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Abstract
Identifying and mitigating aberrant activities within the network traffic is important to prevent adverse consequences caused
by cyber security incidents, which have been increasing significantly in recent times. Existing research mainly focuses on
classical machine learning and deep learning-based approaches for detecting such attacks. However, exploiting the power
of quantum deep learning to process complex correlation of features for anomaly detection is not well explored. Hence, in
this paper, we investigate quantum machine learning and quantum deep learning-based anomaly detection methodologies
to accurately detect network attacks. In particular, we propose three novel quantum auto-encoder-based anomaly detection
frameworks. Our primary aim is to create hybrid models that leverage the strengths of both quantum and deep learning
methodologies for efficient anomaly recognition. The three frameworks are formed by integrating the quantum autoencoder
with a quantum one-class support vector machine, a quantum random forest, and a quantum k-nearest neighbor approach. The
anomaly detection capability of the frameworks is evaluated using benchmark datasets comprising computer and Internet of
Things network flows. Our evaluation demonstrates that all three frameworks have a high potential to detect the network traffic
anomalies accurately,while the framework that integrates the quantumautoencoderwith the quantum k-nearest neighbor yields
the highest accuracy. This demonstrates the promising potential for the development of quantum frameworks for anomaly
detection, underscoring their relevance for future advancements in network security.

Keywords Quantum machine learning · Quantum autoencoder · Quantum anomaly detection · Quantum computing

1 Introduction

Quantum computing possesses unique attributes, especially
in terms of parallelism, featuring the trend of future com-
puting. Different from the binary digits used in classical
computing, quantum bits (qubits) used in quantum com-
puting leverage the phenomenon of superposition to allow
the concurrent representation of 2n classical bits, where n is
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the dimension. This parallelism allows for thorough inves-
tigations of the varied possibilities, raising the level of the
computation (Alchieri et al. 2021; Kulkarni et al. 2021).
Combining quantum computing with machine learning pro-
vides high potential for many applications, such as image
recognition (Hashemzehi et al. 2020), protein folding (Lu
and Li 2019), and fraud detection (Rizvi et al. 2020; Kyri-
ienko and Magnusson 2022).

Currently, the emergingfieldof quantummachine learning
(QML) has seen many related works on accelerating pro-
cessing speed and resolving the issue of data dimensionality
(Alchieri et al. 2021; Kulkarni et al. 2021). The application of
quantum autoencoders (QAEs) is not limited to simulating
the complex quantum systems (Pu et al. 2016; Bartŭšková
et al. 2006), but they are also applied in other areas, such as
communication and distributed computation (Steinbrecher
et al. 2019; Lamata et al. 2018; Aspuru-Guzik et al. 2005).

QML has been rapidly evolving in pattern recognition
areas (Trugenberger 2002). However, the QML’s ability to
enhance the anomaly detection capability for network secu-
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rity is not well studied. Challenges still exist in devising
practical solutions for cyber security challenges because
of the growing data complexity and their evolving nature.
By exploiting the synergy between the quantum and clas-
sical technologies, we aim to achieve this by devising
novel hybrid models. Specifically, we propose three quan-
tum auto-encoder-based frameworks for anomaly detection.
Our proposed methodologies encompass a hybrid architec-
ture of parameterized quantum circuits merged with deep
neural networks, thus uniting quantum- and classical com-
puting principles to identify anomalies. In the past, quantum
encoding autoencoders (QAEs) were used to compress quan-
tum states (Ding et al. 2019; Pepper et al. 2019; Huang et al.
2020). In this work, this is exploited and integrated with
three components, namely quantum one-class support vec-
tor machine, quantum random forest, and quantum k-nearest
neighbor, to enable effective anomaly detection.

Moreover, QAEs encode features in the shape of single-
qubit rotation gates (Bravo-Prieto 2021). QAEs’ efficiency
provides a clear advantage over other architectures by sim-
plifying data representation and shortening the specifications
of quantum communication channels (Steinbrecher et al.
2019), and the complexity of quantum gates (Lamata et al.
2018; Ding et al. 2019). In addition to data compression,
QAE has been used successfully for error reduction (Zhang
et al. 2021), order detection (Srikumar et al. 2021), and quan-
tum state compression (Ding et al. 2019) tasks. Through the
integration of QAEs into our methodology, we take QAEs’
advantages for anomaly detection to improve the efficiency
and accuracy of network attack detection.

The contributions in this paper are as follows.

• We explore the current state of QML in the context of
cyber security anomaly detection, specifically focusing
on network traffic. We propose quantum algorithms to
improve the detection of anomalies from network traffic
information obtained from computer or IoT networks.

• We introduce three novel frameworks for anomaly detec-
tion using QML and QDL in conjunction with autoen-
coders. In particular, we integrate quantum autoencoders
with quantum one-class support vector machine, quan-
tum random forest, and quantum k-nearest neighbors,
respectively. We distinguish ourselves by introducing
innovative technical methods, with a strong emphasis on
our encoding strategies. This introduction sets the stage
for our exploration into the efficacy of these proposed
techniques in anomaly detection.

• Using NISQ quantum computers and IBM quantum sim-
ulators, our evaluation reveals that all three proposed
frameworks improve the anomaly detection performance
compared to the classical counterparts on the benchmark
datasets. In particular, QAEwith quantum kNNperforms
the best among the three frameworks.

The remainder of the paper is structured as follows: The
related work is presented in Sect. 2, and the anomaly detec-
tion applications of autoencoders and quantum autoencoders
are introduced in Sect. 3. Section4 proposes three quantum
frameworks. Section5 details the experiment setup, Sect. 6
describes the three datasets used in this paper, before Sect. 7
presents the results and discussion. Finally, this paper is con-
cluded in Sect. 8.

2 Related work

Quantum neural networks (QNNs) are formed using parame-
trized quantum circuits and classical neural networks. Like
their classical predecessors, QNNs are algorithmic models
that can be taught to uncover hidden patterns in the data.
These models have the ability to load classical data (inputs)
into a quantum state and then process it using trainable
weight-parameterized quantum gates. A generic QNN loads
data using a feature map and performs processing steps using
ansatz, where each data is assigned to a weight value. The
weights can then be trained using backpropagation by feed-
ing themeasurement’s output into a loss function. TheQNNS
canbe trained variationally using conventional optimizers (Li
and Deng 2022).

In Mangini et al. (2022), a quantum machine learning
approach is used to address an industrial quality control
problem. It consists of a quantum neural network (QNN) in
combination with a classifier and an autoencoder. The QNN
autoencoder performs dimensionality reduction and extracts
features, whereas the QNN classifier is utilized to gauge the
quality of industrial samples. A suitable encoding technique
is required to convert the classical data into quantum states.
After encoding, a parameterized quantum circuit is used to
learn a lower-dimensional representation of the input data
before feature extraction.

InWang and Jiang (2022), the QNN-basedmethod is used
for reconstructing missing or erroneous data. Three com-
ponents make up this QNN-based method, namely i) data
encoding, which converts input data into a quantum state;
ii) a quantum neural network, which explains the relation-
ship between the available data and the corrupted or missing
values; and iii) a parameterized quantum circuit. The initial
quantum state, sometimes referred to as state preparation,
needs to be produced in accordance with the classical char-
acteristics prior to using a QNN on classical information. In
almost all quantum algorithms, this initialization of the input
qubits to a proper starting state is a crucial step (Zhang et al.
2022).

In Mete et al. (2021), using quantum autoencoders, the
Hamiltonian dynamics is modeled. The procedure reduces
computer resource requirements due to the utilization of the
fundamental design of the physical system. It is challenging
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to model the computationally efficient temporal evolution of
quantum systems governed byHamiltonians due to the expo-
nential growth of the system’sHilbert space, which is amajor
obstacle in quantum computation. In their work, before being
decompressed by a Hamiltonian simulator employing the
inverse of the quantum encoders, the quantum state is com-
pressed using quantum autoencoders. The main objective of
the use of quantum autoencoders here is for dimensionality
reduction (Romero et al. 2017).

