
Quantum Machine Intelligence (2024) 6:27
https://doi.org/10.1007/s42484-024-00157-0

RESEARCH ART ICLE

Improved financial forecasting via quantummachine learning

Sohum Thakkar1 · Skander Kazdaghli2 · Natansh Mathur2,3 · Iordanis Kerenidis2,3 · André J. Ferreira–Martins4 ·
Samurai Brito4

Received: 13 July 2023 / Accepted: 25 March 2024
© The Author(s) 2024

Abstract
Quantum algorithms have the potential to enhancemachine learning across a variety of domains and applications. In this work,
we show how quantum machine learning can be used to improve financial forecasting. First, we use classical and quantum
Determinantal Point Processes to enhance Random Forest models for churn prediction, improving precision by almost 6%.
Second, we design quantum neural network architectures with orthogonal and compound layers for credit risk assessment,
which match classical performance with significantly fewer parameters. Our results demonstrate that leveraging quantum
ideas can effectively enhance the performance of machine learning, both today as quantum-inspired classical ML solutions,
and even more in the future, with the advent of better quantum hardware.

Keywords Computational finance · Machine learning · Quantum computing · Credit risk · Churn prediction

1 Introduction

Quantum computing is a rapidly evolving field that promises
to revolutionize various domains, and finance is no excep-
tion. There is a variety of computationally hard financial
problems for which quantum algorithms can potentially offer
advantages (Herman et al. 2022; Egger et al. 2020; McKin-
sey & Company 2021; Bouland et al. 2020), for example in
combinatorial optimization (Leclerc et al. 2022; Rebentrost
and Lloyd 2018), convex optimization (Kerenidis et al. 2019;
Rebentrost et al. 2022),Monte Carlo simulations (Doriguello
et al. 2022; Suzuki et al. 2020; Giurgica-Tiron et al. 2022),
andmachine learning (Pistoia et al. 2021; Emmanoulopoulos
and Dimoska 2022; Alcazar et al. 2020; Nguyen and Chen
2022).

In this work, we explore the potential of quantummachine
learning methods in improving the performance of forecast-
ing in finance, specifically focusing on two use cases within

B Sohum Thakkar
sohum.thakkar@qcware.com

B André J. Ferreira–Martins
andre.ferreira-martins@itau-unibanco.com.br

1 QC Ware Corp, Palo Alto, USA

2 QC Ware Corp, Paris, France

3 IRIF, Université Paris Cité and CNRS, Paris, France

4 Itaú Unibanco, São Paulo, Brazil

the business of ItaúUnibanco, the largest bank inLatinAmer-
ica.

In the first use case, we aim to improve the performance
of Random Forest methods for churn prediction. We intro-
duce quantum algorithms for Determinantal Point Processes
(DPP) sampling (Kerenidis and Prakash 2022), and develop a
method of DPP sampling to enhance Random Forest models.
We evaluate our model on the churn dataset using classi-
cal DPP sampling algorithms and perform experiments on
a scaled-down version of the dataset using quantum algo-
rithms. Our results demonstrate that, in the classical setting,
the proposed algorithms outperform the baseline Random
Forest in precision, efficiency, and bottom line, and also
offer a precise understanding of how quantum computing
can impact this kind of problem in the future. The quantum
algorithm run on an IBM quantum processor gives similar
results as the classical DPP on small batch dimensions but
falters as the dimensions grow bigger due to hardware noise.

In the second use case, we aim to explore the performance
of neural networkmodels for credit risk assessment by incor-
porating ideas from quantum compound neural networks
(Landman et al. 2022).We start by using quantumorthogonal
neural networks (Landman et al. 2022), which add the prop-
erty of orthogonality for the trained model weights to avoid
redundancy in the learned features (Arjovsky et al. 2016).
These orthogonal layers, which can be trained efficiently on
a classical computer, are the simplest case of what we call
compound neural networks, which explore an exponential

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s42484-024-00157-0&domain=pdf

 27 Page 2 of 19 Quantum Machine Intelligence (2024) 6:27

space in a structured way. For our use case, we design com-
pound neural network architectures that are appropriate for
financial data.We evaluate their performance on a real-world
dataset and show that the quantum compound neural network
models both have far fewer parameters and achieve better
accuracy and generalization than classical fully connected
neural networks.

This paper is organized as follows: In Sections2–4, we
focus on the churn prediction use case and present the DPP-
based quantum machine learning methods. In Sections5–7,
we present quantum neural network models for risk assess-
ment. Finally, in Section8,we conclude the paper and discuss
potential future research directions.

2 DPP-enhanced Random Forest models for
churn prediction

2.1 DPP-Random Forest model

The Random Forest algorithm was introduced in 2001 by
Breiman (2001) and has easily become one of themost popu-
lar supervised machine learning algorithms in use. It consists
of an ensemble of decision trees, each trained on a uniform
subsample of rows and columns from the dataset.

In this section, we propose an extension of the Random
Forest, called the DPP-Random Forest (DPP-RF), which
utilizesDeterminantal Point Processes (DPPs) instead of uni-
form sampling to subsample rows and columns for individual
decision trees. In the original RF algorithm, subsampling
makes the model more robust to variance in the training
data; however, the use of uniform sampling runs the risk
of improperly representing the dataset and missing under-
sampled areas. DPP sampling better preserves the diversity
of the dataset, and corrects for sampling bias (Kulesza and
Taskar 2012). We first introduce the theory and techniques
of DPP sampling, then present the algorithm.

2.2 Determinantal point processes

We will now introduce the Determinantal Point Process
(DPP), which lies at the core of the methodology behind
our solution to the churn problem. DPPs are a class of prob-
abilistic models that can be used to sample diverse subsets
of items from a larger set. They were first formalized by
Macchi in 1975 as a way to model fermions in quantum
mechanics (Macchi 1975). More recently, these models are
showing increasing promise in the context of machine learn-
ing (Kulesza and Taskar 2012), where they can be used for
a variety of tasks, such as building unbiased estimators for
linear regression (Derezinski and Mahoney 2021), perform-
ing Monte Carlo estimation (Bardenet and Hardy 2020), and
promoting diversity in model outputs (Elfeki et al. 2019).

2.2.1 Definitions

Apoint process P on a set Y is a probability measure over the
subsets of Y . Sampling from a point process on Y will pro-
duce some subset S ⊆ Y with probability P(S). A repulsive
point process is a point process in which points that are more
similar to each other are less likely to be selected together.

