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Abstract
Unlike able-bodied persons, it is difficult for visually impaired people, especially those in the educational age, to build a full 
perception of the world due to the lack of normal vision. The rapid development of AI and sensing technologies has provided 
new solutions to visually impaired assistance. However, to our knowledge, most previous studies focused on obstacle avoid-
ance and environmental perception but paid less attention to educational assistance for visually impaired people. In this paper, 
we propose AviPer, a system that aims to assist visually impaired people to perceive the world via creating a continuous, 
immersive, and educational assisting pattern. Equipped with a self-developed flexible tactile glove and a webcam, AviPer can 
simultaneously predict the grasping object and provide voice feedback using the vision-tactile fusion classification model, 
when a visually impaired people is perceiving the object with his gloved hand. To achieve accurate multimodal classifica-
tion, we creatively embed three attention mechanisms, namely temporal, channel-wise, and spatial attention in the model. 
Experimental results show that AviPer can achieve an accuracy of 99.75% in classification of 10 daily objects. We evaluated 
the system in a variety of extreme cases, which verified its robustness and demonstrated the necessity of visual and tactile 
modal fusion. We also conducted tests in the actual use scene and proved the usability and user-friendliness of the system. 
We opensourced the code and self-collected datasets in the hope of promoting research development and bringing changes 
to the lives of visually impaired people.

Keywords  Assistance for visually impaired people · Multimodal learning · Visual sense · Tactile sense · Deep learning · 
Attention mechanism

1  Introduction

Visual impairment refers to the loss of visual acuity that 
cannot be ameliorated by refractive correction or medical 
technologies (Rahman et al. 2021). It is difficult to build 
a full perception of the world for visually impaired people 
especially those at the phase of education, due to the lack 
of a sane vision, which ultimately affects their living abili-
ties, self-esteem, and mental health. According to Organi-
zation et al. (2019), as of 2010, there are 285 million visu-
ally impaired people in the world, among which 37 million 
are blind. And based on the estimation of Ackland et al. 
(2017), the number of blind will reach 55 million by 2030, 
and 115 million by 2050. What is sad is that, except for a 
few visual impairments caused by senile eye diseases such as 
cataracts and glaucoma, the vast majority of visual impair-
ments are congenital, which means that these people have 
never seen the world they live in their whole lives. Due to 
medical limitations, there is no easy cure for most visual 
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impairments. Hence, how to help visually impaired people 
integrate into society has become an urgent problem to be 
solved. Although visually impaired people who are educated 
in special education schools can obtain basic living abilities, 
not all visually impaired people have such opportunities and 
conditions. There has been a lack of sufficient professional 
educators for special education positions. In addition, most 
special education schools in poor areas lack the budget to 
hire professional special education workers, which has led to 
not only the lack of assistance for visually impaired people, 
but also more potential discrimination, abuse, and indecency 
against them (Warren 1994).

With the rapid development of artificial intelligence and 
advanced sensing technology, the use of deep learning to 
assist visually impaired people is booming. In recent years, 
there has been lots of work using deep learning to help vis-
ually impaired people perceive the environment and avoid 
obstacles (Poggi and Mattoccia 2016; Liu et al. 2021; 
Kumar et al. 2019). However, to our knowledge, research 
on deep learning based educational assistance systems 
targeted at visually impaired people is insufficient. In the 
field of human–computer interaction, paper Metatla et al. 
(2020) used a co-design approach to design and evaluate 
a robot-based educational game that could be inclusive of 
both visually impaired and sighted children. But it cannot 
continuously educate visually impaired people to develop 
their ability to perceive the world. Paper Ahmetovic et al. 
(2020) provides a vision-based deep learning approach to 
assist visually impaired people to recognize daily objects. 
However, due to that the classification algorithm is just 

vision-based, visually impaired people are difficult to 
get perceptual feedback and a sense of participation in 
the whole process. In order to bridge the gap in this area, 
we proposed AviPer, a system that aims to assist visually 
impaired people to perceive the world with visual and tac-
tile multimodal object classification.

Our objective is to develop a continuous, immersive, 
and educational assistance for people who are visually 
impaired. More specifically, we expect to create a pattern 
that visually impaired people can safely and continuously 
learn to identify living objects without being supervised or 
taught, while they can have as much experience as possible 
about the objects they are learning to recognize. These 
demands lead us to multi-modal deep learning. Multi-
modal learning, or multi-view learning, refers to building 
models that can process and relate information from mul-
tiple modalities (Baltrušaitis et al. 2018). We integrate the 
recognition of tactile signals with visual recognition, in 
order to attach more classification evidence for the model, 
and provide users with a real sense of grasping operation. 
In the evaluation experiment, we proved that the visual and 
tactile modal fusion is very necessary and beneficial, as 
the multimodal model can achieve robust classification in 
extreme cases which are hard to distinguish with only one 
modality. Besides, we innovatively embedded three kinds 
of different attention mechanisms, namely temporal, spa-
tial, and channel-wise attention, to better extract important 
information from the whole process of grabbing objects 
for classification. Figure 1 shows the whole process of the 
system.

Fig. 1   System overview. The user sits at the table and grasps the 
object to be identified with his hand wearing the tactile glove. The 
glove collects the tactile time series and transmits the data to the 
computer through the USB interface of two Arduino Mega micro-
controllers. At the same time, the webcam arranged on the desktop 

transmits the video of the hand area to the computer. After data pre-
processing, the tactile data and visual data are sent into the trained 
multi-modal attention-based classification model. Finally, the model 
gives the classification label and broadcasts it to the user through a 
Bluetooth speaker
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To unleash the power of visual and tactile multimodal 
attention network in the application scenario of assisting 
visually impaired people, we have to address a series of 
challenges: 

1.	 Accurate tactile data acquisition In previous studies, 
deep learning tasks based on tactile sensors are often 
deployed on robotic arms (Romano et al. 2011; Yuan 
et al. 2015; Morrison et al. 2018; Li et al. 2019). These 
sensors are difficult to meet the needs of wearable 
devices for softness and flexibility. Paper Sundaram 
et al. (2019) develops an advanced sensor integration, 
which can be fixed on a glove for wearing. But wearable 
device with high sensor density is not suitable for visual 
impairment assistance. Not only the sensor itself will 
incur high production costs, but also the complicated 
circuit requires lots of maintenance costs.

2.	 Heterogeneous data Tactile and visual signals naturally 
have a huge difference in scale. More specifically, vision 
can perceive the full view of items, while touch only 
reflects the local characteristics of the contact point. In 
a machine learning model, the gap in scale is embodied 
in the completely different data dimensions of the tac-
tile signal and the video frames. Furthermore, different 
approaches are required to acquire the important infor-
mation contained in tactile time series and video frames. 
Therefore, the model structure requires careful design to 
extract features of heterogeneous data.

3.	 Privacy security  Due to the need for a webcam to obtain 
video frame data and the particularity of the people 
served, data privacy and other security issues also need 
to be considered.