The powerful parallel computing ability of quantum com-
puters is leveraged inDang et al. (2018) to boost the efficiency
of image classification. A quantum k-nearest neighbor algo-
rithm is used to classify images by computing similarity
between feature vectors of images. The feature vectors are
initially extracted on classical computers before being con-
verted into a quantum superposition state. The quantum
minimum search algorithm is used to speed up the search
process for similarity, and the image is classified by quan-
tum measurements. This quantum algorithm’s complexity
is only O((kM)(1/2)), which is superior to classical algo-
rithms.While achieving similar accuracy scores, the quantum
algorithm has significantly reduced the computation time
compared to the classical algorithms.

Classical deep learning methods are popular for anomaly
detection. Some of them include variational autoencoders
(VAE) (An and Cho 2015; Pol et al. 2019), one-class meth-
ods, such as support vector data description (SVDD) (Tax and
Duin 2004) that encircle normal data points within a hyper-
sphere in a replicating Hilbert space, providing a detailed
representation of the data (Ruff et al. 2018; Rajasegarar
et al. 2010) and multiclass anomaly detectors (Shilton et al.
2020).Additionally, theLAKEapproachproposed inLvet al.
(2020) combines VAE with kernel density estimate (KDE)
to enhance anomaly detection. Nevertheless, there have been
few implementations of QDL in anomaly detection.

3 QML and QDL for anomaly detection

Detecting unexpected behavior that deviates from expected
or usual behavior is the process of anomaly or outlier detec-
tion. It is especially important to detect the anomalies in the
networks as that might indicate the formation of an unex-
pected phenomenon in the network, such as amalfunctioning
system or an aggressive security attack. It is critical to auto-
matically detect the outliers when the bulk of the input data
comes from sources that are unclear or of dubious reliability.
Learning to correctly identify the outliers from data, mostly
consisting of normal instances, is the goal of anomaly detec-
tion. Kyriienko and Magnusson (2022) observed that the
quantummethods perform better in QML anomaly detection
than conventional computer techniques.

We investigate the feasibility of combining a deep neu-
ral network and a parameterized quantum circuit to tackle
the anomaly detection problem. Our objective is to develop
hybrid models that combine the best features of quantum and
deep learning techniques to deliver efficient anomaly identi-
fication.

Anomalies are often defined based on the fact that they
are uncommon and very distinct from usual (normal) points.
In contrast to most analytical and learning tasks, anomaly
detection presents several unique challenges. The challenges
are listed below, including unknownness, heterogeneous
anomaly classes, rarity and class imbalance, and diverse
types of anomalies (Pang et al. 2021).

• Anomalies are characterized by unknown factors, such as
instances with unexpected abrupt behaviors, diverse data
structures, and varying distributions. Examples of these
anomalies include innovative attacks, fraud, and network
intrusions. Anomalies often remain unknown until they
actually occur.

• Anomalies may exhibit distinct unusual characteristics
across different classes due to their erratic nature. For
example, network data and its structure differ signifi-
cantly in the case of network attacks, making identifying
anomalous attack patterns challenging.

• In contrast to normal instances, which typically make up
most of the data, anomalies are infrequent occurrences.
Consequently, collecting a substantial number of labeled
anomalous instances is a difficult task, if not impossi-
ble. Large-scale labeled data is often unavailable in most
applications. Misclassifying anomalies is typically more
costly than misclassifying typical (normal) instances.

Deep learning algorithms have gained popularity in
anomaly identification due to their excellent accuracy (Pang
et al. 2021; Erfani et al. 2016; Zhang et al. 2021; Ruff
et al. 2018). However, only a limited prior work exists that
performs QDL-based anomaly detection for network traffic
attacks. One of the works in Gouveia and Correia (2020)
compared a quantum support vector machine (QSVM) and
a traditional support vector machine (SVM) to compare its
performance in classifying the attack classes using the NSL-
KDD (Shiravi et al. 2012) dataset, an enhanced variant of the
KDD99 dataset (MIT Lincoln Labs 1998). While the stan-
dard SVM obtained an accuracy score of 93%, the reported
QSVM accuracies in the simulation were 92%. Interestingly,
only 150 data samples were used in the training procedure.
According to Gong et al. (2022), its model evaluation was
conducted on a quantum computer. Five features were cho-
sen out of the initial 41 features. A z rotation was used
after a Hadamard gate to encode the characteristics. This
shows the potential of the use of a quantum mechanism for
anomaly detection, however, the above method used a super-
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vised technique to classify the attacks. In contrast, in this
paper, we focus on devising an unsupervised anomaly detec-
tion methodology to detect security attacks.

We propose three frameworks based on QML and QDL to
address the challenges associated with detecting anomalies
in network and IoT traffic. Next, we briefly introduce the
autoencoder and the quantum autoencoder that form themain
component of our proposed framework.

3.1 Autoencoders

Autoencoders are neural networks that have been taught to
reconstruct their inputs (McClelland et al. 1987) as accu-
rately as possible. Their primary objective is to create an
“informative” representation of the data in an unsupervised
way that may be utilized for numerous implications, such
as anomaly detection and dimensionality reduction. Figure1
shows a graphical depiction of an autoencoder. The input
data undergoes an encoding phase that generates a distinct
representation (embedding) of the data with smaller dimen-
sions, as illustrated in the latent space. Subsequently, the data
proceeds through a decoder stage where it is reconstructed
as accurately as possible to the original input.

Classical autoencoders, which are neural networks capa-
ble of efficiently training low-dimensional representations of
data in higher-dimensional spaces, serve as the foundational
inspiration for quantum autoencoders. An autoencoder maps
an input x to a lower-dimensional point y with the aim of
enabling the potential recovery of x from y. By altering the
underlying autoencoder network’s architecture to represent
the data in a reduced dimension, the input may be efficiently
compressed (Ranzato et al. 2007).

A linear autoencoder (Baldi and Hornik 1989) has its
encoder and decoder components comprising linear oper-
ations. If the autoencoder were linear, it would achieve the
same latent representation as principal component analysis
(PCA) (Plaut 2018). Since the autoencoder usually learns a
non-linear manifold instead of locating a low-dimensional
hyperplane in which the data lies, an autoencoder is a gener-
alization of PCA.

Autoencoders operate based on the fundamental princi-
ple of identifying the optimal encoding-decoding scheme

through an iterative optimization process by employing
encoder and decoder neural networks. In this process, data
is first fed to the encoder component of the autoencoder
architecture. Subsequently, the output of the encoder is
fed to the decoder to reconstruct the input. The decoder
output is compared with the input data, and the error is
propagated backward through the architecture to update the
network weights using a technique known as backpropaga-
tion. Essentially, the combined encoder-decoder design of
the entire autoencoder ensures that only the primary struc-
tured information can pass through and be reconstructed.
Gradient descent is employed to optimize the encoder
and decoder configurations with a minimal reconstruction
error.

When employing autoencoders for dimensionality reduc-
tion, it is important to bear inmind that achieving a substantial
reduction in dimensionality without incurring reconstruc-
tion loss often comes at a cost. Namely, the hidden space,
or the reduced-dimensional representation, may frequently
lack usable and comprehensible structures. Additionally, it
is essential to recognize that the primary objective of dimen-
sionality reduction is usually notmerely to reduce the number
of data dimensions, but to do so while retaining the major-
ity of the underlying data structure’s information within the
smaller representations.

3.2 Quantummachine learning

Information processing through quantum system manipu-
lation is the goal of quantum computing. Since operations
can be carried out on numerous states in parallel at once,
the superposition feature of quantum states can dramatically
reduce computation complexity.

