Skip to main content
Log in

Deep learning for intelligent traffic sensing and prediction: recent advances and future challenges

  • Survey Paper
  • Published:
CCF Transactions on Pervasive Computing and Interaction Aims and scope Submit manuscript

Abstract

With the emerging concepts of smart cities and intelligent transportation systems, accurate traffic sensing and prediction have become critically important to support urban management and traffic control. In recent years, the rapid uptake of the Internet of Vehicles and the rising pervasiveness of mobile services have produced unprecedented amounts of data to serve traffic sensing and prediction applications. However, it is significantly challenging to fulfill the computation demands by the big traffic data with ever-increasing complexity and diversity. Deep learning, with its powerful capabilities in representation learning and multi-level abstractions, has recently become the most effective approach in many intelligent sensing systems. In this paper, we present an up-to-date literature review on the most advanced research works in deep learning for intelligent traffic sensing and prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Technical details and implementations of deep-learning models can be referred from https://github.com/rasbt/deeplearning-models.

References

  • Asif, M.T., Dauwels, J., Goh, C.Y., Oran, A., Fathi, E., Xu, M., Dhanya, M.M., Mitrovic, N., Jaillet, P.: Spatiotemporal patterns in large-scale traffic speed prediction. IEEE Trans. Intell. Transp. Syst. 15(2), 794–804 (2013)

    Google Scholar 

  • Bau, D., Zhu, J.Y., Strobelt, H., Zhou, B., Tenenbaum, J.B., Freeman, W.T., Torralba, A.: Visualizing and understanding generative adversarial networks. arXiv preprint arXiv:1901.09887 (2019)

  • Bengio, Y., Simard, P., Frasconi, P., et al.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

    Google Scholar 

  • Bolshinsky, E., Friedman, R.: Traffic flow forecast survey. Tech. rep, Computer Science Department, Technion (2012)

  • Castillo, E., Grande, Z., Calviño, A., Szeto, W.Y., Lo, H.K.: A state-of-the-art review of the sensor location, flow observability, estimation, and prediction problems in traffic networks. J. Sensors 2015 (2015)

  • Chamoso, P., González-Briones, A., Rodríguez, S., Corchado, J.M.: Tendencies of technologies and platforms in smart cities: a state-of-the-art review. Wirel. Commun. Mob. Comput. 2018 (2018)

  • Chandra, S.R., Al-Deek, H.: Predictions of freeway traffic speeds and volumes using vector autoregressive models. J. Intell. Transp. Syst. 13(2), 53–72 (2009)

    Google Scholar 

  • Chen, Q., Song, X., Yamada, H., Shibasaki, R.: Learning deep representation from big and heterogeneous data for traffic accident inference. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

  • Chen, M., Yu, X., Liu, Y.: PCNN: deep convolutional networks for short-term traffic congestion prediction. IEEE Trans. Intell. Transp. Syst. 19(11), 3550–3559 (2018)

    Google Scholar 

  • Chen, C., Ding, Y., Xie, X., Zhang, S., Wang, Z., Feng, L.: Trajcompressor: an online map-matching-based trajectory compression framework leveraging vehicle heading direction and change. IEEE Trans. Intell. Transp. Syst. 21(5), 2012–2028 (2019a)

    Google Scholar 

  • Chen, C., Li, K., Teo, S.G., Zou, X., Wang, K., Wang, J., Zeng, Z.: Gated residual recurrent graph neural networks for traffic prediction. Proc. AAAI Conf. Artif. Intell. 33, 485–492 (2019b)

    Google Scholar 

  • Chen, Y., Lv, Y., Wang, F.Y.: Traffic flow imputation using parallel data and generative adversarial networks. IEEE Trans. Intell. Transp. Syst. (2019c)

  • Chollet, F.: Deep Learning with Python. Manning, Shelter Island (2017)

    Google Scholar 

  • Course CS231n, S.U.: Convolutional neural networks for visual recognition. http://cs231n.stanford.edu/ (2019)

  • Dabiri, S., Heaslip, K.: Inferring transportation modes from GPS trajectories using a convolutional neural network. Transp. Res. Part C Emerg. Technol. 86, 360–371 (2018)