To tactile the above challenges, we processed a tactile glove 
with a much lower sensor density and used our self-devel-
oped capacitance-based force sensor to collect accurate tac-
tile data. The flexible sensor can directly reflect the degree 
of bending of the joint to help the model infer the gesture 
of the hand. To handle heterogeneous data, we creatively 
designed a dual-modal attention network. The model uses 
different modules to process tactile and visual input and 
conduct modality fusion with extracted feature vectors. In 
the modules which respectively process tactile and visual 
input, we implemented three kinds of attention mechanism, 
namely temporal, spatial and channel-wise attention to focus 
on key features of different modalities. In order to protect 
the user’s privacy security, we strictly collect the video data 
of grasping action in the hand area, which means that the 
user will not be exposed to the webcam except for his hand 
with the tactile glove. In addition, the collection of data for 
training and testing the model is completely done by peo-
ple with unimpaired vision. The rights of visually impaired 
people are fully respected. Hardware including tactile gloves 

and cameras, visual-tactile bimodal dataset, multimodal 
deep learning classification algorithm together constitute 
our assistance system for visually impaired people: AviPer. 
Detailed information about the system will be discussed later 
in Sect. 3.

We summarize the contributions of this paper as follows:

•	 We take the lead paying attention to the continuous 
immersive assistance for visually impaired people to per-
ceive the world, and first put forward the idea of applying 
multimodal deep learning to this application scenario.

•	 We propose a complete system including hardware, data, 
and algorithms to make the above ideas truly land. We 
design a flexible tactile sensor glove for the needs of 
the use scenario. A multimodal attention model is pro-
posed, which can achieve robust classification with high 
accuracy. We construct a visual-tactile bimodal dataset 
to train and evaluate our system. For the proposed sys-
tem, we conduct lots of various evaluation experiments, 
including the test of the model in extreme situations and 
the evaluation of the system in real use scenarios.

•	 We opensource all the code and datasets in hope that 
researchers can freely use them to promote the develop-
ment of the field of visual impairment assistance, which 
will accelerate the practical application of research in 
this field and bring about a change in the life of visually 
impaired people.

The remaining of the paper is organized as follows. Sect. 2 
surveys the related problem and methodologies. Section 3 
detailedly presents the design and implementation of the 
AviPer system. Section 4 shows extensive experiments we 
conduct to evaluate the system, including model evalua-
tion and real-world tests. In Sect. 5, we discuss the insights, 
achievable optimizations, and prospects of our system. Then 
we conclude in Sect. 6.

2 � Related work

The problem and methodologies presented in the paper are 
highly related to the following three research areas: visu-
ally impaired assistance, multimodal learning, and attention 
mechanism.

2.1 � Assistance for visually impaired people

Assistance for people with impairments has always been a 
hot topic in the field of human–computer interaction and per-
vasive computing. There have been many works focused on 
visual assistance, such as Aladren et al. (2014), Praveen and 
Paily (2013) and Papadopoulos and Goudiras (2005) in navi-
gation and reading accessibility. Deep learning has a broad 



222	 X. Li et al.

1 3

application prospect for impairment assistance, especially 
the assistance for visually impaired people. Paper Poggi and 
Mattoccia (2016) proposes a wearable mobility aid for visu-
ally impaired based on 3D computer vision and machine 
learning, which achieves effective and real-time obstacle 
detection. Work Tapu et al. (2017) develops a system called 
DEEP-SEE which realizes joint object detection, tracking, 
and recognition for visual impairment assistance. Paper Liu 
et al. (2021) and Delahoz and Labrador (2017) apply deep 
learning to floor detection. There are also some smartphone-
based approaches such as Lin et al. (2017) and APP Seeing 
AI by Microsoft. However, The above-mentioned existing 
research, along with Wang et al. (2017), Lakde and Prasad 
(2015) and Ganz et al. (2014), mainly focuses on navigation 
and obstacle avoidance. There are other applications like 
facial recognition for visually impaired people Neto et al. 
(2016), facilitating search tasks Zhao et al. (2016) and pass-
word manager Barbosa et al. (2016). But research on con-
tinuous immersive motivational aids for visually impaired 
people, especially those in educational age, is insufficient. 
We hope that our proposed system AviPer, which aims to 
assisting visually impaired people to understand the world, 
can fill the gap.

2.2 � Multimodal learning

Human perception of the world is multimodal. We see 
objects, hear sounds, smell odors, feel texture, and taste fla-
vors. Modality refers to the way in which something happens 
or is experienced (Baltrušaitis et al. 2018). Unlike machine 
learning models with a single data source, multimodal 
machine learning aims to build models that can process and 
relate information from multiple modalities, which has great 
potential to provide a stronger understanding ability for the 
model. Multimodal learning has a wide range of applica-
tions. The earliest examples of multimodal learning include 
audio-visual speech recognition (Yuhas et al. 1989) and mul-
timedia content indexing and retrieval (Snoek and Worring 
2005). In the early 2000s, multimodal learning began to be 
applied to human activity detection (Smith et al. 2005; Yin 
et al. 2008), as it is inherently very suitable for handling 
multimodal human behavior. Now, multimodal learning has 
been widely used in tasks that require a complex perception 
of the surrounding environment like self-driving (Xiao et al. 
2020; Cui et al. 2019) and health monitoring (Banos et al. 
2015; De et al. 2015).

The main challenge in multimodal learning is to choose 
the optimal fusion structure. Deep architectures offer the 
flexibility of implementing multimodal fusion either as early, 
intermediate, or late fusion (Ramachandram and Taylor 
2017). In early fusion, also known as data-level fusion, the 
various sampling rate of different sensors and huge dimen-
sional differences of heterogeneous data would be tricky. 

The common approach for alleviating the challenges related 
to raw data fusion is to extract high-level representations 
from each modality before fusion, which could be hand-
crafted features or learned representations, widely used 
in works like Wu et al. (2016), Karpathy et al. (2014) and 
Simonyan and Zisserman (2014). Therefore, intermediate 
fusion is also known as feature-level fusion. Late fusion, or 
decision-level fusion, represents a paradigm for fusing the 
results of network branches handling different modalities. 
The advantage of this method is that it is feature independ-
ent, which means error caused by each modality is uncorre-
lated. Neural network architecture with intermediate fusion 
needs careful design. Recently, the use of automatic machine 
learning to adjust intermediate fusion network architecture 
has become a hot trend (Ramachandram et al. 2017; Li et al. 
2017).

The fusion of tactile and visual perception has also devel-
oped for decades. As early as the 2000s, neurologists stud-
ied the coordination of vision and touch in human percep-
tion (Zangaladze et al. 1999; Ernst and Banks 2002). Work 
Björkman et al. (2013) and Luo et al. (2015) introduce low-
resolution tactile sensing to assist visual tasks. Work Kro-
emer et al. (2011), Güler et al. (2014) and Gao et al. (2016) 
respectively propose haptic-visual multimodal deep learning 
models for specific tasks. The main difference between our 
work and the above researches is that they focus on robot 
perception and manipulation while our system uses flexible 
wearable tactile sensors to increase the user’s participation 
in assistance tasks for visually impaired people, as well as 
to boost performance.

2.3 � Attention mechanism

Attention mechanism is a data processing approach in 
machine learning. Since first proposed by Bahdanau et al. 
(2014), it has been extensively used in natural language 
processing (Hu 2019), computer vision (Sun et al. 2020), 
and other various machine learning tasks. The main idea of 
attention mechanism comes from the way humans perceive 
things, which is expected to put more attention on key fea-
tures that need more concern. At the implementation level, 
the basic approach is to use a mask to reweight the data, in 
order to endow the region concerned with higher weights. 
Attention mechanism can be classified as soft attention, hard 
attention, and self attention. Soft attention is differentiable, 
while hard attention is not. Training process of the latter 
is usually completed through reinforcement learning. Self-
attention is a special form of attention mechanism, which 
focuses on the intrinsic correlation of different elements in 
the data source, whose representative architecture is Trans-
former (Vaswani et al. 2017) and its variants.

