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Abstract
Indoor localization has the capability to change the way of providing location-based services in a closed environment and 
has more potential than that of GPS if the present shortcomings can be overcome. Thus, developing a ubiquitous Indoor 
Localization System (ILS) is the need of the day. WiFi-based indoor localization using smartphones is a promising approach 
to achieve ubiquity since smartphones are widely available today and most of the buildings are WiFi enabled. However, 
the significant variation of WiFi signal strengths with ambient conditions as well as device configuration badly affects the 
localization accuracy. Hence, a ubiquitous ILS, which would be widely available and would not require any specialized 
hardware support is still out of reach. Thus, this paper surveys state-of-the-art WiFi-based indoor localization techniques 
with a critical analysis of their applicability as a ubiquitous system. Consequently, the main objective of this paper is to 
highlight the key research challenges of implementing a WiFi-based ILS when system ubiquity is the prime concern with 
a discussion on future direction. Some of the experiments have been implemented on a real-life dataset in order to indicate 
the implementation challenges of such a system.

Keywords  Indoor localization · WiFi · Fingerprint · Crowdsourcing · Machine learning · Supervised learning

1  Introduction

The primary objective of an Indoor Localization System 
(ILS) is to estimate the location of a person or object within 
a multi-storied building. Indoor localization has a wide-
spread application area including rescue operation, ware-
house monitoring, asset tracking, indoor positioning, auton-
omous robot navigation, games, and many more. Hence, this 
domain has drawn the attention of many researchers over the 
last two decades due to its potential applications.

The widely accepted and popular outdoor localization 
system, GPS does not work in indoor environment properly 
due to the attenuation of signals by obstacles like walls, the 
presence of furniture and human beings and so forth (Yassin 
et al. 2016). Thus, a number of commercial systems have 
started to emerge with the escalating demand for indoor 

localization. In late 2011, using Google Map 6.0, released 
by Google, indoor localization and navigation are made 
available at some shopping malls and airports in countries 
including US and Japan. However, many building owners do 
not want to share information about their indoor floor plans 
in public due to privacy reasons. Some indoor navigation 
applications like the Tokyo station underground area naviga-
tion app,1 have emerged for helping passengers to navigate 
through the large indoor spaces of major railway stations. 
These applications are not fine-grained and have primar-
ily relied upon a manually created building map showing 
all important places of interest (for example, fare collection 
counters, ticket vending machine, etc.) which hinders their 
applicability to other stations.

Over the years, several indoor positioning systems based 
on different technologies have been explored. Based on the 
need for dedicated infrastructure these systems are catego-
rized into two groups as depicted in Fig. 1. Each group is 
further classified into two categories based on the usage 
of a single technology or multiple technologies. Early sys-
tems provided considerable accuracy with pre-configured 
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dedicated infrastructure including infrared transmitter/
receivers, ultrasound receivers, specialized hardware to emit 
RF/ultrasound beacons, etc. Besides, range-based localiza-
tion techniques such as Angle of Arrival (AoA), Time of 
Arrival (ToA), Time Difference of Arrival (TDoA), Time 
of Flight (ToF), Return Time of Flight (RToF), Phase of 
Arrival (PoA) have been used by many early systems. These 
techniques evaluate the distances from at least three trans-
mitters and incorporate geometrical models for estimating 
locations. However, sophisticated antennas are required by 
such systems to provide considerable accuracy. In order to 
achieve wide-scale success, ILS should be made ubiqui-
tous that would utilize the common devices (such as smart-
phones) carried by the people and common infrastructure 
support provided by the public offices, airports, shopping 
malls, and so on.

Nowadays, most of the buildings (like universities, 
hospitals, and other public infrastructures) are covered by 
Wireless LAN-based network infrastructure. Thus, indoor 
localization based on WiFi fingerprinting can be made 
ubiquitous as no additional hardware is required. Consider-
able research efforts are found to incorporate the same (Roy 
and Chowdhury 2018b, 2021a; Zhang et al. 2017b). This 
approach uses the Received Signal Strength (RSS) of WiFi 
Access Points (APs) to predict an unknown location. All 
smartphones and tablets available in the market have in-built 
WiFi chips to capture RSS values. An application collects 
RSS fingerprints of all candidate locations and sends these 
data to a remote server for storage and analysis. Besides, a 
test application captures the RSS of a location (unknown to 
the user) and sends it to the server for predicting the location 
by analyzing stored fingerprint data. The accuracy of such 
methods mainly depends on the extent of fingerprint effort 
as RSS samples are influenced by indoor ambient conditions 
like opening/closing of door/window, presence/absence of 
crowd/other interfering devices, and so on (Roy and Chowd-
hury 2021b).

To improve the accuracy of such systems, Bay et al. 
(2015), and Ruan et al. (2014) have proposed solutions 
based on Ultra Wide Band (UWB) radios for computing RSS 

variation on narrow channels. Other systems using Radio-
Frequency Identification (RFID) (Yang et al. 2016), ZigBee 
(Gao et al. 2013), Bluetooth Low Energy (BLE) (Cooper 
et al. 2016), Visible Light Communication (VLC) (Liu et al. 
2008), wearable sensing (Ranjan and Whitehouse 2015) 
also require pre-installed additional hardware for localiza-
tion which makes this kind of system hard to adapt to the 
large-scale indoor environment. Video or imaging cameras 
(Lu et al. 2016) can also be used for localization purposes. 
However, these techniques require adequate lighting, a direct 
line of sight, energy resources and so on which increases 
the installation complexity and cost. More importantly, user 
privacy may be compromised. The ubiquity of such a system 
is strangled if different areas of the buildings are covered by 
different technologies such as RFID, BLE, UWB instead of 
using the same technology in every location. Indoor naviga-
tion can be used conveniently by all citizens including the 
visually impaired if these types of applications depend on a 
ubiquitous technology.

In this regard, the researchers have to focus on the rea-
sons behind the vulnerability of RSS coming from an AP 
and propose remedies without introducing any dedicated 
infrastructure such as a tracker device or a BLE device to 
send beacons. In fact, several emerging research challenges 
are raised during implementation. First of all, to work with 
RSS fingerprints, signal behavior should be considered for 
three different domains such as temporal, ambiance, and 
device heterogeneity. Few works can be found on device 
heterogeneity but the localization problem subject to all 
three domains, particularly for crowded public infrastruc-
ture remains largely unexplored. Two important challenges 
arising out of it are - detecting stable APs for effective locali-
zation and ensuring sustainable localization and navigation 
accuracy even when training and testing conditions differ.

To the best of our knowledge, ubiquitous ILS with con-
siderable accuracy is still beyond our reach. Even, state-of-
the-art survey articles concentrate mostly on the need for 
integrating different technologies and the cost-effectiveness 
of a solution. However, the research challenges arising for a 
ubiquitous ILS remain mostly unexplored.

Therefore, the main contribution of this paper is to thor-
oughly discuss the research challenges and probable solu-
tions associated with implementing a ubiquitous ILS based 
on WiFi signals for smartphone users. A survey of exist-
ing works on the different phases of a WiFi-based indoor 
localization framework is also presented. We have shown the 
effect of the discussed challenges using an RSS fingerprint 
dataset.

This paper is further organized as follows. Existing sur-
veys that highlight some challenges are reviewed in Sect. 2. 
Section 3 defines the problem to be addressed followed by a 
brief description and state-of-the-art works on the different 
phases of ILS in Sect. 4. Associated research challenges for 

Fig. 1   Overall categorization of existing techniques of Indoor Locali-
zation System
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developing a ubiquitous ILS and future directions are thor-
oughly discussed in Sect. 5. Section 6 highlights some open 
research issues in ubiquitous ILS. Finally, Sect. 7 concludes 
the paper.

