performance-contracting-finances-water-loss-reduction-program

  • He Y, Yang J, Chen X (2018) Allocating river water in a cooperative way: a case study of the Dongjiang River Basin, South China. Stoch Env Res Risk A 32(11):3083–3097

    Article  Google Scholar 

  • Hu L, Kang R, Pan X, Zuo D (2020a) Risk assessment of uncertain random systemlevel-1 and level-2 joint propagation of uncertainty and probability in fault tree analysis. Reliab Eng Syst Saf 198:106874

    Article  Google Scholar 

  • Hu L, Kang R, Pan X, Zuo D (2020b) Uncertainty expression and propagation in the risk assessment of uncertain random system. IEEE Syst J 16(2):1604–1615

    Article  Google Scholar 

  • Hu H, Du J, Li X, Shang C, Shen Q (2020) Risk models for hazardous material transportation subject to weight variation considerations. IEEE Trans Fuzzy Syst 29(8):2271–2282

    Article  Google Scholar 

  • Khatiri KN, Niksokhan MH, Sarang A, Kamali A (2020) Coupled simulation-optimization model for the management of groundwater resources by considering uncertainty and conflict resolution. Water Resour Manag 34(11):3585–3608

    Article  Google Scholar 

  • Li X (2013) Credibilistic programming. In Credibilistic Programming. Springer, Berlin

    Book  Google Scholar 

  • Li M, Fu Q, Singh VP, Liu D (2018) An interval multi-objective programming model for irrigation water allocation under uncertainty. Agric Water Manag 196:24C36

    Article  Google Scholar 

  • Liu B (2002) Toward fuzzy optimization without mathematical ambiguity. Fuzzy Optim Decis Making 1(1):43–63

    Article  MathSciNet  Google Scholar 

  • Liu B (2007) Uncertainty theory, 2nd edn. Springer-Verlag Berlin, Heidelberg

    MATH  Google Scholar 

  • Liu B (2009) Some research problems in uncertainty theory. Journal of Uncertain Systems 3 (1):3C10

    Google Scholar 

  • Liu B (2010) Uncertainty theory: A branch of mathematics for modeling human uncertainty. Springer-Verlag Berlin, Heidelberg

    Book  Google Scholar 

  • Liu B, Yao K (2015) Uncertain multilevel programming: Algorithm and applications. Comput Indust Eng 89:235C240

    Article  Google Scholar 

  • Liu Y, Ha M (2010) Expected value of function of uncertain variables. J Uncertain Syst 4 (3):181C186

    Google Scholar 

  • Mini C, Hogue TS, Pincetl S (2015) The effectiveness of water conservation measures on summer residential water use in Los Angeles, California. Resour Conserv Recy 94:136C145

    Article  Google Scholar 

  • Mirfenderesgi G, Mousavi SJ (2016) Adaptive meta-modeling-based simulation optimization in basin-scale optimum water allocation: a comparative analysis of meta-models. J Hydroinform 18(3):446C465

    Article  Google Scholar 

  • Mousavi SJ, Anzab NR, Asl-Rousta B, Kim JH (2017) Multi-objective optimization-simulation for reliability-based inter-basin water allocation. Water Resour Manag 31(11):3445–3464

    Article  Google Scholar 

  • Moridi A (2019) A bankruptcy method for pollution load reallocation in river systems. J Hydroinf 21(1):45–55

    Article  Google Scholar 

  • OECD (2008) Promoting the use of performance-based contracts between water utilities and municipalities in EECCA. Case study no. 2: Armenian Water and Wastewater Company. SAUR Management Contract. http://www.oecd.org/dataoecd/25/20/40572630.pdf

  • Solution A (2011) Veolia water wins new water contracts in Oman. Pump Industry Anal 2011 (1):2

    Google Scholar 

  • Ternes TA, Stumpf M, Mueller J, Haberer K, Wilken RD, Servos M (1999) Behavior and occurrence of estrogens in municipal sewage treatment plants - I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225(1C2):81C90