A determinantal point process (DPP) is a particular case of
a repulsive point process, in which the selection probability
of a subset of items T ⊆ Y is given by a determinant. Given
a real, symmetric n × n matrix K indexed by the elements
of Y :

P{T ⊆ S} = det(KT ,T) ,

where KT ,T denotes the |T | × |T | submatrix indexed by
the set T and n is the cardinality of Y . In other words, the
marginal distribution P{T ⊆ S} is defined by the subdeter-
minants of K.

The above is the most general definition, but in machine
learning, we typically focus on a slightly more restrictive
class ofDPPs called L-ensembles. In L-ensembles, thewhole
distribution, not just the marginals, is given by the subdeter-
minant of a real, symmetric n × n matrix L .

P{S} ∝ det(L S,S) .

Just like K , L is indexed by the elements of Y . Because of
some convenient properties of the determinant (Kulesza and
Taskar 2012), we can explicitly write down the distribution
of an L-ensemble:

P{S} = det(L S,S)

det(L + I)
.

In machine learning literature, DPPs are typically defined
over a set of points X, with each item xi a row in the data
matrix X. If we preprocess X such that its columns are
orthonormal and choose L to be the inner-product similarity
matrix, i.e., L = XXT , then the distribution becomes even
simpler to write down. Instead of explicitly computing the
L matrix, we can write the distribution in terms of the data
matrix X itself, courtesy of the Cauchy-Binet formula,

P{S} = det(XS)2

det(XXT + I)
. (1)

Moreover, the distributionwill almost surely produce sam-
ples with size d, the rank of the orthogonalized data matrix
X . This kind of DPP is denoted d-DPP.Wewill focus here on
an application of sampling from a d-DPP from a data matrix
X.

123

Quantum Machine Intelligence (2024) 6:27 Page 3 of 19 27

2.2.2 Unbiased least squares regression

One unique feature of the DPP compared to i.i.d sampling
techniques is that it can lead to provably unbiased estima-
tors for least squares linear regression (Derezinski 2018;
Dereziński et al. 2018). Given an n × d data matrix X and
a target vector y ∈ R

n , where n � d, we wish to approxi-
mate the least squares solutionw∗ = argminw||Xw−y||.w∗
represents the best-fit parameters to a linear model to predict
y.

Surprisingly, if we sample d points S fromDPP(XXT) and
solve the reduced system of equations yS = XSw, we get an
unbiased estimate of w∗. Formally, if S ∼ d-DPPL(XXT),

E[X−1
S yS] = argminw||Xw − y|| = w∗ . (2)

This allows us to create an “ensemble” of unbiased linear
regressors, each trained on a DPP sample. In some regard,
this was the inspiration for trying an ensemble of decision
trees trained on DPP samples, as detailed in Section2.1.

2.2.3 Algorithms for sampling

There are several efficient algorithms for sampling from
DPPs and computing their properties. The naive sampling
method — calculating all subdeterminants and performing
l2 sampling— takes exponential time. The first major leap in
making DPP sampling feasible on today’s computers was the
“spectral method” (Kulesza and Taskar 2011; Hough et al.
2006). This algorithm performs an eigendecomposition of
the kernel matrix before applying a projection-based itera-
tive sampling approach. Thus, the first sample takes O(nd2)

time, and subsequent samples take O(d3).
Monte Carlo methods have been proposed to approximate

theDPPdistribution (Anari et al. 2016; Li et al. 2016), though
they are not exact, and are often still prohibitively slow with
a runtime of O(npoly(d)) per sample.

In a counter-intuitive result, Derezinski et al. (2019) and
Calandriello et al. (2020) proposed methods that avoid per-
forming the full DPP sampling procedure on large parts of the
basis set. This approach resulted in a significant reduction in
runtime, making DPPs more practical for mid-to-large-scale
datasets. These techniques allow exact sampling of subse-
quent d-DPP samples in O(poly(d)), independent of the size
of the full basis set n. Many of these algorithms are imple-
mented in the open-sourceDPPy library (Gautier et al. 2019),
which we used in the experiments in this paper.

Recent work has shown that quantum computers are in
principle able to sample from DPPs in even lower complex-
ity in some cases. We describe this quantum algorithm in
Section4. This and several other algorithmswhich arise from
the techniques introduced in Kerenidis and Prakash (2022)
are a budding area of research in the quantum computing

space, and will hopefully inspire more applications like the
onewe describe in this paper. For example, inKazdaghli et al.
(2023), DPPs and deterministic DPPs were used to improve
the methods for the imputation of clinical data.

2.3 DPP-RF algorithm outline

In principle, the DPP-RF uses DPP sampling on the whole
dataset to select diverse subsets of data onwhich to train deci-
sion trees. However, sampling from a DPP on large datasets
(like the entire churn dataset of 174,000 points) can take
copious time, especially when using current open-source
implementations of DPP sampling. To be able to test these
techniques quickly, a novel sampling procedure was devel-
oped which preserves many of the benefits of DPPs, but does
not require sampling from the full dataset. The procedure can
be summarized as follows:

1. Divide the training set uniformly into smaller batches;
2. Sample S1 ∼ d-DPP(XbatchXT

batch) data points from
every batch;

3. Sample S2 ∼ d-DPP(XT
S1
XS1) features;

4. Train a first group G1 of N1 decision trees on these small
patches of data;

5. Aggregate the patches of data resulting from step 2 to
create a larger dataset Xagg;

6. Repeat for N2 times: sample S3 ∼ d-DPP(XT
aggXagg)

features to create a long matrix;
7. Train a second group G2 of N2 decision trees on these

new datasets;
8. CombineG1 andG2 by aggregating them tomake predic-

tions (similar to the classical Random Forest algorithm).

3 Classical DPP-RF results

The DPP-RF algorithm was designed for the purpose of pre-
dicting customer churn in the bank. In this section, we define
this use case and present the results. In addition, we bench-
mark our proposed DPP-RF method by constructing models
on public tabular classification tasks (Fig. 1).

3.1 Use case introduction: churn prediction

Churn, defined as a customerwithdrawingmore than a certain
amount of money in a single month, is a significant concern
for retail banks. Our objective is to predict which customers
are most likely to churn in the next three months using cus-
tomer data from the previous six months.

The primary dataset used in this study consists of 304,000
datapoints, with 153 features for each datapoint. Each data-
point represents a banking customer at a particular month in
time, with the features representing various aspects of their

123

 27 Page 4 of 19 Quantum Machine Intelligence (2024) 6:27

Fig. 1 Steps 1 to 7 of the
DPP-Random Forest algorithm

activity over the previous six months. The target variable is
a binary flag indicating whether or not the customer churned
in at least one of the following three months. The data was
anonymized and standardized before being split into training
and test sets based on time period, with 130,000 datapoints
being set aside as the test set and 174,000 datapoints used
for training. The data was split in a way that did not produce
any significant covariate shift between the train and test sets.