    Google Scholar 

  • Deng, S., Jia, S., Chen, J.: Exploring spatial–temporal relations via deep convolutional neural networks for traffic flow prediction with incomplete data. Appl. Soft Comput. 78, 712–721 (2019)

    Google Scholar 

  • Di, X., Xiao, Y., Zhu, C., Deng, Y., Zhao, Q., Rao, W.: Traffic congestion prediction by spatiotemporal propagation patterns. In: 2019 20th IEEE International Conference on Mobile Data Management (MDM), pp. 298–303. IEEE (2019)

  • Dia, H.: An object-oriented neural network approach to short-term traffic forecasting. Eur. J. Oper. Res. 131(2), 253–261 (2001)

    MATH  Google Scholar 

  • Diao, Z., Wang, X., Zhang, D., Liu, Y., Xie, K., He, S.: Dynamic spatial-temporal graph convolutional neural networks for traffic forecasting. In: Thirty-Three AAAI Conference on Artificial Intelligence (2019)

  • Djahel, S., Doolan, R., Muntean, G.M., Murphy, J.: A communications-oriented perspective on traffic management systems for smart cities: challenges and innovative approaches. IEEE Commun. Surv. Tutor. 17(1), 125–151 (2014)

    Google Scholar 

  • Do, L.N., Taherifar, N., Vu, H.L.: Survey of neural network-based models for short-term traffic state prediction. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 9(1), e1285 (2019)

    Google Scholar 

  • Duan, Y., Lv, Y., Wang, F.Y.: Travel time prediction with lstm neural network. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 1053–1058. IEEE (2016)

  • Fan, X., Yang, P., Li, Q., Liu, D., Xiang, C., Zhao, Y.: Safe-crowd: secure task allocation for collaborative mobile social network. Secur. Commun. Netw. 9(15), 2686–2695 (2016)

    Google Scholar 

  • Fan, Z., Song, X., Xia, T., Jiang, R., Shibasaki, R., Sakuramachi, R.: Online deep ensemble learning for predicting citywide human mobility. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2(3), 105 (2018)

    Google Scholar 

  • Fan, X., Xiang, C., Gong, L., He, X., Chen, C., Huang, X.: Urbanedge: deep learning empowered edge computing for urban IOT time series prediction. In: Proceedings of the ACM Turing Celebration Conference-China, pp. 1–6 (2019)

  • Fan, X., Xiang, C., Chen, C., Yang, P., Gong, L., Song, X., Nanda, P., He, X.: Buildsensys: reusing building sensing data for traffic prediction with cross-domain learning. IEEE Trans. Mob. Comput. (2020)

  • Fu, X., Sha, C., Lei, C., Sun, L., Wang, N.: Localization algorithm for wireless sensor networks via norm regularized matrix completion. J. Res. Dev. 53, 216–227 (2016a)

    Google Scholar 

  • Fu, R., Zhang, Z., Li, L.: Using lSTM and GRU neural network methods for traffic flow prediction. In: 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 324–328. IEEE (2016b)

  • Ge, L., Li, H., Liu, J., Zhou, A.: Temporal graph convolutional networks for traffic speed prediction considering external factors. In: 2019 20th IEEE International Conference on Mobile Data Management (MDM), pp. 234–242. IEEE (2019)

  • Geng, X., Li, Y., Wang, L., Zhang, L., Yang, Q., Ye, J., Liu, Y.: Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting. In: 2019 AAAI Conference on Artificial Intelligence (2019)

  • Gharaibeh, A., Salahuddin, M.A., Hussini, S.J., Khreishah, A., Khalil, I., Guizani, M., Al-Fuqaha, A.: Smart cities: a survey on data management, security, and enabling technologies. IEEE Commun. Surv. Tutor. 19(4), 2456–2501 (2017)

    Google Scholar 

  • Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

  • Gong, L., Zhao, Y., Xiang, C., Li, Z., Qian, C., Yang, P.: Robust light-weight magnetic-based door event detection with smartphones. IEEE Trans. Mob. Comput. 18(11), 2631–2646 (2018)

    Google Scholar 

  • Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  • Google. Google maps. https://www.google.com/maps/ (2019)

  • Guo, J., Williams, B.M.: Real-time short-term traffic speed level forecasting and uncertainty quantification using layered Kalman filters. Transp. Res. Rec. 2175(1), 28–37 (2010)