2 � Existing surveys on indoor localization 
systems

A timeline of existing survey articles of this domain is pre-
sented in Table 1. These survey articles (Yassin et al. 2016; 
Stojanović and Stojanović 2014; He and Chan 2016; Xiao 
et al. 2016; Roy and Chowdhury 2021b) of this domain 
mainly focused on the indoor localization problem, differ-
ent technologies, approaches, existing systems, applications, 
some common challenges, etc. Comparisons among the vari-
ous methods and technologies according to metrics, such as 
accuracy, privacy and scalability have also been discussed. 
It has been highlighted that the integration among several 
localization systems as well as technologies has improved 
the quality of indoor location-based services. Moreover, 
choosing a suitable positioning approach with significant 
accuracy and granularity and installing costly equipment 
for combining various non-radio technologies (IMU, visual 
sensors, and so on.) have also enhanced the localization 
accuracy (Stojanović and Stojanović 2014; He and Chan 
2016; Xiao et al. 2016). Therefore, exploring a cost-effec-
tive indoor positioning system that is developed using easily 
available technology is yet to be explored as mentioned by 
Yassin et al. (2016).

Liu et al. (2007) have presented an in-depth overview 
of the existing indoor positioning systems, state-of-the-art 
localization schemes like triangulation, scene analysis, and 
proximity. Fischer and Gellersen (2010) have discussed the 
indoor localization techniques that are useful for assist-
ing emergency responders in challenging ambience such 
as darkness, smokey, fire-outbreak, power outages, and so 
on. Besides, Yang et al. (2015) have presented their views 
on the importance of the mobility information that can be 
benefited for smartphone-based ILS along with wireless sig-
nals. Built-in sensors of the smartphone are used to identify 
mobility information such as step length, angular velocity, 
absolute direction, etc. Additionally, a survey on calibra-
tion-free indoor positioning systems has been introduced 
by Hossain and Soh (2015). They have also discussed the 
associated challenges of traditional fingerprinting like time 
and manpower, unforeseen environmental changes, device 
heterogeneity and emphasized calibration-free performance 
metrics such as map requirement, need for additional sen-
sors, addressing device heterogeneity. Davidson and Piché 
(2017) have highlighted the lack of any standard procedure 
for evaluating localization accuracy of various existing 
algorithms. They have also suggested to design a public 

benchmark dataset for evaluating state-of-the-art indoor 
positioning algorithms as a possible solution.

In this literature, certain research works have been found 
on mathematical models to track a user but fingerprinting-
based techniques can better cope with changing ambient 
conditions. Though there are fingerprinting-based localiza-
tion approaches that incorporate different technologies to 
improve localization accuracy, system ubiquity is not taken 
into account by most of these works. More specifically, in a 
few survey articles, the need for integrating different tech-
nologies and cost-effectiveness are mentioned but still, the 
research challenges arising for a ubiquitous ILS remains 
mostly unexplored. This motivated us to identify and elabo-
rate on the emerging issues of such a ubiquitous ILS from 
the perspective of practical implementation. Accordingly, 
the problem statement of indoor localization using WiFi 
signals is formulated first in the next section.

3 � Problem statement

The two vital key parameters of a WiFi fingerprinting-based 
ubiquitous ILS are Received Signal Strength Indicator 
(RSSI) and Channel State Information (CSI).

RSSI is basically a measurement of signal power received 
at the receiver end. This signal power at the receiver end 
is reduced with the distance due to the propagation of the 
electromagnetic wave through space, which is known as path 
loss. The path loss is calculated by a function of the distance 
between the transmitter and receiver and this relationship 
between RSSI and distance can be represented using Log 
Distance Path Loss Model as mentioned by Li et al. (2019), 
Zafari et al. (2019), and Wu et al. (2018). Generally, this 
model is expressed by the following equation.

where PL represents signal strength in decibel, � is known as 
path loss exponent, d is the distance between the transmitter 
and receiver, �� denotes a Gaussian random variable having 
standard deviation � , PL0 is the received power assumed at 
reference distance d0.

The RSSI is defined as a ratio of the received power to a 
reference power as follows.

where � is known as propagation exponent, d is the distance 
between the transmitter and receiver, and A denotes the sig-
nal strength received at 1 m of distance.

In addition, CSI is another aspect of wireless signal prop-
agation. CSI denotes the characteristics of a communication 
channel that shows how the transmitted signal propagates 

(1)PL(d) = PL(d0) + 10� log10
d

d0
+ ��

(2)RSSI = −(10� log10 d + A)
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through the communication channel between transmitters 
and receivers. It represents the combined effect of wireless 
communication, such as fading, scattering, shadowing, mul-
tipath, and power decay with distance. CSI is calculated at 
the receiver end as follows.

where X⃗ and Y⃗  represent the transmitted signal vector and 
received signal vector, respectively, N⃗ denotes additive white 
Gaussian noise and H⃗ is the channel frequency response, 
which is referred as CSI. So, CSI is obtained from X⃗ and Y⃗  
at the receiver end.

Generally, in WiFi fingerprint-based localization systems, 
the train data are collected from every accessible Location 
Points (LPs). Specifically in the train dataset (TR), RSS fin-
gerprints are received from total n number APs. The RSS 
values of ith fingerprint collected from a location say lz is 
notated as tri = {rssi1 , rssi2 , … , rssin ∶ lz} . The symbol rssij 
denotes the RSS value of jth AP presents in the ith finger-
print, where 1 ≤ i ≤ m , considering m number of training 
fingerprints and 1 ≤ j ≤ n . All location points and the corre-
sponding train data set are represented as L = {l1, l2,… , lg}

T 
and TR = {tr1, tr2,… , trm}

T respectively, where lz = {xz, yz} 
is the two-dimensional coordinate of an location in the 
experimental region. Similarly, the test dataset is represented 
as TE = {te1, te2,… , tem� }T , where m′ denotes the number of 
test fingerprints and |TR| > |TE| . Each test fingerprints, tei , 
is represented as tei = {rss�

i1
, rss�

i2
,… , rss�

in
}.

In this regard, given a labeled train set, TR, and a test 
set, TE, the indoor localization problem is to predict the 
unknown location corresponding to each test fingerprints, 
tei ∈ TE.

The following section describes the different steps of ILS.

4 � Different phases of indoor localization 
system

This section discusses the general phases of an ILS as 
depicted in Fig. 2 and highlights the state-of-the-art works 
in each of these phases.

4.1 � Data collection

The two different modes of RSS fingerprint collection are 
described below.

4.1.1 � Dedicated user‑based data collection

Using smart devices, the users who are willing to partici-
pate in the data collection task acquire RSS of available APs 
from each location point or reference point. The location 

(3)Y⃗ = H⃗X⃗ + N⃗

Ta
bl

e 
1  

(c
on

tin
ue

d)

Ex
ist

. w
or

k
A

pp
ro

ac
he

s
Te

ch
no

lo
gy

 re
vi

ew
ed

Re
m

ar
ks

 R
oy

 a
nd

 C
ho

w
dh

ur
y 

(2
02

1)
Su

pe
rv

is
ed

, S
em

i-s
up

er
vi

se
d,

 U
ns

up
er

vi
se

d,
 

EL
M

, T
ra

ns
fe

r L
ea

rn
in

g,
 D

ee
p 

Le
ar

ni
ng

W
iF

i, 
B

lu
et

oo
th

, R
FI

D
, C

am
er

a,
 In

er
tia

l s
en

so
r

C
om

pr
eh

en
si

ve
 d

is
cu

ss
io

n 
on

 v
ar

io
us

 m
ac

hi
ne

 
le

ar
ni

ng
 te

ch
ni

qu
es

 th
at

 h
av

e 
be

en
 u

se
d 

in
 th

is
 

lit
er

at
ur

e.
 R

ev
ie

w
ed

 d
iff

er
en

t p
er

fo
rm

an
ce

 m
et

-
ric

s, 
so

m
e 

co
m

m
on

 c
ha

lle
ng

es
 a

nd
 lo

ca
tio

n-
ba

se
d 

ap
pl

ic
at

io
ns

.