With the end goal of preventing churn, themodel works by
flagging customers with the highest risk of potential churn.
For these flagged customers, the bank can deploy a rep-
resentative to intervene and better understand their needs.
However, resource limitations make it necessary to flag a
relatively small number of customers with high confidence.
The focus of this exploration was to reduce false positives in
the flagged customers to increase the efficiency of bank inter-
ventions. In terms of the precision-recall trade-off, ourmodel
should be tuned to provide the highest possible precision for
low recall values. Despite this simplification to a classifi-
cation problem, the primary business KPI is the amount of
withdrawal money correctly captured by the model, as dis-
cussed more in Section3.4.

This use case already had a solution in production: a Ran-
dom Forest classifier (Breiman 2001), whose performance
was used as a benchmark. The model in production already
captured a significant amount of churn, but there was clear
room for improvement in the amount ofwithdrawals captured

(see Fig. 3). Moreover, given the large number of customers
in the dataset and the relative homogeneity of the population
of interest, there existed an opportunity to employ techniques
that explicitly try to explore diversity in the data.

We focused on three key performance indicators (KPIs):
the precision-recall curve, the training time and the bottom
line.

3.2 Precision-recall

To evaluate the performance of our proposed method, we
optimized hyperparameters and measured the precision for
a low fixed recall (6% in this case). As seen in Fig. 2, our
method showed an improvement in precision from 71.6%
for the benchmark model to 77.5% with the new model. Our
method also provided similar improvements in precision for
the relevant range of small recall.

3.3 Training time

The DPP-RF model has a longer training time compared
to the traditional random forest on a classical computer: it
took 54min to train the model with the best hyperparame-
ters using, compared to 311s for the benchmark model. The
models were trained on a computer with an Intel© Core™
i5-8350U CPU running at 1.70 GHz, 24 GB of RAM and
Windows 10 version 21H2, compilation 19044.2604.

123

Quantum Machine Intelligence (2024) 6:27 Page 5 of 19 27

Fig. 2 Precision-recall curve for
the test set. Using DPP with the
Random Forest algorithm shows
an improvement of 5.9%

The computational bottleneck in this algorithm is the DPP
sampling. Insteadof simulatingquantumDPPcircuits (which
is infeasible for large datasets), we used a classical SVD-
based sampling algorithm (Hough et al. 2006) implemented
in the dppy library (Gautier et al. 2019). We believe that
improved classical sampling techniques (Calandriello et al.
2020) and future quantum techniques (Section4) can reduce
the runtime dramatically.

Hyperparameters were selected using a grid search with
5-fold cross-validation over the typical RF parameters
n_estimators, max_depth, min_samples_leaf, min_samples_
split, max_features, max_samples, and the DPP-RF-specific
parameter batch_size. The training time of a DPP-RF model
depends heavily on this batch_size parameter, which is the
size of the batches fromwhich we take DPP samples. Choos-
ing a batch size higher than 1000 can increase runtime
dramatically. Thus, in our hyperparameter search, we lim-
ited the batch size to less than 1000.

Within the bank, the churn model is retrained just once
every few months, so the training time was not prohibitive.
However, faster sampling algorithms still serve to increase
the range of feasible hyperparameters (especially the batch
size).

3.4 Bottom line—withdrawals captured

From a business perspective, the most direct indicator of
the success of the model is the amount of assets under
management (AUM) that can be salvaged via interventions.
Thus, we evaluated the amount of money withdrawn every
month by the 500 customers flagged by the model, i.e.,
the 500 customers which had the highest predicted prob-
ability of churning in one of the following 3 months. As
seen in Figs. 3, 4 and 5, ourmodel showed substantial overall

improvements. The true financial impact of these predictions
is dependent on the success of the interventions as well as
the bank’s profit-per-dollar-AUM.

3.5 Summary of results

The proposed DPP-Random Forest model provides signifi-
cant improvements in precision and bottom line, while taking
significantly longer to train. The results are summarized in
(Table1).

3.6 Further benchmarks

We further benchmarked our model on various classification
datasets from OpenML. All except one (madelon) of these
datasets were used in Grinsztajn et al. (2022) and prepro-
cessed accordingly. They were chosen to be representative of
a wide variety of classification tasks. Each dataset was split
into train, validation, and test sets. For each model, 400 sets
of hyperparameters were randomly chosen and evaluated on
the validation set. Both models used the same hyperparame-
ter space, except for the addition of the batch_size parameter
for the DPP-RF. The hyperparameters which gave the best
results on the validation set were evaluated on the test set, and
the results are reported in (Table2). Models were evaluated
with the ROC-AUC metric1.

1 The area under the receiver operating characteristic curve (ROC-
AUC) is a common metric for two-class classification tasks, and
evaluates the ability of the model to produce a proper ranking of data-
points by likelihood of being class 1.

123

 27 Page 6 of 19 Quantum Machine Intelligence (2024) 6:27

Fig. 3 Classical benchmark (BM) vs DPP-RF solution: money with-
drawn per month by the flagged 500 customers, comparing the
benchmark model (blue line) to the DPP-RF one (orange line). On the
y-axis, we have monetary values (not shown). The green line represents
the total amount of money withdrawn by all customers in each month.

The purple line is the sum of the 500 largest withdrawals, which is the
maximum value that the model could capture. The red line represents
the withdrawals captured by randomly flagging 500 observations. The
y-axis units are omitted for confidentiality

Fig. 4 Classical benchmark vs DPP-RF solution — percentage of total withdrawals captured per month, that is, relative to the green line in Fig. 3.
On average over the 11 test months, the BM model captures 61.42% of the total, while the DPP-RF model captures 62.77%— an improvement of
1.35%

Fig. 5 Classical benchmark vs DPP-RF solution — the percentage of
maximum money possible to be captured (given n_flags = 500 cus-
tomers flagged every month), that is, relative to the purple line in Fig. 3.