    Google Scholar 

  • Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Proc. AAAI Conf. Artif. Intell. 33, 922–929 (2019)

    Google Scholar 

  • He, S., Shin, K.G.: Spatio-temporal adaptive pricing for balancing mobility-on-demand networks. ACM Trans. Intell. Syst. Technol. (TIST) 10(4), 39 (2019)

    Google Scholar 

  • He, T., Bao, J., Li, R., Ruan, S., Li, Y., Tian, C., Zheng, Y.: Detecting vehicle illegal parking events using sharing bikes’ trajectories. In: KDD, pp. 340–349 (2018)

  • He, Z., Chow, C.Y., Zhang, J.D.: STCNN: A spatio-temporal convolutional neural network for long-term traffic prediction. In: 2019 20th IEEE International Conference on Mobile Data Management (MDM), pp. 226–233. IEEE (2019)

  • Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Google Scholar 

  • Hua, Y., Zhao, Z., Liu, Z., Chen, X., Li, R., Zhang, H.: Traffic prediction based on random connectivity in deep learning with long short-term memory. In: 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), pp. 1–6. IEEE (2018)

  • Huang, W., Song, G., Hong, H., Xie, K.: Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Trans. Intell. Transp. Syst. 15(5), 2191–2201 (2014)

    Google Scholar 

  • Jia, Y., Wu, J., Du, Y.: Traffic speed prediction using deep learning method. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 1217–1222. IEEE (2016)

  • Jia, Y., Wu, J., Xu, M.: Traffic flow prediction with rainfall impact using a deep learning method. J. Adv. Transp. 2017 (2017)

  • Jiang, R., Song, X., Fan, Z., Xia, T., Chen, Q., Miyazawa, S., Shibasaki, R.: Deepurbanmomentum: an online deep-learning system for short-term urban mobility prediction. In: AAAI, pp. 784–791 (2018a)

  • Jiang, R., Song, X., Fan, Z., Xia, T., Chen, Q., Chen, Q., Shibasaki, R.: Deep ROI-based modeling for urban human mobility prediction. Proc. ACM Inter. Mob. Wearable Ubiquitous Technol. 2(1), 14 (2018b)

    Google Scholar 

  • Jo, D., Yu, B., Jeon, H., Sohn, K.: Image-to-image learning to predict traffic speeds by considering area-wide spatio-temporal dependencies. IEEE Trans. Veh. Technol. 68(2), 1188–1197 (2018)

    Google Scholar 

  • Kang, D., Lv, Y., Chen, Y.y.: Short-term traffic flow prediction with lstm recurrent neural network. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 1–6. IEEE (2017)

  • Ke, J., Zheng, H., Yang, H., Chen, X.M.: Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach. Transp. Res. Part C Emerg. Technol. 85, 591–608 (2017)

    Google Scholar 

  • Koesdwiady, A., Soua, R., Karray, F.: Improving traffic flow prediction with weather information in connected cars: a deep learning approach. IEEE Trans. Veh. Technol. 65(12), 9508–9517 (2016)

    Google Scholar 

  • Kumar, K., Parida, M., Katiyar, V.K.: Short term traffic flow prediction in heterogeneous condition using artificial neural network. Transport 30(4), 397–405 (2015)

    Google Scholar 

  • LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Google Scholar 

  • LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.E., Jackel, L.D.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems, pp. 396–404 (1990)

  • Lee, U., Gerla, M.: A survey of urban vehicular sensing platforms. Comput. Netw. 54(4), 527–544 (2010)

    MATH  Google Scholar 

  • Lefèvre, S., Sun, C., Bajcsy, R., Laugier, C.: Comparison of parametric and non-parametric approaches for vehicle speed prediction. In: 2014 American Control Conference, pp. 3494–3499. IEEE (2014)

  • Lemieux, J., Ma, Y.: Vehicle speed prediction using deep learning. In: 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1–5. IEEE (2015)

  • Le Roux, N., Bengio, Y.: Representational power of restricted Boltzmann machines and deep belief networks. Neural Comput. 20(6), 1631–1649 (2008)