In soft attention mechanism focus on computer vision 
task, Paper Hu et al. (2018) proposes Squeeze-and-Excitation 
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Network which carries out channel-wise attention. For spa-
tial attention, Wang et al. (2017) employs the idea of resid-
uals to develop Residual Attention Network, which learns 
attention-aware features from different modules that change 
adaptively as layers go deeper. Then, paper Woo et al. (2018) 
develops a channel-spatial integrated attention mechanism. 
Paper Wang et al. (2018) and its improvement Cao et al. 
(2019) proposes Non-local Attention for CNN architecture, 
which provides solutions to capture long-range dependen-
cies. For deep learning architecture handling time series 
data, there are many studies on attention in time-domain 
like Qin et al. (2017) and Liang et al. (2018) and frequency-
domain like Lee et al. (2020). As for research that is highly 
relevant to our work, Cao et  al. (2020) embeds spatial 
mechanism to tactile sensing for texture recognition. But 
studies are lacking for attention mechanism in the fusion 
of tactile and visual modalities. Besides, attention-based 
research specifically for visual impairment assistance is 
rather insufficient.

3 � System design and implementation

In this section, we will introduce the components of our pro-
posed system in detail. The system consists of three parts: 
hardware, data, and multimodal attention model. In order 
to achieve accurate classification of objects, first of all, sen-
sors that collect tactile data and a webcam for recording 
visual data are required. These hardwares along with the 
microcontrollers for data transmission, GPU for training, and 
speaker for broadcasting will be discussed in Sect. 3.1. For 

training and testing the classification model, we constructed 
a bimodal dataset and prepossessed the data, whose specific 
collection strategy and prepossessing pipeline including data 
augmentation will be given in Sect. 3.2. Then, we detailedly 
introduce the architecture and settings of the multimodal 
attention network used for classification in Sect. 3.3.

3.1 � Hardware

3.1.1 � Tactile glove

To achieve high-precision object recognition while provid-
ing users with as much participation and realism as pos-
sible, we integrated our self-developed capacitive-based 
tactile sensor into a wearable glove. By investigating real 
human grasping processes, we inferred that most of the 
grasping gestures can be deduced from the degree of bend-
ing of the fingers and the force on the fingertips and palms. 
Hence there is no necessity to use high-density sensors like 
Sundaram et al. (2019), which not only allows our gloves 
to be manufactured at a relatively low cost, but also sharply 
reduces the wiring difficulties and maintenance costs, which 
is more in line with the actual use requirements.

As shown in Fig. 2 the sensing glove consists of 14 sen-
sors containing 9 pressure sensors and 5 tension sensors. The 
pressure sensors are fixed on five fingertips and four corners 
of the palm, and each sensor unit is about 1.2 × 1.2 cm2 . 
While tension sensors were fixed to 5 finger joints and each 
sensing area is about 1 × 1.5 cm2 . Both pressure and ten-
sion sensors are fabricated by two thin films as active layers 
and Au nanoparticles as electrodes. Changes in shape and 

Fig. 2   The tactile glove. a Production and integration: MWCNTs 
(multi-walled carbon nanotubes) powder and PDMS (polydimethylsi-
loxane) are used to make an active layer film with a regular macro-
scopic shape. The measurement surface of the thin film structure is 
placed and packaged face to face and Au nanoparticles are sputtered 

on the outside as electrodes to produce a flexible capacitive sensing 
unit. Pressure sensors are placed on the fingertips and palms of the 
hand, while tension sensors are placed on the joints. b The response 
of the pressure sensors to the force. c The response of the tension sen-
sors to the bending angle
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electrode distance are manifested as changes in capacitance. 
Therefore, the pressure sensor on the palm and fingertips can 
give different signals when grasping objects with different 
forces. And the tension sensors on the joints can show dif-
ferent signals when grasping objects with different shapes 
as the fingers bend at different angles.

3.1.2 � Others

Besides the tactile glove mentioned above, the hardware of 
our system includes two Arduino Mega microcontrollers, 
which are used to transmit signals between the tactile sensor 
and the computer serial port. In addition, we use an easily 
available web camera (Logitech c922 Pro Stream webcam) 
to collect video data. The above-mentioned microcontrollers 
and webcam are directly connected to the host computer 
through a USB interface. For the multimodal attention 
model, we complete all training and evaluation experiments 
on an NVIDIA Geforce GTX 3070 GPU. Finally, we use 
a Bluetooth speaker (MC A7) to announce the predicted 
results to visually impaired users.

3.2 � Data

3.2.1 � Data collection

In the scenario of assisting visually impaired people to learn 
to recognize objects, we look forward to give prediction 
results based on a short period of grasping action. The time 
period should allow users to fully perceive the characteris-
tics of the object, and at the same time allow the model to 
give an accurate prediction. Therefore, we adopt the strategy 
of collecting hand motion videos and tactile time series of 
every complete grasping. Specifically, in the basic classi-
fication experiment, we first select ten types of items that 
are commonly used in life, which are illustrated in Fig. 3. 

For each type of objects, we have carried out more than 150 
times of complete grasping: picking it up, holding it for a 
few seconds, then putting it down, which forms the original 
dataset (a). When grasping the same item, we adopt a variety 
of gestures to enhance the diversity of data from the aspect 
of data collection, which is tally with the actual use situation 
as well. Besides, we choose two different desk textures as 
background. One is warm with wood grain, and the other is 
cool without grain. The ratio of data in the two backgrounds 
is about 2:1. Each piece of data includes a grasping video 
(.avi) with a length of about 17 s, tactile sensor information 
for the same time period (.csv), and four frames (.jpg) of the 
0th, 5th, 10th, and 15th s intercepted from the video.

In order to demonstrate the robustness of visual and tac-
tile multimodal prediction to extreme situations, we design 6 
categories of items that are difficult to distinguish only from 
the camera data. Each category is collected more than 100 
samples with the same collection pipeline described above 
but only on warm grained background, which makes up data-
set (b). We build another small dataset (c) which contains 
200 pieces of data of 10 categories in total. In the collection 
of these parts of data, irrelevant objects are placed in the 
view field, which aims to test whether the participation of 
tactile information can help the model resist interference and 
whether spatial attention can focus on the operating hand. 
We finish this part of collection on the cool no-grained desk. 
The items that we use to collect data are shown in Fig. 3. 
We perform data augmentation to enlarge the size of all the 
three datasets at a ratio of 1:10. Data augmentation and pre-
processing will be discussed in Sect. 3.2.2. Details of the 
augmented dataset configurations can be found in Table 1.