303A survey on ubiquitous WiFi‑based indoor localization system for smartphone users from…

1 3

points are chosen according to ground truth decided by the 
work. For instance, data can only be collected from mean-
ingful location points of the experimental region. Torres-
Sospedra et al. (2014) have collected RSS data from two 
locations per room i.e., one position inside the room and one 
position just outside the room for room-level localization. 
In order to provide fine-grained localization, Ghosh et al. 
(2016) have divided their experimental region into 2 × 2 sq. 
meter grids and RSS fingerprints have been collected by the 
user from each grid. Generally, in this data collection mode, 
proper labels i.e., locations are tagged with the collected 
fingerprints.

4.1.2 � Crowdsourcing‑based data collection

In this data collection process, the users, carrying smart 
devices, walk around the building as usual for their daily 
activities. Their smart devices record RSS fingerprints and 
other relevant information from various positions of their 
movement path along with the traveled walking distances 
(Wu et al. 2015; Lohan et al. 2017). More importantly, 
it is difficult to properly label the crowdsourced data 
because in many cases, the users are even unaware of their 
involvement in the data collection task. Hence, these fin-
gerprints are grossly labeled based on the feedback of the 
crowd. Wu et al. (2015) have collected a large volume of 

crowdsourced data and predicted the user’s current loca-
tion based on the number of footsteps from a previously 
known location. These footsteps are obtained by the accel-
erometer sensor of smartphones. However, these number 
of footsteps, as well as sensor readings, may vary from 
user to user. Lohan et al. (2017) have proposed another 
crowdsourcing approach where the current position of a 
user has been taken as manual input from the user. Thus, 
the labeling of the crowdsourced dataset may be incorrect 
as it depends on the crowd behavior.

4.2 � Data preprocessing

The raw data needs preprocessing before analysis. The 
WiFi data are preprocessed in the following manner.

•	 Interpolating missing entries of unheard APs: In every 
location point, the signals of all APs are not heard due 
to the limited coverage range of WiFi signals and other 
indoor environmental factors. These missing entries 
( rssi, rss′i ) of both TR and TE need to be interpolated 
before analysis. There are different ways of han-
dling the missing values such as deleting the obser-
vation, discarding the feature, imputation with mean/
median/mode, etc. Generally, RSS values lie between 
0 to −120 dBm. Wu et al. (2015) have assigned  the 
signal strengths of unheard APs with 0 whereas Cooper 
et al. (2016) have assigned the same with the minimum 
observed value of RSS.

•	 Removal of inconsistent AP: Generally, APs of nearby 
buildings or even hotspots are heard during data collec-
tion. Those APs may not be available all the time and 
also have weak signal strength. A value close to 0 dBm 
indicates the strong signal and less than −80 dBm indi-
cates a weak signal (poor distance sensitivity), which 
may not be useful. Hence, those rssi need to be dis-
carded at the time of location prediction. Moreover, 
WiFi hotspots are movable and alive for a short dura-
tion. Keeping these kinds of signal strengths for analy-
sis incur noise in location prediction.

4.3 � Data analysis

The collected datasets are analyzed to find a meaning-
ful distribution of RSS over different locations. Statistical 
approaches, as well as various machine learning algo-
rithms, are used to discover the pattern of RSS to estimate 
an unknown location. In this context, a brief review of the 
existing literature based on statistical and machine learn-
ing approaches is presented below.

Fig. 2   Different phases of indoor localization system
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4.3.1 � Statistical analysis techniques

The representative statistical approaches of indoor localiza-
tion are depicted in Fig. 3. In this domain, a large number of 
research efforts have been adopted the fingerprint approach 
as a basic scheme of location estimation. So, over the years 
fingerprinting has been applied in different technologies 
including WiFi, RFID, acoustic, visible light, magnetic 
field, and so on. However, WiFi-based fingerprinting is the 
most preferable one due to its ubiquity in indoor regions. In 
early 2000, RADAR (Bahl and Padmanabhan 2000) has been 
proposed as an indoor position tracking system and used 
the existing WLAN technology. It is one of the first signifi-
cant works in this field. Along with the triangulation-based 
localization technique, this system incorporates the Rayleigh 
fading model and Rician distribution model. Another well 
known system is Horus (Youssef and Agrawala 2005), which 
requires less computational resources. This system has been 
implemented by many researchers in the last decades. To 
achieve better accuracy, different modules including Cluster-
ing, Discrete Space Estimator, Correlation Modelling and 
Handling, Continuous Space Estimator, and Small-Scale 
Compensator have been proposed in Horus to address dif-
ferent causes of wireless channel variations.

Apart from these, some recent research efforts have been 
found to utilize inertial sensors for improving localization 
accuracy (Kang and Han 2015; Koroglu and Yilmaz 2017). 
Generally, inertial sensor-based localization systems use 
Pedestrian Dead Reckoning (PDR) approach. In PDR, the 
distance traveled from a known or initial starting position 
has been computed. Embedded inertial sensors of smart-
phones have been used to track pedestrians. The displace-
ment of a user has been determined by the complex human 
mobility information like step counting, stride length esti-
mation, heading direction estimation, trajectory, walking, 
running, stair, elevator, and so on. SmartPDR (Kang and 
Han 2015) is one of the well-known PDR approaches for 
smartphone users. SmartPDR uses various modules includ-
ing step event detection, heading direction estimation, step 
length estimation for location estimation. Generally, biases, 
bias stability, and thermo-mechanical noise are the most 
common errors that affect those inertial measurements.

In addition, CSI has been considered as a stable signature 
for achieving higher localization accuracy (Xiao et al. 2012; 
Sen et al. 2012; Zhang et al. 2020). Using CSI reliable and 
fine-grained information about the wireless channel has been 
acquired. Zhang et al. (2020) have introduced Cramer–Rao 
Lower Bound (CRLB) concept to analyze the localization 
errors of their proposed CSI-based indoor localization 
model. Their proposed technique has considered the rela-
tionship between the localization accuracy and the path loss, 
shadowing effect, multipath effect, and asynchronous effect 
in order to obtain the localization error due to the pedestrian 
motion. However, these techniques require huge calibration 
effort for building a fingerprint database via wardriving.

Interestingly, the major drawbacks of the fingerprint 
approach like the cost of time and manpower have been 
reduced by the crowdsourcing technique in which a finger-
print database has been constructed at the time of normal tra-
versing with a smartphone. Rai et al. (2012) has developed 
a system called Zee to enable a zero-effort crowdsourcing 
approach while collecting WiFi signal strength and iner-
tial sensor readings. In addition, Zee has incorporated the 
augmented particle filtering method to represent the uncer-
tainty in location prediction. Similarly, in LiFS (Yang et al. 
2012), authors have leveraged user trajectories to construct 
a fingerprint database that maps between fingerprints and 
the floor plan. They have introduced the concept of a stress-
free floor plan so that the geometrical distances between 
any two points in the high dimension space are reflected by 
the real walking distances of the users. So, they transform a 
floor plan into a stress-free floor plan, generate a fingerprint 
space, and map the fingerprints to the real locations. In the 
localization phase, LiFS uses the nearest neighbor algorithm 
to find the target location.

Besides, of those above-mentioned approaches, some geo-
metrical models have been built up to find out an unknown 
location. Unlike searching from the previously stored finger-
print data, an unknown location has been calculated using 
a model such as Log-Distance Path Loss (LDPL) model (Li 
et al. 2018; Prasad and Bhargava 2021), Weighted Path Loss 
model (Poulose and Han 2019) etc. Ji et al. (2006) and Lim 
et al. (2010) have deployed WiFi sniffers at known locations 
for collecting the RSS of various APs. Then an RSS map has 
been constructed using the LDPL model. Moreover, a more 
sophisticated model called the ray-tracing model has been 
used by Ji et al. (2006). However, these types of models have 
required knowledge about the locations of APs. To address 
this issue, Chintalapudi et al. (2010) have used a genetic 
algorithm along with the LDPL model in their proposed sys-
tem, EZ, for solving the RSS-distance equations. However, 
EZ has been dependent on the available GPS information at 
some specific locations like the entrance of a room or near 
a window. In addition, a complex computation process has 
been involved in EZ and the physical localization method 

Fig. 3   Different statistical approaches for indoor localization system
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has generated a lot of miss-detections in rooms. Recently, 
Prasad and Bhargava (2021) have designed a localization 
model from the RSS considering unknown transmit power 
and LDPL exponent.