The qubit, |ψ〉 = α|0〉+β|1〉where |0〉, |1〉 existing in the
two-dimensionalHilbert space H2, serves as the fundamental
unit of quantum computation. The probability ofmeasuring a
qubit in the 0 or 1 state is determined by the absolute squares
of its amplitudes.Quantumdynamics upholds the principle of
probability conservation, expressed as |α|2+|β|2 = 1.Math-
ematically, transformations mapping quantum states onto
other quantum states, known as quantum gates, must be uni-
tary.

Fig. 1 A graphical
representation of an
autoencoder. The encoder block
encodes the input data into a
smaller dimension latent space.
The Decoder block
subsequently makes an effort to
reconstruct the input data at the
output as accurately as possible
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Single-qubit quantum gates enable us to manipulate the
basis state, amplitude, or phase of a qubit. For instance,
the X -gate, Z -gate, and Y -gate manipulate these properties,
respectively. Additionally, the Hadamard (H)-gate trans-
forms a qubit with β = 0(α = 0) into an equal superposition
of α = β = 1/

√
2(α = 1/

√
2, β = −1/

√
2).

Multi-qubit gates frequently involve controlled operations
that execute a single-qubit operation onlywhen another qubit
(known as the ancilla or control qubit) is in a specific state.
Among these gates, the two-qubit XOR-gate is particularly
significant, as it flips the basis state of the second qubit when
the first qubit is in the |1〉 state. Another notable two-qubit
gate is the SWAP-gate, which exchanges the states of two
qubits.

Quantum gates are typically represented as unitary matri-
ces that act on two n-dimensional vectors. These vectors
encompass the amplitudes of the 2n basis states of a n-
dimensional quantum system. In order to create a quantum
state with a relatively large amplitude for states that represent
solutions to the given issue, designing quantum algorithms
requires the use of such relatively straightforward gates. A
measurement in the computational base yields the desired
result with an elevated probability.

Quantum algorithms are probabilistic, thus in order to
reduce errors, they are executed multiple times. Readers
are referred to Nielsen and Chuang (2010) for a thorough
introduction to quantum computing. In the realm of quan-
tum machine learning, innovative quantum algorithms are
being developed to tackle typical machine learning prob-
lems by leveraging the power of quantum computing. These
algorithms are often derived from classical algorithms, or
their computationally intensive subroutines, adapted to run
on potential quantum computers. In the foreseeable future,
these machines could become widely available for practical
applications, enabling the efficient processing of the rapidly
growing volumes of global information.

Furthermore, the quantum algorithms developed enable
known machine learning techniques to further enhance and
improve quantum information theory. These techniques can
be applied to find “quantum decision functions” or “quan-
tum strategies,” or to optimize system parameters like unitary
operators. Challenges exist on how to possibly create and
apply effective quantum learning processes. One of the main
obstacles is discovering how to use coherent and reversible
quantum computers to efficiently execute optimization tasks,
which are usually handled using dissipative and iterative
techniques like gradient descent. Furthermore, it is neces-
sary to investigate the use of quantum states in the translation
and processing of significant structural information, such as
distance metrics. Addressing these issues in the future will
enhance the decision-making capability within the context
of quantum mechanics.

3.3 Quantum autoencoders

Information compression is an essential issue in information
theory, and in the realm of quantum computing, quan-
tum autoencoders (QAEs) have been introduced as viable
means. QAEs aim to compress quantum states into a low-
dimensional representation. They provide a framework to
perform machine learning tasks on quantum systems with-
out incurring the exponential memory costs associated with
traditional methods. Because the number of factors needed
to adequately represent a quantum state grows exponentially,
classical computers encounter difficultieswhenworkingwith
quantum systems. The classical memory required to store
and analyze the essential data expands exponentially with
the scale of a quantum system, making it computationally
intensive and sometimes unworkable (Romero et al. 2017).

The utilization of quantum encoders for our proposed
anomaly detection framework enables us to minimize the
dimension of quantum data and accomplish similar machine
learning tasks for quantum systems without the need for
exponentially expensive conventional memory (Romero
et al. 2017). QAEs are particularly useful for compressing
datasets of quantum states when conventional compression
techniques are not practical. Furthermore, the parameters of
a QAE can be learned through traditional optimization meth-
ods.

The implementation of the QAE closely parallels that
of classical autoencoders, with the distinction that both the
data and operations are governed by quantum mechanics. A
QAE’s fundamental function is to encode an input state |ψ〉|ψ〉|ψ〉to
a quantum state of reduced dimension |φ〉|φ〉|φ〉 before decoding
|φ〉|φ〉|φ〉 back to |ψ〉|ψ〉|ψ〉.

A quantum circuit is parameterized in our QAE, and
we attempt to find the best combination of parameters to
reduce the discrepancy between the state at the input and the
state after reconstruction. The procedure of encoding can be
expressed as U (θ)|ψ〉 = |φ〉U (θ)|ψ〉 = |φ〉U (θ)|ψ〉 = |φ〉, where |ψ〉|ψ〉|ψ〉 is the input state,
U(θ)U(θ)U(θ) is the unitary transformation representing the quantum
circuit parameterized by θθθ , and |φ〉|φ〉|φ〉 is the encoded (com-
pressed) state. The method of decoding can be represented
asU

′
(θ)|φ〉 = |ψ ′ 〉U

′
(θ)|φ〉 = |ψ ′ 〉U

′
(θ)|φ〉 = |ψ ′ 〉, where |φ〉|φ〉|φ〉 is the encoded state,U ′

(θ)U
′
(θ)U

′
(θ) is

the decoding unitary transformation, and |ψ ′ 〉|ψ ′ 〉|ψ ′ 〉 is the recon-
structed state. By representing the data on a lower dimension
by changing the underlying autoencoder network’s topology,
the input can be effectively compressed (Romero et al. 2017).

In this scenario, data compression is not inherently
achieved since unitary transformations maintain probabili-
ties and typically operate on spaces with similar dimensions.
To attain data compression, some qubits in the initial encod-
ing stage are intentionally excluded and replacedwith freshly
generated reference states. This setup is particularly well-
suited for a three-dimensional latent space and a six-feature
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input, as depicted in Fig. 2. Three of the outputs of the unitary
operators are replaced with freshly formed reference states
that are ignorant of the input states during the encoding pro-
cess, even though they yield the same amount of qubits. For a
more comprehensive understanding of the principles of quan-
tum autoencoding and data compression, the reader can refer
to the details of a QAE in Romero et al. (2017).

Our quantum autoencoder uses quantum circuits to build
its encoder (E-block) and decoder (D-block) (Romero et al.
2017). Because these circuits are parameterized, it is possible
to optimize them during the training process. The goal of this
optimization is to minimize a cost function associated with
the fidelity of the reconstruction quantum states. Figures in
the subsequent sections will show the precise arrangement
of ansatzes (parameterized quantum circuits) in the E- and
D-blocks.

Shortening the wavefunction representation in quantum
autoencoders is driven by pragmatic factors. When the num-
ber of qubits in a quantum system increases, the amount of
entanglement may become too high to compute the entire
wavefunction. Thewavefunction can be truncated to improve
the efficiency ofmanaging computing resources and to lessen
the effects of the quantum state’s exponential expansion.

The purpose of this truncation is to safeguard against over-
fitting and improve the model’s capacity for generalization,
similar to the regularization approaches used in classical
machine learning. Furthermore, truncating the wavefunction
representation in the framework of quantum autoencoders
avoids certain problems, such as the saturation of prob-
ability amplitudes in high-dimensional spaces, which can
affect optimization algorithms’ performance. Additionally,
the identification of quantum anomalies in simulated quan-
tum states was investigated in Kottmann et al. (2021).

In this paper, we focus on input states that are fundamen-
tally quantummechanical. The theoretical framework known
as quantum mechanics explains how matter and energy
behave at the quantum level. When comparing the quantum
states to classical ones, the former have distinct computing
capabilities due to their superposition and entanglement.