3.2.2 � Data augmentation and preprocessing

Data augmentation is a data-space solution to the problem 
of limited data (Shorten and Khoshgoftaar 2019). By flips, 

Fig. 3   Data collection. a The 10 objects used for constructing the 
main dataset. b When constructing the second dataset, which is made 
up of objects that are hard to recognize only by vision, we choose two 
bottles of different sizes. Each one is grasping under the following 

3 status: full, half full, empty. In c, we collect the same 10 items as 
a but under the condition where there are distracting objects on the 
table
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translations, and rotations, we could significantly expand 
the dataset. For tactile time series, there are argumentation 
approaches in time domain and frequency domain (Wen 
et al. 2020). In our experiments, we simply augmented visual 
data while keeping tactile time series unchanged. We gener-
ated new video frames from the collected datasets (a), (b), 
and (c) at a ratio of 1:10 following the process: 

1.	 Color jitter: adjusting brightness, contrast, saturation, 
hue ±20%

2.	 Random rotation in interval [−45◦,+45◦]
3.	 Random vertical flip and horizontal flip both with a 

probability of 0.2
4.	 Random gray scale with a probability of 0.2

It is worth mentioning that we implement data augmentation 
for 4 frames from the same video independently, that is each 
of the 4 frames go through different data augmentation con-
figurations, which enhances the diversity of the augmented 
datasets. An argumentation example can be seen in Fig. 4.

The function of data preprocessing component is to gen-
erate the data which can be directly fed to the multimodal 
deep learning model. Due to the characteristics of the capac-
itance-based tactile sensor, the initial value (which refers to 
the value of the natural placement state without grasping 
anything) and range of change of the raw tactile data vary 
in different tactile sensor units, which is shown in Fig. 5. 
The huge difference in raw tactile time series among each 
channel will cause weight bias of each channel’s importance 
to the trained model. Therefore, in order to let the model 

learn the information of each unit more comprehensively 
and evenly, we independently normalize each tactile sensor 
channel. Specifically, we find out the maximum and mini-
mum values of all the data of a certain sensor unit, denoted 
as V (i)

max , V
(i)

min
 , then use the following simple linear mapping 

to map all the time series recorded by the sensor to [0, 1]:

For the four frames of images used for training, we also 
adopt normalization. First, we convert the RGB image to a 
tensor in the range of [0, 1]. Then, the mean is adjusted to 
0 and the standard deviation to 1. The data prepossessing 
pipeline is illustrated in Fig. 5.

3.3 � Visual and tactile multimodal attention 
network

In this section, we will discuss the proposed multimodal 
attention network to classify objects with tactile and vision 
data in detail. Concretely, as the data we collect are time 
series of 14 tactile sensor units all over the glove and 4 
frames taken from the particular time in the corresponding 
downward videos of hand, we carefully design 4 distribu-
tion functions pi (i = 0, 1, 2, 3) to hard-code the importance 
of tactile signals at different times to make tactile-map 
and video image pairs, denoted by (ti, vi), (i = 0, 1, 2, 3) . 
On account of only a portion of sensor units play a 
major role in the process of grasping, to fully extract the 

V �
i
(t) =

1

V
(i)
max − V

(i)

min

Vi(t) −
V
(i)

min

V
(i)
max − V

(i)

min

, i = 0, 1,… , 13.

Table 1   Dataset configurations

Dataset Categories Size Background Ground truth labels

(a) 10 16,500 Warm:cold ≈ 2:1 Book sewer, calculator,chess, glasses box, vacuum cup, hand cream, 
milk, mouse, power bank, tap

(b) 6 6600 Cold Empty large, empty small, half large, half small, full large, full small
(c) 10 2200 Cold Book sewer, calculator,chess, glasses box, vacuum cup, hand cream, 

milk, mouse, power bank, tap

Fig. 4   Data augmentation 
example: hand cream. a shows 
the original video frames of dif-
ferent time points. b Shows the 
4 frames after data augmenta-
tion
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information of different tactile units, we embed squeeze-
and-excitation(SE) blocks in the branch of the network that 
extracts haptic information, which achieves channel-wise 
attention. For a single video frame, we apply attention 
to spatial position through residual attention modules to 
locate hand area to make the prediction more robust. We 
extract feature vectors from data by visual network branch 
and tactile network branch respectively, then perform a 
feature-level modal fusion with a modality weight hyper-
parameter � . Ultimately, we pass the fused features with 

relatively low dimensions to a two-layer perceptron to give 
the prediction. It is worth mentioning that although we 
have 4 different (ti, vi) pairs, each of them will be put into 
two branches(tactile branch and vision branch) of exactly 
the same network, which means the weights are shared 
when the proposed model process data pairs from dispa-
rate temporal interval. The overall schematic diagram is 
shown in Fig. 6, the structural details of separate parts of 
the proposed network architecture will be discussed in the 
following subsections.

Fig. 5   Data preprocessing: 
a shows the preprocessing 
pipeline of video data. We first 
select 4 special frames from the 
original video and then stack 
them by time and implement 
transform to normalize them. 
For tactile time series, as shown 
in b, we first implement the 
normalization and then stack 
them by sensor channels

Fig. 6   Network architecture. a Shows the overall structure of the 
model, in which we adopt weight sharing strategy to learn from dif-
ferent visual-tactile data pairs (v

i
, t
i
), (i = 0, 1, 2, 3) of a single grasp-

ing process. The network is divided into tactile and visual branches, 
based on squeeze-and-excitation network (Hu et al. 2018) and resid-
ual attention network (Wang et  al. 2017) respectively. The structure 

of SE blocks is shown in b. 𝐗̄ is the SE block output of original fea-
ture U = Conv(�) as input. The structure of a single residual attention 
module is shown in c. In our residual attention network, we stack 3 
residual attention modules along with max-pooling layers and convo-
lution layers
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3.3.1 � Hard‑coded temporal attention

As mentioned in Sect. 3.2.1, the vision data we use is 4 single 
frames cut out from the full-length video of grasping objects 
rather than the video itself which requires lots of computa-
tional resources. The chosen 0th, 150th, 300th, 450th frames 
of the video lasting about 15 s represent the hand gesture 
of a specific temporal interval. It would be natural to think 
that we should also weigh tactile time series in time dimen-
sion to distinguish the importance of the current frame time 
interval from other intervals. Therefore, we design 4 quad-
ratic distribution function to depict attention in time. As 
the tactile series’ length is 60, we divide it to four intervals: 
0 ∼ 14, 15 ∼ 29, 30 ∼ 44, 45 ∼ 59 , denoted by time period 
No. 0, No. 1, No. 2, No. 3. During each time period i, the 
starting index is denoted as Ts

i
 , the ending index is denoted as 

Te
i
 , The distribution function pi, (i = 0, 1, 2, 3) is given by the 

following equation.

s is a scale factor which is set to 15. While, fi(t) is the peak 
distribution, which is defined as:

gi(t) is the body distribution, which is defined as:

where w is the weight to adjust the ratio of the maximum 
of gi(t) and fi(t) . Outside their domain of definition, both 
functions are set to 0. The weight distribution obtained is 
shown in Fig. 7. For each distribution, we sample at the 
integer index between 0 and 59 to form a 60-dimensional 
vector �

�
 , then the weights are hardcoded into tactile time 

series of each sensor unit j by element-by-element multi-
plication. So that we end up with 4 tactile-visual data pairs 
(vi, ti), i = 0, 1, 2, 3 which imply 4 adjacent time intervals.

(1)pi(t) =
fi(t) + gi(t)

s

(2)fi(t) = −(t − Ts
i
) ⋅ (t − Te

i
), t ∈ [Ts

i
, Te

i
].