Apart from the RSS-based model, other geometric mod-
els based on the relationship between the transmitted and 
received signals have been also utilized in this domain. 
These type of systems include CUPID (Sen et al. 2013) 
based on Angle of Arrival (AoA), Guoguo (Liu et al. 2013) 
based on Time of Arrival (ToA) and Cricket (Priyantha et al. 
2000) based on Time Difference of Arrival (TDoA). Wang 
et al. (2015) have proposed a novel WiFi-based scheme 
using Curve Fitting (CF) and location search techniques. 
The CF technique has been used to construct a fitted RSS-
distance function for each AP in each subarea. The two-step 
online positioning phase has been designed to determine 
the subarea of a device and identify the appropriate loca-
tion within the selected subarea using two location search 
algorithms. Yang et al. (2020) have proposed a novel RSS-
based Trilateration algorithm for indoor localization. First, 
they have preprocessed the raw data using a Gaussian filter 
to reduce the influence of measurement noise. Using a novel 
Least-Squares CF (LSCF) method, they have estimated the 
transmit power and the path loss exponent. However, these 
model-based approaches usually require the deployment of 
additional infrastructure, remodeling of some existing prod-
ucts, and knowledge about the hardware configurations.

In the recent past, the Fresnel zones model has been used 
in this literature to determine the elliptic region of the target 
(Fei et al. 2020; Wu et al. 2021). There are multiple propa-
gation paths in the indoor environment from transmitter to 
receiver due to NLoS propagation. Each Fresnel phase is 
the phase difference between the NLoS path and LoS path. 
Conclusively, the resided Fresnel Zone of a target is deter-
mined according to various mathematical calculations that 
use the difference of the Fresnel phases. Fei et al. (2020) 
have applied the Fresnel zones model to obtain the elliptic 
region of the target according to the phase of CSI. They have 
implemented their proposed model in two different multi-
path indoor areas to evaluate its feasibility. Wu et al. (2021) 
have considered two traditional sensing models such as the 
Fresnel zone model and CSI-ratio model to extract some 
insightful properties for localization and a variety of device-
free sensing applications.

4.3.2 � Machine learning techniques

In machine learning, the collected dataset is divided into 
train set, validation set, and test set, while the train set 
is used to build the model and the validation set is used 
to validate it. The trained models are then used to detect 
an unknown location using the recorded data in the test 
phase as input. Labeling of data is an important issue 

here. Labeled train sets are suited for supervised learn-
ing algorithms. Specifically, proper data labels should be 
maintained in the labeled train set or else we will not be 
able to get significant accuracy for the test data. The Semi-
supervised learning algorithms are chosen when a dataset 
contains few labeled data and a large amount of unlabeled 
data. Besides, the Unsupervised learning algorithms are 
applicable for the unlabeled datasets.

Consequently, the representative machine learning 
approaches of WLAN-based indoor localization tech-
niques, that have been proposed and implemented in the 
last two decades are summarized in Fig.  4. Research-
ers have utilized the well-known supervised learning 
approaches like k-Nearest Neighbor (kNN) (Kriz et al. 
2016; Roy and Chowdhury 2018a), K* (Mascharka and 
Manley 2015), Support Vector Machine (SVM) (Yu et al. 
2014; Rossi et al. 2013), Bayesian Network (BN) (Xu et al. 
2017), Naive Bayes (Zhang et al. 2014), Decision Tree 
(Zia et al. 2018), Random Forest (Ramadan et al. 2018), 
Neural Network (Meng et al. 2019; Roy and Chowdhury 
2021a) in this domain. Kriz et al. (2016) have applied 
weighted kNN in their proposed technique where BLE 
beacons along with WiFi RSS have been used for esti-
mating unknown locations. Along with several classifiers, 
Mascharka and Manley (2015) have used K* to analyze 
their collected dataset. Yu et al. (2014) have proposed an 
SVM-based algorithm to effectively minimize the finger-
print calibration effort while improving localization accu-
racy and stability. In order to develop a robust and accurate 
floor localization method, Xu et al. (2017) have designed 
a technique based on the Bayesian Network to identify 
the floor level of a pedestrian in a multi-storied building. 
Zhang et al. (2014) have investigated the performance of 
Bayes learning algorithms and have identified the common 
problem of zero probability caused by data incomplete-
ness that affects the localization accuracy. So, they have 
proposed an improved Naive Base algorithm to overcome 
this problem. Zia et al. (2018) have investigated the per-
formance of several machine learning techniques includ-
ing Decision Tree in order to localize an object in indoor 
spaces. In this literature, the Decision Tree algorithm has 
been used to form another technique like Gradient Boosted 
Decision Tree, Random Forest, etc. To resolve the problem 
of Non-line-of-sight (NLoS) identification, Ramadan et al. 
(2018) have employed a Random Forest-based technique. 
Furthermore, willing to design a stable fingerprint data-
base by reducing the fluctuation of WiFi RSS, Meng et al. 
(2019) have considered Radial Basis Function (RBF) Neu-
ral Network. Besides, Zhang et al. (2018) have addressed 
certain drawbacks of the existing PDR approaches such as 
the accumulation of errors due to noisy sensors by intro-
ducing a novel PDR-based ILS using Online Sequential 
Extreme Learning Machine (OS-ELM). 
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Apart from these, the semi-supervised (Zhou et al. 2017; 
Wang et al. 2018) and unsupervised learning (Wu et al. 
2013; Wang et al. 2019) algorithms have been also found 
in this literature that aims to reduce the effort of finger-
print collection. Zhou et al. (2017) have employed a semi-
supervised manifold alignment approach where unlabeled 
samples along with timestamps have been used to construct 
the radio map. Besides, Wu et al. (2013) have also elimi-
nated the effort of site surveys by designing an unsupervised 
approach using k-means clustering and a logical floor plan 
mapping method. Wang et al. (2019) have used DBSCAN 
(Density Based Spatial Clustering of Applications with 
Noise) to cluster the RSS fingerprint database and divide 
the entire region into several regions based on the clustering 
results. They have claimed that besides improving the locali-
zation accuracy, the computational complexity and location 
prediction time have been also reduced by clustering the 
fingerprint database.

In addition, some existing works have used ensemble 
learning techniques like Bagging (Trawiński et al. 2013), 
Boosting (Cooper et al. 2016), classifier fusion (Belmonte-
Fernández et al. 2018). Those techniques have been found to 
outperform individual machine learning algorithms. Among 
them, Cooper et al. (2016) have utilized the AdaBoost tech-
nique to reduce computation complexity and improve runt-
ime performance. They have used Bluetooth Low Energy 
(BLE) beacons along with WiFi signals for precise indoor 
positioning and their system has been achieved 96.6% 
room-level accuracy. Belmonte-Fernández et  al. (2018) 
have designed an ensemble classifier based on the sum of 

probability estimates of six classifiers namely, Bayesian Net-
work, kNN, Multi-Layer Perceptron (MLP), Random For-
est, SVM, and Sequential Minimal Optimization (SMO) to 
estimate user’s position.

