
Vol.:(0123456789)

Quantum Machine Intelligence            (2024) 6:22  
https://doi.org/10.1007/s42484-024-00158-z

RESEARCH ARTICLE

A parameterized quantum circuit for estimating distribution measures

Or Peretz1 · Michal Koren1

Received: 21 November 2023 / Accepted: 26 March 2024 
© The Author(s) 2024

Abstract
Quantum computing is a new and exciting field with the potential to solve some of the world’s most challenging problems. 
Currently, with the rise of quantum computers, the main challenge is the creation of quantum algorithms (under the limita‑
tions of quantum physics) and making them accessible to scientists who are not physicists. This study presents a parametrized 
quantum circuit and its implementation in estimating the distribution measures for discrete value vectors. Various applications 
can be derived from this method, including information analysis, exploratory data analysis, and machine learning algorithms. 
This method is unique in providing access to quantum computation and enabling users to run it without prior knowledge 
of quantum physics. The proposed method was implemented and tested over a dataset and five discrete value distributions 
with different parameters. The results showed a high level of agreement between the classical computation and the proposed 
method using quantum computing. The maximum error obtained for the dataset was 5.996%, while for the discrete distribu‑
tions, a maximum error of 5% was obtained.

Keywords Quantum computing · Parametrized quantum circuit · Data analysis · Distribution measures

1 Introduction

The field of quantum computing (QC) is considered one of 
the most promising in computational science (Ying 2010) 
and has gained importance in international research. Based 
on the physics theorem, QC assumes that an electron can 
behave simultaneously as a wave and particle (Robertson 
1943). Due to the sensitivity of quantum computers to noise 
and decoherence (Bennett et al. 1997), it can be challenging 
to build and maintain a superposition of quantum comput‑
ers. There have been many investigations and discussions 
regarding quantum computers (Zeng et al. 2017), including 
arguments concerning the advantages and disadvantages of 
quantum computers (Boyer et al. 1998). Quantum computers 
have the potential to revolutionize the field of computing, as 
they can perform tasks much faster than classical computers 
and can also process large amounts of data in a short amount 

of time. For example, quantum computers can perform cal‑
culations that are impossible with classical computers, such 
as solving certain types of algorithms. Consequently, they 
have the potential to revolutionize many industries, such as 
finance, healthcare, and artificial intelligence (Piattini et al. 
2021).

Quantum computers significantly reduce the complexity 
of computing. Due to their parallel processing capabilities, 
they can perform a greater variety of operations than clas‑
sical computers (Biamonte et al. 2017; Wiebe 2020). Cur‑
rently, there is no distinction between classical and quan‑
tum computers, and algorithms can be implemented on 
both (Buffoni and Caruso 2021). Hence, quantum machine 
learning (QML) is a young but rapidly growing field along‑
side QC. By using quantum gates, it is possible to transform 
classical machine learning algorithms into QC (Benedetti 
et al. 2019; Alchieri et al. 2021). Ultimately, combining clas‑
sical and QC provides a powerful tool for solving complex 
problems.

A parameterized quantum circuit (PQC) consists of one 
or more parameters that can be changed according to the 
user’s requirements (Hubregtsen et al. 2021). Their versa‑
tility makes them useful for implementing machine learn‑
ing algorithms, variational quantum algorithms, and quan‑
tum simulators (Benedetti et al. 2019; Du et al. 2020). A 
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parameterized gate differs from a fixed gate in that it depends 
on variables for its operation. PQCs are a rapidly developing 
field, and new advances are being made constantly (Peham 
et al. 2023). Recent studies have described the implemen‑
tation of quantum PQC and algorithms for the learning of 
random variables (González et al. 2022; Pirhooshyaran and 
Terlaky 2021) and entropy estimation (Koren et al. 2023), as 
well as building a quantum convolutional network to learn 
images (Hur et al. 2022; Tüysüz et al. 2021), implementing 
reinforcement learning (Dalla Pozza et al. 2022), and devel‑
oping generative adversarial networks (GANs) and transfer 
learning (Assouel et al. 2022; Azevedo et al. 2022).

