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Abstract
Stroke is known as a major global health problem, and for stroke survivors it is key to monitor the recovery levels. However, 
traditional stroke rehabilitation assessment methods (such as the popular clinical assessment) can be subjective and expen-
sive, and it is also less convenient for patients to visit clinics in a high frequency. To address this issue, in this work based on 
wearable sensing and machine learning techniques, we develop an automated system that can predict the assessment score 
in an objective manner. With wrist-worn sensors, accelerometer data is collected from 59 stroke survivors in free-living 
environments for a duration of 8 weeks, and we map the week-wise accelerometer data (3 days per week) to the assessment 
score by developing signal processing and predictive model pipeline. To achieve this, we propose two types of new features, 
which can encode the rehabilitation information from both paralysed and non-paralysed sides while suppressing the high-level 
noises such as irrelevant daily activities. Based on the proposed features, we further develop the longitudinal mixed-effects 
model with Gaussian process prior (LMGP), which can model the random effects caused by different subjects and time slots 
(during the 8 weeks). Comprehensive experiments are conducted to evaluate our system on both acute and chronic patients, 
and the promising results suggest its effectiveness.

Keywords  Wrist-worn accelerometer sensor · Stroke rehabilitation · CAHAI score · Regression model

1  Introduction

It is widely known that stroke is a worldwide health problem 
causing disability and death (Donnan et al. 2008), and it 
occurs when a blood clot cuts off oxygen supply to a region 
of the brain. Hemiparesis is a very common symptom of 
post-stroke that is the fractional or intact paralysis of one 
side of the body, i.e., the opposite side to where the blood 
clot occurs, and it results in difficulties in performing activi-
ties, e.g., with reduced arm movement. Patients can recover 
some of their capabilities with intense therapeutic input, so it 
is important to assess their recovery levels in time. There are 
many approaches to assess patients’ recovery levels includ-
ing brain imaging (Wintermark et al. 2005), questionnaire-
based (Pietro et al. 2007), and lab-based clinical assessment 
(Barreca et al. 2005).

The brain imaging technique, is deemed as one of the 
most reliable approach, which can provide the information 
of brain hemodynamics (Wintermark et al. 2005). However, 
this approach requires special equipment and is very expen-
sive in cost. Questionnaire-based approaches investigate the 
functional ability during a period using questionnaires, and 
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it can be categorised into two types: patient-completed and 
caregiver-completed (Pietro et al. 2007). Although it is much 
cheaper than brain imaging approaches, it may contain high-
level of bias. For instance, patients may not remember their 
daily activities (i.e.,recall bias); the caregivers may not be 
able to observe the patient all the time. These biases make 
questionnaire-based approaches less precise. Lab-based 
clinical assessment approaches (Barreca et al. 2005), on the 
other hand, provide an alternative solution. The patients’ 
upper limb functionality will be assessed by clinicians, 
e.g., by observing patients’ capabilities of finishing certain 
pre-defined activities (Barreca et al. 2005). Compared with 
braining imaging or questionnaire-based approaches, the 
cost of lab-based clinical assessment approaches is reason-
able with high accuracy. However, this assessment is nor-
mally taken in clinics/hospitals, which is not convenient for 
the patients, making continuous monitoring less feasible.

In this work, we aim to build an automated stroke reha-
bilitation assessment system using wearable sensing and 
machine learning techniques. Different from the aforemen-
tioned approaches, our system can measure the patients 
objectively and continuously in free-living environments. 
We collect accelerometer data using wrist-worn accelerom-
eter sensors, and design compact features that can capture 
rehabilitation-related movements, before mapping these fea-
tures to clinical assessment scores (i.e., the model training 
process). The trained model can be used to infer recovery-
level for other unknown patients. In free living environ-
ments, there are different types of movements which may be 
related to different frequencies. For example, activities such 
as running or jumping may correspond to high-frequency 
signals, while sedentary or eating may be low-frequency sig-
nals. In this study, instead of recognising the daily activities 
explicitly, which is hard to achieve given limited annotation 
(e.g., without frame/sample-wise annotation), we transform 
the raw accelerometer data to the frequency domain, where 
we design features that can encode the rehabilitation-related 
movements. Specifically, wavelet transform (Walden et al. 
2000) is used, and the wavelet coefficients can represent the 
particular frequency information at certain decomposition 
scales. In Preece et al. (2009), provide some commonly 
used wavelet features extracted from accelerometer data. 
However, to capture stroke rehabilitation-related activities, 
some domain knowledge should be taken into account to 
design better features. After stroke, patients have difficul-
ties in moving one side (i.e., paralysed side) due to the brain 
injury, and data from paralysed side tends to describe more 
about the upper limb functional ability, than the non-par-
alysed side (i.e., normal side). However, such signals can 
be significantly affected by personal behaviours or irrele-
vant daily activities, and such noises should be suppressed 
before developing the predictive models. Various wavelet 
features were studied, and we propose two new types of 

daily-activity-invariant features that can encode information 
from both paralysed/non-paralysed sides, before developing 
predictive models for stroke rehabilitation assessment. Spe-
cifically, in this work our contributions can be summarised 
as follows:

•	 Stroke-rehab-driven features: We propose two new types 
of compact wavelet-based features that can encode infor-
mation from both paralysed and non-paralysed sides to 
represent upper limb functional abilities for stroke reha-
bilitation assessment. It can significantly suppress the 
influences of personal behaviours or irrelevant daily 
activities for data collected in the noisy free-living envi-
ronment.

•	 Automated assessment system: Based on the proposed 
stroke-rehab-driven features, we developed the auto-
mated system by using the longitudinal mixed-effects 
model with Gaussian process prior (LMGP). Various 
predictive models were studied, and we find LMGP can 
model the random effects caused by the heterogeneity 
nature among subjects in a 8-week longitudinal study.

•	 Comprehensive evaluation: Comprehensive experiments 
are designed to study the effectiveness of our system. We 
comprehensively studied the feature subset on model-
ling the mixed-effects of LMGP. Compared with other 
approaches, the results suggest the effectiveness of the 
proposed system on both acute and chronic patients.

2 � Background and related work

As described in Sect. 1, lab-based clinical assessment is one 
of the most effective stroke rehabilitation assessment meth-
ods. In this section, we introduce the lab-based approach 
named Chedoke Arm and Hand Activity Inventory (CAHAI) 
scoring (Barreca et al. 2006), based on which our automated 
system can be developed. Some sensing and machine learn-
ing techniques for automated health assessment are also 
reviewed in this section.

2.1 � Chedoke arm and hand activity inventory 
(CAHAI)

CAHAI scoring is a clinical assessment method for stroke 
rehabilitation, and it is a fully validated measure Barreca 
et al. (2006) of upper limb functional ability with 9 tasks 
which are scored by using a 7-point quantitative scale. In 
the assessment, the patient will be asked to perform 9 tasks, 
including opening a jar of coffee, drawing a line with a ruler, 
calling 911, etc. and the clinician will score these behaviours 
based on patient’s performance at a scale from 1 (total assist 
weak) to 7 (complete independence i.e., timely, safely) (Bar-
reca et al. 2006). A task example “call 911” is shown in 
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Fig. 1. Thus the minimum and maximum summation scores 
are 7 and 63 respectively. A CAHAI score form can be found 
in Fig. 12 in Appendix 2.