On average over the 11 test months, the BM model captures 69.18% of
the total, while the DPP-RFmodel captures 70.72%—an improvement
of 1.54%

123

Quantum Machine Intelligence (2024) 6:27 Page 7 of 19 27

Table 1 Summarized comparison between models

Metric Benchmark model Proposed model

Precision 71.6% 77.5%

% total withdrawals
captured

61.42% 62.77%

%maximumpossible
withdrawals captured

69.18% 70.72%

Train time 311s 54 min

4 QuantumDPP-RF

4.1 Quantum circuits for determinantal point
processes

Classical DPP sampling algorithms have improved signifi-
cantly since their inception, but there may still be room for
improvement. Recent work by Kerenidis and Prakash (2022)
has shown that a quantum computer can more natively per-
form DPP sampling, achieving a gate complexity of O(nd)

and a circuit depth of O(d log(n)) for an orthogonal matrix
of size n × d. The classical time complexity for sampling is
O(d3) (Hough et al. 2006). Note that when n is very large,
then one can reduce the number of rows to O(d2) before
performing the sampling (Calandriello et al. 2020).

For a thorough review of the quantum methods and cir-
cuits, we refer the reader to Kerenidis and Prakash (2022).
The circuit is described in brief below.

Given an orthogonal matrix X = (x1, x2, . . . , xn) ∈
R

n×d , the quantum DPP circuit applied on X performs the
following operation:

D(X)|0n〉 =
∑

|S|=d
S∈{0,1}n

det(XS)|1S〉 , (3)

Table 2 Comparison of DPP-Random Forest and Random Forest mod-
els for different datasets. Superior results in bold

Dataset Random forest DPP-Random Forest

madelon 0.916 0.941

credit-default 0.856 0.856

house-pricing 0.948 0.939

jannis 0.866 0.870

eye movements 0.704 0.710

bank-marketing 0.881 0.881

wine 0.901 0.906

california 0.962 0.963

The results are reported via the ROC-AUC metric

whereXS is theRd×d submatrix obtained after sampling the
rows of X indexed by S; 1S is the characteristic vector of
S (with 1’s in the positions indexed by the elements of S)
and D(X) represents the quantum d-DPP circuit, as detailed
below.

Thus, the probability of sampling S, i.e., of measuring
|1S〉, is: Pr(S) = det(XS)2 = det(L S,S), where L = XXT .
This draws the link between the quantum determinantal sam-
pling circuit and the classical d-DPP model as seen in Eq.1.

To construct the quantum d-DPP circuit, we need to first
introduce a circuit known as a Clifford loader, which per-
forms the following operation:

C(x) =
n∑

i=1

xi Z i−1X I n−i , for x ∈ R
n . (4)

The Clifford loader was shown to have a log-depth circuit
in Kerenidis and Prakash (2022), and is shown for n = 8 in
Fig. 6, in which the gates represented by vertical lines are
RBS gates — parameterized, hamming weight-preserving
two-qubit gates.

The full quantum d-DPP circuit is a series of d Clifford
loaders, one for each orthogonal column of X:

D(X) = C(x1)C(x2) . . . C(xd) . (5)

An example of a d-DPP circuit as a series of Cliffords for
n = 4 is shown in Fig. 7.

4.2 Hardware experiment results

As a hardware experiment, we aimed to implement a
simplified version of our algorithm on a quantum pro-
cessor. We chose to use the “ibmq_guadelupe” 16-qubit
chip, which is only capable of running small quantum
DPP circuits for matrices of certain dimensions, such as
(4, 2), (5, 2), (5, 3), (6, 2), (8, 2). As a result, we had to
reduce the size of our problem.

To accomplish this, we defined reduced train/test sets: a
train set of ∼1000 points from 03/2019 and a test set of
∼10,000 points from 04/2019. The quantum hardware-ready
simplified algorithm is outlined in Fig. 8. It includes the fol-
lowing steps:

1. Applying PCA to reduce the number of columns from
153 to d = 2, 3;

2. Dividing the dataset into batches of n = 4, 5, 6, 8 points;
3. Sampling S ∼ d-DPP(XbatchXT

batch) rows from each
batch, resulting in small d × d patches of data;

4. Aggregating these patches to form a larger dataset, then
training one decision tree on this dataset.

123

 27 Page 8 of 19 Quantum Machine Intelligence (2024) 6:27

Fig. 6 Clifford loader circuit
C(x) for x ∈ R

8

We repeated this process for a number of trees and esti-
mated the F12 score for every tree. We then compared the
results for different sampling methods: uniform sampling,
quantumDPP sampling using a simulator, and quantumDPP
sampling using a quantum processor.

The IBM quantum computer only allows using RBS gates
on adjacent qubits, so we cannot use the circuit described
in Section4.1. Instead, we use two different Clifford loader
architectureswhichonly use adjacent-qubit connectivity. The
diagonal Clifford loader Fig. 9 is explained in Kerenidis and
Prakash (2022), and the semi-diagonal loader (Fig. 10) is a
modification that halves the circuit depth. As an error miti-
gation measure, we disregarded all results that did not have
the expected hamming weight (d). The results are shown in
the violin plots in Figs. 11 and 12.

The results indicate that for small matrix dimensions —
up to (6,2) — the IBM quantum processor gives results sim-
ilar to the ones achieved with the simulator. However, as the
dimensions grow bigger, the samples from the quantum DPP
circuits lead to worse classifier performance. This highlights
the limitations of the available quantum hardware, which is
prone to errors.

5 Quantum neural networks for credit risk
assessment

5.1 Quantum neural networks with orthogonal
and compound layers

In recent years, variational/parameterized quantum circuits
(Benedetti et al. 2019) have becomevery prominent asNISQ-

2 We chose the F1 score as the evaluationmetric for two reasons. Firstly,
a single decision tree, unlike the random forest, does not provide an
estimate of the likelihood, which is required for the computation of
ROC-AUC as we had used before. Secondly, we had an imbalanced
dataset and thus needed a metric that balanced precision and recall. The
F1 score is particularly effective when used in these scenarios.

friendly QML techniques. When applied to classification
problems, they are commonly known as Variational Quan-
tum Classifiers (VQC) (Havlíček et al. 2018). The quantum
circuits associated with VQCsmay be schematically thought
of as composed of three layers: the feature map U�(x), which
encodes classical data 	x into quantum states; the variational
layer W (θ), which is the part of the circuit parameterized by
a set of parameters θ which are learned in the training pro-
cess; and finally, the measurement layer, which measures the
quantum registers and produces classical information used
in training and inference.

The feature map and variational layers can take different
forms, called ansätze, consisting of many possible differ-
ent quantum gates in different configurations. Such immense
freedom raises an important question: how should one choose
an architecture for a given problem, and can it be expected to
yield a quantum advantage? This question is of major prac-
tical importance, and although benchmark results have been
shown for very particular datasets (Havlíček et al. 2018; Liu
et al. 2021), there is little consensus on which ansätze are
good choices for machine learning.