For machine learning models to be successful, data rep‑
resentation is crucial. Classical machine learning relies on 
numerical representations of data in order to be best pro‑
cessed by a classical algorithm. Quantum machine learning 
poses the same fundamental question: how to represent and 
efficiently input data into quantum systems to be analyzed by 
quantum algorithms (Li et al. 2022; Weigold et al. 2021a, b). 
As a result of this process, quantum machine learning algo‑
rithms are directly affected by their computational capacity 
(Dilip et al. 2022; LaRose and Coyle 2020; Sierra‑Sosa et al. 
2023). There are three primary encoding methods: (1) Basic 
encoding, which associates a classical string with a compu‑
tational basis state. It is the simplest method to understand, 
although the state vectors quickly become sparse (i.e., vec‑
tors that have mostly zero values). (2) Amplitude encoding 
encodes data into the amplitudes of a quantum state. As a 
system of n qubits provides 2n amplitudes, it can encode a 
dataset of N records over M features using log2(N ⋅M) + 1 
qubits. (3) Angle encoding encodes M features into the rota‑
tion angles of M qubits. The angle encoding slightly differs 
from other encoding techniques as it only encodes one data 
point at a time, rather than an entire dataset. This method 
requires, at most, M qubits. All of the mentioned methods 
have been found to produce enhanced results in quantum 
autoencoders and image processing (Bravo‑Prieto 2021; 
Majji et al. 2023; Romero et al. 2017; Shin et al. 2023).

Exploratory data analysis (EDA) is a set of techniques 
developed in 1970 that aims to examine the data before 
building a model (Tukey 1977). It explores data for patterns, 
trends, underlying structures, anomalies, and more (Chat‑
field 1986; Leinhardt and Wasserman 1979). The main goal 
of EDA is to develop valid models based on data insights 
(Komorowski et al. 2016; Morgenthaler 2009). This process 
can be categorized into three main categories: (1) Univari-
ate analysis refers to one dependable variable (in a dataset, 
it explores each variable separately). It can be performed 
by statistical analyses, such as mean, median, and variance 
(Behrens and Yu 2003; Vigni et al. 2013). (2) Bivariate 
analysis examines the relationship between the two vari‑
ables. It can be two numerical variables, two categorical 
variables, or mixed variables (Cleff 2014; Jebb et al. 2017). 

(3) Multivariate analysis refers to at least three variables 
(Gelman 2004; Wang et al. 2023; Wongsuphasawat et al. 
2019). Notably, analyzing the distribution of a dataset sig‑
nificantly impacts the results of the analysis. Furthermore, 
understanding the distribution can assist in choosing the 
appropriate statistical test, identifying anomalies, examin‑
ing normality, and more, leading to results that are more 
accurate, reliable, and valid.

This study presents and describes a quantum‑parametrized 
gate and its circuit implementation to estimate the distribu‑
tion measures for discrete value vectors. It can be applied in 
information analysis, exploratory data analysis, and machine 
learning algorithms. There are two central innovative aspects 
of this proposed method: (1) a new quantum method for esti‑
mating distribution measures, such as expectation and vari‑
ance, and (2) the accessibility of QC and the creation of a 
method that can be run without any prior knowledge of imple‑
menting quantum circuits. Section 2 will present the definition 
of the new quantum gate, the procedure, its implementation, 
and the mathematical justifications. Section 3 will describe the 
empirical study of a dataset and a detailed scenario of variance 
estimation. The method was tested and compared over five dis‑
crete value distributions, the results of which are presented in 
Section 4. Lastly, Section 5 will discuss the main conclusions 
and suggestions for future directions.

2  Quantum distribution measures

This section presents and describes a new parametrized quan‑
tum gate for statistical measure estimations. First, the general 
parametrized gate will be described, and its unitarity will be 
proven. Then, the quantum method will be presented, includ‑
ing the relevant logic and gates. Last, its implementation and 
correctness will be presented in detail.