    Google Scholar 

  • Tian J, Guo S, Liu D, Pan Z, Hong X (2019) A fair approach for multi-objective water resources allocation. Water Resour Manag 33(10):3633C3653

    Article  Google Scholar 

  • Wang H, Liu C, Zhang L (2002) Water-saving agriculture in China: An overview. Adv Agron 75:135C171

    Google Scholar 

  • Ward FA, Pulido-Velazquez M (2008) Water conservation in irrigation can increase water use. Proc Natl Acad Sci United States Am 105(47):18215C18220

    Article  Google Scholar 

  • Wu X, Wang Z, Guo S, Liao W, Zeng Z, Chen X (2017) Scenario-based projections of future urban inundation within a coupled hydrodynamic model framework: A case study in Dongguan City, China. J Hydrol 547:428C442

    Article  Google Scholar 

  • Ye Q, Li Y, Zhuo L, Zhang W, Xiong W, Wang C, Wang P (2018) Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China. Water Res 129:264C276

    Article  Google Scholar 

  • Yin J, Gentine P, Zhou S, Sullivan SC, Wang R, Zhang Y, Guo S (2018) Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nat Commun 9(1):1–10

    Article  Google Scholar 

  • Zeng XT, Li YP, Huang GH, Liu J (2017) Modeling of water resources allocation and water quality management for supporting regional sustainability under uncertainty in an arid region. Water Resour Manag 31(12):3699C3721

    Article  Google Scholar 

  • Zhao L (2015) (Innovation and practice of the contract water-saving management mechanism). Hebei Water Resources, Hebei

    Google Scholar 

  • Zou PXW, Alam M, Sanjayan J, Wilson J, Stewart R, Sahin O, Bertone E, Buntine C, Blair E, Ellis-Jones D (2016) Managing risks in complex building retrofit projects for energy and water efficiency. International Conference on Innovative Pro, tduction and Construction (IPC 2016) 29-30th Sep 2016, Perth

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 61873084, the Graduate Innovative Funding Project of Hebei under Grant No. CXZZSS2019075, and the Social Science Fund Project of Hebei No. HB19GL061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosheng Wang.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix : A

Proof Proof of Theorem 1.

First, The equivalence of the objective functions are proved as follows:

  1. (1)

    Economic objective

    Since bij and cij are independent uncertain variables with regular uncertainty distributions \({{\varPhi }}_{b_{ij}}(x)\) and \({{\varPhi }}_{c_{ij}}(x)\), respectively. It follows from Theorem 2.16 in Liu (2010) that

    $$ \sum\limits_{i=1}^{K}\sum\limits_{j=1}^{J}(b_{ij}-c_{ij})a_{j}x_{ij} $$

    has an inverse uncertainty distribution

    $$ {{\varPhi}}_{1}^{-1}\left( \alpha \right) =\sum\limits_{i=1}^{K}{\sum\limits_{j=1}^{J}{\left[ {{\varPhi}}_{b_{ij}}^{-1}\left( \alpha \right) -{{\varPhi}}_{c_{ij}}^{-1}\left( 1-\alpha \right) \right]}}a_{j}x_{ij}. $$

    Then, by Theorem 6 in Liu and Ha (2010) that

    $$ \begin{aligned} E\left[ \sum\limits_{i=1}^{K}{\sum\limits_{j=1}^{J}{\left( b_{ij}-c_{ij} \right)}}a_{j}x_{ij} \right] &={{\int}_{0}^{1}}{\sum\limits_{i=1}^{K}{\sum\limits_{j=1}^{J}{\left[ {{\varPhi}}_{b_{ij}}^{-1}\left( \alpha \right) -{{\varPhi}}_{c_{ij}}^{-1}\left( 1-\alpha \right) \right]}}}a_{j}x_{ij}d\alpha\\ &=\sum\limits_{i=1}^{K}{\sum\limits_{j=1}^{J}{a_{j}}}x_{ij}{{\int}_{0}^{1}}{\left[ {{\varPhi}}_{b_{ij}}^{-1}\left( \alpha \right) -{{\varPhi}}_{c_{ij}}^{-1}\left( 1-\alpha \right) \right]}d\alpha . \end{aligned} $$
  2. (2)