    MathSciNet  MATH  Google Scholar 

  • Li, L., Wen, D., Yao, D.: A survey of traffic control with vehicular communications. IEEE Trans. Intell. Transp. Syst. 15(1), 425–432 (2013)

    MathSciNet  Google Scholar 

  • Li, L., Lv, Y., Wang, F.Y.: Traffic signal timing via deep reinforcement learning. IEEE/CAA J. Automatica Sinica 3(3), 247–254 (2016a)

    MathSciNet  Google Scholar 

  • Li, Z., Wang, W., Xu, T., Zhong, X., Li, X.Y., Liu, Y., Wilson, C., Zhao, B.Y.: Exploring cross-application cellular traffic optimization with baidu trafficguard. In: 13th USENIX Symposium on Networked Systems Design and Implementation NSDI, pp. 61–76 (2016b)

  • Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017)

  • Li, Y., Han, Z., Zhang, Q., Li, Z., Tan, H.: Automating cloud deployment for deep learning inference of real-time online services. In: Proc. of IEEE INFOCOM (2020)

  • Liang, Y., Cui, Z., Tian, Y., Chen, H., Wang, Y.: A deep generative adversarial architecture for network-wide spatial–temporal traffic-state estimation. Transp. Res. Rec. 2672(45), 87–105 (2018)

    Google Scholar 

  • Liao, B., Zhang, J., Cai, M., Tang, S., Gao, Y., Wu, C., Yang, S., Zhu, W., Guo, Y., Wu, F.: Dest-resnet: a deep spatiotemporal residual network for hotspot traffic speed prediction. In: 2018 ACM Multimedia Conference on Multimedia Conference, pp. 1883–1891. ACM (2018a)

  • Liao, B., Zhang, J., Wu, C., McIlwraith, D., Chen, T., Yang, S., Guo, Y., Wu, F.: Deep sequence learning with auxiliary information for traffic prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 537–546. ACM (2018b)

  • Lin, Y., Dai, X., Li, L., Wang, F.Y.: Pattern sensitive prediction of traffic flow based on generative adversarial framework. IEEE Trans. Intell. Transp. Syst. 20(6), 2395–2400 (2018)

    Google Scholar 

  • Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017)

    Google Scholar 

  • Liu, Z., Li, Z., Wu, K., Li, M.: Urban traffic prediction from mobility data using deep learning. IEEE Netw. 32(4), 40–46 (2018)

    Google Scholar 

  • Liu, K., Xiao, K., Dai, P., Lee, V., Guo, S., Cao, J.: Fog computing empowered data dissemination in software defined heterogeneous vanets. IEEE Trans. Mob. Comput. (2020)

  • Lv, Y., Chen, Y., Li, L., Wang, F.Y.: Generative adversarial networks for parallel transportation systems. IEEE Intell. Transp. Syst. Mag. 10(3), 4–10 (2018)

    Google Scholar 

  • Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y.: Traffic flow prediction with big data: a deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2014)

    Google Scholar 

  • Lv, Z., Xu, J., Zheng, K., Yin, H., Zhao, P., Zhou, X.: LC-RNN: a deep learning model for traffic speed prediction. In: IJCAI, pp. 3470–3476 (2018)

  • Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., Wang, Y.: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17(4), 818 (2017)

    Google Scholar 

  • Ma, X., Tao, Z., Wang, Y., Yu, H., Wang, Y.: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C Emerg. Technol. 54, 187–197 (2015)

    Google Scholar 

  • Meng, C., Yi, X., Su, L., Gao, J., Zheng, Y.: City-wide traffic volume inference with loop detector data and taxi trajectories. In: Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 1–10 (2017)

  • Min, W., Wynter, L.: Real-time road traffic prediction with spatio-temporal correlations. Transp. Res. Part C Emerg. Technol. 19(4), 606–616 (2011)

    Google Scholar 

  • Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)

    Google Scholar 

  • Moustaka, V., Vakali, A., Anthopoulos, L.G.: A systematic review for smart city data analytics. ACM Comput. Surv. (CSUR) 51(5), 103 (2018)

    Google Scholar 

  • NVIDIA. Cuda. https://developer.nvidia.com/cuda-zone/ (2019)

  • Nagy, A.M., Simon, V.: Survey on traffic prediction in smart cities. Pervas. Mob. Comput. 50, 148–163 (2018)