2.1  Parameterized quantum gate

This study defines a new parameterized quantum gate that 
inputs a, r ∈ ℕ , creating a parameterized and diagonal square 
matrix of size a as follows:

A new operation defined by a quantum circuit is required 
to be unitary1 since any physical operation on a state is used 

M(a, r) =

⎡
⎢⎢⎢⎢⎣

√
1ri ⋯ 0 0

0
√
2ri 0 0

⋮ ⋯ ⋯ ⋮

0 ⋯ 0
√
3ri

⎤⎥⎥⎥⎥⎦

1 A matrix U is unitary if, and only if, its conjugate transpose is 
equal to its inverse, i.e., U∗U = UU∗ = UU−1 = I.
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to advance it (Bennett et al. 1997). Since M(a, r) is a square 
and diagonal matrix, its inverse is also diagonal and defined 
as follows:

Thus, the inverse matrix is also its conjugate transpose, 
and the new quantum operation is unitary since:

2.2  Quantum logic and gates

Let A = (a1, a2,… , an) be the input vector, such that 
∀ai ∈ A . Therefore, it holds that ai ∈ ℕ ∪ {0} . The proposed 
method consists of two sub‑procedures, as follows:

1. Classical computer preprocessing—Given the input of 
vector A , the method creates fA = (f1,… fk) where each 
fi ∈ fA represents the number of occurrences of the ith 
item for k ≤ n . Next, it transforms fA to an amplitude 
vector, such that each fi ∈ fA is converted to 

√
fi√∑k

i=1
fi

 and 

returns the normalized vector.
2. Quantum variance estimation—According to the input 

of the classical computer preprocessing results, the pro‑
posed method creates a quantum circuit and allocates 
⌊log(k)⌋ + 1 qubits. Once the circuit is ready, it initial‑
izes the state of the system by the normalized amplitude 
vector, denoted as ��⟩ , and the additional state vector, 
denoted as ��′⟩ , as follows2:

M(a, r)−1 =

⎡
⎢⎢⎢⎢⎣

√
1−ri ⋯ 0 0

0
√
2−ri 0 0

⋮ ⋯ ⋯ ⋮

0 ⋯ 0
√
3−ri

⎤⎥⎥⎥⎥⎦

M(a, r)∗M(a, r) = M(a, r)−1M(a, r) = I

Next, the method applies the Hadamard gate to move the 
state into superposition. Thus, the current state can be pre‑
sented as:

Once the state is in superposition, the method uses the 
parametrized gate (described in Section 2.1) to estimate 
the expected value of A and A2 , denoted as �1 , �2 , respec‑
tively. Thus, it calculates �1 as ⟨� ��M(k, 1)��⟩ and �2 as 
⟨� ��M(k, 2)��⟩ . Last, the method returns the value of �2 − �2

1
 

using simple classical computer computation. Figure 1

2.3  Correctness

Let A = (a1, a2,… , an) be the input vector, and let 
fA =

(
f1,… , fk

)
 be the occurrences of each item in A (i.e., 

each fi ∈ fA represents the number of occurrences of the ith 
item for k ≤ n ). The method transforms fA to an amplitude 
vector as ��⟩ = 1√∑

fA

∑k

i=1

√
fi�i⟩ that satisfies:

��⟩ = 1√∑
fA

j�
j=1

�
fj�j⟩

���⟩ = 1�∑����
√
j
2r−ri√

fj
����

k�
j=1

√
j
2r−ri

�
fj�j⟩

H⊗k�𝜓⟩ =
∑

i(−1)
𝜓 ⋅i�i⟩√
2k

‖��⟩‖2 =
k�

i=1

⎛⎜⎜⎜⎝

√
fi�∑k

j=1
fj

⎞⎟⎟⎟⎠

2

=

k�
i=1

fi∑k

j=1
fj

=

∑k

i=1
fi∑k

j=1
fj

= 1

Fig. 1  The quantum circuit of variance calculation. Notes: (1) The 
dashed lines describe the sampling of the state in superposition. (2) 
IBM simulators were used (with the Qiskit Library for Python; Cross 
2018) to avoid noise and sample the state vector in each time phase 
in the circuit. (3) Figure 1 describes the quantum circuit over several 
qubits, although generalization to a higher dimension can be done 
with tensor products. (4) The output represents an approximation of 

the variance value. The analysis of the approximation ratio is detailed 
in Section 2.3. (5) Amplitude encoding was chosen due to the ability 
of this method to encode an entire dataset using a logarithmic num‑
ber of qubits. Despite the number of gates required for this coding, 
this method can form the base for many distribution measures (e.g., 
expectation, variance, skewness, kurtosis). Future studies are neces‑
sary to explore a more efficient representation of these gates