2.2 � Automated behaviour assessment using 
wearables

Recently, wearable sensing and machine learning (ML) 
techniques are comprehensively studied for automated 
health assessment. Compared with the traditional assess-
ment approaches (e.g., via self-reporting, clinical assess-
ment, etc.) which are normally subjective and expensive, 
the automated systems may provide an objective, low-cost 
alternative, which can also be used for continuous monitor-
ing/assessment. Some automated systems are developed to 
assess the behaviours of diseases such as Parkinson’s disease 
(zia ur et al. 2019; Hammerla et al. 2015), autism (Ploetz 
et al. 2012), depression (Little et al. 2020); or to monitor 
the health status such as sleep (Zhai et al. 2020; Supratak 
et al. 2017), fatigue (Bai et al. 2020; Ibrahim et al. 2020), or 
recover-level from surgery (Ratcliffe et al. 2020; Gurchiek 
et al. 2019), etc.

After collecting behaviour or physiological signals (e.g., 
accelerometers, ECG, audio, etc.), assessment/monitoring 
models can be developed. For application with high inter-
pretability requirement, feature engineering can be a crucial 
step. For example, with gait parameters extracted from IMU 
sensors (such as stride, velocity, etc.), one can build simple 
ML models (e.g., random forest) for Parkinson’s disease 
classification (zia ur et al. 2019) or fatigue score regres-
sion (Ibrahim et al. 2020). Compared with the redundant 
IMU data, gait parameters are more compact and interpret-
able, making it suitable for clinical applications. However, 
designing interpretable/clinically-relevant features can be a 

time-consuming process, which may also require domain 
knowledge (Zhai et al. 2020; Ibrahim et al. 2020; zia ur et al. 
2019; Ratcliffe et al. 2020; Gurchiek et al. 2019).

On the other hand, when interpretability is less required, 
deep learning can be an alternative approach, which can be 
directly applied to the raw signal (Supratak et al. 2017) or 
engineered features (Hammerla et al. 2015; Zhai et al. 2020; 
Bai et al. 2020; Little et al. 2020 for (high-level) representa-
tion learning and classification/regression tasks. However, it 
normally requires adequate data annotation for better model 
generalisation.

2.3 � Sensing techniques for automated stroke 
rehabilitation monitoring

With the rapid development of the sensing/ML techniques, 
researchers also start to apply various sensors for stroke 
rehabilitation monitoring. In Dolatabadi et al. (2017), Kinect 
sensor is used in a home-like environments to detect the key 
joints such that stroke patients’ behaviour can be assessed. 
In Ganesh et al. (2018), a wireless surface Electromyography 
(sEMG) device is used to monitor the muscle recruitment 
of the post-stroke patients to see the effect of orthotic inter-
vention. In clinical environments, five wearable sensors are 
placed on the trunk, upper and forearm of the two upper 
limbs to measure the reaching behaviours of the stroke sur-
vivors (Jung et al. 2018). To monitor motor functions of 
stroke patients during rehabilitation sessions at clinics, an 
ecosystem including a jack and a cube for hand grasping 
monitoring, as well as a smart watch for arm dynamic moni-
toring was designed (Bobin et al. 2019). These techniques 
can objectively assess/measure the behaviours of the stroke 
patients, yet they are either limited to clinical environments 
(Bobin et al. 2019; Jung et al. 2018; Ganesh et al. 2018 or 
constrained environments [e.g., in front of a camera Dola-
tabadi et al. (2017)].

Most recently, wrist-worn sensors are used for stroke 
rehabilitation monitoring for patients in free-living envi-
ronment (Halloran et al. 2019; Tang et al. 2020). In each 
trial, 3-day accelerometer data are collected from both wrists 
(with a trial-wise annotation, i.e., CAHAI score), and for 
both works (Halloran et al. 2019; Tang et al. 2020) data 
analysis is performed using the sliding window approach. 
To reduce the data redundancy of the raw data, PCA fea-
tures are extracted from each window (Halloran et al. 2019; 
Tang et al. 2020). Moreover, due to the lack of window-
wise annotation, in Halloran et al. (2019) pseudo label is 
assigned to each window such that a random forest regressor 
can be trained, while in Tang et al. (2020) Gaussian Mixture 
Models (GMM) clustering approach is employed to learn 
the holistic trial-wise representation, before developing the 
regression model. Both methods (Halloran et al. 2019; Tang 
et al. 2020) suffer from the lack of annotation. In Halloran 

Fig. 1   The clinical behaviour assessment for CAHAI scoring Barreca 
et al. (2006)
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et al. (2019), pseudo labeling is introduced, yet the trained 
model is affected by the introduced label noise. In Tang et al. 
(2020), the application of GMM clustering (on the sliding 
windows) makes it computationally expensive to large data, 
and the trained model does not generalise well to unseen 
subjects.

In our work, by analysing the nature of the paralysed/
non-paralysed sides, we design stroke-rehab-driven features 
which can directly encode the long accelerometer sequence 
(e.g., a trial with 3-day accelerometer data) into a very com-
pact representation. The features are expected to emphasis 
the stroke-related behaviours while suppressing the irrel-
evant activities. Based on the proposed features, a predictive 
model that is adaptive to different subjects/time-slots can be 
developed using LMGP (Shi et al. 2012) for CAHAI score 
prediction.

3 � Methodology

In this section, we introduce our method from data col-
lection, data pre-processing, feature design to predictive 
models. Our aim is to develop an automated model which 
can map the free-living 3-day accelerometer data into the 
CAHAI score. With the trained model, we can automatically 
infer the CAHAI score in an objective and continuous man-
ner. To achieve this, we first reduce the data redundancy via 
preprocessing and design compact and discriminant features. 
Given the proposed features, a longitudinal mixed-effects 
model with Gaussian Process prior (LMGP) is used (Shi 
et al. 2012), which can further reduce the impact of large 
variability (caused by different subjects and time slots) for 
higher prediction results.

3.1 � Data acquisition

3.1.1 � Participants

Data is collected as part of a bigger research study which 
aims to use a bespoke, professionally-written video game as 
a therapeutic tool for stroke rehabilitation (Shi et al. 2013). 
Ethical approval is obtained from the National Research Eth-
ics Committee and all work undertaken is in accordance 
with the Declaration of Helsinki. Written, informed consent 
from all the subjects is obtained. A cohort of 59 stroke sur-
vivors, without significant cognitive or visual impairment, 
are recruited for the study. Patients were divided into two 
groups, i.e.,

•	 Group 1: the acute patient group, consisting of 26 partici-
pants who enrolled into the study within 6 months after 
stroke;

•	 Group 2: the chronic patient group, including 33 partici-
pants who were 6 months or more post onset of stroke.

The distributions of acute/chronic condition, gender, domi-
nant/non-dominant hand, paralysed/non-paralysed side with 
respect to age are shown in Fig. 2.

These 59 patients visit the clinic for the CAHAI scoring 
every week (a random day in weekdays) for a duration of 
8 weeks. In the 8 weeks, they are asked to wear two wrist-
worn sensors for 3 full days (including night time) a week. 
They are also advised to remove the device during shower or 
swimming. Since some patients need time to get familiar to 
this data collection procedure, for better data quality we do 
not use the first week’s accelerometer data. The first week’s 
CAHAI scores are used as medical history information.