Recently, Transfer learning and Deep learning-based 
indoor localization schemes have become very popular 
among researchers. Based on the knowledge transferred from 
a related source environment to a related target environment, 
Liu et al. (2017) have proposed a Transfer learning-based 
framework to enhance the scalability of fingerprint-based 
localization by reducing the effort of fingerprint collection 
for the target indoor regions. Zhang et al. (2017a) have pre-
sented an indoor localization scheme using Deep Neural 
Network and Deep Belief Network in which WiFi RSS and 
magnetic field data have been fused to enhance the localiza-
tion accuracy. However, the performance of their technique 
is closely related to the numbers of APs, location points, 
and labeled fingerprints in training sets. Koike-Akino et al. 
(2020) have used ResNet-inspired Deep Neural Network 
(DNN) to identify the location and orientation of a client.

The adoption of machine learning techniques in indoor 
positioning and their effectiveness in extracting knowledge, 
discovering, learning, and improving localization accu-
racy can be observed in the literature. These approaches 
are very effective than the traditional mathematical models 
for solving the problem of indoor localization. Due to the 
dynamic nature of indoors (like fluctuation of RSS, changing 
ambience, device heterogeneity), the localization problem 
becomes too complicated for handwritten rules and/or equa-
tions. Machine learning techniques can provide a scalable 

Fig. 4   Different machine 
learning approaches for indoor 
localization system
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solution to the problem for large indoor spaces as the classi-
fiers, can be easily tuned with the updation of datasets (Kim 
et al. 2018; Abbas et al. 2019; Zou et al. 2016). Moreover, 
unlike the traditional statistical approaches, machine learn-
ing techniques can be easily extended to provide a stable 
performance under various ambient conditions (Abbas et al. 
2019; Jiang et al. 2014; Zou et al. 2015b). The online learn-
ing ability of classifiers allows to incrementally adapt to 
changing ambient scenarios which are very difficult with 
traditional approaches (Zou et al. 2015b; Jiang et al. 2014). 
Even, the knowledge gained through training for one ambi-
ent condition or one experimental region can be transferred 
to learn a new but related ambient condition or region, 
respectively through transfer learning mechanisms (Liu 
et al. 2017; Zou et al. 2017). More importantly, in the iner-
tial sensing-based ILS, the adoption of unsupervised learn-
ing techniques more specifically, the clustering algorithms 
becomes a very effective approach to group the similar type 
of user-contributed trajectories together (Shang et al. 2015; 
Lashkari et al. 2018; Luo et al. 2018). The machine learn-
ing techniques have been also integrated for step detection 
and inertial navigation (Pasricha et al. 2015). Furthermore, 
in geomagnetic sensing-based ILS, Deep Neural Network 
has been incorporated to effectively classify the sequences 
of magnetic patterns that are very much sensitive with the 
indoor ambience (Lee et al. 2018).

Thus, from the above discussion and to the best of our 
knowledge, it is hard to find out any research work focusing 
on the essential features of a ubiquitous solution to the prob-
lem of indoor localization. However, ubiquity is an essen-
tial feature for the wide-scale commercial success of indoor 
localization-based applications. Consequently, the emerging 
research challenges for implementing a ubiquitous ILS and 
probable solutions are discussed in the following section.

5 � Research challenges of a ubiquitous ILS 
and future directions

Common research challenges of indoor localization are: 
reducing the effort of fingerprint collection, fusion of proper 
technologies, selection of proper learning algorithm(s), 
elimination of unpredictable noise, improving reliability, 
and so on. In this regard, a comparison among the exist-
ing literature with respect to these research challenges is 
presented in Table 2.

However, in order to achieve a low-cost ubiquitous 
solution of indoor localization, apart from these general 
challenges we need to overcome the following emerging 
challenges.

•	 Designing datasets and learning techniques to handle dif-
ferent contexts.

•	 Identifying stable infrastructure in order to provide a 
ubiquitous solution.

5.1 � Designing datasets and learning techniques 
to handle different contexts

This challenge calls the need for (i) designing a fine-grained 
dataset to analyze the RSS fingerprints collected from public 
infrastructure at different times in different ambient condi-
tions using a number of devices having varying hardware 
configurations, and (ii) designing and testing localization 
techniques that work effectively even when the training and 
testing conditions vary.

5.1.1 � Data acquisition subject to temporal, ambience 
and device heterogeneity for public infrastructure

A. Challenges faced:
The RSS of WiFi APs significantly varies from one 

device to another at any specific location point. The signal 
strength also varies at different times in a day, and due to 
weather conditions as well. Moreover, signal strengths also 
fluctuate for different indoor ambience such as the presence 
or absence of human beings and other interfering devices, 
furniture change, as well as the presence of obstacles. Thus, 
indoor positioning techniques should be validated using 
datasets that contain RSS data of different contexts such 
as temporal, ambience, and device heterogeneity. Addition-
ally, proper location point labeling of the RSS data in the 
train set should be maintained for appropriate estimation of 
an unknown position. In this field, many researchers have 
proposed their techniques by explaining their experiments 
and providing results using their own datasets which are 
not disclosed. In other research fields such as image pro-
cessing, natural language processing, bioinformatics, it is a 
common practice to validate any newly proposed technique 
using a huge number of available datasets in a public reposi-
tory like the University of California Irvine (UCI) Machine 
Learning Repository.2 This domain has fewer publicly avail-
able datasets as compared to other domains. Most of the 
available datasets have not considered the above-mentioned 
heterogeneous contexts. In addition, the available datasets 
have been taken either from university buildings or from 
office buildings. The existing techniques retain significant 
performance in such environments. In a public infrastructure 
(like shopping malls, railway stations, hospitals, etc.), the 
WiFi signal strengths become noisy due to the movement 
of the crowd, nearby interference of mobile devices, and 
many more. Thus, in order to develop a ubiquitous ILS, the 
existing or newly proposed techniques should be validated 

2  https://​archi​ve.​ics.​uci.​edu/​ml/​index.​php.

https://archive.ics.uci.edu/ml/index.php
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using the datasets of public infrastructure. However, the 
benchmark datasets for public infrastructure are still hard 
to find in public repositories. Moreover, comparing the per-
formances of different techniques become very hard due to 
the following factors.

•	 The size of a grid or cell, considered as location point, is 
not uniform. It varies from a small squared or rectangular 
area to the size of a room.

•	 During train dataset preparation, the number of data sam-
ples collected per location point i.e. sampling rate varies 
a lot.

•	 The units of RSS data are found to vary in state-of-the-art 
works. Either these are in linear scale or nonlinear such 
as dBm.

The main characteristics of some publicly available 
datasets are described in Table 3. The CRAWDAD (King 
et al. 2008), KIOS (Laoudias et al. 2013) and IPIN 2016 
Tutorial (Montoliu et al. 2017) datasets contain RSS fin-
gerprints of very small regions. In CRAWDAD (King et al. 
2008) dataset, the distance between any two location points 
is 1.5 m. However, the positioning granularity (i.e. size of 
each location point or cell) is not mentioned and even the 
distance between any two location points is not uniform 
in KIOS (Laoudias et al. 2013) and IPIN 2016 Tutorial 
(Montoliu et al. 2017) datasets. The UJIIndoorLoc (Torres-
Sospedra et al. 2014) dataset contains RSS fingerprints of 
a vast indoor area of a university campus. Another dataset, 
UJIIndoorLoc-Mag (Torres-Sospedra et al. 2015) highlights 
the variations of the magnetic field. This dataset consists 
of 40,159 discrete captures containing inertial sensor data. 
However, these large-scale datasets (Torres-Sospedra et al. 
2014, 2015) are neither fine-grained nor contain data for 
various ambient conditions. In JUIndoorLoc (Roy et al. 
2019) dataset, the RSS fingerprints have been taken at a 
granularity level of 1 sq. meter from a university building. 
Moreover, these dataset contains RSS fingerprints of differ-
ent times, ambience (open/closed room, presence/absence of 
human), and devices. In the recent past, few crowdsourced 
indoor localization datasets (Mendoza-Silva et al. 2018; 
Lohan et al. 2017) are published. Among them, the dataset 
described by Lohan et al. (2017) contains user traces of a 
significantly large area. However, one of the major draw-
backs of the crowdsourcing approach is that many users are 
involved in constructing the radio map in the offline training 
phase. So, the labeling (i.e. tagging locations with samples) 
can also be varied from one user to the other. Thus, localiza-
tion solely based on the crowdsourced RSS values can cause 
significant localization errors.