Another fact that we considered in the proposed frame-
work is the embedding of classical data that determines the
nature of the resulting quantum state. Proposing a hybrid

classical-quantum approach highlights the part that classi-
cal data plays in forming the quantum state. Many quantum
machine learning models assume that pure quantum data are
readily available for training and testing themodel. Thiswork
emphasizes how crucial classical facts are used to derive the
final quantum state.

For real-world applications where classical data is large,
this hybrid technique could offer greater flexibility and prac-
ticality, facilitating a more seamless transition into quantum-
enhanced processing. Because the quantum state depends
on classical data embedding, it will be possible to create
customized quantum representations using certain classical
datasets, which might optimize quantum information pro-
cessing for various applications.

With its focus on the quantum nature of input states, the
paper provides a way to investigate the benefits of quantum
computing, allowing it to outperform its classical equiva-
lents in particular tasks. A practical integration of quantum
approaches into current classical machine learning frame-
works is suggested by the use of classical data to shape the
quantum state. Because there is a lot of classical data avail-
able, the hybrid classical-quantum technique could make
the switch to quantum-enhanced computation much easier.
Quantum autoencoders, programmable circuit methods, and
unsupervised anomaly detection together represent a com-
plete and flexible quantum machine learning approach.

Creating quantum representations that balance between
encoding latent information and offering a reference state
for a variety of data occurrences is made easier with the
help of the organized subsystem splitting technique. During
the angular encoding process, the qubits that compose these
quantum states can be split. To entangle these distinct qubits,
we employ CNOT gates all across the unitary development
process (see Appendix for an introduction of CNOT gates
and other gates).

An unsupervised challenge of notable importance is the
identification of anomalies. Specifically, it involves training a
model exclusively on normal examples to establish a normal
profile, which can then be used to detect samples that deviate
from this normal profile as anomalies. In this work, we posit
that a trained autoencoder will effectively learn the latent
subspace associated with normal samples.

Fig. 2 Quantum autoencoder
circuit illustration. It consists of
6 input states, 3 compressed
states, and the other 3 trash
states, then it is reconstructed
back to 6 states. (The diagram is
adapted from Romero et al.
(2017))
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It is important to note that the quantum autoencoder
(QAE) is a hybrid approach that combines both classical and
quantum techniques. After preparing the input state, a param-
eterized unitary operation is employed to compress the state.
To assess the degree of overlap between the reference state
and the portion that was discarded during compression, a
SWAP test is utilized. A classical optimization approach is
used to create the cost function.

The optimal compressed state is determined through a
SWAP-gate involving the discarded portion and the ref-
erence state. These states typically contain fewer qubits,
making it simpler to compare themwith fewer gates. Achiev-
ing maximum fidelity between the discarded and reference
states is essential for identifying the optimal compression
for our input circuit. We fine-tune our encoder’s settings and
then run a SWAP test to evaluate how well these discarded
states match reference states during the training phase. This
involves introducing an additional qubit, which serves as an
auxiliary qubit for measuring the overall fidelity between the
discarded and reference states during the SWAP test.

An approach to variational quantum circuits is used to
develop themodel. Therefore, bygradually learning, the ideal
settings for the quantum gates may be determined. Only uni-
tarieswith 2n×2n dimensionsmayproduce suchgates,which
provide a n-qubit unitary gate. On the other hand, it pro-
duces exponentially more parameters in relation to the qubit
count, making the optimization process intractable. There-
fore,we utilize the programmable circuit technique described
inRomero et al. (2017) to decode the huge unitary into single-
qubit rotation gates and CNOTs.

Following the selection of the programmable circuit, the
defined model serves as an encoder and the structural basis
of the design is formed. Unlike regular autoencoders, a quan-
tum autoencoder’s decoder can be the inverse of the encoder,
whose decoder is learned from the ground up. For quantum
autoencoders, this is possible since unitary matrices can be
efficiently inverted. Since the encoder as a whole will pro-
vide a unitary, if we characterize the encoder network asU

−→p ,
where −→p represents the ideal network parameters, then the
decoder network can be represented as (U

−→p )
′
.

In order to realize the quantum encoder, two subsystems,
A and B, are formed. In subsystem A, the encoder generates
a “latent code” that may be used to reconstruct the input
later on. But for subsystem B, the goal is to establish an
ideal “reference state” for all possible data occurrences. If
the encoding is finished to a high degree of accuracy, the
identical reference qubits might be placed in the latent space
to replicate the output. In our design, we have selected |0〉 as
the reference state for simplicity; the number of qubits in this
state might vary depending on the size of the latent space.
Therefore, after the encoder, subsystem A must contain the
latent code, and subsystem B must generate the state |0〉 for
all supplied input values.

One method to achieve this is to apply a sequence of
SWAP-gates between the subsystems B and B

′
, which com-

prise the reference state ansatz. It means that if the network
creates a latent space, it will generate an input by switching
the fixed reference state into the subsystem B. Creating a
loss function for the training of the variational circuit is the
final part of the model. As the traditional loss function for
autoencoders, the L2 norm of the input and output may be
transformed into QAE in the manner described below:

C1

(−→
P

)
=

∑
i

pi .F
(
|ψi 〉, ρout

i,−→p
)

(1)

F
(
|ψi 〉AB ⊗ |a〉B′ ,U

′
ABVBB′UAB |ψi 〉AB ⊗ |a〉B′

)
, (2)

where the parameterized unitaries at subsystems A and B
are described by the density matrix ρout

i,p−→, the reference
state is denoted by |a〉, and the unitary of the SWAP-gate
is represented by V . The cost function is defined in Eq. 1
by the degree to which the output, which is a reconstruction
of the input, resembles the original input, |ψ〉. At this point,
only subsystems A and B need to be monitored because the
subsystem B

′
has been traced out. The fidelity of quantum

systems is a metric to measure the similarity of such states.
Therefore, we define a successful autoencoding as one that
F

(
ψi , ρ

out
i

) ≈ 1 for all input states. It is possible to ascertain
whether the states are pure by examining their inner product,
as shown in Eq. 3:

F (ρ, σ ) = |〈ψA|ψB〉|2 , (3)

where ρ = |ψA〉〈ψA| and σ = |ψB〉〈ψB |. A further sim-
plification of the cost function in Eq. 1 yields the following
findings:

C2
(−→p ) =

∑
i

pi .F

(
TrA

[−→
U |ψi 〉〈ψi |AB

(−→
U

)′]
, |a〉B

)
.

(4)

The results obtained from the original cost function and the
reduced cost version are identical, indicating the degree of
accuracy between the reference state and the subsystem B’s
anticipated value following the encoder. It can trace out the
subsystem A by avoiding measuring its qubits. Since the
measured component must match the set reference state per-
fectly for every possible input state, it is also referred to as the
“trash state”. The leftover traced-out qubits generate a “com-
pressed state” or “latent space” that may be stored or utilized
for further inference or learning tasks. During testing, we
can measure subsystem B and acquire the latent space state
instead of keeping an eye on subsystem A. Instead of mea-
suring the subsystem, it would be necessary to carry out the
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desired procedure progressively after the encoding to prevent
irreversibly altering the state, as the compressed state may
be entangled.

4 Proposed frameworks

We propose three approaches for anomaly detection with
quantum autoencoders. A quantum autoencoder and a one-
class SVM are integrated in the first framework; a quantum
autoencoder and a quantum random forest are integrated in
the second; and a quantum autoencoder and a quantum k-
nearest neighbor are combined in the third.

An autoencoder can be trained on a dataset of “normal”
data samples. A naive approach to determining an anomaly
is to compute the difference between the original sample and
its reconstruction, or the reconstruction error, which can be
used to determine how “normal” or “anomalous” the sample
is. Nevertheless, when we tested this approach, it performed
worse than the proposed frameworks, where it scored only
75% accuracy and 77% F1-score. Therefore, before feeding
the encoded data as an input to several quantum machine
learning classification algorithms, employing the quantum

autoencoder as a dimensionality reduction technique, as used
in our proposed frameworks, improved detection accuracy
and attained faster training times.