3.1.2 � Data collection

In contrast to other afore-mentioned sensing techniques 
(Jung et al. 2018; Bobin et al. 2019; Ganesh et al. 2018; 
Dolatabadi et al. 2017), in this study we collect the acceler-
ometer data from wrist-worn sensors in free-living environ-
ments. The sensor used for this study, i.e., AX3 (Axivity 
Ltd 2020), is a triaxial accelerometer logger that is designed 
for physical activity/behaviour monitoring, and it has been 
widely used in the medical community [e.g., for the UK 
Biobank physical activity study Doherty et al. 2017]. The 
wrist bands are also designed such that the users can com-
fortably wear it without affecting their behaviours. The data 
is collected at 100Hz sampling rate, which can well preserve 
the daily activities of human being (Bouten et al. 1997). 
Different from human activity recognition which requires 
sample-wise or frame-wise annotation (Guan and Ploetz 
2017; Ploetz and Guan 2018), the data collection in this 
study is relatively straight-forward. The patients put on both 
wrist-worn sensors 3 full days a week, before visiting clini-
cians for CAHAI scoring (i.e., week-wise annotation). In 
other words, we aim to use accelerometer data captured in 
free-living environments to represent the stroke survivors’ 
upper limb activities to measure the degree of paresis (Stig 
JÃzgensen et al. 1999) (i.e., CAHAI score).

One problem with most commercial sensors is that only 
summary data (e.g., step count from fitbit), instead of raw 
data, are available. The algorithms of producing summary 
data are normally non-open source, and may vary from 
vendor to vendor—making the data collection and analysis 
device-dependent, and thus less practical in terms of gener-
alisation and scalability. The AX3 device used in this study, 
on the other hand, outputs the raw acceleration information 
in x, y, z directions. It is simple and transparent, making 
the collected data re-usable, which is crucial for research 
communities.
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3.2 � Data pre‑processing

For accelerometer data, signal vector magnitude (VM) 
(Karantonis et al. 2006) is a popular representation, which 
is simply the magnitude of the triaxial acceleration data 
defined as a(t) =

√
a2
x
(t) + a2

y
(t) + a2

z
(t), where ax(t) , ay(t) , 

az(t) are the acceleration along the x, y, z axes at times-
tamp t .  The gravity effect can be removed by 
VM(t) = |a(t) − 1| . Because its simplicity and effective-
ness, VM has been widely used in health monitoring tasks, 
such as fall detection (Karantonis et al. 2006), physical 
activity monitoring (Doherty et al. 2017), perinatal stroke 
assessment (Gao et al. 2019), etc. To further reduce the 
data volume, we used second-wise VM, i.e., the mean VM 
over each second (including 100 samples per second) will 
be used as new representation. Some second-wise VM 
examples (from two patients) can be found in Fig. 3.

3.3 � The proposed stroke‑rehab‑driven features

3.3.1 � Challenges

We aim to build a model that can map the 3-day time-
series data to the CAHAI score. Different from other 

wearable-based behaviour analysis tasks (e.g., Ploetz et al. 
2012; Guan and Ploetz 2017), the annotation here is inad-
equate. Even if we used the second-wise VM data, each 
trial still included roughly 3 days × 24h/day × 3600s/h 
= 259200 samples (a.k.a. timestamps) with one annotation 
(i.e., CAHAI score). In contrast to the popular deep learning 
based human activity recognition approaches, which can be 
trained when with rich annotations (in frame-wise or sam-
ple-wise level), the lack of annotation makes it hard to learn 
effective representation directly (using machine/deep learn-
ing) from the raw data. Moreover, since the data is collected 
in free-living environments, and the 3 full days (per week) 
can be taken in weekdays or weekends, which may increase 
the intra-subject variability significantly, making it hard 
to model. To address the afore-mentioned issues, domain 
knowledge driven feature engineering may play a major role 
in extracting compact and discriminant signatures.

3.3.2 � Wavelet features

For time-series analysis, wavelet analysis is a powerful 
tool to represent various aspects of non-stationary sig-
nals such as trends, discontinuities, and repeated pat-
terns (Ayachi et al. 2016; Walden et al. 2000; Preece et al. 
2009), which is especially useful in signal compression 
or noise reduction. Given its properties, wavelet features 
have been widely used in accelerometer-based daily living 
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Fig. 2   Demographic information of the collected dataset (with 59 subjects): the distributions of acute/chronic condition, gender, dominant/non-
dominant hand, paralysed/non-paralysed side with respect to age
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activity analytics (Ayachi et al. 2016). In this work, we use 
discrete wavelet transform (DWT) and discrete wavelet 
packet transform (DWPT) as feature extractors, based on 
which new features were designed to preserve the stroke 
rehabilitation-related information. More details of DWT 
and DWPT can be found at Appendix 3.

After applying the DWT and DWPT, VM signals can 
be transformed to the wavelet coefficients at different 
decomposition scales. In this work, DWT coefficients at 
scales {2, 3, 4, 5, 6, 7} and DWPT at scales {1.1, 1.2, 1.3, 1.4} 
are employed, and the corresponding normalised Sum of 
Absolute value of the coefficients at different Decomposi-
tion scales (referred to as SAD features) are used as new 
representation. Specifically, SAD includes DWPT features 
defined as

and DWT features defined as

where W presents the wavelet coefficients and N presents 
the length of the VM data. More technical details of DWT, 
DWPT, as well as the scale selection can be found in 
Appendix 4.

(1)

SAD1.1 =
‖

‖

W3.4
‖

‖1

N∕23
= 23

‖

‖

W3.4
‖

‖1
N

,

SAD1.2 =
‖

‖

W3.5
‖

‖1

N∕23
= 23

‖

‖

W3.5
‖

‖1
N

,

SAD1.3 =
‖

‖

W3.6
‖

‖1

N∕23
= 23

‖

‖

W3.6
‖

‖1
N

,

SAD1.4 =
‖

‖

W3.7
‖

‖1

N∕23
= 23

‖

‖

W3.7
‖

‖1
N

,

(2)

SADj =

‖‖‖Wj
‖‖‖1

N∕2j
= 2j

‖‖‖Wj
‖‖‖1

N
, j = 2, 3, 4, 5, 6, 7,

Through wavelet transformation, the long sequence 
(e.g., VM data in Fig. 3) can be transformed into compact 
SAD representation (i.e., 10-dimensional feature vector, 
with entries listed in Eqs. 1 and 2). In Fig. 4, we visual-
ise compact SAD features corresponding to the paralysed 
sides of two patients (i.e., patients la012 and la040 from 
Fig. 3). We notice in the SAD feature space, it is not easy 
to distinguish the paralysed sides from these two different 
patients (in terms of CAHAI), indicating the necessity of 
developing more advanced stroke-related features (e.g., by 
also considering the non-paralysed side).

Fig. 3   The signal vector magnitude (VM) data collected from two patients (on the paralysed side); Patient la012 has a CAHAI score of 55, while 
Patient la040 has a CAHAI score of 26

Fig. 4   10-dimensional SAD features extracted from the paralysed 
side of two patients (with different CAHAI scores); They exhibit sim-
ilar patterns, indicating the necessity of developing more informative 
stroke-related features
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3.3.3 � Proposed features

Based on the compact SAD representation, we aim to further 
design effective features for reliable CAHAI score regression. 
In Figs. 3 and 4, we visualise the behaviour patterns in differ-
ent feature spaces. Specifically, we plot the paralysed side of 
patient la012 (with CAHAI score 55), and la040 (with CAHAI 
26) using VM representation (Fig. 3) and SAD representa-
tion (Fig. 4). From both figures, we can see the limitations of 
both representations. Although VM can demonstrate distinct 
patterns from both patients, it may be also related to the large 
intra-class variability (e.g., personalised behaviour patterns). 
Moreover, the redundancy as well as the high-dimensional-
ity make it hard for modelling. On the other hand, SAD has 
low dimensionality, yet both patients exhibited high-level of 
similarity, indicating that SAD of the paralysed side alone is 
not enough for distinguishing patients with different recovery 
levels.