The localization accuracies of state-of-the-art classifiers 
for various publicly available datasets are shown in Fig. 5. 

According to this figure, for UJIIndoorLoc (Torres-Sospe-
dra et al. 2014) dataset, the accuracy of every classifier is 
better than the other datasets since the room level accuracy 
is always better than the fine-grain accuracy. Moreover, the 
localization accuracy varies with ambient conditions and 
positioning granularity. The area covered by each cell is 
significant in measuring the localization error in distance 
metrics. Furthermore, significant localization accuracy can 
be achieved with a granularity level of 1 sq. meter or 2 sq. 
meter using sophisticated machine learning techniques.

B. Probable solution:
The RSS data need to be collected for various contexts 

to analyze the robustness of localization algorithms with 
heterogeneous fingerprints. The different contexts can be 
as follows. 

1.	 Temporal: Data can be recorded at different time slots 
in a day (say morning, afternoon, evening, night, etc.), 
to deal with the varying nature of RSS.

2.	 Ambience: Various public places have different types of 
ambience. So, the data can be collected in various ambi-
ent conditions such as the presence of a dense crowd in a 
railway station, presence of heavy electrical appliances 
in a factory, semi-open spaces in the museum, railway 
stations, hospitals, and so on.

3.	 Device: Smartphones with different configurations can 
be used for data collection to understand the variation 
of signal strength with respect to hardware change.

Few existing works (Torres-Sospedra et al. 2014, 2015; 
Lohan et al. 2017) consider device heterogeneity but do 
not consider temporal or ambience heterogeneity. In order 
to show the effectiveness of the emerging challenges dis-
cussed here, we have formed a small fingerprint dataset. 
The RSS data of the available WiFi APs have been col-
lected from a faculty room that has approximately 36 sq. 
meter area. The distance between any two neighboring 
location points is 1 m. Moreover, for understanding the 
dynamic nature of RSS, the data have been recorded for 
20 days at different times. However, this dataset does not 
contain RSS for varying contexts throughout the entire 
floor or multi-floor due to operational problems. The vari-
ation of the signal strengths of 5 APs with respect to time, 
using the same device and at the same location point, is 
shown in Fig. 6. The RSS scan is repeated every 15 min 
from 11:00 AM to 07:00 PM. At a particular time instant, 
for every APs an average of statistical RSS values received 
in the scan duration is considered. It can be observed that 
the signal strengths in the morning (11:00 AM) and even-
ing (07:00 PM) are almost the same with a drop at around 
02:00 PM to 03:00 PM for all the APs. In the morning and 
evening, the location is less crowded. Thus, the number 
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of nearby interfering devices is also less while at around 
02:00 PM to 03:00 PM the place is more crowded.

C. Future direction: In JUIndoorLoc (Roy et al. 2019) 
dataset, the WiFi fingerprints have been collected from 
different floors of a university building for varying devices 
and minor variations of ambient conditions. However, the 
university campus is not that much crowded as public 
infrastructures, such as shopping malls or railway stations. 
Secondly, the floors do have a long corridor but do not 
contain vast open space as can be found in most airports, 
shopping malls, hospitals, and railway stations. A dataset 

containing RSS from such indoor/semi-indoor crowded 
open spaces is important as the RSS behavior of such 
places would not match with that collected from a room 
or a moderate-sized closed seminar hall. The semi-indoor 
spaces contain unique characteristics, unlike closed indoor 
spaces. The available datasets mentioned in Table 3 are 
useful for testing commercial applications such as naviga-
tion in office/university buildings. Thus, new benchmark 
RSS datasets of such overcrowded places subject to the 
temporal, ambience, and device heterogeneity are needed 
for conducting experimentation on critical services, such 
as emergency evacuation, especially for crowded public 
places. So, preparing datasets from such indoor/semi-
indoor environments that are very common for public 
places is very crucial for effective localization and navi-
gation services.

5.1.2 � Designing techniques for precise indoor localization 
and navigation, when training and testing contexts 
are different

A. Challenges faced: Considering the dynamic nature of the 
indoor environment, it may not be possible to take the train 
set and test set in the same context (collection time, indoor 
ambience, and scanning device). Interestingly, the training 
context is known but not the testing context. The test set 
can be collected for an ambience or device for which no 
training instances are available. Moreover, the context may 
vary while a user moves around the experimental region for 
collecting the test instances. Providing navigation service 
becomes even more challenging for fine-grained localization 
because of labeling ambiguity. As a user moves in an indoor 

Table 3   Main characteristics of the publicly available datasets for indoor localization

a https://​crawd​ad.​org/​mannh​eim/​compa​ss/​20080​411/​finge​rprint
b https://​www.​resea​rchga​te.​net/​publi​cation/​25648​2916_​KIOS_​WiFi_​RSS_​datas​et
c http://​indoo​rlocp​latfo​rm.​uji.​es/
d http://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​UJIIn​doorL​oc-​Mag
e 10.5281/zenodo.889798
f  https://​zenodo.​org/​record/​37487​19#.​YCP9l​GgzbIU
g https://​drive.​google.​com/​open?​id=1_​z1qho​RIcpi​neP9A​HkfVG​CfB2Fd_​e-​fD

Year Dataset Coverage area 
(sq.m.)

#Floor #LP #Sample #AP #Device

2008 CRAWDADa King et al. (2008) 221 1 130 14,300 25 NA
2013 KIOSb Laoudias et al. (2013) 560 1 105 2100 60 5
2014 UJIIndoorLocc Torres-Sospedra et al. (2014) 108,703 4 933 21,049 520 25
2015 UJIIndoorLoc-Magd Torres-Sospedra et al. (2015) 260 1 NA 40,159 93 4
2016 IPIN 2016 Tutorialc Montoliu et al. (2017) 120 1 105 1629 168 1
2017 WiFi Crowdsourcede Lohan et al. (2017) 22,570 5 4648 4648 991 21
2018 Long-Term WiFi Fingerprintf  Mendoza-Silva et al. (2018) 308.4 2 212 63,504 448 1
2019 JUIndoorLocg Roy et al. (2019) 2646 3 1000 25,364 172 4

Fig. 5   Localization accuracies of state-of-the-art classifiers for vari-
ous datasets

https://crawdad.org/mannheim/compass/20080411/fingerprint
https://www.researchgate.net/publication/256482916_KIOS_WiFi_RSS_dataset
http://indoorlocplatform.uji.es/
http://archive.ics.uci.edu/ml/datasets/UJIIndoorLoc-Mag
https://zenodo.org/record/3748719#.YCP9lGgzbIU
https://drive.google.com/open?id=1_z1qhoRIcpineP9AHkfVGCfB2Fd_e-fD
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region, if the cell sizes are less (such as 1 × 1 sq. meter), the 
user moves from one cell to the other during the collection 
of test instances. Thus, sufficient instances from one cell 
may not be present in the test set and precise labeling of data 
also becomes very difficult. Hence, a supervised machine 
learning classifier may not provide satisfactory localization 
and navigation accuracy under different conditions. In this 
domain, few existing works utilized BLE beacons (Cooper 
et al. 2016) and RFID signals (Calderoni et al. 2015) for pre-
cise indoor positioning. The main advantage of using those 
signals is to get good distance sensitivity in close range and 
consume low power. However, the ubiquity of the ILS is not 
maintained as such additional devices need to be deployed 
as part of the infrastructure.