    Social objective

    Since uj is an uncertain variable with regular uncertainty distributions \({{\varPhi }}_{u_{j}}(x)\). It follows from Theorem 2.16 in Liu (2010) that

    $$ \sum\limits_{j=1}^{J}{\left( m_{j}u_{j}-a_{j}\sum\limits_{i=1}^{K}{x_{ij}} \right)} $$

    has an inverse uncertainty distribution

    $$ {{\varPhi}}_{2}^{-1}\left( \alpha \right) =\sum\limits_{j=1}^{J}{\left[ m_{j}{{\varPhi}}_{u_{j}}^{-1}\left( \alpha \right) -a_{j}\sum\limits_{i=1}^{K}{x_{ij}} \right]}. $$

    Then, by Theorem 6 in Liu and Ha (2010) that

    $$ \begin{aligned} E\left[ \sum\limits_{j=1}^{J}{\left( m_{j}u_{j}-a_{j}\sum\limits_{i=1}^{K}{x_{ij}} \right)} \right] &={{\int}_{0}^{1}}{\sum\limits_{j=1}^{J}{\left[ m_{j}{{\varPhi}}_{u_{j}}^{-1}\left( \alpha \right) -a_{j}\sum\limits_{i=1}^{K}{x_{ij}} \right]}}d\alpha\\ &=\sum\limits_{j=1}^{J}{\left[ m_{j}{{\int}_{0}^{1}}{{{\varPhi}}_{u_{j}}^{-1}}\left( \alpha \right) d\alpha -a_{j}\sum\limits_{i=1}^{K}{x_{ij}} \right]}. \end{aligned} $$
  3. (3)

    Ecological objective

    Since dj is an variable with regular uncertainty distributions \({{\varPhi }}_{d_{j}}(x)\). It follows from Theorem 2.16 in Liu (2010) that

    $$ \sum\limits_{i=1}^{K}{\sum\limits_{j=1}^{J}{a_{j}}}x_{ij}p_{j}d_{j} $$

    has an inverse uncertainty distribution

    $$ {{\varPhi}}_{3}^{-1}\left( \alpha \right) ={{\int}_{0}^{1}}{\sum\limits_{i=1}^{K}{\sum\limits_{j=1}^{J}{a_{j}}}}x_{ij}p_{j}{{\varPhi}}_{d_{j}}^{-1}\left( \alpha \right) d\alpha . $$

    Then, by Theorem 6 in Liu and Ha (2010) that

    $$ \begin{aligned} E\left[ \sum\limits_{i=1}^{K}{\sum\limits_{j=1}^{J}{a_{j}}}x_{ij}p_{j}d_{j} \right] &={{\int}_{0}^{1}}{\sum\limits_{i=1}^{K}{\sum\limits_{j=1}^{J}{a_{j}}}}x_{ij}p_{j}{{\varPhi}}_{d_{j}}^{-1}\left( \alpha \right) d\alpha\\ &=\sum\limits_{i=1}^{K}{\sum\limits_{j=1}^{J}{a_{j}}}x_{ij}p_{j}{{\int}_{0}^{1}}{{{\varPhi}}_{d_{j}}^{-1}}\left( \alpha \right) d\alpha . \end{aligned} $$

    Secondly, the equivalence of the constraint conditions are proved as follows:

  4. (4)

    Water demand constraint.