2 The parameter r is the same as in the parametrized gate.
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Since a quantum system of k qubits provides 2k ampli‑
tudes, encoding fA requires the use of ⌊log2k⌋ + 1 qubits. 
Notably, in cases where the length of fA is not to the power 
of two, zeros are added as their values do not change the cal‑
culation. Given the initialized state vector, ��⟩ , The method 
applies the U gate with the parameters � =

�

2
,� = 0, � = � , 

which is equivalent to applying the Hadamard gate to move 
the state into superposition (Wijesekera et al. 2009):

Next, the algorithm creates M(a, r) , a parameterized and 
diagonal square matrix of size a as described in Section 2.1. 
The algorithm uses M(k, 1) and M(k, 2) to estimate the val‑
ues of the first and second moments of A . Let �1 be the 
expected value of applying M(k, 1) on ��⟩ , denoted as 
⟨���M(k, 1)��⟩ (Bakshi and Mahanthappa 1963). Given that 
��⟩ = 1√∑

fA

∑k

i=1

√
fi�i⟩ , the following proof of correctness 

describes a system with two qubits, although it can be gen‑
eralized using the tensor product:

It is important to note that since the norm of a complex 
number is a real number, it can easily be normalized to 

H⊗k�𝜓⟩ =
∑

i(−1)
𝜓 ⋅i�i⟩√
2k

��⟩ = 1�∑k

j=1
fj

k�
i=1

√
fi�i⟩ =

√
f
1�∑4

j=1
fj

�00⟩

+

√
f
2�∑4

j=1
fj

�01⟩ +
√
f
3�∑4

j=1
fj

�10⟩ +
√
f
4�∑4

j=1
fj

�11⟩

⟨M(k, 1)��⟩ = 1�∑4

j=1
fj

⎡⎢⎢⎢⎢⎣

√
1i 0 0 0

0

√
2i 0 0

0 0

√
3i 0

0 0 0

√
4i

⎤⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎝

√
f
1√
f
2√
f
3√
f
4

⎞⎟⎟⎟⎟⎠

=
1�∑4

j=1
fj

⎛⎜⎜⎜⎜⎝

√
1i
√
f
1√

2i
√
f
2√

3i
√
f
3√

4i
√
f
4

⎞⎟⎟⎟⎟⎠

⟨���M(k, 1)��⟩ = 1�∑4

j=1
fj

⋅

⎛⎜⎜⎜⎜⎜⎜⎝

√
1
21−i√

f
1√

2
21−i√

f
2√

3
21−i√

f
3√

4
21−i√

f
4

⎞⎟⎟⎟⎟⎟⎟⎠

T

⎛⎜⎜⎜⎜⎝

√
1i
√
f
1√

2i
√
f
2√

3i
√
f
3√

4i
√
f
4

⎞⎟⎟⎟⎟⎠

=
1�∑4

j=1
fj

�
f
1
+ 2f

2
+ 3f

3
+ 4f

4

�

facilitate the sum of squared amplitudes to equal one. Given 
that each fi represents the normalized frequency of the ith item, 
the expected value of the operator is equal to the first moment 
of A, i.e., its expectation. Similarly, let �2 be the predicted 
value of applying M(k, 2) on ��⟩ , denoted as ⟨���M(k, 2)��⟩:

Thus, the value of �2 − �2
1
 is equal to �

[
A2

]
− (�[A])2 and 

represents its variance.3

3  Case Study

This section describes a case study and tests comparing the 
proposed method to a classical computer calculation. An 
IBM simulator with 1024 shots was used to simulate the 
trials. To simplify the illustration, a basic use case is first 
described regarding calculating the variance of a simple 
occurrences vector and details each operation in the quantum 
circuit. Then, the results of the proposed method are pre‑
sented for the features of the diabetes dataset (Kahn 1994).