Given the observations, we further visualise SAD features 
from both paralysed/non-paralysed sides for both patients in 
Fig. 5. We can see patient la012 (with high recovery level) 
uses both hands (almost) equally while patient la040 (with 
low recovery level) tends to use the non-paralysed side more. 
These observations motivate us to design new features using 
both sides, instead of the paralysed side alone. In this work, 
we propose two types of features that combine both Paralysed 
side and Non-Paralysed side, namely 1) PNP1 that encodes the 
ratio information with entries defined as:

as well as its variant 2) ���� with entries defined as:

(3)PNP1
k
=

SAD
p

k

SAD
np

k

where k represents the scales defined in SAD features (as 
shown in Eqs. 1 and 2); p and np refer to the paralysed 
side and non-paralysed side respectively. We also visualise 
patient la012 and patient la040 using the new proposed fea-
tures PNP1 and PNP2 in Fig. 6, from which we can see the 
proposed features can well distinguish these two patients, in 
contrast to SAD (Fig. 4). Although the proposed PNP fea-
tures empirically exhibit the desired properties (i.e., compact 
and informative) for two patients, it should be pointed out 
that larger scale experiments should be conducted to evalu-
ate the generalisation capability, which will be provided in 
the experimental section.

We summarise the procedure of generating PNP features 
as follows: 

1.	 Given 3-day raw accelerometer data, calculating the 
signal vector magnitude (VM) with the gravity effect 
removed;

2.	 calculating the second-wise VM (mean VM value for 
each second) as the new representation;

3.	 calculating DWPT features at scales {1.1, 1.2, 1.3, 1.4} 
and DWT features at scales {2, 3, 4, 5, 6, 7}

4.	 given the DWPT and DWT features, calculating the 
10-dimensional SAD features via Eqs. (1) and (2).

5.	 given SAD features, calculating the two proposed PNP1 
and PNP2 features, via Eqs. (3) and (4).

We list 4 types of features, i.e., the original wavelet fea-
tures extracted from paralysed ( SADp ) and non-paralysed 
sides ( SADnp ) separately, as well as the two new proposed 

(4)PNP2
k
=

SAD
np

k
− SAD

p

k

SAD
np

k
+ SAD

p

k

,

Fig. 5   SAD representation with both paralysed/non-paralysed sides from two different patients (la012 with CAHAI score 55, and la040 CAHAI 
score 26). SAD features from the non-paralysed side may contain discriminant information for stroke-rehab modelling
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features ( PNP1 and PNP2 ). Based on 10 scales, we can 
form 40-dimensional feature vector, as shown in Table 1. 
However, there exist certain level of noises and redundancy 
(especially on SADp , and SADnp ), so it is crucial to develop 
feature selection mechanism or powerful prediction models 
for higher performance.

3.4 � Predictive models

Based on the proposed representation, we aim to develop 
predictive models that can map features to the CAHAI score. 
Although we reduce the data redundancy significantly, there 
still exist data noises, which may encode irrelevant informa-
tion. It is crucial to develop robust mechanism to select the 
most relevant features, and here we use a popular feature 
selection linear model (LASSO). To model the nonlinear 
random effects in the longitudinal study, we also propose 
to use the longitudinal mixed-effects model with Gaussian 
Process prior (LMGP).

It is worth noting that our model will also take advantage 
of the medical history information (i.e., CAHAI score during 
the first visit) to predict CAHAI scores for the rest 7 weeks 

(i.e., week 2– week 8). From the perspective of practical 
application, CAHAI score from the initial week (referred to 
as ini) may be used as an important normalisation factor for 
different individuals.

3.4.1 � The linear fixed‑effects model

Since there may exist some redundant or irrelevant features 
for the prediction task, first we propose to use LASSO (Least 
Absolute Shrinkage and Selection Operator) for feature 
selection.

Given the 41-dimensional input variables (40 wavelet fea-
tures listed in Table 1 and one CAHAI score from the initial 
week), first we standardise the data using z-norm, and each 
feature entry xk will be normalised as xnew

k
= (xk − x)∕sk , 

where x and sk are the mean and standard deviation of the 
kth feature. Based on the aforementioned model, namely 
LASSO, useful features can be selected, based on which 
prediction model can be developed. For simplicity, we first 
use linear model to predict the target CAHAI score yi:

where i stands for the ith trial/visit (during week 2–week 8) 
and j represents the jth patients; xij represents the selected 
feature vector; � are the model parameter vector to be esti-
mated, and �ij is the random noise term.

3.4.2 � Longitudinal mixed‑effects model with Gaussian 
process prior (LMGP)

It is simple to use linear model for CAHAI score predic-
tion. However, it ignores the heterogeneity nature among 
subjects in this longitudinal study. To model the heteroge-
neity, we propose to use a nonlinear mixed-effects model 

(5)yij = x
T
ij
� + �ij, �ij ∼ N(0, �2),

Fig. 6   Two proposed PNP representations for two patients(la012, and la040), which can provide discriminant information in distinguishing the 
patients with different recovery levels (clinical CAHAI score)

Table 1   The proposed rehab-driven features

Feature type Feature entries for each type

SADp SAD
p

1.1
 , SADp

1.2
 , SADp

1.3
 , SADp

1.4
 , SADp

2
 , SADp

3
 , ..., SADp

7

SADnp SAD
np

1.1
 , SADnp

1.2
 , SADnp

1.3
 , SADnp

1.4
 , SADnp

2
 , SADnp

3
 , ..., 

SADnp
7

PNP1 PNP1

1.1
 , PNP1

1.2
 , PNP1

1.3
 , PNP1

1.4
 , PNP1

2
 , PNP1

3
 , ..., PNP1

7

PNP2 PNP2

1.1
 , PNP2

1.2
 , PNP2

1.3
 , PNP2

1.4
 , PNP2

2
 , PNP2

3
 , ..., PNP2

7
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(Shi et al. 2012), which consists of the fixed-effects part 
and random-effects part. Specifically, the random-effects 
part contributes mainly on modelling the heterogeneity, 
making the the prediction process subject/time-adaptive 
for longitudinal studies. The longitudinal mixed-effects 
model with Gaussian Process prior (LMGP) is defined as 
follows:

where i,j stand for the ith patient at the jth visit (from week 2 
to week 8); �ij refers to as independent random error and �2 
is its variance. In Eq. (6), xT

ij
� is the fixed-effects part and 

g(�ij) represents the nonlinear random-effects part, and the 
latter can be modelled using a non-parametric Bayesian 
approach with a GP prior (Shi et al. 2012).

It is worth noting that in LMGP the fixed-effects part xT
ij
� 

explains a linear relationship between input features and 
CAHAI, while the random-effects part g(�ij) is used to 
explain the variability caused by differences among indi-
viduals or time slots during different weeks. By considering 
both parts, LMGP provides a solution of personalised mod-
elling for this longitudinal data analysis. In LMGP, it is 
important to select input features to model both parts, and 
we refer them to as fixed-effects features and random-effects 
features, respectively. The effect of the fixed-effects features 
will be studied in the experimental evaluation section.