B. Modified problem formulation: Given a labeled train 
set, TR(t,am,d) = {tr(t,am,d)

1
 , tr(t,am,d)

2
 , … , tr(t,am,d)

m
}T (where m is 

the number of training fingerprints), of known contextual 
heterogeneity subject to temporal (t), ambience (am), and 
device (d) and a test set, TEuc = {teuc

1
 , teuc

2
 , … , teuc

m� }
T (where 

m′ is the number of test fingerprints), of an unknown context 
(uc), the objective of a machine learning classifier is to pre-
dict an unknown location, lz ∈ LP of each teuc

i
∈ TEuc with 

considerable localization accuracy.
C. Probable solution: Some experiments have been 

conducted to show the effect of different training and test-
ing conditions with respect to the dataset mentioned in 
Sect. 5.1.1. Table 4 highlights the performance of the indi-
vidual classifiers for predicting an unknown location when 
the configuration of the device in which the classifiers are 
trained and the device used for collecting test data is differ-
ent. Each subset of train dataset, TR(dg, dh) , contains RSS of 
all the available APs from the corresponding locations taken 
by the smartphones say dg and dh (where g, h = 1 to 4 and 
g ≠ h ) at different times in a day. As can be observed from 

Table 4, the decision of individual classifiers is not signifi-
cant enough to estimate a location. Thus, it is difficult for an 
individual classifier to retain generality while maintaining 
precision. In such a case, an ensemble of different condition-
specific classifiers would be a better choice where a classifier 
is tuned separately for the conditions as shown in Table 5. 
The test dataset considered in Table 5 contains instances of 
all four devices as of the train dataset. However, the same 
instances are not present in the train and test datasets. Inte-
grating the prediction results of these condition-specific 
individual base classifiers using the majority voting method 
the localization accuracy can be improved to 92% as shown 
in Table 5. Hence, the unified decision of all the individual 
classifiers is able to cover all the conditions. The condition-
specific classifiers can be based on temporal, ambience, and 
device-specific data or the combination of those data.

This technique has been proposed by Ghosh et al. (2016) 
and implemented on a relatively small experimental zone. 
The localization accuracy of each individual classifier ranges 
between 58% to 85%. However, applying the majority vot-
ing method the accuracy increased to almost 96% in their 
dataset. Roy et al. (2021) have presented a weighted voting 
algorithm based on Dempster-Shafer belief theory to address 
this issue subject to device heterogeneity on the JUIndoor-
Loc dataset (Roy et al. 2019).

More importantly, a condition-based ensemble classifier 
performs effectively when the condition in which the test 
dataset is collected is similar to one or more of the training 
conditions. However, a huge number of smart devices with 
different hardware configurations are available in the mar-
ket. In reality, many contexts may appear as well. Hence, 
it is infeasible to record data for all conditions using every 
device. If many contexts are taken into consideration, the 
number of base classifiers increases exponentially for all 
probable combinations of contexts. Moreover, the signal 
strength variation in neighboring location points of 1 sq. 
meter granularity is very negligible, and this variation is 
significantly high with different contexts which may result 
in lower classification accuracy. Thus, a condition-based 
ensemble classifier may not be able to provide accurate 

Fig. 6   Variation of RSS with different times at a specific location 
point

Table 4   Localization accuracies in % obtained by training and testing 
of different condition-specific datasets using four classifiers

Train set Test set BN SVM kNN K*

TR(d1, d2) TE(d3) 81.14 78.99 85.52 81.82
TR(d1, d3) TE(d4) 78.94 75.71 79.15 77.56
TR(d2, d3) TE(d1) 89.89 88.35 90.46 89.38
TR(d2, d4) TE(d1) 88.96 88.50 84.38 89.22
TR(d3, d4) TE(d2) 87.62 88.29 84.48 89.22
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results always. Hence, it is a vital challenge for researchers 
to explore a suitable technique to mitigate this problem.

D. Future direction: Interestingly, Transfer Learning is a 
new paradigm for improving the learning performance when 
the train and test data are collected for different conditions. 
In such a case, transferring the knowledge gained from the 
source environment may effectively improve the learning 
performance of the new environment or target domain (Liu 
et al. 2017). Hence, the overhead of site-survey for the tar-
get domain gets reduced and the scalability of the system 
is enhanced. Generally, metric learning and metric transfer 
are the main phases of any Transfer Learning-based frame-
work. In metric learning, the distance metric from the source 
domain is learned by maximizing the statistical dependency 
between the WiFi signal features and corresponding loca-
tion labels. The metric transfer phase then determines the 
most appropriate metric for the target domain by minimizing 
the inconsistency between the two domains. In this context, 
the source environment should have sufficient labeled fin-
gerprints to achieve satisfactory localization performance. 
However, getting a sufficient amount of labeled fingerprints 
for all representative WiFi signal features is difficult. The 
dependency relation between the features may also vary with 
time, ambience, and device.

Moreover, it is difficult to locate a user precisely while on 
the move due to inherent labeling ambiguity induced by the 
movement. Here, data can only be grossly labeled. However, 
these individual instances with a gross label cause ambigu-
ity. Multiple Instance Learning (MIL) is a semi-supervised 
learning technique that can be used to solve this issue. In 
MIL, not an individual instance, but a bag of instances 
are assigned a label with the requirement that at least one 
instance of the bag belongs to that label. Thus, a location-
specific bag contains at least one RSS instance that is actu-
ally collected from that location and some other grossly 
labeled instances collected on the move. In this way, MIL 
techniques can be explored for indoor localization with few 
accurately labeled and other grossly labeled RSS instances 
collected using different devices.

5.2 � Selecting stable infrastructure in order 
to provide a stable solution

A. Challenges faced: The localization accuracy mainly 
depends on the RSS fingerprints of all available APs. Sig-
nal strengths of certain APs at a location (say l1 ) collected 
in some ambience (say am1 ) may match with the signal 
strengths of that AP at another nearby location (say, l2 ) for a 
different ambience (say am2 ) due to signal fluctuations. As 
a result, incorrect location can be predicted at the time of 
classification if the ambience of fingerprint data is not con-
sidered. For smaller grid sizes, that is, fine-grained location 
points, this effect is even more apt. Interestingly, those APs 
are found to be stable across ambience which exhibits strong 
signal strength at a location. However, a common set of APs 
cannot exhibit strong signal strength across the entire cover-
age area. Thus, building properties need to be considered 
along with AP signal variations for steady coverage.

Jiang et al. (2015) have selected the important APs using 
the signal feature-based MaxMean approach. Similarly, in 
order to identify important APs, Lin et al. (2014) and Xue 
et al. (2019) have also used signal feature-based approaches 
such as Group Discriminant, Access Point Discrimination 
Criterion, respectively. They found improvement in accu-
racy than other existing methods. However, the physical 
distribution of the APs across the entire region is not con-
sidered in those methods. Thus, the localization error may 
increase in some locations as the selected important APs are 
not evenly distributed throughout the experimental region. 
Another drawback of the signal feature-based approach is to 
determine the threshold value which is used to select only 
the relevant APs and exclude the irrelevant ones. Moreo-
ver, information theory-based approaches like Information 
gain (Zhou et al. 2013; Zou et al. 2014) and Mutual infor-
mation (Zou et al. 2015a) have been used in this domain 
for AP selection. However, the information theory-based 
approaches follow a univariate way to select the important 
APs, so, they cannot handle the redundant APs. Besides, 
Kim et al. (2017) have divided a target area into several 
rectangular clusters and each cluster has been divided into 
eight subzones to uniformly distribute important APs. How-
ever, this type of region division technique may not provide 
sustainable results for all experimental regions.

B. Modified problem formulation: Given a reduced 
train set, RTR(t,am,d) = {rtr(t,am,d)

1
 , rtr(t,am,d)

2
 , … , rtr(t,am,d)

m
}T , 

of n′ APs (where n′=|APmin| and |APmin| is a minimal set of 
stable APs) and a reduced test set, RTE(uc) = {rte(uc))

1
,rte(uc)

2
 , 

… , rte
(uc)

m� }
T , the objective is to select |APmin| in such a way 

that the unknown locations of the test set, RTE(uc) , should be 
predicted by a machine learning classifier with considerable 
localization accuracy.