3.1  Simple occurrences vector

Let A = (1, 2, 2, 2, 1, 4, 1, 4) be the input vector and let 
fA = (3, 3, 0, 2) be the occurrences vector of size four, such 
that the first item appeared three times, the second item 

⟨M(k, 2)��⟩ = 1�∑4

j=1
fj

⎡
⎢⎢⎢⎢⎣

√
12i 0 0 0

0

√
22i 0 0

0 0

√
32i 0

0 0 0

√
42i

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

√
f
1√
f
2√
f
3√
f
4

⎞
⎟⎟⎟⎟⎠

=
1�∑4

j=1
fj

⎛
⎜⎜⎜⎜⎝

√
12i

√
f
1√

22i
√
f
2√

32i
√
f
3√

42i
√
f
4

⎞
⎟⎟⎟⎟⎠

⟨���M(k, 2)��⟩ = 1�∑4

j=1
fj

⎛⎜⎜⎜⎜⎜⎜⎝

√
1
22−2i√

f
1√

2
22−2i√

f
2√

3
22−2i√

f
3√

4
22−2i√

f
4

⎞⎟⎟⎟⎟⎟⎟⎠

T

⎛⎜⎜⎜⎜⎝

√
12i

√
f
1√

22i
√
f
2√

32i
√
f
3√

42i
√
f
4

⎞⎟⎟⎟⎟⎠

=
1�∑4

j=1
fj

�
f
1
+ 4f

2
+ 9f

3
+ 16f

4

�

3 Since the norm of a complex number is a real number, the coeffi‑
cients ��′⟩ can be normalized and the final output has the approxima‑
tion value of 

�∑k

j=1
fj

�0.5

 , which can be handled using simple process‑
ing or multiplication using a classical computer.
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appeared three times, and so on. Since fA has four values, 
it requires two qubits, and the initialized state is:

Figure 2 presents the initialized state, ��⟩ , over two qubits 
in a Bloch sphere4 representation. Using the initialized state 
vector, the method used the M(a, r) parametrized gate and 
estimated its expected value in two manners:

��⟩ = 1�∑k

j=1
fj

k�
i=1

√
fi�i⟩

=
1√
8

�√
3�00⟩ +

√
3�01⟩ + 0�10⟩ +

√
2�11⟩

�

⟨M(k, 1)��⟩ = 1√
8

⎡⎢⎢⎢⎢⎣

√
1i 0 0 0

0

√
2i 0 0

0 0

√
3i 0

0 0 0

√
4i

⎤⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎝

√
3√
3√
0√
2

⎞⎟⎟⎟⎟⎠

=
1√
8

⎛⎜⎜⎜⎜⎝

√
1i
√
3√

2i
√
3

0√
4i
√
2

⎞⎟⎟⎟⎟⎠

�
1
= ⟨���M(k, 1)��⟩ = 1√

8

⎛⎜⎜⎜⎜⎜⎝

√
1
2−i√

3√
2
2−i√

3√
3
2−i√

0√
4
2−i√

2

⎞⎟⎟⎟⎟⎟⎠

T

⎛⎜⎜⎜⎜⎝

√
1i
√
3√

2i
√
3

0√
4i
√
2

⎞⎟⎟⎟⎟⎠

=
1√
8

(1 ⋅ 3 + 2 ⋅ 3 + 0 + 4 ⋅ 2) =
2.125√

8

Lastly, using the classical computer computation, the 
method returned:

The classical computer calculation yielded a variance of 
1.553, and the error between the classical and quantum com‑
putation was 0.021.

3.2  The diabetes dataset

In this section, using a dataset, the proposed method is com‑
pared with the classical computer method and analyzed. For 
the comparison, we used the diabetes dataset (Kahn 1994), 
which includes 768 diabetic and non‑diabetic women. It con‑
sists of eight features and a Boolean target variable. The “BMI” 
and “DiabetesPedigreeFunction” features were removed since 
the proposed method is designed for discrete values. A clas‑
sical computer was used to calculate each feature's variance, 
and an IBM simulator and the proposed method were used to 