In ourwork,we use quantumneural networkswith orthog-
onal and compound layers. Although these neural networks
roughly match the general VQC construction, they pro-
ducewell-defined linear algebraic operations, which not only

Fig. 7 DPP circuit as a series of Clifford loaders

123

Quantum Machine Intelligence (2024) 6:27 Page 9 of 19 27

Fig. 8 Quantum
hardware-ready procedure for
DPP sampling

makes them much more interpretable but gives us the abil-
ity to analyze their complexity and scalability. Because we
understand the actions of these layers precisely,we are able to
identify instances for which we can design efficient classical
simulators, allowing us to classically train and test themodels
on real-scale datasets.

A standard feed-forward neural network layer modifies
an input vector by first multiplying it by a weight matrix
and then applying a non-linearity to the result. Feed-forward
neural networks usually use many such layers and learn to
predict a target variable by optimizing the weight matrices
to minimize a loss function. Enforcing the orthogonality of
these weight matrices, as proposed in Jia et al. (2019), brings
theoretical and practical benefits: it reduces the redundancy
in the trained weights and can avoid the age-old problem
of vanishing gradients. However, the overhead of typical
projection-based methods to enforce orthogonality prevents
mainstream adoption.

In Landman et al. (2022), an improved method of con-
structing orthogonal neural networks using quantum ideas
was developed. We describe it below in brief.

5.2 Data loaders

In order to perform a machine learning task with a quantum
computer,weneed tofirst load classical data into the quantum
circuit.

Unary data loading circuits

The first way we will load classical data is an example of
amplitude encoding, which means that we load the (normal-
ized) vector elements as the amplitudes of a quantum state.
In Johri et al. (2021), three different circuits to load a vec-
tor x ∈ R

d using d − 1 gates are proposed. The circuits
range in depth from O(log(d)) to O(d), with varying qubit
connectivity (see Fig. 13). They use the unary amplitude
encoding, where a vector x = (x1, · · · , xd) is loaded in the
quantum state |x〉 = 1

‖x‖
∑d

i=1 xi |ei 〉, where |ei 〉 is the quan-
tum state with all qubits in |0〉 except the i th qubit in state
|1〉 (e.g., |e3〉 = |00100000〉). The circuit uses RBS gates:
a parameterized two-qubit hamming weight-preserving gate

Fig. 9 Diagonal Clifford loader

123

 27 Page 10 of 19 Quantum Machine Intelligence (2024) 6:27

Fig. 10 Semi-diagonal Clifford loader

implementing the unitary given by Eq. 6:

RBS(θ) =

⎛

⎜⎜⎝

1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

⎞

⎟⎟⎠ . (6)

The parameters θi : i ∈ {1, ..., d − 1} of the d − 1 RBS
gates are classically pre-computed to ensure they encode the
correct vector |x〉.

RY -loading circuits

We will also use data loading procedures beyond the unary
basis. In particular, for a normalized input vector x ∈ R

d , we
use d qubits, where on each of the qubits, we apply an RY (θ)

rotation gate where the angle parameter on the i th qubit is
θi = 2πxi , according to Eq. 7.Multiplicationwith 2π allows
us to cover the entire range of the sin and cos functions. This
technique loads the data in the entire 2d -dimensional Hilbert
space encompassing all the hamming weights from 0 to d.
This loading technique has constant depth independent of d,
and we refer to it as the RY loading, whose circuit for d = 8

is illustrated in Fig. 14.

RY (θ)|0〉 = cos
θ

2
|0〉 + sin

θ

2
|1〉 (7)

H-loading circuits

Lastly, we define a different technique for loading the data
in the entire 2d -dimensional Hilbert space, which loads the
vector in the unary basis and then applies aHadamard gate on
each qubit. This operation applies a Fourier transform on Z2

and gives us a state encompassing all the hamming weights
from 0 to d at no additional cost to the circuit depth. We call
this the H -loading, whose circuit for d = 8 is illustrated in
Fig. 14.

H |0〉 = |0〉 + |1〉√
2

H |1〉 = |0〉 − |1〉√
2

(8)

The RY and H loading circuits spread the data over all
2n bases to allow future RBS-based neural network layers
to utilize an exponential space. In contrast, unary loaders
spread the data across the n bases with hamming weight 1,
and sinceRBS gates are hammingweight-preserving (known
as match gates (Jozsa andMiyake 2008), they cannot change
this. Their action when using unary loaders is thus restricted
to a much smaller space.

5.3 Quantum orthogonal and compound layers

Quantumorthogonal layers consist of a unary data loader plus
a parametrized quantum circuit made of RBS gates, while
quantum compound layers consist of a general data loader
plus a parametrized quantum circuit made of RBS gates.

RBS gates and circuits preserve the hamming weight of
the input state, and thus if we use a unary data loader, then the
output of the layer will be another vector in unary amplitude
encoding. Similarly, if the loaded quantum state is a super-
position of only basis states of hamming weight k, so is the
output state. More generally, we can think of such hamming
weight-preserving circuits with n qubits as block-diagonal

Fig. 11 Decision trees performance using quantum DPP sampling with diagonal Clifford loaders

123

Quantum Machine Intelligence (2024) 6:27 Page 11 of 19 27

Fig. 12 Decision trees performance using quantum DPP sampling with semi-diagonal Clifford loaders

Fig. 13 Three possible unary data loaders for d-dimensional vectors (d = 8). From left to right: the parallel, diagonal, and semi-diagonal circuits
have respectively a circuit depth of log(d), d, and d/2. The X gate represents the Pauli X gate, and the vertical lines represent R BS gates with
tunable parameters

Fig. 14 Non-unary loaders

(a) RY Loader (b) Hadamard Loader

123

 27 Page 12 of 19 Quantum Machine Intelligence (2024) 6:27

unitaries that act separately on n + 1 subspaces, where the
kth subspace is defined by all computational basis states with
hamming weight equal to k. The dimension of these sub-
spaces is equal to

(n
k

)
. The first block of this unitary is an

n × n orthogonal matrix, such that when a vector is loaded
in the unary basis, this circuit simply performs orthogonal
matrix multiplication. In general, the k-th block of this uni-
tary applies a compound matrix of order k of the n × n unary
matrix. The dimension of this k-th order compound matrix
is

(n
k

) × (n
k

)
. We refer to the layers that use bases beyond the

unary as compound layers.
There exist many possibilities for building a parametrized

quantum circuit made of RBS gates which can be used in a
quantum orthogonal or compound layer, each with different
properties.