(3)

gi(t) =

{
−w ⋅ (t − 59) ⋅ (t − Ts

i
− Te

i
+ 59), i = 0, 1

−w ⋅ t ⋅ (t − Ts
i
− Te

i
), i = 2, 3

, t ∈ [0, 59],

(4)t
(j)

i
← t

(j)

i
⊙ �

�
, j = 0, 1,… , 13

3.3.2 � channel‑wise tactile attention with squeeze–
excitation blocks

By reason of that the tactile sensors are all over the palm 
and knuckles, it is very unlikely that each sensor has a 
strong and similar signal change in a single grasping action. 
To exploit sensor channels’ different importance dynami-
cally, we embed a SE block in tactile branch of the model, 
which is proposed by Hu et al. (2018), containing two pro-
cesses, namely squeeze and excitation, shown in Fig. 6b. 
In the squeeze process, we generate channel descriptor 
�
�
∈ ℝ

14, (i = 0, 1, 2, 3) using global average pooling:

Following comes the excitation process to make use of the 
information integrated into squeeze process, which is imple-
mented with a gating mechanism:

where � refers to the ReLU activate function, � refers to a 
Sigmoid function, W1 ∈ ℝ

14

r
×14,W2 ∈ ℝ

14×
14

r  . r is the reduc-
tion ratio, which was set to 2 in our experiments. At the end 
of excitation, the original input ti is rescaled by channel:

3.3.3 � Spatial visual attention with residual attention 
modules

In our application scenario, although the gloved hand only 
grips one item at a time, there is no guarantee that no inter-
ferential objects are on the desktop within the camera view. 
To prevent other objects on the table from interfering with 
the inference of the visual branch of the model, we propose 
to make the model capable of perceiving spatial attention to 
locate the object being grasped. We adopt the approach of 
Residual Attention Module proposed in Wang et al. (2017), 
which gets ideas from residual learning and adds soft mask 
attention mechanism on an identical mapping:

(5)z
(j)

i
=

1

60

59∑

m=0

(t
(j)

i
)
m
, j = 0, 1,… , 13.

(6)�
�
= �(W2�(W1��)), i = 0, 1, 2, 3,

(7)t
(j)

i
← �

�

(j)t
(j)

i
, j = 0, 1,… , 13.

Fig. 7   Weight distributions, from left to right labeled as No. 0, No. 1, No. 2, No. 3
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where i ranges over all spatial positions and c is the index of 
image channels. Mi,c(x) ranges from [0, 1] and, with Mi,c(x) 
approximating 0, Hi,c(x) will approximate original features 
Fi,c(x) . Meanwhile, the identical mapping guarantees that 
its performance will at least be no worse than original no-
attention network.

The structure of a single residual attention module is 
shown in Fig. 6c, whose main components are the truck 
branch and the mask branch. In the construction process, 
there are 3 hyperparameters p, t, r to control the block’s 
size, respectively denoting the number of preprocessing 
Residual Units before splitting into trunk branch and mask 
branch, the number of Residual Units in trunk branch, and 
the number of Residual Units between adjacent pooling layer 
in the mask branch. In our implementation, the set values 
are {p = 1, t = 2, r = 1} . We stack 3 residual attention mod-
ules along with max-pooling layers and convolution layers 
to form the visual residual attention network. The corre-
sponding size of the 3 residual attention module’s outputs 
are 56 × 56@256, 28 × 28@512, 14 × 14@1024.

3.3.4 � Weight sharing

As mentioned in Sect. 3.3, although there are 4 different 
(ti, vi), (i = 0, 1, 2, 3) pairs for network input, but we use a 
single network with visual branch V(x) and tactile branch 
T(x) rather than four separate ones, which means the weights 
are shared when the proposed model processes data pairs 
from disparate temporal interval. Therefore, each time we 
update the weights, the gradient comes equally from the 
four data pairs. This not only greatly reduces the number 
of network parameters, but more importantly, it indirectly 
provides more data for single network training. The desired 
visual branch should have the ability to extract features at 
any moment, so should the tactile branch. Through weight 
sharing, we can train network branches with stronger repre-
sentational ability.

3.3.5 � Modal fusion with tunable weight �

The two branches’ outputs V(vi) and T(ti) will have exactly 
the same dimension, denoted as fusion dimension Df  , which 
is also a hyperparameter (set to 100 in our experiments). We 
use another parameter � ∈ [0, 1] to indicate the importance 
of each modality while performing modal fusion. We set the 
weight of visual features to � and tactile features to 1 − � . In 
our preliminary trial, � is set to 0.5, which means that visual 
and tactile features are equally important in this case. The 
fused feature vector � is given by:

(8)Hi,c(x) = (I +Mi,c(x))⊙ Fi,c(x)

3.3.6 � Classifier

The fused feature vector � will be passed through a two-layer 
perceptron. The output dimension is the number of object 
classes. We set the dimension of the hidden layer to 
⌊
�

Df +
1

2
⌋ . With hidden layers of reasonable size, the two-

layer classifier provide stronger nonlinearity for the model 
thus helping to achieve higher classification accuracy.

4 � Experiments

In this section, we first detailedly discuss experimental set-
tings in Sect. 4.1, then provide the complete evaluation result 
in Sect. 4.3 and ablation study in Sect. 4.3. In Sect. 4.4, the 
robust classification results of the system in several extreme 
cases are presented. Then we discuss the effects of input data 
pair selection in Sect. 4.5. Finally, we provide the actual use 
scenario test in Sect. 4.6.

4.1 � Experimental settings

We will clarify the general settings in our evaluation experi-
ments in the first place. For the basic ablation studies in 
Sect. 4.3, we split the multimodal dataset for training and 
testing at a ratio of 7:3. During the training process, Kingma 
et al. (2014) algorithm is employed to optimize the learnable 
model parameters. We set the learning rate to 0.0005 and 
the batch size to 4. We choose Cross-entropy Loss as the 
loss function and use the accuracy score as our performance 
metric. All of our model implements and experiments are 
based on Pytorch Paszke et al. (2019). The training and test-
ing processes are completed on a Windows10 PC with an 
NVIDIA Geforce GTX 3070 GPU. Other specific settings 
will be given in the corresponding section of the experiment.

4.2 � Best accuracy performance

With the 3 kinds of attention mechanism and 2 kinds of 
modality, our system achieved 99.75% classification accu-
racy, which is about 1.5% higher than result of similar net-
work structures with roughly the same number of parameters 
but no attention mechanism and significantly higher than the 
model with single modality(∼ 5% of single tactile model and 
∼ 2% of single visual model).

(9)� =

3∑

i=0

[�V(vi) + (1 − �)T(ti)]
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4.3 � Ablation study

The ablation study of the multimodal attention network on 
dataset(a) shown in Table 2 is intended to show the necessity 
of each component. All the experiments done in this section 
follow the setting in Sect. 4.1.