Figure 3a illustrates the first framework. Prior to the data
being processed in the quantum autoencoder (QAE) quan-
tum circuit, the data input is encoded to quantum states. This
is done by first utilizing a PCA (principle component ana-
lyzer) to decrease the dimensionality of the network traffic
data, where the number of features matches the number of
available qubits. Following a successful encoding process
using the quantum autoencoder as a dimensionality reduction
approach, the data ismapped via a kernel before being used as
input for a one-class support vector machine (SVM), which
employs a hyperplane to distinguish between normal and
anomalous data. Two one-class SVM techniques-one using
a classical kernel and the other using a quantum kernel have
been tested.

Figure 3b shows the second framework. The process
entails dimensionality reduction with the quantum autoen-
coder, followed by the data being fed into a quantum random
forest algorithm (amachine learning ensemble approach) that
combines many variational quantum classifier (VQC) mod-
els to provide predictions. Following a predefined number of

(a) Framework 1: Union of QAE and one-class SVM.

(b) Framework 2: Union of QAE and quantum random forest.

Fig. 3 Three novel quantum autoencoder frameworks for anomaly detection. The figures describe a process for analyzing network traffic to
identify anomalies using quantum autoencoders for dimensionality reduction and one-class SVM, quantum random forest, and quantum kNN for
classification
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VQCmodels (trees) being trained, the function uses majority
voting to provide predictions for the test data input.

Figure 3c illustrates the third framework.The steps involve
using the quantum autoencoder as a dimensionality reduction
technique and then the data is fed as input to a quantum k-
nearest neighbors component, which categorizes a test state
that is unknown by locating its k closest neighbors among
a set of M train states. Fidelity serves as the similarity met-
ric in quantum kNN. The primary purpose is to encode as
quantum state amplitudes the fidelity information between
the test state and all train states. We complete the reduction
by converting this amplitude-encoded information to a digital
representation, allowing us to compare them effectively.

5 Experiments

5.1 Setup

The experiments were conducted using real NISQ quantum
devices and a quantum simulator. We utilized Jupyter note-
books to design and simulate our quantum circuits using
PennyLane with Python 3.9 and the IBM Qiskit Python
library version 0.37. In the experiments, we used IBM
quantum labs to access quantum computers and quantum
simulators. Matplotlib is used for visualization, PyTorch is
used for cost function optimization, and Scikit-learn is used
for evaluation. Our investigation was carried out using an
AppleM1 ProARM-based system, which has a 10-core CPU
for processing and a 16-core GPU.

5.2 Data preprocessing

In the data processing step, we utilize a set of methods,
including one-hot encoding, undersampling, normalization,
and PCA dimensionality reduction.

• To express nominal or categorical data as binary vectors,
one-hot encoding is used. A binary vector of 0 s and 1s
is created for each category in one-hot encoding, with
the vector’s length being equal to the entire number of
categories. Each vector contains 0 s everywhere else and
a value of 1 at the index that corresponds to the cate-
gory. This ensures that no numerical correlation between
categories is implied.

• Undersampling is a technique for balancing unequal
datasets by keeping all of the data in the minority class
and decreasing the size of the majority class. We used
undersampling to extract accurate data from datasets that
were previously uneven.

• The min-max normalization was used to normalize our
data. It is used to scale numerical data to a predetermined

range of values. By deducting the feature’s minimum
value from each value and then dividing the result by
the feature’s range, this method scales the data values to
a range between 0 and 1.

• We used principal component analysis (PCA), which
converts high-dimensional data into a lower-dimensional
space while preserving as much information as feasi-
ble. When working with datasets that contain numerous
features or strongly linked variables, PCA is especially
helpful. In this paper, we utilized PCA to reduce the
dimensionality of the dataset to match the number of
qubits we have access to.

Finally, the datasets were split as 80% training and 20% test-
ing and used in the evaluations.

5.3 Quantum-based anomaly detector
implementations

We used Python to implement the quantum autoencoder. We
used datasets from KDD99 (MIT Lincoln Labs 1998), IoT-
23 (Garcia et al. 2020), and CIC IoT 23 (Neto et al. 2023)
for the evaluations. Training the parameters of the quantum
autoencoder is done by traditional optimization techniques.
A key component of our research is the conversion of odd-
dimensional classical data to a quantum state. A common
mitigation strategy is to apply feature selection or dimen-
sionality reduction. In order to achieve this, a subset of the
most pertinent characteristics are chosen, or the features are
changed to create a new set such that the total number of
features is a power of 2. Here, principal component analysis
(PCA) was employed.

Quantum embeddings are used to encode a collection of
features into the quantum state once the features are powers
of two. AngleEmbedding and AmplitudeEmbedding from
PennyLane were utilized in our approach to achieve this.
Both methods adhere to the principle of n = log2 N qubits.

We combine the classical and quantum approaches in our
quantum autoencoder. The parameterized unitary is used to
compress the state once the input state has been produced. A
SWAP test is used tomeasure howmuch of the trash state and
the reference state overlap via compression. A conventional
optimization strategy is utilized to generate the cost function
that is minimized from the outcomes for all the states in the
train data.

Our work primarily differs from other existing implemen-
tations in that the input states of those other implementations
are essentially quantum mechanical. On the other hand, the
kind of quantum state in our study is determined by the input
embedding of the classical data. The qubits that comprise
the quantum states may be divided in angular encoding. But
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to entangle the different qubits, we use CNOT gates in the
unitary evolution.

Hadamard gates and controlled rotating gates are compo-
nents of the AE quantum circuit. PennyLane, a quantum
Python library, is used in its implementation. Angle embed-
ding and amplitude embedding are two aspects of the
quantum process. The QAE circuit SWAP test is represented
by the circuit in Fig. 4, which consists of 4 total qubits. The
compressed qubits (2 and 3) go through an angle embedding
function followed by the first layer of rotational gates, a con-
trolled rotational gate (CNOT gate) between each qubit, and
finally the second layer of rotational gates.

Moreover, it demonstrates aSWAP testwhere the qubit 2 is
swappedwith qubit 1. Subsequently, the result is measured to
calculate the fidelity of the 2 quantum states that pass through
a classical cost function for the optimization. Finally, qubit
0 represents the control qubit. For further clarification, the
quantum circuit model and matrix representation of qubit
states, and unitary gates are provided in the Appendix.

A popular data encodingmethod in quantum computing is
through angle encoding, also known as qubit encoding. The
following transformation is used to produce a quantum state
in this process, according to LaRose and Coyle (2020):

Sx |0〉 = ⊗n
i=1 cos(xi )|0〉 + sin(xi )|1〉 (5)

The transformation is constructed using a single rotationwith
a normalized angle corresponding to xi (normalized to be in
[−π, π ]) for each qubit. This method allows us to encode n
features with n qubits.

The number of qubits needed for this method equals the
number of features in your data. It can be effective to deal
with data with only a few features. However, building the
quantum circuit for angle encoding can be challenging, par-
ticularly when dealing with high-dimensional data. With n
characteristics, the number of gates needed increases expo-
nentially (O(2n)). Due to this complexity, it is challenging
to develop and run on actual quantum computers.

Another technique for encoding data in quantum com-
puting is amplitude encoding, sometimes referred to as

wavefunction encoding. It entails applying the following
transformation to produce a quantum state (LaRose and
Coyle 2020):

Sx |0〉 = 1

‖x‖
2n∑
i=1

xi |i〉 (6)

In this formula, each xi is a feature of a data point x , and |i〉
is a basis of n-qubit space. The advantage of this encoding is
that we can store 2n features using only n qubits. However,
more often than not, this circuit Sx will have a depth ofO(2n)
and can be challenging to construct.