The Pyramid circuit (Fig. 15), proposed in Landman
et al. (2022), is a parameterized quantum circuit composed
of exactly n(n − 1)/2 RBS gates. This circuit requires only
adjacent-qubit connectivity, which makes it suitable for most
superconducting qubit hardware. In addition, when restricted
to the unary basis, the pyramid circuit expresses exactly the
Special Orthogonal Group, i.e., orthogonal matrices with the
determinant equal to +1. To allow this circuit to express the
entire orthogonal group, we can add a final Z gate on the last
qubit. This allows us to express orthogonal matrices with a
−1 determinant as well. The pyramid circuit is, therefore,
very general and covers all the possible orthogonal matrices
of size n × n.

TheXcircuit (Fig. 15), introduced inCherrat et al. (2022),
uses just O(n) gates and has nearest-neighbor connectivity.
Due to reduced depth and gate complexity, it accumulates
less hardware noise.

The Butterfly circuit (Fig. 15) is inspired by the classical
fast Fourier transform algorithm, and uses O(nlog(n)) gates.
It was also introduced in Cherrat et al. (2022), and despite
having reduced expressivity compared to the Pyramid circuit,
it often performs just as well.

In Landman et al. (2022), a method is proposed to train
orthogonal layers for the unary basis by computing the

gradient of each parameter θi using backpropagation. This
backpropagation method for the pyramid circuit (which is
the same for any circuit with RBS gates) takes time O(n2),
corresponding to the number of gates, and provides a poly-
nomial improvement in runtime compared to the previously
known orthogonal neural network training algorithms which
relied on an O(n3) SVD operation (Jia et al. 2019). Since
the runtime corresponds to the number of gates, it is lower
for the butterfly and X circuits. See Table 3 for full details
on the comparison between the three types of circuits. For
the compound layers, we need to consider the entire 2n × 2n

space and thus train an exponential size weight matrix, which
takes exponential time on a classical computer. In principle,
a compound layer can also be trained using the parameter
shift rule for quantum circuits, which can be more efficient
since the number of parameters is polynomial in the input
size, though noise in current quantum hardware makes this
impractical for the time being.

5.4 Expectation-per-subspace compound layer

We describe here a compound layer that we call the
Expectation-per-subspace compound layer. This layer in-
volves loading the input vector using a non-unary basiswhich
could be done either via the RY -loading or the H -loading
circuit as previously defined. Then, we apply a parameter-
ized quantum circuit with RBS gates, e.g., a pyramid circuit,
which performs the compound matrix operation on all the
fixed hamming weight subspaces. More precisely, we can
think of the operation as performing the matrix-vector mul-
tiplication of an

(n
k

) × (n
k

)
matrix with an

(n
k

)
-dimensional

vector for each hamming weight k from 0 to n. Note that for
0 and n, the dimension is 1, and hence the unitary acts as
identity.

If we look at the output quantum state, it defines a dis-
tribution over a domain of size 2n . Given the exponential
size of the distribution, it is not advisable to try and train the
entire distribution, since that would take exponential time.

(a) Butterfly (b) Pyramid (c) X

Fig. 15 Parameterized quantum circuits for orthogonal and compound layers. Vertical lines represent two-qubit RBS gates, parameterized with
independent angles θ , which are shown as the same in the figures for simplicity

123

Quantum Machine Intelligence (2024) 6:27 Page 13 of 19 27

Table 3 Comparison of different parameterized quantum circuits for
orthogonal and compound layers with n qubits

Circuit Hardware Connectivity Depth # Gates

Pyramid Nearest-Neighbor 2n − 3 n(n−1)
2

X Nearest-Neighbor n − 1 2n − 3

Butterfly All-to-all log(n) n
2 log(n)

However, one can still try to use a loss function that con-
tains some information about the distribution. For example,
one can use the expectation of the distribution, which is
what normally happens in variational quantum algorithms
where one approximates this expectation by using a number
of measurement outcomes. Given the fact that our unitary is
block-diagonal, one can try to define a more complex loss
function that contains more information about the distribu-
tion. In particular, one can split the domain of the distribution
into n +1 subdomains, one for each subspace, and then train
on all these expectations.

This is what we do in the Expectation-per-subspace com-
pound layer, where for each k from 0 to n, we take the outputs
corresponding to the hammingweight k strings and sort them.
Now, for each k, we assign values which are equally spaced
between two bounds a and b (which are 0 and 10, in our
models) to the

(n
k

)
strings. We normalize the outputs using

the L1-norm to correspond to a probability distribution over
the

(n
k

)
values between a and b, and then we calculate the

expectation value for that hamming weight. This gives us a
set of n + 1 values corresponding to each hamming weight.
Since for hamming weight 0 and n the dimension of the sub-
space is 1 (the all-zero and all-one strings), we combine them
and calculate the expectation for these two together andmake
the layer have n outputs. The entire operation is illustrated
in Fig. 16.

While these compound layers do increase classical simu-
lation complexity, they do not increase quantum complexity.
The advent of better quantum hardware will allow us to test
larger compound layers that explore much larger portions of
the Hilbert space.

6 QNN results with classical simulation

In this second study, we focus on the problem of credit-
default prediction associated with credit applications from
Small andMediumEnterprises (SMEs).We report the results
of our neural network architectures on this use case and on
public datasets.

6.1 Use case introduction: credit risk prediction

The credit operation is one of the largest and most impor-
tant operations in a retail banking institution. Throughout
the credit journey (life-cycle) of a customer within the bank,
several different models are used at different points of the
journey and for different purposes, such as the determination
of interest rates, offering of different products, etc.

The credit granting model is a particularly important one
since it determines whether or not a credit relationship will
be established. It is also particularly challenging in the case
of SMEs, where the relationship with the bank often starts
only when the SME submits an application for credit, so very
little data is available.

Given these challenges, we propose the use of quantum
techniques aiming at improving the predictive performance
of the credit granting model.