    Google Scholar 

  • Nellore, K., Hancke, G.P.: A survey on urban traffic management system using wireless sensor networks. Sensors 16(2), 157 (2016)

    Google Scholar 

  • Olah, C.: Understanding LSTM networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/ (2015)

  • Pan, Z., Liang, Y., Wang, W., Yu, Y., Zheng, Y., Zhang, J.: Urban traffic prediction from spatio-temporal data using deep meta learning. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1720–1730. ACM (2019)

  • Qin, Z., Fang, Z., Liu, Y., Tan, C., Chang, W., Zhang, D.: Eximius: a measurement framework for explicit and implicit urban traffic sensing. In: Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems, pp. 1–14. ACM (2018)

  • Qu, Y., Tang, S., Dong, C., Li, P., Guo, S., Dai, H., Wu, F.: Posted pricing for chance constrained robust crowdsensing. IEEE Trans. Mob. Comput. 19(1), 188–199 (2018)

    Google Scholar 

  • Rasyidi, M.A., Kim, J., Ryu, K.R.: Short-term prediction of vehicle speed on main city roads using the k-nearest neighbor algorithm. J. Intell. Inf. Syst. 20(1), 121–131 (2014)

    Google Scholar 

  • Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    MATH  Google Scholar 

  • Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Google Scholar 

  • Seo, T., Bayen, A.M., Kusakabe, T., Asakura, Y.: Traffic state estimation on highway: a comprehensive survey. Annu. Rev. Control 43, 128–151 (2017)

    Google Scholar 

  • Silva, B.N., Khan, M., Han, K.: Towards sustainable smart cities: a review of trends, architectures, components, and open challenges in smart cities. Sustain. Cities Soc. 38, 697–713 (2018)

    Google Scholar 

  • Silver, D., Huang, A., Maddison Chris, J., Guez, E.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484 (2016)

    Google Scholar 

  • Song, X., Kanasugi, H., Shibasaki, R.: Deeptransport: prediction and simulation of human mobility and transportation mode at a citywide level. IJCAI 16, 2618–2624 (2016)

    Google Scholar 

  • Soua, R., Koesdwiady, A., Karray, F.: Big-data-generated traffic flow prediction using deep learning and Dempster–Shafer theory. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 3195–3202. IEEE (2016)

  • Tang, X., Gong, B., Yu, Y., Yao, H., Li, Y., Xie, H., Wang, X.: Joint modeling of dense and incomplete trajectories for citywide traffic volume inference. In: The World Wide Web Conference, pp. 1806–1817. ACM (2019)

  • Tian, Y., Zhang, K., Li, J., Lin, X., Yang, B.: LSTM-based traffic flow prediction with missing data. Neurocomputing 318, 297–305 (2018)

    Google Scholar 

  • Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transp. Res. Part C Emerg. Technol. 13(3), 211–234 (2005)

    Google Scholar 

  • Wang, J., Shi, Q.: Short-term traffic speed forecasting hybrid model based on chaos-wavelet analysis-support vector machine theory. Transp. Res. Part C Emerg. Technol. 27, 219–232 (2013)

    Google Scholar 

  • Wang, H., Liu, L., Qian, Z., Wei, H., Dong, S.: Empirical mode decomposition-autoregressive integrated moving average: hybrid short-term traffic speed prediction model. Transp. Res. Rec. 2460(1), 66–76 (2014)

    Google Scholar 

  • Wang, J., Gu, Q., Wu, J., Liu, G., Xiong, Z.: Traffic speed prediction and congestion source exploration: a deep learning method. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 499–508. IEEE (2016)

  • Wang, D., Zhang, J., Cao, W., Li, J., Zheng, Y.: When will you arrive? estimating travel time based on deep neural networks. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

  • Wang, J., Chen, R., He, Z.: Traffic speed prediction for urban transportation network: a path based deep learning approach. Transp. Res. Part C Emerg. Technol. 100, 372–385 (2019a)

    Google Scholar 

  • Wang, G., Chen, X., Zhang, F., Wang, Y., Zhang, D.: Experience: understanding long-term evolving patterns of shared electric vehicle networks. In: The 25th Annual International Conference on Mobile Computing and Networking, pp. 1–12. ACM (2019b)