For LMGP training, we first ignore the random-effects 
part, and only optimise the parameters �̂ of the fixed-effects 
part (via ordinary least squares OLS); With estimated 
parameters �̂ , the residual rij = yij − x

T
ij
�̂ = g(�ij) + 𝜖ij can 

be calculated, from which we can model the 
random-effects

In this paper we choose K(⋅, ⋅;�) as the following three dif-
ferent kernels (linear, squared exponential and rational quad-
ratic), and here we take the squared exponential as an exam-
ple. The squared exponential (covariance) kernel function is 
defined as : K

(
�,��;�

)
= v0 exp

{
−d(�,��)∕2

}
 where 

d(�,��) =
∑Q

q=1
wq

�
�i,j,q − ��

i,j,q

�2

 is an extended distance 
between � and �′ . It involves the hyper-parameters 
� = (v0,w1,… ,wQ) . In Bayesian approach, we may choose 
the value of those parameters based on prior knowledge. It 
is however a difficult task due to the large dimension of � . 
We used an empirical Bayesian method.

The training procedure include two steps. (I) Estimate � 
and � in Eq. (5); (II) Estimate the values of the hyper-param-
eters � by an empirical Bayesian method, i.e. maximise the 
marginal likelihood from ri ∼ N(0,Ci + �2I) for i = 1,… , n , 
where Ci ∈ ℝ

J×J is the covariance matrix of g(⋅) , and its 

(6)yi,j = x
T
ij
� + g(�ij) + �ij, �ij ∼ N(0, �2),

g(�i,j) ∼ GP(0,K(⋅, ⋅;�)).

element is defined by K(�i,j,�i,j� ;�) . To obtain a more accu-
rate results, an iterative method may be used. Except the 
initial step, the error item in (5) used in step I is replaced by

where all the parameters are evaluated by using the values 
obtained in the previous iteration.

The calculation of the prediction is relatively easy. The 
posterior distribution of g(�i) is a multivariate normal with 
mean C

(
C + �2I

)−1
ri and the variance �2C

(
C + �2I

)−1.
The fitted value can therefore be calculated by the sum of 

x
T
ij
�̂ and the above posterior mean. The variance can be cal-

culated accordingly. The detailed description can be found 
in Shi et al. (2011).

4 � Experimental evaluation

In this section, several experiments are designed to evaluate 
the proposed features as well as the prediction systems. The 
patients are splitted into two groups according to the disease 
nature, i.e., the acute patient group (26 subjects) and the 
chronic patient group (33 subjects). Experiments are con-
ducted on both group separately.

Specifically for each group, leave one subject out cross 
validation(LOSO-CV) is applied. That is, for a certain group 
(acute or chronic) with n subjects, in each iteration 1 subject 
was used as test set while the rest n − 1 subjects were used 
for training. This procedure is repeated n times to test all 
the n subjects and average prediction performance (i.e., the 
mean predicted CAHAI) will be reported.

Since CAHAI score prediction is a typical regression 
problem, we use the root mean square error (RMSE) as the 
evaluation metric, and lower mean RMSE values indicate 
better performance.

4.1 � Evaluation of the proposed feature PNP

In this subsection, we evaluate the effectiveness of the pro-
posed PNP features. One most straight-forward approach 
is to calculate the correlation coefficients against the tar-
get CAHAI scores. In Table 2 we report the corresponding 
correlation coefficients ( PNP1

k
 , and PNP2

k
 in 10 scales) for 

acute/chronic patients group. The correlation coefficients of 
the original wavelet features (with paralysed side SADp

k
 , and 

non-paralysed side SADnp

k
 in 10 scales) against CAHAI score 

are also reported for comparison. From Table 2, we can see:

•	 PNP features generally have higher correlation coeffi-
cients (than SAD) against the CAHAI scores.

�i = (�1,… , �J) ∼ N(0,Ci + �2
I))



215Designing compact features for remote stroke rehabilitation monitoring using wearable…

1 3

•	 for PNP features, from Scale k = 1.1 to k = 5 there are 
higher correlations against the CAHAI scores.

•	 for chronic patients, SAD features (on the non-paralysed 
side) exhibit comparable correlation scores with PNP 
features.

These observations indicate the necessities of select-
ing useful features on building the prediction system. 
Although PNP demonstrates more powerful prediction 
capacity, in some cases, SAD (e.g., extracted from the 
non-paralysed side) may also provide important informa-
tion for a certain population (e.g., chronic patients).

For better understanding the relationship between these 
features, we also report the cross-correlation between each 
feature pairs. Noting we also include the medical history 
feature, i.e., the initial week-1 CAHAI score. From Fig. 7, 
and we have the following observations:

•	 For both patient groups, the PNP features are highly 
correlated. PNP features within the same type ( PNP1 
or PNP2 ) tend to be positively correlated, while PNP 
features from different types tend to be negatively cor-
related.

•	 For acute patients, SAD features for each side (par-
alysed side SADp or non-paralysed side SADnp ) are 
highly (positively) correlated, yet the SAD features 
from different sides are less correlated. For chronic 
patients, however, SAD features from both sides are 
highly (positively) correlated.

•	 In general, PNP features, SAD features and the medical 
history information ini are less correlated, indicating 
them as potentially complementary information to be 
fused.

Based on the above findings, it is clear that within each 
feature types, there may exist high-level of feature redun-
dancy, and it is necessary to select the most relevant 

feature subsets. For acute and chronic patient groups, the 
optimal feature subset may vary due to the different move-
ment patterns (e.g., on paralysed/non-paralysed sides). 
Although the proposed PNP features can alleviate this 
problem to some extent, it is beneficial to combine the 
less correlated features (i.e., PNP, SAD, and ini).

4.2 � Evaluation of the predictive models

4.2.1 � Feature selection

Based on the feature correlation analysis in Sect. 4.1, it is 
important we select the most relevant features from vari-
ous sources (i.e., PNP, SAD, and ini). Different from the 
correlation-based approach which can select each feature 
independently (by the correlation coefficient), LASSO can 
select the features by solving a linear optimisation problem 
with sparsity constraint, and it takes the relationship of the 
features into consideration. Based on LASSO we select the 
most important features for both acute/chronic patients, as 
shown in Table 3.

It is also worth mentioning that the wavelet-based features 
can bring certain levels of interpretability. SADj represents 
the point energy in the signal at the decomposition level 
j based on the energy preserving condition (see Appendix 
4 for more details). Specifically, it relates to the degree of 
energy among the different activity levels (in different fre-
quency domain based on the decomposition scale j). The 
activities such as jumping or lifting an object may corre-
spond to high-frequency signal, while sedentary or eat-
ing may be low-frequency signal. Based on these, we can 
interpret the key features in Table 3. For example, for acute 
patients key features (which is high-related to stroke-rehab 
modelling) correspond to asymmetric activities in low/
medium-frequency level (i.e., with PNP2

3
,PNP1

6
 ), non-para-

lysed-based activities in low/medium-frequency level (i.e., 

Table 2   Correlation coefficients 
of the wavelet features and 
CAHAI score

Scale (k) SAD
p

k
Acute Patients PNP2

k
SAD

p

k
Chronic Patients PNP2

k

SAD
np

k
PNP1

k
SAD

np

k
PNP1

k

k = 1.1 – 0.41 0.32 0.68 – 0.70 0.22 0.49 0.56 – 0.56
k = 1.2 – 0.42 0.33 0.69 – 0.71 0.24 0.50 0.57 – 0.56
k = 1.3 – 0.43 0.32 0.70 – 0.72 0.23 0.51 0.58 – 0.57
k = 1.4 – 0.42 0.33 0.69 – 0.71 0.24 0.51 0.57 – 0.57
k = 2 – 0.42 0.31 0.69 – 0.71 0.23 0.50 0.56 – 0.55
k = 3 – 0.42 0.27 0.67 – 0.68 0.25 0.50 0.53 – 0.52
k = 4 – 0.43 0.20 0.60 – 0.63 0.26 0.50 0.48 – 0.47
k = 5 – 0.42 0.10 0.49 – 0.52 0.27 0.50 0.43 – 0.42
k = 6 – 0.37 – 0.01 0.35 – 0.38 0.27 0.48 0.35 – 0.34
k = 7 – 0.30 – 0.10 0.19 – 0.20 0.28 0.45 0.25 – 0.24
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Fig. 7   Cross-correlation of the candidate features for two patient groups (top: acute patients; bottom: chronic patients). In general, PNP features, 
SAD features and the medical history information ini are less correlated, compared with within-feature correlation (e.g., within PNP features )
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with SADnp

2
, SAD

np

6
 ), and paralysed-side based activities in 

high-frequency level (i.e.,with SADp

1.2
).