    Since uj is an variable with regular uncertainty distributions \({{\varPhi }}_{u_{j}}(x)\). By Theorem 1.12 in Liu (2010) we have

    $$ \begin{array}{c} \mathrm{M}\left\{ \left( a_{j}{\sum}_{i=1}^{K}{\{}x_{ij}/m_{j} \right) \leqslant u_{j}\} \right\} \geqslant \beta_{j}\\ \Longleftrightarrow \mathrm{M}\left\{ u_{j}\leqslant a_{j}{\sum}_{i=1}^{K}{x_{ij}/m_{j}} \right\} \leqslant 1-\beta_{j}\\ \Longleftrightarrow {{\varPhi}}_{u_{j}}\left( a_{j}{\sum}_{i=1}^{K}{x_{ij}}/m_{j} \right) \leqslant 1-\beta_{j}\\ \Longleftrightarrow {\sum}_{i=1}^{K}{a_{j}x_{ij}}\leqslant m_{j}{{\varPhi}}_{u_{j}}^{-1}\left( 1-\beta_{j} \right) . \end{array} $$
  5. (5)

    Pollutant emission constraint

    It follows the proof of ecological objective, thus the constraint of pollutant emission is equal to:

    $$ \sum\limits_{i=1}^{K}{a_{j}}x_{ij}p_{j}{{\int}_{0}^{1}}{{{\varPhi}}_{d_{j}}^{-1}}\left( \alpha \right) d\alpha \le Q_{j}. $$

Then the theorem is proved. □

Appendix : B

Zigzag uncertain variable.

Table 12 The unit income obtained from water consumption. (Unit:RMByuan/m3 )
Table 13 The unit cost of tsupplying water. (Unit:RMByuan/m3)
Table 14 The standard of water consumption per unit per year for water users
Table 15 The pollutant concentration in wastewater discharged from water users

Normal uncertain variable.

Table 16 The unit income obtained from water consumption. (Unit:RMByuan/m3 )
Table 17 The unit cost of supplying water. (Unit:RMByuan/m3)
Table 18 The standard of water consumption per unit per year for water users
Table 19 The pollutant concentration in wastewater discharged from water users. (Unit:g/m3)

Appendix : C

The deterministic model.

$$ \left\{\begin{array}{l} \displaystyle\max{\sum}_{i=1}^{4}{\sum}_{j=1}^{4}(b_{ij}-c_{ij})a_{j}x_{ij}\\ \displaystyle\min {\sum\limits_{j = 1}^{4} {\left( { {m_{j}}{u_{j}}-{a_{j}}\sum\limits_{i = 1}^{4} {{x_{ij}}} } \right)} } \\ \displaystyle\min {\sum}_{i=1}^{4}{\sum}_{j=1}^{4}a_{j}x_{ij}p_{j}d_{j}\\ \textup{subject to:} \\ \quad\displaystyle {\sum}_{j=1}^{4}x_{ij}\leq w_{i} \\ \quad\displaystyle {l_{j}}\leq \sum\limits_{i = 1}^{4} {{a_{j}}{x_{ij}}} \leq{m_{j}}{u_{j}} \\ \quad\displaystyle{\sum}_{i=1}^{4}a_{j}x_{ij}p_{j}d_{j} \leq Q_{j} \\ \quad\displaystyle x_{ij}\geq 0,i=1,2,\cdots,4. \quad j=1,2,\cdots,4. \end{array}\right. $$
(4)
Table 20 The unit income obtained from water consumption. (Unit:RMByuan/m3 )
Table 21 The unit cost of supplying water. (Unit:RMByuan/m3)
Table 22 The standard of water consumption per unit per year for water users
Table 23 The pollutant concentration in wastewater discharged from water users

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, X., Wang, X., Hu, H. et al. Optimal allocation of regional water resources under water saving management contract. J. of Data, Inf. and Manag. 3, 281–296 (2021). https://doi.org/10.1007/s42488-021-00059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42488-021-00059-x

Keywords

Navigation