  • Wang, Y., Zhang, D., Liu, Y., Dai, B., Lee, L.H.: Enhancing transportation systems via deep learning: a survey. Transp. Res. Part C Emerg. Technol. 99, 144–163 (2019c)

    Google Scholar 

  • Wei, H., Zheng, G., Yao, H., Li, Z.: Intellilight: a reinforcement learning approach for intelligent traffic light control. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2496–2505. ACM (2018)

  • Williams, B.M., Hoel, L.A.: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. J. Transp. Eng. 129(6), 664–672 (2003)

    Google Scholar 

  • Wu, X., Tang, S., Yang, P., Xiang, C., Zheng, X.: Cloud is safe when compressive: efficient image privacy protection via shuffling enabled compressive sensing. Comput. Commun. 117, 36–45 (2018a)

    Google Scholar 

  • Wu, X., Yang, P., Tang, S., Zheng, X., Wang, X.: Privacy-aware data publishing against sparse estimation attack. J. Netw. Comput. Appl. 109, 78–88 (2018b)

    Google Scholar 

  • Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. (2020)

  • Xiang, C., Yang, P., Tian, C., Cai, H., Liu, Y.: Calibrate without calibrating: an iterative approach in participatory sensing network. IEEE Trans. Parallel Distrib. Syst. 26(2), 351–361 (2014)

    Google Scholar 

  • Xiang, C., Yang, P., Wu, X., He, H., Wang, B., Liu, Y.: istep: a step-aware sampling approach for diffusion profiling in mobile sensor networks. IEEE Trans. Veh. Technol. 65(10), 8616–8628 (2015)

    Google Scholar 

  • Xiang, C., Yang, P., Tian, C., Zhang, L., Lin, H., Xiao, F., Zhang, M., Liu, Y.: Carm: crowd-sensing accurate outdoor RSS maps with error-prone smartphone measurements. IEEE Trans. Mob. Comput. 15(11), 2669–2681 (2016)

    Google Scholar 

  • Xiang, C., Zhang, Z., Qu, Y., Lu, D., Fan, X., Yang, P., Wu, F.: Edge computing-empowered large-scale traffic data recovery leveraging low-rank theory. IEEE Trans. Netw. Sci. Eng. (2020)

  • Xiao, F., Chen, L., Sha, C., Sun, L., Wang, R., Liu, A.X., Ahmed, F.: Noise tolerant localization for sensor networks. IEEE/ACM Trans. Networ. 26(4), 1701–1714 (2018a)

    Google Scholar 

  • Xiao, F., Wang, Z., Ye, N., Wang, R., Li, X.Y.: One more tag enables fine-grained RFID localization and tracking. IEEE/ACM Trans. Netw. (TON) 26(1), 161–174 (2018b)

    Google Scholar 

  • Xiao, F., Chen, L., Zhu, H., Hong, R., Wang, R.: Anomaly-tolerant network traffic estimation via noise-immune temporal matrix completion model. IEEE J. Sel. Areas Commun. 37(6), 1192–1204 (2019)

    Google Scholar 

  • Xu, G., Shen, W., Wang, X.: Applications of wireless sensor networks in marine environment monitoring: a survey. Sensors 14(9), 16932–16954 (2014)

    Google Scholar 

  • Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., Bengio, Y.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057 (2015)

  • Yang, H.F., Dillon, T.S., Chen, Y.P.P.: Optimized structure of the traffic flow forecasting model with a deep learning approach. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2371–2381 (2016)

    Google Scholar 

  • Yang, B., Sun, S., Li, J., Lin, X., Tian, Y.: Traffic flow prediction using LSTM with feature enhancement. Neurocomputing 332, 320–327 (2019a)

    Google Scholar 

  • Yang, Y., Xie, X., Fang, Z., Zhang, F., Wang, Y., Zhang, D.: Vemo: enabling transparent vehicular mobility modeling at individual levels with full penetration. In: The 25th Annual International Conference on Mobile Computing and Networking, pp. 1–16 (2019b)

  • Yao, H., Wu, F., Ke, J., Tang, X., Jia, Y., Lu, S., Gong, P., Ye, J., Li, Z.: Deep multi-view spatial–temporal network for taxi demand prediction. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