⟨M(k, 2)��⟩ = 1√
8

⎡⎢⎢⎢⎢⎣

√
1i 0 0 0

0
√
2i 0 0

0 0
√
3i 0

0 0 0
√
4i

⎤⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎝

√
3√
3√
0√
2

⎞⎟⎟⎟⎟⎠
=

1√
8

⎛⎜⎜⎜⎜⎝

√
1i
√
3√

2i
√
3

0√
4i
√
2

⎞⎟⎟⎟⎟⎠

�
2
= ⟨��M(k, 2)��⟩ = 1√

8

⎛⎜⎜⎜⎜⎜⎜⎝

√
1
22−2i√

3√
2
22−2i√

3√
3
22−2i√

0√
4
22−2i√

2

⎞⎟⎟⎟⎟⎟⎟⎠

T

⎛⎜⎜⎜⎜⎝

√
1i
√
3√

2i
√
3

0√
4i
√
2

⎞⎟⎟⎟⎟⎠

=
1√
8

�
3 + 2

2
⋅ 3 + 0 + 4

2
⋅ 2

�
=

5.875√
8

�2 − �2
1
=

5.875√
8

−
2.1252

8
= 1.512

Fig. 2  Initialized qubits in 
Bloch sphere representation

4 A quantum state can be presented in a Bloch sphere as 
���

�
�

2

�
�0⟩ + e

i����

�
�

2

�
�1⟩ for 0 ≤ � ≤ � and 0 ≤ � ≤ 2�.
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calculate its quantum variance. Table 1 compares the variance 
values achieved for each feature and presents the error rate.

The results showed the consistency of the proposed 
method across six features of the data set. The minimal 
error occurred in the “Age” column with a deviation of only 
0.021% of the variance, calculated using a classic computer. 
The maximum error was obtained in the “Blood Pressure” 
column with an error of 5.996%. The calculation of the dis‑
tribution measures of each feature in the dataset according 
to the proposed method was consistent and showed a high 
agreement with the original value. At the same time, further 
analysis is required to examine the proposed method, as will 
be presented in Section 4.

To understand the behavior of the “Blood Pressure” fea‑
ture, which raised a maximum error of 5.996%, Fig. 3 shows 
its distribution estimation. It is known that anomalous val‑
ues in the distribution can cause biased results and a wide 
error range when calculating distribution measures, such as 
mean and variance. Approximately 40 records were defined 
as outliers, which may have caused a significant change in 
the variance estimation.

4  Results

Five discrete value distributions were compared to assess 
and evaluate the results of the proposed method (Table 2). 
For each of the following distributions, 10,000 experiments 
were conducted:

1. Binomial distribution, Bin(n, p) , with a success prob‑
ability of p in a total of n trials.

2. Geometric distribution, G(p) , with success probability p.
3. Uniform distribution between a, b ∈ ℕ , denoted as 

U(a, b).
4. Hypergeometric distribution, HG(N,D, n) , with a total 

of N items, D specials, and n trials.
5. Poisson distribution, Pois(�) , where � is the expected 

value of events in an interval of time.

The results of the comparison between the distributions 
showed a stronger consistency than the results of the diabetes 
dataset (described in Section 3.2). The highest error had a value 
of 1.351, which occurred in the binomial distribution with a 
probability of success of 0.7 in a single trial. For all the exam‑
ined distributions, the quantum method maintained low error 
values, which reinforced the implementation of the proposed 
method and its results.

To examine the effect of the input size (the number of 
qubits) on the performance of our method, the following 
experiments were conducted:

1. Binomial distribution—Inputs of sizes 2i for 3 ≤ i ≤ 8 
were created, which required i qubits, respectively. 
The binomial distribution was used due to the abil‑
ity to control the input size (unlike geometric distri‑
bution). The variance obtained was compared using 
a classical and quantum calculation for each of the 
probabilities between 0.1 and 0.9 with a step of 0.1 
(i.e., for each examined input, there was a total of nine 
pairs of variances). Figure 4 presents this comparison, 
where each dot in the figure represents a probability. 
For example, nine qubits have a total of 18 points (nine 
for the quantum calculation and nine for the classic 
calculation). Figure 4 examines the level of agreement 
between the quantum method and the classical calcu‑
lation for different variance values. In cases without 
agreement between the quantum and classical calcula‑
tion, Fig. 4 would present a grouping of red and black 
points separately.

2. Hypergeometric distribution—Inputs of size 10,000 
were created, with a total of N = 500, n = 200 , and the 
values of 2i were examined, where 2 ≤ i ≤ 7 for D . Fig‑
ure 5 shows the comparison between the calculated vari‑
ance over different values of D . Like Fig. 4, the x‑axis 
represents the number of qubits required to encode the 
input, and the y‑axis shows the variances obtained for 
different D values.