The credit granting decision may be seen as a binary clas-
sification problem, in which the objective is to predict if
the SME will default on credit. More specifically, we are

= =

n

0

n

1

n

2

n

n-1

n

n

2
nn n

n

0

n

1

n

2

n

n-1

n

n

Fig. 16 Expectation-per-subspace compound layer. In the final step, we combine the
(n
0

)
and the

(n
n

)
subspaces and calculate their overall expectation

123

 27 Page 14 of 19 Quantum Machine Intelligence (2024) 6:27

interested in calculating the so-called probability of default
(PD), which is given by P(ŷ = 1|x). The PD information is
used internally for other pipelines primarily concerned with
the determination of credit ratings for the SMEs (though in
this study, we focus solely on the PD model), so the PD dis-
tribution is the main output of interest from the model. For
this reason, we do not threshold the probability outputs from
the model — thus, we use threshold-independent classifica-
tion metrics to evaluate its predictive performance. Namely,
the main Key Performance Indicator (KPI) that we use is
the Gini score, constructed from the Area Under the Curve
(AUC) of the ROC (Receiver Operating Characteristic) curve
as Gini = 2×AUC− 1. The Gini score is easily interpreted
by the business team and allows for a holistic estimation of
the model’s impact.

In this study, we chose to focus on the development of
an “internal model” of credit default, which only uses fea-
tures collected by Itaú, without considering any external
information (from credit bureaus, for instance). The dataset
used consists of ≈ 141, 500 observations, each one rep-
resented by 32 features: 31 numerical and 1 categorical.
Each observation represents a given SME customer in a
specified reference month, whose observed target indicates
its default behavior, and whose features consist of internal
information about the company. The data was anonymized,
standardized, and split into training and test sets based on
the time period: the training set consists of ≈ 74, 700 obser-
vations covering 12 months of data, while in the test set,
we have ≈ 66, 800 observations covering the subsequent 8
months.

6.2 Neural network architectures for credit risk

To compare the performance of the orthogonal and com-
pound layers to the classical baseline, we designed three
neural network architectures. Each architecture had three
layers: an encoding layer, an experimental layer, and a classi-
fication head. The encoding layer was a standard linear layer
of size 32× 8 followed by a tanh activation. Its purpose is to
bring the dimension of the features down to 8, which is a rea-
sonable simulation size for both proposed quantum layers.
The second layer was the experimental layer of size 8 × 8
(described below). Finally, the third layer, the classification
head, was a linear layer of size 8× 2 followed by softmax to
predict the probabilities.

The first quantum neural network architecture, named
OrthoResNN, uses an 8 × 8 orthogonal experimental layer
implementedwith a semi-diagonal loader and X circuit. Note
that the final output of the layer is provided by measure-
ments. We add a skip connection by adding the input of the

orthogonal layer to the output.3 The layer is followed by a
tanh activation function. This architecture is illustrated in
Fig. 17.

Our second architecture, ExpResNN, replaces the exper-
imental layer with an 8 × 8 Expectation-per-subspace com-
pound layer. We use the H -loader to encode our data.
The layer is again followed by a tanh activation function.
Figure18 illustrates the ExpResNN architecture.

And finally, the classical architecture, ResNN, used an
8 × 8 linear residual layer followed by tanh.

6.3 Methods and training

The training of the networks was performed using the JAX
package by Google. We train our models for 500 epochs.
To identify suitable hyperparameters, we performed a search
over learning rate, learning-rate-halving points, and batch
size. The hyperparameter search was performed with the
ray-tune library.

The dataset contains a large number of missing values,
which motivated the experimentation of different imputa-
tion techniques such as zero-filling, round-robin imputation
(implemented in the Python package scikit-learn), and
MICE (van Buuren and Groothuis-Oudshoorn 2011). The
best results were achievedwith round-robin imputation using
scikit-learn’s IterativeImputer with Bayesian
ridge regression. This was the pre-processing employed in
all the results on the SME dataset.

6.4 Results

In our experimental setup, we consider the fully connected
residual layer (ResNN) as the classical benchmark. We per-
formed the same experiment with an orthogonal layer using
the semi-diagonal loader and the X circuit (OrthoResNN).
Finally, we tried the expectation-per-subspace compound
layer with the Hadamard loader and X circuit (ExpResNN).
While the performance of the OrthoResNN and ExpResNN
remained nearly the same as the FNN layer, these new lay-
ers learn the angles of 2n RBS gates instead of n2 elements
of the weight matrix, dramatically reducing the number of
parameters needed. The results are shown in Table 4.

The results show that quantum orthogonal and compound
layers can preserve the performance of fully connected layers
on this dataset while using a fraction of the trainable param-
eters. We note that the ExpResNN did not show advantages
over the OrthoResFNN.

3 The model cannot learn to “ignore” the orthogonal layer via the skip
connection, because the orthogonal layer cannot change the magnitude
of the input.

123

Quantum Machine Intelligence (2024) 6:27 Page 15 of 19 27

Fig. 17 Architecture of the
OrthoResNN model

6.5 Further benchmarks

We compared the orthogonal and linear layers on public clas-
sification datasets from OpenML as we did for the Random
Forests (Section3.6). Again, we used a three-layer architec-
ture: a linear encoding layer to 16 dimensions with GeLU

activation, a 16 × 16 experiment layer with tanh activation,
and a binary classification head. These architectures did not
have residual connections.

We compared two models: OrthoFNN and FNN. Ortho
FNN used a 16×16 pyramid circuit as the experiment layer,

Fig. 18 Architecture of the
ExpResNN model using the
H -loader

123

 27 Page 16 of 19 Quantum Machine Intelligence (2024) 6:27

Table 4 Comparison between different architectures

Model Trainable parameters Test Gini

ResNN 64 54.20%

OrthoResNN 13 54.29%

ExpResNN 13 53.95%

for a total of 120 trainable parameters. FNN used a feed-
forward linear layer with 256 trainable parameters.

For all the datasets and models, we use a batch size of 128
and a learning rate of 10−4. Each is trained for 500 epochs
and evaluated with the ROC-AUC metric. The results are
summarized in (Table 5).

7 QNN results on quantum hardware

7.1 Implementation of quantum circuits

Using a classical computer, inference using an orthogonal
layer takes time O(n2), while for a general compound layer,
this time is exponential in n. Using a quantum computer,
inference with an orthogonal or compound layer uses a quan-
tum circuit that has depth O(n) (Pyramid or X) or O(log(n))

(Butterfly), and O(n2) gates. Therefore, one may find a
further advantage if the inference is performed on a quan-
tum computer. This motivated us to test the inference step
for classically trained OrthoResNN and ExpFNN models
(ExpResNN from the classical experiments without a resid-
ual connection) on currently available quantum hardware.

The data loader and orthogonal/compound layer circuits
employed in our model architectures are NISQ-friendly
and particularly suitable for superconducting qubits, with
low depth and nearest-neighbors qubit connectivity. Thus,
we chose to use IBM’s 27-qubit machine ibm_hanoi (see
Fig. 19).