It is a desirable method because amplitude encoding
requires just n qubits to hold 2n (exponential) data points.
This makes data with a large number of features efficient.
Amplitude encoding’s drawback is that it requires creat-
ing the appropriate state vector for each basis state with a
different amplitude. Due to the need for intricate quantum
procedures, this may be computationally costly. Further-
more, extracting information from the encoded state can be
difficult without elaborate measurements.

The execution was carried out using the Qiskit Python
library version 0.37. First, we declare the number of qubits
used in this circuit. Then, we initialize x as a parameter vec-
tor. The quantum kernel circuit quantum feature map U (x)
is based on an IQP-like circuit for embedding data sample x .
A layer of Hadamard gates will put the qubits in a superpo-
sition, then feature-dependent z-basis rotations, and finally,
Z Z gates across all the qubits. Lastly, the quantum feature
map is passed to a QuantumKernel function in Qiskit to
create the quantum kernel that will eventually be passed to a
one-class SVMalgorithm (Figs. 5).We used the ‘ibmq_lima’
architecture as our IBM quantum device to execute the code.

The quantum circuit for the quantum random forest clas-
sifier comprises two primary components: the feature map
and the ansatz. Either a feature map or an ansatz is a parame-
terized quantum circuit. The feature map’s role is to convert
classical input data into a quantum state, effectively trans-
lating the input data into a format understandable by the
quantum circuit (Fig. 6).

Fig. 4 QAE circuit
implementation. It consists of 4
qubits: qubit 0 is the control
qubit which goes through a
Hadamard gate to put it in a
superposition. Qubit 1: is the
reference state and the first qubit
of the SWAP test. Qubit 2: is the
second qubit of the SWAP test
and it also the trash state. Qubit
3: is the compressed state
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Fig. 5 The OC-SVM quantum
kernel circuit. The circuit
contains a layer of Hadamard
gates, a single Z rotation, and
connections between qubits

In our example, we used the ZZFeatureMap compo-
nent from Qiskit, which involves a second-order Pauli − Z
evolution circuit followed by a sequence of Hadamard gates.
The heart of this structure consists of parameterized entan-
gling blocks, built using rotation gates (RZ) and controlled
rotation gates (CZ). These gates encode the input data into
the initial quantum state, which serves as the starting point
for subsequent processing.

The ansatz, a vital part of the quantum circuit, represents
the trainable portion of the quantum classifier. It is respon-
sible for finding a solution to the categorization problem.
In our case, we employed the hardware-efficient RealAmpli-
tudes ansatz from the Qiskit library, comprising alternating
layers of single-qubit Y rotations (RY ) and two-qubit entan-
gling gates (CZ). While the overall structure of the ansatz
remains fixed, the settings for the RY gates become trainable.
The ansatz helps perform a series of quantum operations on
the starting state produced by the feature map to construct a
measurable state that determines the classifier’s output.

The quantum random forest classifier uses an ensemble
of the circuits. Each circuit is trained using a distinct subset
of the input data that is obtained through bootstrapping. To
arrive at the final categorization, a majority voting mecha-
nism is employed to aggregate the circuits’ outputs.

The quantum SWAP test is used to determine the proxim-
ity of one object to another. To quantify the proximity, one
canmeasure the distance between them in a two-dimensional
Euclidean space. In a two-dimensional plane, the distance
between two points is simply the length of the path con-
necting them. In a three-dimensional space, this distance is
the space between two real-valued vectors. The Euclidean
distance is a widely used method for measuring distances in
machine learning.Manymachine learning algorithms rely on

distance measures between feature vectors at their core (Fig.
7). Such a popular ML algorithm is the k-nearest neighbors
algorithm (kNN).

Figure 8 shows an example of two data clusters — one
denoted by blue circles and the other by red circles. We have
a new sample represented by an orange circle, and our goal is
to determinewhether it belongs to the redor the blue category.
Tomake this decision,we choose k examples from the dataset
that are closest to the orange circle. If we set k = 3, the three
nearest neighbors consist of two blue circles and one red
circle. As a result, the new example is classified as belonging
to the blue category because they are in the majority.

Fundamentally, a distance metric evaluates the similar-
ity between two feature vectors. In the quantum version
of k-nearest neighbors, different distance metrics can be
employed to assess the similarity between feature vectors
in a Hilbert space. The main distinction between a Hilbert
space and other vector spaces, such as Euclidean space, is
that a Hilbert space defines an inner product operation. This
inner product can be performed between any two vectors
to produce a scalar value. For two vectors x and y in a
Hilbert space, we denote the inner product as 〈x |y〉, where
〈x | is equal to the conjugate transpose of |x〉. In the context
of quantum mechanics and quantum computation, the inner
product between two state vectors provides a scalar quan-
tity that indicates how closely the first vector aligns with the
second vector. It serves as a measure of similarity between
vectors x and y. The absolute square of the inner product can
be obtained using a quantum routine known as a SWAP test.

To perform the SWAP test, we require two registers, each
containing a vector (a and b, for example), and one ancil-
lary qubit initially set to zero. A Hadamard transformation
is used to place the ancilla into a superposition state. Then,

Fig. 6 Quantum random forest
circuit. It consists of a feature
map that encodes the input data,
a layer of y rotation gates,
CNOT gates between each
qubit, and lastly a layer of z
rotation gates
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Fig. 7 QkNN SWAP test. It contains 3 qubits: the first qubit is the
control qubit which goes through 2 layers of Hadamard gates after
which it gets measured, qubits 2 and 3 are the qubits involved in the
SWAP test

a controlled SWAP-gate is applied to swap the two registers,
but only if the ancillary qubit is in the state one. Finally, a
second Hadamard gate on the control qubit.

QRAM works as an oracle in Basheer et al. (2020) to
store the training data and initializes one register with a state
to categorize. Every training dataset is written in superposi-
tion to a register by this oracle. Next, a SWAP-test circuit is
designed to carry out the measurement of fidelity. However,
our empirical evaluation showed that this method suffers
from significantly higher time complexity than our approach
when both achieved similar accuracy results.

6 Datasets

In our empirical study, we employed KDD99 (MIT Lincoln
Labs 1998), IoT-23 (Garcia et al. 2020), and CIC IoT 23
(Neto et al. 2023) datasets.

6.1 KDD99

Since 1999, KDD’99 has been the most widely used data set
for evaluating anomaly detection methods. Stolfo et al. Lee
et al. (1999) developed this dataset using data fromDARPA’s
1998 IDS assessment program. The DARPA’98 dataset con-
tains around 4 gigabytes of raw (binary) compressed tcpdump
data from 7weeks of network traffic, which can be processed
into approximately 5 million connection records, each with
100 bytes. The test data for the first 2 weeks contains almost
2 million connection records.

The KDD training set includes approximately 4,900,000
single connection vectors. Each vector has 41 features and is
labeled as either normal or an attack,with exactly one specific
type of attack. The simulated attacks fall into one of the four
types (Tavallaee et al. 2009), namely denial of service (DoS)
attacks, probe attacks, remote to local (R2L) attacks, and
User to root (U2R) attacks. The challenge is made authentic

Fig. 8 A kNN graphical example. It illustrates whether the data in the
orange circle belongs to the blue or red group of dots. Here, k = 3

because the test data includes specific kinds of attacks out-
side the training data and is not from the same probability
distribution. Because most novel attacks are mutant variants
of existing ones, the signature of existing attacks can often be
used to detect new variants. While the datasets have 24 train-
ing attack types, the test data alone contains an additional 14
types.

The KDD’99 features can be organized into three cate-
gories:

1. Basic features: This category includes all the attributes
derived from aTCP/IP connection.Most of these features
introduce implicit detection delays.

2. Traffic features: Traffic characteristics are categorized
into two classes based on how they are calculated con-
cerning a window interval:

• Same host features: These features only look at con-
nections with the same destination host as the current
connection during the last 2 s. They compute statistics
about protocol behavior and service use.