4.2.2 � Performance of linear fixed‑effects model

Based on the selected features, we perform leave-one-
patient-out cross validation on these two patient groups 
respectively using the linear fixed-effects model. As shown 
in Fig. 8, the prediction results of the chronic patients (with 

mean RMSE 3.29) tend to be much better than the ones of 
the acute group (with mean RMSE 7.24). One of the main 
reasons might be the nature of the patient group. In Fig. 9, 
we plot the clinical CAHAI distribution (i.e., the ground 
truth CAHAI) from week 2 to week 8, and we can see the 
clinical CAHAI scores are very stable for chronic patients. 
On the other hand, for acute patients who suffered from 
stroke in the past 6 months, their health statuses were less 
stable and affected significantly by various factors, and in 
this case the simple linear fixed-effected model yields less 
promising results.

Table 3   Selected features using LASSO

Acute patients Chronic patients

PNP2

3
 , PNP1

6
 , SADnp

2
 , SADp

1.2
 SADnp

6
 , ini PNP1

1.4
 , SADp

4
 , SADnp

2
 , PNP2

1.3
 PNP1

4
 , PNP2

1.1
 , ini, PNP1

6
 SADnp

1.4
 , SADnp

6

Fig. 8   Linear model prediction vs clinical CAHAI; Left: Acute patients (RMSE 7.24); Right: Chronic patients (RMSE 3.29). Each point corre-
sponds to a trial (i.e., data collected from 3 days), and different colours represent different subjects

Fig. 9   Clinical assessed CAHAI distribution with respect to visit; stroke rehabilitation levels may be stable for chronic patient while may vary 
substantially for acute patients
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4.2.3 � Performance of Longitudinal mixed‑effects model 
with Gaussian process prior (LMGP)

We also develop LMGP for both patient groups. We have 
applied different covariance kernels in LMGP models and 
found the one with powered exponential kernel achieves the 

best results. The following discussion will therefore focus 
on the model with this kernel. More results of using other 
kernels can be found in Appendix 5.

Here, we use the selected features (from Table 3) as the 
fixed-effects features and random-effects features. Similar to 
the linear fixed-effects model, we evaluate the performance 

Fig. 10   LMGP prediction vs clinical CAHAI; Left: Acute patients (RMSE 5.75); Right: Chronic patients (RMSE 3.12). Each point corresponds 
to a trial (i.e., data collected from 3 days), and different colours represent different subjects

Fig. 11   Continues monitoring using LMGP for four patients (top: two 
chronic patients; bottom: two acute patients); dark points are the trial-
wise/week-wise (i.e., each trial including data collected from 3 days 

per week) prediction and red points are the corresponding ground 
truth CAHAI scores
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based on leave-one-patient-out cross validation, and the 
mean RMSE values are reported in Fig. 10, from which can 
see LMGP can further reduce the errors when compared 
with the fixed-effects linear model, with mean RMSE 5.75 
for acute patients and 3.12 for chronic patients, respectively.

Based on LMGP, we also perform “continuous monitor-
ing”—with week-wise predicted CAHAI score—on four 
patients (two for each patient group) from week 2 to week 
8, and the results are reported (with mean and 95% confi-
dence interval) in Fig. 11, which is extremely helpful when 
uncertainty measurement is required.

4.2.4 � On the fixed‑effects part of LMGP

LMGP includes two key parts, i.e., the linear fixed-effects 
and the non-linear random-effects part, and it is important 
to choose the key features for modelling. Since the fixed-
effects part measures the main (linear) relationship between 
the input features and the predicted CAHAI, we study the 
corresponding feature subsets. For random-effects part, we 
use the full LASSO features (as shown in Table 3).

To select the most important feature subset for the fixed-
effects part modelling, we rank the features (from Table 3) 
based on two criteria: LASSO coefficients, and correlation 
coefficients (between features and CAHAI, as described in 

Sect. 4.1). Table 4 demonstrates ranked features, and here 
only the top 50% features (i.e., top three features for acute 
patients and top five features for chronic patients) are used 
to model the fixed-effects part, and the settings as well as the 
results are reported in Table 5.

It is interesting to observe the performance may vary 
when different feature subsets are applied. Specifically, 
with the top feature subsets, modelling the LMGP’s fixed-
effects part can further reduce the errors to some extent for 
acute patients, in contrast to chronic patients with increased 
errors. The top 5 features selected via the LASSO criterion 
yields the worst performance for chronic patients, and one 
possible explanation could be the lack of feature ini—the 
initial health condition—a major attribute for chronic patient 
modelling (see Fig. 9).

4.2.5 � Model comparison

Based on our proposed (41-dimensional) stroke-rehab-
driven features, we compare LMGP with a number of classi-
cal predictive models, such as neural network (NN), support 
vector regression (SVR) and random forest regression(RF) 
for acute/chronic patient groups. It is worth noting that we 
cannot use the popular deep learning structures such as 
convolutional neural network(CNN) or recurrent neural 

Table 4   Feature importance 
ranking (based on two criteria) 
for acute/chronic patients

- Acute patients Chronic patients

LASSO coefficients (abso-
lute value)

PNP2

3
 , PNP1

6
 , SADnp

2
 , SADp

1.2
 SADnp

6
 , ini PNP1

1.4
 , SADp

4
 , SADnp

2
 , 

PNP2

1.3
 PNP1

4
 , PNP2

1.1
 , 

ini, PNP1

6
 SADnp

1.4
 , 

SAD
np

6

Correlation coefficients 
(absolute value)

PNP2

3
 , ini, SADp

1.2
 , PNP1

6
 SADnp

2
 , SADnp

6
ini, PNP1

1.4
 , PNP2

1.3
 , 

PNP2

1.1
 SADnp

1.4
 , SADnp

2
 , 

PNP1
4 , SADnp

6  PNP1
6 , 

SADp
4

Table 5   LMGP’s fixed-effects part modelling results (RMSE) based on different feature subsets

Acute patients Fixed-effects features Random-effects features RMSE

Full six features in Table 3 full 6 features in Table 3 5.75
Top three features (Corr criterion in Table 4): 
PNP2

3
 , ini, SADp

1.2

Full six features in Table 3 5.37

Top three features (LASSO criterion in 
Table 4): PNP2

3
 , PNP1

6
 , SADnp

2

Full six features in Table 3 5.51

 Chronic patients Fixed-effects features Random-effects features RMSE

Full ten features in Table 3 Full 10 features in Table 3 3.12
Top 5 features (Corr criterion in Table 4): ini, 
PNP1

1.4
 , PNP2

1.3
 PNP2

1.1
 , SADnp

1.4

Full 10 features in Table 3 3.20

Top 5 features (LASSO criterion in Table 4): 
PNP1

1.4
 , SADp

4
 , SADnp

2
 PNP2

1.3
 , PNP1

4

Full 10 features in Table 3 5.12
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network(RNN) on the time-series signal, due to the lack of 
frame-wise or sample-wise annotation. Yet with the stroke-
rehab-driven features and trial-wise annotation, simple neu-
ral networks such as multi-layer perceptron (MLP) can be 
applied, and here we use a 3-layer MLP.