It’s worth mentioning that we abandon the specific atten-
tion mechanism by means of setting all of its parameters to 
1 if they are attention weights or 0 if they are soft-masks 
and remove modality by resetting the modality fusion hyper-
parameter � to 0 or 1, respectively representing removing 
visual and tactile modality. From the experiment results, 
we can draw a conclusion that the modules we integrate 
distinctly improve the accuracy of the model. Concretely, 
with both visual and tactile modalities and all of the three 
attention mechanisms loaded, the model can achieve an 
extremely high accuracy of 99.75%. If we abandon the 
visual spatial attention, then the test accuracy drops down 
to 98.71%, shown in A-TC. If we remove the channel-wise 
attention and temporal attention respectively, the accuracy 
correspondingly descends to 99.14% and 99.02%, shown 
in A-TS&CS, whose decreases are less than A-TC. We can 
infer that visual attention matters more than those two kinds 
of tactile attention mechanisms. In A-S experiment of abla-
tion study, we remove both of the two kinds of attention 

mechanisms applied on tactile modality. The accuracy 
is 98.97%, still better than 98.71% in A-TC experiment, 
which is in line with our inference above. If we remove 
all the attention mechanisms, ending up with an accuracy 
of 98.28%, which implies the effectiveness of introducing 
attention mechanisms to the classification process. As for 
ablation experiments for Modality, we remove the visual 
branch of the network and only use tactile information, the 
accuracy drops sharply decrease to 94.54%, shown in M-T. 
And the accuracy is 97.98% if only inferring with visual 
modalities, namely M-V. These two experiments together 
prove that the modal fusion is rewarding.

4.4 � Multimodal prediction in extreme cases

4.4.1 � Classification of almost visually indistinguishable 
items.

In this section, we test the classification modal in the 
case that items are hard to distinguish only by vision, 
in order to prove that the integration of tactile modality 
improves the robustness of the classification model. It can 
be expected that there are some items that are untoward to 
distinguish with the webcam alone. However, these items 
usually have very different tactile characteristics, such 

Table 2   Ablation study on attention mechanisms

Attention experiments compare the classification accuracy /w or w/o attention mechanisms of different kinds: hard-coded temporal attention, 
channel-wise attention with SE blocks, visual spatial attention with residual attention modules. Modality experiments compare the accuracy 
when different modality is used. In both the two parts of experiments, the used attention mechanisms or modalities are denoted by ✓ , while the 
abandoned attention mechanisms are denoted by ○ in Attention set of experiments and the abandoned modalities are denoted by × in Modality 
set of experiments
Bold indicates best performance

Attention experiments(A−) Tactile Visual Accuracy/%

Temporal Channel-wise Spatial

TCS ✓ ✓ ✓ 99.75
TC ✓ ✓ ○ 98.71
TS ✓ ○ ✓ 99.14
CS ○ ✓ ✓ 99.02
S ○ ○ ✓ 98.97
T ✓ ○ ○ 98.62
C ○ ✓ ○ 98.77
All moved ○ ○ ○ 98.28
Modality experiments(M−) Tactile Visual Accuracy/%
TV ✓ ✓ 99.75
T ✓ × 94.54
V  × ✓ 97.98

Modality experiments(M-) Tactile Visual Accuracy/%

TV ✓ ✓ 99.75
T ✓ × 94.54
V  × ✓ 97.98
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as weight, texture, material, feeling, etc. Based on the 
above features, we ingeniously selected 6 types of bottle 
as targets to be identified, which are even indistinguish-
able by a human from a little far away. Specifically, we 
made use of two bottles with exactly the same color but 
significantly different volume (380 mL/550 mL). Each 
size bottle was used to collect three data sets with three 
different filling states: empty, half full, and full, as shown 
in Fig. 3. We conducted classification experiments on the 
dataset(b) of above 6 kinds of bottles. We tested three 
cases separately: using visual data only, using tactile data 
only, and visual-tactile modal fusion. Results showed that 
relying on the auxiliary recognition of tactile informa-
tion can significantly improve the results of visual clas-
sification. For specific results, see Table 3. Besides the 
accuracy of classification on 6 bottles, we evaluated the 
classification accuracy for the 3 water-filled states. We 
also calculated the recall rates of different size bottles (by 
marking the large bottle as positive), which derives from:

It can be seen that the classification result combining 
the two modalities significantly improved compared to 
making predictions with data with single modality. The 
experiment also proves that our proposed system has the 
potential to achieve more than just object classification 
assistance. The above example of accurately distinguish-
ing bottles with different capacities and different filling 
states shows that the system can qualitatively assist visu-
ally impaired people to perceive the size and weight of 
items, which means to let them feel the characteristic of 
items.

There is also a large category of items that are easy 
to distinguish visually but almost the same in touch, for 
example, the items of the same shape but different colors. 
But this kind of object is of little practical significance 
to our application of assisting visually impaired people. 

(10)
Recall =

TP

TP + FN
, TP for true positive and FN for false negative.

Additionally, the advantages of visual recognition have 
been proved by a large number of previous studies. There-
fore, we did not implement these additional experiments.

4.4.2 � Classification when there are interfering objects 
on the desktop.

In this section, we test the classification model in the case 
of interfering objects placed messily on the table. In prac-
tical situations, it is common for more than one item to 
appear in the field of view captured by the webcam, while 
only one of these objects is the target that the visually 
impaired user is grasping, which is the one model should 
predict. Specifically, we mixed dataset(c) of 10 items men-
tioned in Sect. 3.2.1, approximately 2200 pieces of data 
after augmentation in total, and the original dataset(a) in 
varying proportions to form the training set and test set. 
During each grasping process in the collecting process of 
dataset(c), there is more than one item in the view field. 
We labeled the data according to the items which are 
directly grasped by the gloved hand. The results evaluated 
on the mixed dataset are shown in Table 4.

From the results, we can see that in the first five experi-
ments, the classification accuracy is considerably high 
even if the proportion of each dataset in the training set 
or the test set varies. Concretely, in the first five experi-
ments, data from each of the two datasets are partly used 
to form the training set, which ensures the capability of 
the model to learn essential features of these 10 items and 
robust attention mechanism to overcome the disturbance of 
irrelevant objects. However in the other two experiments, 
when we separately use one dataset to train and the other 
to evaluate, the accuracy declines steeply. The conceivable 
underlying cause is that the visual attention training is 
misled. Therefore we tried removing visual branches to see 
the impact of visual misleading. The classification results 

Table 3   Multimodal prediction in extreme cases (I): classification of 
almost visually indistinguishable items

The used and abandoned data modality are denoted by ✓ and × . 
Accuracy on 6 classes and 3 filling states and Recall on 2 sizes are 
used as the performance measure
Bold indicates best performance

Data modality Accuracy/% on 
6 classes

Accuracy/% on 3 
filling states

Recall/% 
on 2 sizes

Tactile Visual

× ✓ 93.71 94.06 97.70
✓ × 92.45 94.51 97.74
✓ ✓ 99.15 99.47 99.81

Table 4   Multimodal prediction in extreme cases (II): classification 
when there are interfering objects on the desktop

Different mixing proportion for dataset(a) and (c) to form the training 
set and test set is evaluated and compared

Mixing proportion Accuracy/%

Dataset(a) Dataset(c)

Train/% Test/% Train/% Test/%

70 30 70 30 94.77
90 10 50 50 92.54
70 30 30 70 92.47
100 0 50 50 89.97
50 50 100 0 88.55
0 100 100 0 52.78
100 0 0 100 49.96
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of the last two experiments with single tactile modality 
are 84.43% and 88.57% respectively, which proves that 
ill-trained visual branch does severely adversely affect the 
results.