C. Probable solution: Machine learning-based fea-
ture selection techniques such as Correlation Attribute 

Table 5   Localization accuracies in % obtained by each condition-spe-
cific base classifier and the Ensemble method using kNN with the test 
dataset featuring instances of all devices, d1 to d4

Classifier Train set kNN Accuracy

Base classifier 1 TR(d1, d2) 7NN 84.46
Base classifier 2 TR(d1, d3) 3NN 77.11
Base classifier 3 TR(d2, d3) 13NN 79.83
Base classifier 4 TR(d2, d4) 13NN 82.83
Base classifier 5 TR(d3, d4) 13NN 81.74
Ensemble (majority voting) – – 92.00
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Evaluation, Information Gain evaluate relevant features in 
a relation. Moreover, in order to take care of the stability of 
the selected APs, the mean and standard deviation of the 
RSS of each AP at every location point should be consid-
ered. Before applying feature selection, the stable APs can 
be short-listed based on mean and standard deviation. Fol-
lowing this above-mentioned mechanism, experiments are 
conducted using state-of-the-art classifiers through cross-
validation on our collected dataset. The obtained localiza-
tion accuracies are depicted in Fig. 7. Instead of considering 
all the APs, if a minimum number of stable APs obtained 
from the feature selection technique are taken into consid-
eration, the performance of the classifiers is improved sig-
nificantly as shown in Fig. 7. However, the feature selection 
method is not the only solution for stable AP selection. The 
ranking of APs may change with different times, ambience, 
device configuration, and more importantly with the zone 
where localization is considered. An AP may show stable 
signal strength for one region while in another region it may 
not show that much stability. Thus, another related question 
regarding the stable AP selection is how to divide the region 
into different zones and identify the stable APs per zone.

D. Future direction: In public indoor regions like air-
ports, railway stations, shopping malls, museums the APs 
are not deployed with the aim of providing localization. 
Moreover, in those places, many WiFi hotspots are alive 
than the pre-deployed WiFi APs. The signal strength of the 
hotspots can degrade the performance of localization as 
they are movable in nature and alive for a short duration. 
Thus, besides the selection of stable APs, the zones must be 
identified in order to deploy the APs in such a way that the 
APs cover the entire indoor region. In addition, their signal 
strength must be strong enough in the target region in order 
to show stability for heterogeneous conditions. Identifying 
stable APs not only reduces the cost of maintenance of APs 
and the dimension of location classification problem but also 
ensures sustainable localization performance.

However, according to the building properties, the indoor 
ambient properties vary, and consequently, the localization 
capability of the APs differs in various regions of an experi-
mental area. Therefore, the whole region can be divided into 
clusters having similar signal properties of different APs. At 
the time of cluster formation, it can be observed that some 
APs may provide distinguishing characteristics for the two 
adjoining clusters while some APs give no predictive infor-
mation for localization. Consequently, a proper technique 
should be explored for the identification of the optimal num-
ber and size of clusters based on the similar RSS behavior 
and the selection of important and stable AP set that distin-
guishes among the clusters.

Moreover, AP selection is a combinatorial optimization 
problem where an optimal set of relevant APs are selected 

from a large set of APs. Evaluating the performance of all 
possible subsets of APs from a large search space is gener-
ally infeasible in practice as huge computational effort is 
required. Meta-heuristics techniques find a near-optimal 
solution to an optimization problem like AP selection 
through exploring and exploiting a larger search space. 
Hence, Meta-heuristics techniques should be explored to 
select stable and important APs that generate a robust model 
for indoor localization.

The important APs that are less susceptible to the change 
of different contexts can be identified by Deep Neural Net-
works with multiple hidden layers. It can also be applied for 
extracting useful features from a dataset having instances 
from different devices subject to varying ambient conditions 
at different times in a day. Generally, it hierarchically learns 
multiple levels of representation and corresponding different 
levels of abstraction.

6 � Discussion on open research issues 
in ubiquitous ILS

Despite the above-mentioned research challenges and exist-
ing research efforts, some open issues still exist. These are 
discussed below.

•	 Adaptation with the change in feature space: The perfor-
mance of a localization system often gets affected due to 
some significant changes in the existing WiFi network 
infrastructure like addition, replacement, drop-off, and 
shifting of WiFi APs. At the time of emergency condi-
tions, like fire outbreaks, some WiFi APs of one region 
may inactive. In such scenarios, the training model needs 
to be updated to provide localization services. Thus, a 
feature space mapping technique needs to be explored in 

Fig. 7   Localization accuracies in % of different classifiers for the dif-
ferent number of highest ranked APs
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order to adapt the old training model to the new feature 
space.

•	 Adaptation with the unlabeled data: The collection of 
huge training fingerprints is a very laborious and time-
consuming task. Therefore, an investigation is needed to 
determine the minimum volume of fingerprint collection 
that covers the entire region. Accordingly, the system 
needs to be made effective and accurate by collecting 
unlabeled fingerprints from anonymous users. Moreover, 
an extensive investigation is also required to enhance the 
system’s performance.

•	 Avoidance of crowd in public places: Crowd identifica-
tion and mitigation are important concerns for public 
health and safety especially during the pandemic period 
in order to contain the spread of infectious diseases (such 
as Covid-19). Indoor localization techniques can be used 
to identify the mobility pattern of the crowd. Accord-
ingly, crowd mitigation strategies can be investigated and 
possible crowd formation spots could be identified. For 
example, a dense crowd can be formed in front of a LED 
display screen at public places like some regions of a rail-
way station, airports, shopping malls, etc. Analyzing the 
movement of the crowd or the formation of the crowd, 
if another LED display screen were placed in the nearby 
area, then there is a possibility to avoid the 0formation 
of the crowd.

•	 Maintaining a trade-off among various performance met-
rics: The localization or tracking accuracy is the most 
vital requirement of any localization system. A system 
can be better if it has a high localization accuracy. In 
order to increase the accuracy, often the other character-
istics including, scalability, robustness, energy efficiency, 
cost get overlooked. So, a proper trade-off between accu-
racy and other characteristics needs to be maintained to 
develop an efficient system. If a large localization area 
becomes very crowded, the wireless signal channels get 
more congested. Hence, more calculations or analyses 
may be required for localization. Thus, a localization 
system should be scalable so that it can ensure its usual 
localization performance when the localization scope 
gets increased. Moreover, a localization algorithm should 
be less complex and executed in the server end due to the 
lack of strong processing power and long battery life of 
the client end mobile device. Therefore, a system needs 
to be energy efficient so that it can consume less power. 
ILS is mostly used for live-location tracking of the users 
and real-time navigation. Thus, an efficient system is 
required with low network latency. To achieve this small 
volume of data (pre-processed data) should be transferred 
among the server and client.

7 � Conclusion

The aim of this research is to provide the motivation for a 
ubiquitous WiFi-based ILS and the emerging research chal-
lenges associated with it. A brief discussion about the dif-
ferent phases of an ILS, problem definition, and a review 
of previous works are presented. Our key contribution is to 
give a detailed categorization of research challenges in ILS 
when system ubiquity is the prior concern. This is needed 
for almost all applications of indoor localization including 
indoor navigation, asset tracking, emergency evacuation, etc.

The associated research challenges and possible future 
scope are studied thoroughly. Designing a fine-grained com-
prehensive dataset for public infrastructure, designing tech-
niques for precise indoor positioning with the train and test 
dataset of various conditions, and identifying minimal but 
more importantly, stable infrastructure are the prime chal-
lenges as detailed in Sect. 5. These issues need to be fixed 
for developing a wide-scale ILS that provides significant 
localization accuracy in crowded indoor spaces.
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