LOSO-CV is applied with the mean RMSE values 
reported in Table 6, from which we observe linear mod-
els (linear SVR and linear fixed-effects model) yield better 
results than non-linear methods (NN, SVR with rbf, and 
RF). One of the explanation is the over-fitting effect, where 
the trained non-linear models do not generalise well to the 
unseen patients/environments in this longitudinal study set-
ting. RF is normally known as a classifier with high generali-
sation capability, yet it may suffer from the low-dimensional-
ity of the selected features (6 features for acute patients and 
10 features for chronic patients). Given the simplicity of the 
linear models and the designed low-dimensional features, 
linear models tend to suffer less from the over-fitting effect, 
with reasonable results in these challenging environments. 
Compared with linear models, our LMGP can further model 
the longitudinal mixed-effects (i.e., with linear fixed-effect 
part and non-linear random-effects part), making the sys-
tem adaptive to different subjects/time-slots, with the lowest 
errors.

We also compare our approach with other automated 
CAHAI score regression methods (Tang et al. 2020; Hal-
loran et al. 2019) in the existing literature. Different from our 
approach, Tang et al. (2020) and Halloran et al. (2019) are 
pure data-driven approaches. To address the lack of annota-
tion problem, Tang et al. use GMM clustering (on the sliding 
windows) Tang et al. (2020) to learn latent features that can 
be aggregated for trial-wise representation, while Halloran 
et al. (2019) employ pseudo labelling strategy for trial-wise 

representation. However, both data-driven features cannot 
suppress the substantial noises in the original accelerator 
signal, and such noises (e.g., irrelevant daily activities) 
significantly affect the performance of both approaches. In 
contrast, by taking advantage of the domain knowledge, our 
proposed stroke-rehab-driven representation is compact yet 
informative, and from Tables 6 and 7 we can see it tends to 
have lower errors than (Tang et al. 2020; Halloran et al. 2019 
irrespective of the predictive models for both patient groups.

5 � Conclusions

In this work, we develop an automated stroke rehabilitation 
assessment system using wearable sensing and machine learn-
ing techniques. We collect accelerometer data using wrist-
worn sensors, based on which we build models for CAHAI 
score prediction, which can provide objective and continuous 
rehabilitation assessment. To map the long time-series (i.e., 
3-day accelerometer data) to the CAHAI score, we propose a 
pipeline which can perform from data cleaning, feature design, 
to predictive model development. Specifically, we propose two 
compact features which can well capture the rehabilitation 
characteristics while suppressing the irrelevant daily activities, 
which is crucial on analysing the data collected in free-living 
environments. We further use LMGP, which can make the 
model adaptive to different subjects and different time slots 
(across different weeks). Comprehensive experiments are 
conducted on both acute/chronic patients, and very promising 
results are achieved, especially on the chronic patient group. 
We also study different feature subsets on modelling the fixed-
effects part in LMGP, and experiments suggest the errors can 
be further reduced for the challenging acute patient population.

Due to irrelevant daily activities and strong heterogene-
ity among subjects, it is very challenging for researchers in 
mathematics, computing sciences and other areas to deal with 
free-living data. It is also crucial to develop models which 
have good mathematical properties and have physical explana-
tion particularly in medical research. Hopefully, the ideas of 
the new features and the models discussed in this paper can 
provide some hints on addressing similar problems in health 
research.

Appendix

List of abbreviations/notations

•	 VM: Signal vector magnitude
•	 DWT: Discrete wavelet transform
•	 DWPT: Discrete wavelet packet transform
•	 LMGP: Longitudinal mixed-effects Gaussian process prior

Table 6   Predictive model comparison based on the proposed stroke-
rehab-driven features (in LOSO-CV setting)

Predictive models RMSE (acute) RMSE (chronic)

Neural network 10.50 4.93
Support vector regression (linear) 7.47 3.25
Support vector regression (rbf) 9.67 4.92
Random forest regression 8.19 3.93
Linear fixed-effects model 7.24 3.29
LMGP 5.75 3.12

Table 7   Method comparison (in LOSO-CV setting)

Methods RMSE (acute) RMSE (chronic)

Tang et al. (2020) 15.98 12.76
Halloran et al. (2019) 10.12 12.14
Ours 5.75 3.12
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•	 SAD: Normalised sum of absolute value of the wavelet 
coefficients at different decomposition scales

•	 PNP: Wavelet features that combine both paralysed side 
and non-paralysed side

The CAHAI score form

See Fig. 12. 

Discrete wavelet transform and discrete wavelet 
packet transform

The DWT procedure includes two parts: decomposition 
and reconstruction. Decomposition part will be the main 
focus in this project. We now consider more details of the 
DWT using matrix algebra:

where W is the output of matrix of DWT coefficients in 
different scales. W is the orthonormal matrix containing 
different orthonormal wavelet bases [more details can be 
checked in Daubechies (2006) and Walden et al. (2000)] 
and it satisfies WT

W = IN . X is the raw signal. The signal 
X with length N = 2J , the N × N orthonormal matrix W can 
be separated into J + 1 submatrices, each of which can pro-
duce a partitioning of the vector W of DWT coefficients in 
each scale j, j = 1,2,..., J. To be more specific, Eq. (7) can be 
rewritten as follows:

where Wj is a column vector of length N∕2j representing the 
differences in adjacent weighted averages from scale 1 to 
scale J, VJ is the last column contained in W which has the 
same length with WJ . Wj is defined as detailed coefficients 
at scale j. VJ contains the approximated coefficients at the 
J-th level. Wj has dimension N∕2j × N , where j = 1,2,...,J 
and VJ has the same dimension with WJ . Note that the rows 
of design orthonormal matrix W depend on the decomposi-
tion level j-th. In other words, the value of J depends on the 
DWT decomposition scale of the raw signal. The maximum 
decomposition level j equals J since our signal X has length 
N = 2J.

We now further consider wavelet packet transform 
DWPT. The DWPT is the expansion of the discrete wave-
let transformation. In DWT, each scale is calculated by 
passing only the previous wavelet approximated coeffi-
cients through discrete-time low and high pass quadrature 

(7)W = WX,

(8)WX =

⎡
⎢⎢⎢⎢⎢⎣

W1

W2

⋮

WJ

VJ

⎤
⎥⎥⎥⎥⎥⎦

X =

⎡
⎢⎢⎢⎢⎢⎣

W1X

W2X

⋮

WJX

VJX

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

W1

W2

⋮

WJ

VJ

⎤
⎥⎥⎥⎥⎥⎦

= W,

mirror filters. However, in the DWPT, both the detailed 
and approximation coefficients are decomposed to create 
the full binary tree. More details can be found in Walden 
et al. (2000).