4.5 � Effects of input data pairs (v
i
, t

i
) selection

The main purpose of this experiment is to explore the influ-
ence of the number of input tactile-visual data pairs (vi, ti) 
on classification accuracy. In the previous experiments, we 
found a difference between the collected data and the actual 
use scene. Due to every piece of data in the dataset records 
an entire grasping process. Therefore, the first frame of each 
group of video frames always starts with the user’s hand 
next to the object to be classified, while in the actual use 
scene it is possible that the object to be identified is held or 
hidden in gloves during the entire identification process. In 

order to verify the impact of input data pairs selection on 
the experimental results, we used different input data pair 
combinations to perform classification experiments. Details 
are shown in Table 5.

The results show that for the same number of input 
frames, there is no significant difference in classification 
accuracy. But reducing the number of input frames will 
result in a slight decrease in classification accuracy, com-
pared to our best accuracy of 99.59%. Therefore, the frame 
selection strategy we use should not have a major impact on 
the actual use scene. In addition, the accuracy in experiments 
done without hard-coded temporal attention is less than ones 
with hard-coded temporal attention, which reflects that the 
proposed temporal attention effectively helps the model 
learn features from data pairs of different time intervals.

4.6 � Evaluation in real use scenario

In this section, we implement our system into the actual use 
scene. Due to the COVID-19 pandemic, we were limited to 
finding a well-matched and adequate target audience. In line 
with the principle of epidemic prevention and control, we 
did not recruit social experimental users but carried out the 
practical application scenario test among 5 colleagues from 
the department. However, we believe that this choice has lit-
tle influence on the validity of our user experiment since our 
purpose is to test the adaptability of the system to different 
individual user behaviors. Therefore, the core is to test the 
predictive performance of the model on data collected by 
different people in real-time. Specifically, we recruited 5 test 
users including 3 females and 2 males with normal visions. 
In order to more realistically simulate the use of the system 
by visually impaired people, we put on blindfolds for the 
users during the test, and the users explored the use of the 
system by themselves. The use scenario is shown in Fig. 8. 
The 5 users conducted a total of 200 tests, 10 types of items 
for 20 times each. The number of correct predictions for 
each category is listed in Table 6, from which we can learn 
that the accuracy in the actual use scene only drops slightly 
than which in the test set.

Since the system is designed for continuous assistance, 
in actual situations, users can strengthen their percep-
tual knowledge of objects by repeatedly identifying the 

Table 5   Input frame selection

The experiment was done on dataset (a) with various combinations 
of data pairs except for complete combination which is already evalu-
ated in Table.2(1). To see the role of the hard-coded temporal atten-
tion mechanism in fully extracting features of data pairs in different 
time intervals, we did the same test under two conditions: w/ or w/o 
hard-coded temporal attention

Indexes of data 
pairs

Accuracy/% Indexes of data 
pairs

Accuracy/%

w/ hard-coded temporal attention
 0, 1, 2 99.12 1, 2 98.98
 0, 1, 3 99.31 1, 3 98.79
 0, 1, 4 99.17 2, 3 98.85
 1, 2, 3 98.82 0 98.04
 0, 1 98.57 1 97.93
 0, 2 98.94 2 97.79
 0, 3 99.06 3 98.15

w/o hard-coded temporal attention
 0, 1, 2 98.54 1, 2 98.07
 0, 1, 3 98.67 1, 3 97.94
 0, 1, 4 98.80 2, 3 98.28
 1, 2, 3 98.19 0 97.89
 0, 1 98.07 1 97.73
 0, 2 98.24 2 97.91
 0, 3 98.23 3 97.84

Table 6   The accuracy of each item in use scenario evaluation

Total accuracy= 86%

Category Vacuum cup Tape Glasses box Power bank Mouse

Acc. 100% 100% 95% 90% 90%

Category Calculator Hand cream Milk Book sewer Chess

Acc. 85% 80% 80% 70% 70%
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same object, the accuracy of the actual application will be 
higher than the accuracy of simple classification, because 
there are repeated recognition in most instances. Besides, 
there is an obvious trend that large-size and obvious-
shaped items have better prediction results, while small 
and light items are predicted poorly, which is in line with 
the result on the test set.

The user-friendliness of the system is mainly reflected 
in the fact that for users who are blindfolded, after a brief 
oral introduction in advance, all of them can master the 
use of the system within a few minutes. This proves the 
potential of our system and that it would be easy to use 
for serving truly visually impaired people as well. From 
the feedback of the test-takers, the five people were 
impressed with the actual operation feeling after putting 
on the gloves. In addition, everyone has realized the pro-
cess of repeatedly grasping, predicting, and finally deter-
mining what the object is in the hand. In our opinion, it 
can be used by visually impaired people equally easily. 
Whenever there is an opportunity, we hope to recruit visu-
ally impaired users to do more in-depth usage tests.

5 � Discussion

5.1 � Visualization of spatial and channel attention

In this section, we made an attempt to visualize the 
learned spatial and channel attention weights so as to 
examine the effectiveness of attention mechanisms and 
give more insights.

5.1.1 � Spatial attention

As mentioned in Sect. 3.3.3, the vision branch of our model 
has 3 residual attention blocks to enforce spatial attention 
perception. The size of the attention map is 56 × 56@256 , 
28 × 28@512 , 14 × 14@1024 correspondingly, which can 
provide attention focus from local region to global fea-
tures. We visualized every channel of the attention maps 
calculated by these 3 attention blocks, which shows excel-
lent effect in focusing on the tactile glove and the grasped 
object. Some of the visualizations are shown in Figs. 9, 10, 
and 11, in which we randomly sampled several channels 
of the three attention layers. From this, we can prelimi-
nary see how the attention mechanism works to improve 
the performance of the model. With the layer of atten-
tion network getting deeper, attention mechanism tries to 
focus gradually on the area of interest. Note that not every 
channel of the particular attention layer can ensure to pay 
attention to valid regions. But as the number of attention 
map channels is large, which statistically guarantees that 
attention mechanism works effectively. Especially, in the 
visualization on dataset(c), in which interfering objects 
appear in view, attention mechanism helps the model focus 
correctly on the grasped objects, shown in Fig. 11. Com-
paring the visualization results of attention maps obtained 
from the experiments on the three data sets, we can see 
its superiority in focusing on key regions and eliminating 
interference features.

Fig. 8   Actual use scene. The main hardware of our system is marked 
in User 1’s picture. When the mouse is clicked, the system begins to 
work. The webcam and glove are turned on at the same time to col-
lect data. The blindfolded user then repeatedly changes the posture of 
his gloved hand to grasp the current object to build his own cognition 
of the item and give his own judgment. When the collection is done, 

the multimodal classification model quickly broadcasts the predicted 
label via the speaker. Because the user’s purpose is to continuously 
learn to distinguish the objects in his gloved hand through the pro-
cess, if the user is in doubt about the result, he can repeat the pro-
cess, change the gesture, and then listen to the prediction result again, 
eventually form the cognition of the item in hand
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5.1.2 � Channel attention

In Sect. 3.3.2, we detailed introduced the channel atten-
tion in our proposed model. It aims to select several sen-
sor channels with more importance. In practice, we found 
that a well-trained channel-wise attention module will give 

different sensor channels significantly different weights, 
shown in Fig. 12, which verified its validity. Besides, we 
observed that inputs from different categories only change 
the channel-wise weights slightly, which means channel 
weights are almost consistent for different object classes.