• Same service features: These features only look at
connections from the last 2 s that use the same service
as the one you are on now.

The two mentioned “traffic” feature categories are referred
to as time-based. However, several slow probing exploits
use considerably longer time intervals than 2s, for
instance, one per minute, to scan the hosts (or ports).
Therefore, these techniques do not result in intrusion pat-
terns within a 2-s time frame. The “same host” and “same
service” features are updated to address this issue, but
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they are based on a connection window of 100 connec-
tions instead of a period of 2 s. These features are called
connection-based traffic features.

3. Content features: Unlike most DoS and probing attacks,
R2L andU2R attacks do not exhibit any intrusion-regular
sequential patterns.DoS and probing attacks,which often
involve only one connection, can be distinguished from
R2L and U2R attacks that are usually contained in the
data parts of packets. To detect these attacks, we need
some tools to search for unusual behaviors in the data sec-
tion, such as the number of unsuccessful login attempts.
These are called content features.

6.2 IoT-23

IoT device network traffic is captured in a new dataset called
IoT-23. It consists of twenty malware captures performed on
IoT devices and three grabs of benign IoT device traffic. The
files were captured between 2018 and 2019 and released in
January 2020. The network traffic from the IoT was recorded
at the Stratosphere Laboratory, AIC group, FEL, CTU Uni-
versity, located in Europe. To assist academics in creating
machine learning algorithms, it aims to provide a sizable
dataset of actual, tagged IoT malware infections as well as
benign IoT traffic. Sponsored by Avast Software, this dataset
and study were made possible.

Twenty-three captures (referred to as scenarios) of various
IoT network traffic make up the IoT-23 dataset. These sce-
narios are separated into three network captures of actual IoT
device traffic and twenty network captures (pcap files) from
infected IoT devices which have the name of the malware
sample executed on each scenario. They ran a unique mal-
ware sample on a Raspberry Pi that utilized many protocols
and carried out various operations in each harmful situation.
A Somfy smart door lock, an Amazon Echo home intelligent
personal assistant, and a Philips HUE smart LED bulb were
the three IoT devices whose network data was collected for
the benign scenarios. Not to be overlooked is the fact that
the three IoT devices. It enables the recording and analysis
of actual network behavior. Like any other actual IoT device,
both benign and malicious scenarios operate in a regulated
network environment with unrestricted internet access.

6.3 CIC IoT 23

This dataset provided a new and large-scale IoT attack
dataset in order to support the creation of security analytics
tools for actual IoT operations. It was designed to facilitate
the development of security analytics software for the IoT
environment (Neto et al. 2023). It comprises 33 attacks exe-
cuted across 105 IoT devices, categorized into seven groups:
DDoS, Denial of Service (DoS), Recon, Web-based, Brute

Force, Spoofing, and Mirai. These attacks are launched by
IoT devices with malicious intent toward other IoT devices.

DDoS attacks include flooding attacks, such as UDP and
ICMP floods, and fragmentation-based attacks. DoS attacks
disrupt services by overwhelming a single sourcewith traffic.
Web-based attacks target web applications using techniques
like SQL injection and XSS. Brute force attacks attempt to
gain unauthorized access through repeated trials. Spoofing
attacks involve impersonating entities or manipulating net-
work traffic. Finally, Mirai attacks employ strategies like
GREIP flood and UDPPlain attacks, primarily targeting IoT
devices.

In addition, the dataset provides an extensive overview of
network attacks, their corresponding frequencies represented
by row counts, and their classification into broader attack
types. The row counts serve as indicators of the severity of
these threats by reflecting the frequency of each unique attack
type within the dataset.

Table 3 lists a comprehensive and carefully crafted set of
features extracted from network traffic data, offering detailed
insights into the characteristics and behaviors of packets
within a network.

The “timestamp” attribute assigns a specific recording
time to each packet. “flow duration” indicates the duration
of a packet’s flow. “protocol type” categorizes packets based
on their network protocols, including IP, UDP, and TCP.
Indicators for application layer protocols such as “HTTP,”
“HTTPS,” and “DNS” are also included, allowing for the
identification of specific application-level behaviors in net-
work traffic. “Rate” provides information on data throughput
and packet transmission rate.

Furthermore, various flags, including “FIN,” “SYN,”
“RST,” “PSH,” “ACK,” “ECE,” and “CWR,” provide insights
into specific packet-level interactions and potential anoma-
lies. Statistical metrics such as “covariance” and “Variance
Ratio” assess the variability in packet lengths, helping us to
understand the relationship between incoming and outgoing
packet lengths. “Weight” measures the combined count of
incoming and outgoing packets, offering a comprehensive
view of traffic patterns.

Additional attributes such as “magnitude,” “radius,” “stan-
dard deviation,” “packet length,” “inter-arrival time,” and
“packet count” provide depth to the analysis, enabling net-
work specialists to gain valuable insights into the network’s
performance and security posture.

7 Results and discussion

This section presents the outcomes of our experiments. IBM
quantum simulators and real NISQ quantum devices were
used in the evaluations.
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To assess the effectiveness of our anomaly detection mod-
els, we rely on a range of evaluation metrics, including
accuracy, F1-score, precision, recall, and the ROC curve.
However, in the evaluation of our model, certain metrics
carry more weight than others. It is crucial to note that our
datasets are unbalanced with a limited number of data sam-
ples from the minority class. As a result, accuracy is not a
reliable measure of the model’s performance because even
an inadequate model is capable of performing well in the
majority class. In contrast, the F1-score is a metric that accu-
rately reflects the model’s performance when dealing with
unbalanced datasets. This is particularly relevant in anomaly
detection datasets, as the F1-score takes into account the data
distribution, providing a more balanced assessment of the
model’s performance than accuracy.

The performance of our three new frameworks — frame-
work 1 (combination of QAE and OC-SVM), framework 2
(union of QAE and QRF), and framework 3 (union of QAE
and QkNN)-is compared in Table 1. As a balanced metric of
precision and recall, F1-score is the harmonic mean of accu-
racy and indicates how well a strategy anticipates anomalies.

With 97% accuracy and 98% F1-score, the combina-
tion of QAE and QkNN with the CIC IoT dataset is the
best-performing framework. Interestingly, framework 1 per-
formed best with network flow information datasets while
Framework 3 performed best with the IoT datasets. The
second-best approach is to combine QAEwith quantumOC-
SVM, which produces a 97% accuracy and 97% F1-score.
The least efficient approach is the combination of QAE and
quantum OC-SVM with the IoT-23 dataset, despite its 82%
accuracy and 79%F1-score. The F1-score, on the other hand,
was selected as the primary assessment metric since it takes
into account both precision and recall, offering a more bal-
anced measure than accuracy, which can be deceptive on
unbalanced datasets — a characteristic of datasets used for
anomaly identification.

When evaluating the IoT-23 and CIC IoT 23 datasets,
the most effective quantum framework is framework 3,

which combines quantum autoencoder (QAE) and quan-
tum k-nearest neighbors (kNN). This is because kNN is a
distance-based algorithm that makes decisions based on the
similarity between data points. When dealing with network
flow datasets exhibiting well-defined clusters or neighbor-
hoods, kNN excels at identifying anomalies by flagging data
points that are distant from their nearest neighbors.

Network flow data frequently displays local patterns and
clusters, where anomalies may be isolated in specific regions
(Ruan et al. 2017; Miao et al. 2018). Specifically, kNN
is well-suited for capturing local patterns. Moreover, kNN
is highly interpretable; when it identifies an anomaly, one
can easily comprehend the reasons by examining its near-
est neighbors. This feature enhances the ability to validate
results and take appropriate actions.