  • Yao, H., Tang, X., Wei, H., Zheng, G., Li, Z.: Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction. In: AAAI Conference on Artificial Intelligence (2019)

  • Yu, R., Li, Y., Shahabi, C., Demiryurek, U., Liu, Y.: Deep learning: a generic approach for extreme condition traffic forecasting. In: Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 777–785. SIAM (2017a)

  • Yu, H., Wu, Z., Wang, S., Wang, Y., Ma, X.: Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks. Sensors 17(7), 1501 (2017b)

    Google Scholar 

  • Yuan, Z., Zhou, X., Yang, T.: Hetero-convlstm: a deep learning approach to traffic accident prediction on heterogeneous spatio-temporal data. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 984–992. ACM (2018)

  • Zhan, X., Zheng, Y., Yi, X., Ukkusuri, S.V.: Citywide traffic volume estimation using trajectory data. IEEE Trans. Knowl. Data Eng. 29(2), 272–285 (2016)

    Google Scholar 

  • Zhang, L., Liu, Q., Yang, W., Wei, N., Dong, D.: An improved k-nearest neighbor model for short-term traffic flow prediction. Proc. Soc. Behav. Sci. 96, 653–662 (2013)

    Google Scholar 

  • Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X.: DNN-based prediction model for spatio-temporal data. In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 1–4 (2016)

  • Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

  • Zhang, Z., He, Q., Gao, J., Ni, M.: A deep learning approach for detecting traffic accidents from social media data. Transp. Res. Part C Emerg. Technol. 86, 580–596 (2018a)

    Google Scholar 

  • Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X., Li, T.: Predicting citywide crowd flows using deep spatio-temporal residual networks. Artif. Intell. 259, 147–166 (2018b)

    MathSciNet  MATH  Google Scholar 

  • Zhang, Z., Li, M., Lin, X., Wang, Y., He, F.: Multistep speed prediction on traffic networks: a deep learning approach considering spatio-temporal dependencies. Transp. Res. Part C Emerg. Technol. 105, 297–322 (2019a)

    Google Scholar 

  • Zhang, C., Patras, P., Haddadi, H.: Deep learning in mobile and wireless networking: survey. IEEE Commun. Surv. Tutor. (2019b)

  • Zhao, Z., Chen, W., Wu, X., Chen, P.C., Liu, J.: LSTM network: a deep learning approach for short-term traffic forecast. IET Intel. Transp. Syst. 11(2), 68–75 (2017)

    Google Scholar 

  • Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M., Li, H.: T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. (2019)

  • Zheng, Y.: Urban Computing. MIT Press, Cambridge (2019)

    Google Scholar 

  • Zheng, C., Fan, X., Wen, C., Chen, L., Wang, C., Li, J.: Deepstd: mining spatio-temporal disturbances of multiple context factors for citywide traffic flow prediction. IEEE Trans. Intell. Transp. Syst. (2019)

  • Zhu, H., Xiao, F., Sun, L., Wang, R., Yang, P.: R-TTWD: robust device-free through-the-wall detection of moving human with WiFi. IEEE J. Sel. Areas Commun. 35(5), 1090–1103 (2017)

    Google Scholar 

  • Zhu, L., Yu, F.R., Wang, Y., Ning, B., Tang, T.: Big data analytics in intelligent transportation systems: a survey. IEEE Trans. Intell. Transp. Syst. 20(1), 383–398 (2018)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the NSF of China Projects: Grants no. 61872447, the Natural Science Foundation of Chongqing: Grant no. CSTC2018JCYJA1879, National Postdoctoral Program for Innovative Talents of China No. BX20190202, in part by China NSF grant No. 61702525, and China Scholarship Council: Grant no. 201603170125.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaocan Xiang or Xiangjian He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

A Wireless sensor networks for traffic sensing and prediction

A Wireless sensor networks for traffic sensing and prediction

1.1 A.1 Wireless sensing technologies for urban traffic systems

Sensors are the fundamental elements in traffic sensing, and wireless sensor networks are widely used to satisfy the requirements of real-time and accurate traffic sensing (Xiao et al. 2019). A wireless sensor node usually consists of five critical functional modules as follows (Xu et al. 2014).

  • A sensing module for vehicle detection and data acquisition.