(a) Attention map samples of class chess.

(b) Attention map samples of class milk.

Fig. 9   Visualized attention maps on dataset(a). Objects of small size rely more on attention maps in the deeper layers, while those of larger size 
have effective attention at both shallow and deep levels

Fig. 10   Visualized attention maps on dataset(b). Left: empty-small bottle. Right: full-large bottle. Spatial attention is still very effective, but the 
visual appearance between classes is too similar to provide distinguishing features
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5.2 � Learnable modality fusion parameter �

In all of the above experiments, we treated visual and 
tactile modality equally in the modal fusion process of 
our model, which means we reckoned without the prefer-
ence of different objects for one of the two modalities. 
However, as mentioned in Sect. 4.4, there exist cases in 
which objects are more likely to be identified if attaching 
more dependencies to one particular modality due to its 
distinguishing features of this modality. In order to see 
the modality preference of the experimental objects and 
furthermore, use the preference to improve classification 
accuracy, we adjust the fusion hyperparameter � to be 
learnable.

5.2.1 � Learning process of �

Technically, we implemented a tiny network to give the 
optimal � for each input data based on the fusion-layer 

features. Given vision-branch output V(vi) and tactile-
branch output T(ti) for i = 0, 1, 2, 3 . Then � is given by:

where G  is a linear mapping followed by a Sigmoid function 
to rein � in (0, 1). Then, the fused feature is computed by 
Eq. (9) in which � weights visual features and 1 − � weights 
tactile features.

5.2.2 � Evaluation on 3 datasets

We performed an evaluation on all of the three datasets (a), 
(b), and (c). In the basic dataset (a) with 10 classes, we ran-
domly sampled 100 times from each category and calcu-
late the fusion factor � and 1 − � of each sample from the 
trained model. The results showed that in most categories, 
visual modality is clearly preferred, the � varies from 0.6 to 
nearly 1.0, but in three categories, namely calculator, hand 
cream, and tape, � is rather low, which indicates that tactile 

(11)� = G

(
3∑

i=0

T(ti) +

3∑

i=0

V(vi)

)
T(ti),V(vi) ∈ ℝ

Df ,

Fig. 11   Visualized attention maps on dataset(c). Left: chess. Right: glasses box. Attention mechanism helps to highlight objects of interest and 
suppress irrelevant ones

Fig. 12   Channel weights visualization on dataset(a) & (b). The 4 curves in each figure represent channel attention weights of 14 sensors 
obtained with tactile time series under 4 kinds of time attention as input
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dominates in the classification of these three classes. The 
box plots (Figs. 4a, b, 13) give the details of visual and tac-
tile fusion factors of each class.

In the experiments done on dataset (b) and (c), significant 
results appeared. Both of the two experiments learned a � 
close to 0 for all categories in the datasets, which means 
that with the self-adapting fusion factor, the model tended 
to reference using tactile features almost exclusively while 
ignoring visual features. As mentioned in Sect. 4.4, both of 
these two experiments represent a kind of visual indiscern-
ibility. The learned fusion factor reasonably confirms the 
dominant position of tactile features in these cases, which 
highlights the necessity of introducing tactile modality, 
shown in Fig. 14.

Moreover, the self-adaptive �-learner can be thought as 
the fourth kind of attention mechanism used in our model, 
namely modality attention or branch attention as it makes a 
trade-off between the output feature vectors of the visual and 
tactile branches of the network. The classification accuracy 
gets improvement in all of the three experiments, which is 
illustrated in Table 7.

5.3 � From research to practice

Although our system has shown excellent performance in 
the experimental evaluation, it has not been promoted to 
practical application and really brought convenience to the 
life of visually impaired people. Much more needs to be 
done to make this continuous, immersive and educational 
system practical. According to the data from the Depart-
ment of Educational Planning of China,1 only about 11,000 
people with visual disabilities are in the national education 
system(or just graduated) in the year of 2020, which is far 

from the actual number of people in educational age who 
have vision problems. Many visually impaired people can-
not receive compulsory education due to disability, travel 
restrictions, poverty, etc. Our proposed system has the 
advantages of low production and maintenance costs, con-
venient to use, and unsupervised by humans. Therefore, the 
system has strong promotion potential. When it is deployed 
in the education place of visually impaired people, with the 
assorted hardware of the system, it only needs to work with 
the same shared classification model in the cloud then can 
achieve high-precision robust classification on a given set 
of items. The training process for the model’s learning new 
items can be carried out completely on the server side and 
then deployed to all user terminals, which shows the excel-
lent scalability of the system.

In the next stage, we have plans to apply for funding from 
the government and public welfare enterprises, to implement 
the pilot system, and then to promote and apply it to provide 
solutions for the continuous education of visually impaired 
people and improve their living ability and life quality. Spe-
cifically, we will first join the local government department 
and information center for the disabled persons to deploy 
the pilot system to demonstration areas such as the warm 
homes and schools for the disabled in various districts and 
counties. Secondly, we will collect the video and tactile data 
and feedback of visually impaired people using the system, 
and then based on the collected data and usage feedback, we 
will further update and improve the system. For example, we 
might improve the recognition accuracy and generalization 
ability of the vision and tactile fusion model by introducing 
the data collected in practical use scene, and design lighter 
and thinner gloves according to operating habits of visu-
ally impaired people. After that, the updated system can be 
deployed and applied in a new round. Through this deploy-
ment—data and feedback collection—system update—re-
deployment mode, we hope to bring our system from the 

Fig. 13   The fusion factors � and 1 − � for experiments on dataset(a). See Table 1 for category labels. The yellow dotted line is the median line 
and the orange diamond is the mean point. The red points are extreme outliers

1  http://​www.​moe.​gov.​cn.

http://www.moe.gov.cn
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research level to practical applications, so as to truly change 
the lives of visually impaired people.

6 � Conclusions

To provide a solution for unsupervised assistance of visually 
impaired people, we proposed the system AviPer, which aims 
to be a continuous, immersive, and educational assistance 

system for visually impaired people to perceive the world. 
We developed flexible tactile gloves to work with visual 
recognition to achieve robust multimodal object classifica-
tion. The key insight of AviPer is that it can provide visually 
impaired people a sense of participation and real experience 
in the assistance process, as well as reach a high level of clas-
sification accuracy. In the process of developing the system, 
we overcame the difficulties of heterogeneous data by crea-
tively designing a multi-attention multimodal classification 
network. We used the intelligent tactile glove to achieve low-
cost and stable acquisition of tactile data. We fully respected 
the privacy of collectors and users in every session from data 
acquisition to actual application. The verification experiments 
under various extreme situations prove the robustness of our 
system. The user experience in the actual scene shows the 
usability and user-friendliness of the system. We will improve 
our work in the direction of further improving its generality 
and putting it into practice. We are looking forward that this 
work can truly enter the lives of visually impaired people and 
bring substantial changes to their living ability and life quality.

Fig. 14   The fusion factors � and 1 − � for experiments on dataset(b) and (c). See Table 1 for category labels

Table 7   The improvement in classification accuracy for experiments 
on different datasets due to the adoption of �-learner

Bold indicates best performance

Dataset Accuracy/%

w/o �-learner w/ �-learner

(a) 99.75 99.81
(b) 99.15 99.42
(c) 94.77 95.13
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