Quantum k-nearest neighbors (QkNN) analysis:

• Quantum speedup: Quantum algorithms in theory, such
as QkNN, hold the potential to outperform classical
algorithms, especially when handling large datasets.
However, in practice and our experiments, achieving this
quantum speedup is currently hindered by the limitations
and restrictions of existing quantum hardware.

• Distance calculation: In anomaly detection, it is crucial
to calculate distances between data points efficiently and
accurately. Quantum algorithms can perform quantum
amplitude amplification, which can be highly efficient
for distance-based calculations, potentially outperform-
ing classical ML algorithms (Lloyd et al. 2020).

• Quantum superposition: Quantum algorithms can repre-
sent data points in a superposition of states, allowing for
parallel processing of data. This quantum representation
is a clear advantage over classic computing when anoma-
lies are rare and spread across the dataset.

• Dimensionality reduction: Quantum algorithms help
handle high-dimensional data efficiently when data is
projected into a quantum state using various quantum
techniques, including quantum feature maps, quantum

Table 1 Comparison among the
proposed quantum frameworks

Dataset Method Accuracy Precision Recall F1-score

Framework 1 97.48% 95.06% 99.43% 97.19%

KDD99 Framework 2 92.39% 89.63% 97.16% 93.41%

Framework 3 91.73% 90.89% 96.34% 93.15%

Framework 1 82.53% 70.31% 98.01% 79.69%

IOT-23 Framework 2 87.70% 78.49% 94.17% 86.25%

Framework 3 96.80% 95.09% 98.73% 96.19%

Framework 1 97.30% 96.83% 98.14% 97.67%

CIC IoT 23 Framework 2 96.10% 94.63% 97.72% 97.61%

Framework 3 97.79% 98.37% 98.81% 98.26%

The bolded values are to indicate the best result in their respective columns/categories
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data encoding, and the like. This knowledge is beneficial
to deal with network flow data with many features (Liang
et al. 2020; Cong and Duan 2016).

Our method’s combination of parameterized quantum cir-
cuits with deep neural networks shows promise for tackling
the anomaly detection issue. We explore the finer points of
how these two elements work together to form a potential
hybrid model throughout our discussion. We examine each
of their unique contributions and draw attention to the syn-
ergistic benefits that result from their combination.

In Table 4 of the Appendix, we conducted a compar-
ison between identical machine learning (ML) classifiers
employing the same data preprocessing steps. The only dif-
ference lies in the classical implementation rather than our
quantum frameworks. We aim to examine how the quantum
versions’ performance compares to their classical counter-
parts in a controlled environment. The results reveal that our
quantum frameworks consistently outperformed the classical
ML classifiers across all the datasets. Notably, the classical
ML classifiers exhibited a consistent performance trajec-
tory across different datasets. For instance, in the KDD99
dataset, the one-class SVM demonstrated superior perfor-
mance compared to RF and kNN. In the case of IoT datasets,
kNN exhibited the best performance among the classi-
fiers. These findings remain consistent when analyzing only
the quantum frameworks’ performance. Importantly, these
results suggest a notable correlation between quantum coher-
ence and anomaly detection, providing valuable insights
into the relationship between quantum computing and ML
performance.

The time required to train the QAE with varying num-
bers of qubits is presented in Table 2. We find that the more
qubits are used, the lower its fidelity scores are; however, the
time spent on training increased exponentially with the num-
ber of qubits employed. Upon the completion of the SWAP
test, we employed 4 total qubits and 2 latent qubits based
on our quantum autoencoder technique to convert the data
into a linear form. As a result, we had to perform substantial
pre-processing on the data and modify the quantum circuits
to fit the particular job throughout our testing which make
our solution limited and not scalable. Our results show that
the QML paradigm could yield positive outcomes with huge
potential for improvements.

Table 2 Time comparison with different numbers of qubits used

Total qubits Latent qubits Time taken Fidelity

4 2 1.64h 0.9963

4 3 1.49h 0.9812

6 4 7.85h 0.8610

Finally, the L2 normwas applied in ourQAE implementa-
tion. In classic computing, the L2 norm between two vectors
(v and w) is calculated as follows:

‖v − w‖22 =
∑
i

(vi − wi )
2 (7)

The L2 norm in quantummechanics is calculated slightly dif-
ferently. The computation of the squared L2 norms between
a state vector |ψ〉 and a density matrix ρ in the context of
quantum mechanics are described as follows:

1. State vector |ψ〉:
• A quantum state represented by a state vector |ψ〉 is

a pure state.
• The L2 norm of a state vector |ψ〉 is denoted by:

‖|ψ〉‖22 = 〈ψ |ψ〉.
2. Density matrix ρ:

• A mixed state is represented by a density matrix ρ,
which may be a statistical mixture of pure states.

• The L2 norm of a density matrix ρ is given by the
trace of the square of the matrix: ‖ρ‖22 = Tr(ρ2).

The squared L2 norm between the state vector |ψ〉 and the
density matrix ρ is computed as the trace of the square of the
difference:

F(|ψ〉, ρ) = Tr((|ψ〉〈ψ |−ρ)2) (8)

The difference between the mixed state, represented by the
density matrix ρ, and the pure state, |ψ〉, is quantified by
this formula. The basis-independence of the calculation is
guaranteed by the trace operation.

8 Conclusion and future work

This paper draws attention to the growing number of network
threats and highlights how important anomaly detection is
to improving cyber security. Our study intends to close this
research gap and provide innovative frameworks that make
use of quantum computers, acknowledging the limitations
in the literature that currently exists about the integration of
quantum technologies and substantiating the effectiveness of
hybrid models that unite deep neural networks and parame-
terized quantum circuits for anomaly detection.

The three proposed approaches that integrated quantum
autoencoders with quantum kNN, quantum random forest,
and quantum SVM show promises for precisely detecting
abnormalities in network traffic. The QAE approach inte-
grated with a quantum kNN model has the best performance
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among the other implemented frameworks and the state-of-
the-art quantum and classical anomaly detection techniques,
with a higher accuracy and F1 scores using benchmark attack
datasets.

Our results signify a novelty in the synergy between quan-
tum autoencoders and anomaly detection approaches, and
their significance goes beyond the immediate implications.
Our study fills a research absence in the literature and paves
the way for enhanced anomaly detection methods that take
advantage of quantum computing capabilities. This advances
the field of cyber security and advances the larger inves-
tigation of quantum technology for the resolution of other
complex problems.

In the future, these frameworks should be expanded and
improved upon. Further strengthening anomaly detection
systems’ resiliencemight involve investigating various quan-
tum algorithms, improving quantum autoencoder designs,
and expanding assessments to more complex datasets. The
technical implementation of these frameworks will also
depend on examining their scalability for large-scale net-
work settings and considering hardware limits. Our research
findings pave a potential pathway for integrating quantum
technologies with anomaly detection for real-world appli-
cations. While acknowledging our role in proposing novel
technical methods, we recognize the evolving nature of
research. We anticipate that future work may uncover supe-
rior frameworks, but our contribution stands as a robust
foundation for advancing anomaly detection.

Appendix

Quantum circuit model and matrix representation of qubit
states, and unitary gates.

Qubit states:

Table 3 Summary of utilized datasets in terms of features and data
points used

Dataset No. of features No. of data points

KDD99 41 4,900,000

IoT-23 21 1,444,674

CIC IoT 23 47 243,649

Table 4 Comparison among classicalML classifiers with the same data
preprocessing steps using the 10-fold cross-validation

Dataset Method Accuracy F1-score

SVM 90.21% 78.53%

KDD99 RF 87.57% 91.63%

kNN 85.28% 84.30%

SVM 71.78% 76.34%

IOT-23 RF 83.92% 82.60%

kNN 92.57% 93.50%

SVM 93.74% 90.83%

CIC IoT 23 RF 91.90% 94.19%

kNN 94.62% 95.49%

The reported results are averaged over 5 iterations
The bolded values are to indicate the best result in their respective
columns/categories
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