Table 1  A variance comparison of the diabetes dataset features

The “Error” column is presented as A(B), where A is the error rate 
and B is the percentage of change between the values

Variance Quantum variance Error

Pregnancies 11.354 11.002 0.352 (3.100%)
Glucose 1022.248 1005.813 16.435 (1.607%)
Blood Pressure 374.647 397.111 22.464 (5.996%)
Skin Thickness 254.473 243.556 10.917 (4.290%)
Insulin 13,281.180 13,496.174 214.994 (1.618%)
Age 138.303 138.333 0.030 (0.021%)

Fig. 3  The distribution of the “Blood Pressure” feature
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According to the results of the binomial distribution, it 
can be concluded that the proposed method showed reliable 
performance, even among data with high variability (i.e., 
high number of qubits). This can be seen in the agreement 
between the red points (which represent quantum calcula‑
tion) and the gray points (which represent classical calcula‑
tion). Similar to the binomial distribution, there was con‑
sistency among the hypergeometric distribution between 

the calculation of the reefs. However, small inputs (which 
required 2 or 3 qubits) showed a more comprehensive range 
of answers and gaps between the classical and quantum 
computations. These were not gaps that presented an error; 
rather, they illustrated the difficulty in estimating the exact 
values on a quantum computer.

5  Conclusions and discussion

This study proposes a novel quantum‑parametrized gate and 
circuit implementation for distribution measure estimations. 
The presented method can be implemented in data analy‑
sis processes, machine learning techniques, and more. Its 
main innovation is the use of a parametrized quantum circuit 
to calculate the expectation and variance of a given vec‑
tor. As a result, this method is accessible to those without a 
previous understanding of QC. The following are the main 
conclusions:

1. The parametrized quantum gate proposed in this study 
was found to be effective in estimating the distribu‑
tion values (i.e., expectation and variance) of a discrete 
value vector. When comparing the proposed and clas‑
sical methods using the diabetes dataset (Section 3.2), 
the error range of the obtained variance ranged between 

Table 2  Variance comparison over discrete value distributions

Distribution Parameters Variance Quantum 
variance

Error

Bin(n, p) p = 0.1 90.793 91.874 1.080
p = 0.3 208.859 210.200 1.341
p = 0.5 249.617 250.252 0.634
p = 0.7 209.990 211.341 1.351
p = 0.9 91.320 92.623 1.302

G(p) p = 0.1 94.463 93.191 1.272
p = 0.3 7.831 6.956 0.874
p = 0.5 2.010 1.525 0.484
p = 0.7 0.622 0.905 0.282
p = 0.9 0.127 1.132 1.005

U(a, b) a = 1, b = 10 8.230 8.811 0.581
HG(N,D, n) N = 55,D = 2, n = 32 0.424 0.612 0.188
Pois(�) � = 10 10.072 10.991 0.919

Fig. 4  A comparison between 
the binomial variance over dif‑
ferent numbers of qubits

Fig. 5  A comparison between 
the hypergeometric variance 
over different numbers of qubits
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0.021% and 5.996%. The feature for which the maximum 
error was obtained, “Blood Pressure,” was a noisy col‑
umn, and therefore, further research is required.

2. In testing the discrete distributions (Section 4), inputs of 
different sizes were compared to examine the effect of the 
number of required qubits and the obtained result. A wide 
agreement was found between the variance calculation 
using a classical computer and the proposed method in 
QC. In these cases, in contrast to the data set presented in 
Section 3.2, a minimal error was obtained, even for noisy 
distributions with inconsistent variance values.

The limitation of this study is expressed in the constraint 
of the method only being able to use discrete values due 
to the classical computer preprocessing process, which 
includes the creation of a frequency vector. Neverthe‑
less, this study presented four main issues that should be 
addressed in future studies. First, the generalization of the 
parametric gate and its adaptation to the need to calculate 
additional distribution measures, such as skewness, kurtosis, 
and more, should be further examined. Second, a deep study 
should be conducted on the parameter values presented in 
this study and their optimal values for minimizing the error 
value. Third, an adaptation of the method for continuous dis‑
tributions such as normal, exponential, and more would be 
beneficial. Last, using amplitude encoding may be efficient 
for a logarithmic number of qubits, although it requires a 
large number of quantum gates. Future studies are encour‑
aged to explore the relationship between the input encoding 
and the number of quantum gates required to represent it to 
optimize the trade between these variables.
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