Commonly used wavelet features

In the discrete wavelet transform (DWT), Wj represents 
DWT coefficients in the j-th decomposition scale. DWT 
can be written as W = WX , where W is a column vector 
with length 2j and W = [W1,W2, ...,WJ ,VJ]

T , W  is the 
orthonormal matrix which satisfies WT

W = In and contains 
different filters. Due to the orthonormality of DWT, which 
means that X = W

T
W and ‖X‖2 = ‖W‖2 , ‖‖‖Wj

‖‖‖2 shows 
energy in the DWT coefficients with decomposition level 
j. Now the energy preserving condition can be written as:

where X is our VM data (the signal vector magnitude of 
accelerometer data; see Sect.  3.2) with length N, 
j = 1, 2, ..., J is the discrete wavelet transform decomposition 
level. Wj denotes the detailed coefficient in scale j, and is a 
vector of length N∕2j representing the differences in adjacent 
weighted averages from scale 1 to scale J. VJ denotes the 
approximated coefficients in the Jth level and has the same 
length as WJ . Based on the decomposition, each ‖‖‖Wj

‖‖‖2 rep-
resents a special part of the energy in our VM data which 
relates to the certain frequency domain (Preece et al. 2009; 
Walden et al. 2000). Then the sample variance from Walden 
et al. (2000) can be decomposed as:

The term ‖Wj‖2

N
 represents the sample variance (correspond-

ing to j at different scales of DWT decomposition) in our 
VM data X.

There are many wavelet features (e.g., Preece et al. 
2009) for the classification of dynamic activities from 
accelerometer data using DWT. On this basis, we extract 
the features from the energy preserving condition and sam-
ple variance mentioned previously.

We aim to look for the features which imply the recov-
ery level among the stroke patients (see Sect. 3.3). Now, 
we define the features in the j-th level discrete wavelet 
transform and discrete wavelet packet transform:

(9)‖X‖2 = ‖W‖2 =
J�
j=1

���Wj
���
2 + ��VJ

��2,

(10)�̂2
X
=

1

N
‖W‖2 − X =

J�
j=1

���Wj
���2

N
.

SSDj =

‖‖‖Wj
‖‖‖
2

N∕2j
= 2j

‖‖‖Wj
‖‖‖
2

N
.
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 For the detailed coefficients Wj at decomposition level j, 
‖‖‖Wj

‖‖‖
2

 presents its energy and the raw data with length N. 
Hence the physical explanation of SSDj is that it stands for 
the point energy at the decomposition level j. Moreover, 
from the Eq. (10), ‖Wj‖2

N
 represents the sample variance at 

the decomposition level j, SSDj also has properties of both 
the energy preserving condition and the sample variance in 
wavelet analysis with constant 2j .

Comparing with SSDj (sum of square value of DWT coeffi-
cients at scale j (with normalisation)), we define other features 
call SADj , which is sum of absolute value of DWT coefficients 
at scale j (with normalisation):

After we check the correlation between the important wave-
let feature PNP (Sect. 3.3) and CAHAI score, the branch of 
features PNP using SAD based perform better than those 
using SSD based in Table 8. Hence we consider the com-
monly used feature SADj in this paper.

In our analysis, we assume the discrete wavelet decompo-
sition level J = 7 which is the same level as in Sekine et al. 
(1998) and contains enough low-frequency component as 
the stroke patients’ movement. The frequency domain with 
seven scales is shown in Table 9

So far, we have decomposed the VM data X to get W1 , 
W2 , ... , W7 using DWT. Since the frequency domain at 
scale 1 is so wide (0.50–1 hz), it is better to divide it into 
smaller one, then using DWPT in Appendix 3, we can fur-
ther decompose W1 into W3.4 , W3.5 , W3.6 and W3.7 which are 
the results of the 3rd stage of DWPT, each coefficient vector 
with length N∕23 has the same dimension as the coefficients 
in the third level of DWT decomposition, that is

SADj =

‖‖‖Wj
‖‖‖1

N∕2j
= 2j

‖‖‖Wj
‖‖‖1

N
.

‖X‖2 = ‖W‖

2 = ‖

‖

W3.4
‖

‖

2 + ‖

‖

W3.5
‖

‖

2 + ‖

‖

W3.6
‖

‖

2

+ ‖

‖

W3.7
‖

‖

2 +
J
∑

j=2

‖

‖

‖

Wj
‖

‖

‖

2 + ‖

‖

VJ
‖

‖

2.

Fig. 12   The CAHAI score form Barreca et al. (2006)

Table 8   The correlation between SAD and SSD based wavelet features and CAHAI score for acute and chronic patients

Scale (k) PNP1

k
 (SSD) Acute Patients PNP2

k
 (SAD) PNP1

k
 (SSD) Chronic Patients PNP1

k
 (SAD)

PNP2

k
 (SSD) PNP1

k
 (SAD) PNP2

k
 (SSD) PNP1

k
 (SAD)

k = 1.1 0.60 – 0.65 0.68 – 0.70 0.45 – 0.45 0.56 – 0.56
k = 1.2 0.60 – 0.66 0.69 – 0.71 0.46 – 0.45 0.57 – 0.56
k = 1.3 0.63 – 0.69 0.70 – 0.72 0.49 – 0.48 0.58 – 0.57
k = 1.4 0.62 – 0.68 0.69 – 0.71 0.47 – 0.47 0.57 – 0.57
k = 2 0.65 – 0.69 0.69 – 0.71 0.45 – 0.45 0.56 – 0.55
k = 3 0.63 – 0.67 0.67 – 0.68 0.39 – 0.38 0.53 – 0.52
k = 4 0.59 – 0.63 0.60 – 0.63 0.31 – 0.30 0.48 – 0.47
k = 5 0.46 – 0.50 0.49 – 0.52 0.29 – 0.27 0.43 – 0.42
k = 6 0.32 – 0.38 0.35 – 0.38 0.20 – 0.16 0.35 – 0.34
k = 7 0.16 – 0.19 0.19 – 0.20 0.13 – 0.10 0.25 – 0.24

Table 9   The frequency domain from scale 1 to scale 7 by using DWT

Scale 7 Scale 6 Scale 5

Frequency 0.0078–0.0156 hz 0.0156–0.0312 hz 0.0312–0.0625 hz
Scale 4 Scale 3 Scale 2

Frequency 0.0625–0.125 hz 0.125–0.25 hz 0.25–0.50 hz
Scale 1

Frequency 0.50–1 hz
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Now we have coefficients at 10 decomposition scales by 
using DWT and DWPT: W3.4 , W3.5 , W3.6 , W3.7 , W2 , W3 , 
W4 , W5 , W6 and W7 . Based on these detailed coefficients, 
we define the commonly used wavelet features again:

There are 10 features which provide reliable and valid infor-
mation (corresponding to more frequency domains) from 
different frequency domains. The frequency domain of these 
features, among 10 scales, is listed in Table 10.

Performance of LMGP through three different 
kernels

Three kernels are used in LMGP, and they are linear kernel, 
powered exponential kernel and rational quadratic kernel. 
We use the selected features (from Table 3) as the fixed-
effects features and random-effects features, and the results 
are reported in Table 11.

Scale 1.1: SAD1.1 =
‖

‖

W3.4
‖

‖1

N∕23
= 23

‖

‖

W3.4
‖

‖1
N

,

Scale 1.2: SAD1.2 =
‖

‖

W3.5
‖

‖1

N∕23
= 23

‖

‖

W3.5
‖

‖1
N

,

Scale 1.3: SAD1.3 =
‖

‖

W3.6
‖

‖1

N∕23
= 23

‖

‖

W3.6
‖

‖1
N

,

Scale 1.4: SAD1.4 =
‖

‖

W3.7
‖

‖1

N∕23
= 23

‖

‖

W3.7
‖

‖1
N

,

Scale j: SADj =
‖

‖

‖

Wj
‖

‖

‖1

N∕2j
= 2j

‖

‖

‖

Wj
‖

‖

‖1
N

, j = 2, 3, 4, 5, 6, 7.
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