  • A wireless transceiver module for wireless data transmission.

  • A local data processing module for converting physicochemical signals into traffic values.

  • A memory module for storing sensing data and backup of system settings.

  • A power supply module that consistently provides energy for the sensor.

Table 5 Wireless sensing technologies for urban traffic systems

We categorize wireless traffic sensors in Table 5 and introduce different traffic sensing technologies as follows. inductive loop sensors, as the most commonly used devices, are installed in the road surface to detect the presence of vehicles by the inducing currents from the vehicle. Similarly, magnetic sensors (including Magnetic sensors and Magnetic induction coil) can detect the presence of a vehicle through the anomaly in the magnetic field (Gong et al. 2018). Moreover, microwave radar sensors leverage antenna beams to detect the presence, passage, volume, lane occupancy, speed, or length of a vehicle by the reflected signals. Likewise, infrared sensors (either active or passive) detect the energy reflected by or emitted from vehicles, then convert the energy into electrical signals to further determine the presence of vehicles. Besides, laser radar sensors transmit power in the near-infrared spectrum and provide traffic measurements, such as vehicle presence, traffic volume, and traffic speed. Modern laser sensors can provide precise two-dimensional or three-dimensional image data of vehicles.

As another short-range sensing technique, RFIDs (Xiao et al. 2018a, b) have been utilized for fine-grained object detection. However, they are not feasible for the scenarios of large-scale traffic sensing, due to the constraints of communication scalability and the cost of RFID tags. Ultrasonic sensors work with pulse waveforms and can detect vehicle count, presence, and occupancy information. Furthermore, acoustic arrays are passive sensors that use signal processing algorithms to measure traffic volume and traffic speed in vehicular networks. For real-time traffic surveillance, video image sensors are the most pervasive devices of roadways that transmit television imagery to traffic operators. With the installed data processing modules, surveillance cameras can perform more advanced traffic sensing tasks, including plate recognition, driving behavior detection, and even driver facial recognition. Moreover, onboard GPS sensors can be categorized as indirect sensors that can provide city-wide trajectory data of vehicles. GPS trajectory can be utilized by speed inference models (Zhan et al. 2016) and traffic volume estimation models (Meng et al. 2017). Meanwhile, the tradeoff between incentive pricing and sensing quality on sensing data like GPS remains as a challenge, and various mechanisms have been proposed to address this issue (Qu et al. 2018; Xiang et al. 2016)

1.2 A.2 Wireless communication technologies for urban traffic systems

There are a number of wireless communication technologies that can support traffic data transmission under various requirements (e.g., transmitting distance, data volume). As shown in Table 6, we summarize the critical enabling transmission technologies for traffic sensing and prediction, including Bluetooth, ZigBee, Z-Wave, LoRaWAN, WiFi, WiMAX, LTE, and LTE-A.

Table 6 Wireless communication technologies for urban traffic systems

To begin with, Bluetooth and ZigBee are more suitable for short-range communication between traffic sensors and road-side units, where Bluetooth is characterized for Peer-to-Peer (P2P) communications and ZigBee has higher scalability with lower transmission rate. In addition, Z-Wave has been applied for short-range communication of indoor traffic applications (Xiang et al. 2015), such as smart parking. Moreover, LoRaWAN can support wireless communication between gateways for long-range traffic monitoring scenarios (e.g., highways) and further secure bidirectional communication with moderate data load. Alternatively, WiFi with different configurations under IEEE 802.11 standards can be used for short-range, regional, and opportunistic traffic data transmission at intersections and business-intensive areas (Zhu et al. 2017; Fu et al. 2016a; Xiang et al. 2014). Moreover, WiMAX allows scalable data rates for long-range communication. Thereby, it is more desirable for video surveillance and image cameras in traffic sensing systems. At last, LTE and LTE-A are both under the 3GPP standard. Thus, they can provide portable mobile broadband connectivity across urban areas for traffic data transmission.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Xiang, C., Gong, L. et al. Deep learning for intelligent traffic sensing and prediction: recent advances and future challenges. CCF Trans. Pervasive Comp. Interact. 2, 240–260 (2020). https://doi.org/10.1007/s42486-020-00039-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42486-020-00039-x

Keywords

Navigation