Table 5 Comparison of OrthoFNN and FNN for different datasets.
Superior results in bold

Dataset FNN OrthoFNN

madelon 0.624 0.636

credit-default 0.647 0.634

house-pricing 0.780 0.781

jannis 0.791 0.797

eye movements 0.580 0.578

bank-marketing 0.847 0.850

wine 0.553 0.640

california 0.634 0.668

The results are reported via the ROC-AUC metric

Fig. 19 Topology graph of the 27-qubit ibm_hanoi machine used to
perform our hardware experiments. The colors in the qubits indicate
readout assignment error; and in the connections the CNOT error —
dark blue is low, purple is high

To perform inference on ibm_hanoi, we used the semi-
diagonal data loader and X circuit to implement the Ortho
ResNN model; and the Hadamard loader and X circuit for
the ExpFNN model — the same architectures described in
Section6. Both neural networks were trained classically, and
the trained parameters were used to construct our quantum
circuits for inference.

Given the large size of the test dataset (66, 750 data
points), we decided to perform inference using the trained
models on a small test subsample of 300 test points, corre-
sponding to the maximum number of circuits we could send
in one job to the IBM machine. After testing different sub-
samples with the OrthoResNN model,4 we selected one for
which we achieved a subsample test Gini score of 54.19%
using a noiseless simulator (blue ROC curve in Fig. 20). The
same was done for the ExpFNN experiment, yielding a sub-
sample test Gini of 53.90% with the noiseless simulator.
These values were taken as the best possible Gini scores
if the inference was performed on noiseless quantum hard-
ware, which could then be compared with the values actually
achieved with ibm_hanoi.

The circuits were then run on the quantum processor. Due
to its limited Hilbert space of size n, the OrthoResNN has a
natural error-rejection procedure: any measurements outside
of the unary basis can be disregarded as errors. As a result,
the inference yielded a Gini score of 50.19%, as shown in
the orange ROC curve in Fig. 20. The achieved Gini was
not too far from the noise-free simulation result (54.19%),
but there was clearly a room for improvement in order to
close the 4 pp difference. We also attempted inference with

4 We made sure to pick a representative subsample of observations, for
which we would have neither a heavily under nor overestimated Gini
score compared to the one for the full test set. By selecting 50 different
subsamples of randomly chosen 300 observations and performing the
classical inference, we found Gini scores between 45.9% and 64.3%,
with an average of 54.44%. This further supports the fact that the sub-
sample that we chose correctly yields the (approximate) expected value
for this Gini score distribution, which then yields an unbiased subsam-
ple Gini score. The same procedure was performed for the ExpFNN
experiment.

123

Quantum Machine Intelligence (2024) 6:27 Page 17 of 19 27

Fig. 20 ROC curves with Gini score for the ideal simulation, hardware
execution, and the error-mitigated hardware execution

the more complex ExpFNN, which yielded a Gini score of
40.20%, much farther from the noiseless simulation Gini of
53.90%. Since the ExpFNN uses the entire 2n-dimensional
Hilbert space, it is more prone to errors due to noise, as the
error-rejection procedure used for the OrthoResNN cannot
be employed.

7.2 Improving the hardware results with error
mitigation techniques

Error mitigation and error suppression techniques undoubt-
edly play a very important role in NISQ-era quantum
computing. While these techniques alone may not be suffi-
cient to fully overcome the imperfections of current quantum
systems, they can push the practical limits of what can be
achieved. As a next step, for the OrthoResNN model, we
experimented with various error mitigation and suppression
approaches, going beyond the simple hamming weight post-
selection procedure, in an attempt to close the gap of 4 pp
between the Gini score from the noisy simulation and the one
from hardware execution.

The first approach that we tried was a correlated readout
mitigator. This is a purely classical post-processing tech-
nique which demands the construction of a calibration circuit
for each one of the possible 2N states of the full N qubits
Hilbert space. The calibration circuits’ execution (simulated
using ibm_hanoi’s backend information, in our case) yields
a 2N × 2N assignment matrix, which is used to understand
how errors might occur during readout. One can see that this
method rapidly becomes intractable as the number of qubits
N increases. In our case, for N = 8, the Gini score improved
to 50.24%, a small improvement of only 0.05 pp.

Thus, in order to investigate the effect of more robust
error suppression and mitigation techniques in our results,
we moved on to a new round of hardware experiments,

performing the inference by executing the exact same
OrthoResNN circuits via the Qiskit Runtime (contributors
2021) service using the Sampler primitive, which allows one
to use circuit optimization as well as error suppression and
mitigation techniques, as detailed below.

Firstly, we used circuit optimization at the point of
circuit transpilation and compilation by setting the optimiza-
tion_level parameter to the highest possible value, 3. This
performs the following circuit optimization routines: Layout
selection and routing (VF2 layout pass and SABRE layout
search heuristics (Li et al. 2018); 1 qubit gate optimiza-
tion (chains of single-qubit u1, u2, u3 gates are combined
into a single gate); commutative cancellation (cancelling
of redundant self-adjoint gates); 2 qubit KAK optimization
(decomposition of 2-qubit unitaries into the minimal number
of uses of 2-qubit basis gates).

Secondly, we used the Dynamical Decoupling error sup-
pression technique (Viola andLloyd1998;Ezzell et al. 2022).
This technique works as a pulse schedule by inserting a DD
pulse sequence into periods of time in which qubits are idle.
The DD pulses effectively behave as an identity gate, thus
not altering the logical action of the circuit, but having the
effect of mitigating decoherence in the idle periods, reducing
the impact of errors.

Thirdly, we used the M3 (Matrix-free Measurement Mit-
igation) error mitigation technique (Nation et al. 2021) by
setting the Sampler resilience_level parameter to 1 (the only
option available for the Sampler primitive). This provides
mitigated quasi-probability distributions after the measure-
ment. M3 works in a reduced subspace defined by the noisy
input bitstrings supposed to be corrected, which is often
much smaller than the full N qubits Hilbert space. For
this reason, this method is much more efficient than the
matrix-based readout mitigator technique mentioned above.
M3 provides a matrix-free preconditioned iterative solution
method, which removes the need to construct the full reduced
assignment matrix but rather computes individual matrix ele-
ments, which uses orders of magnitude less memory than
direct factorization.

By employing these three techniques, we were able to
achieve aGini score of 53.68% for theOrthoResNN (Fig. 20).
This is a 3.49 pp improvement from the initial 50.19% Gini
of the unmitigated run, falling only 0.53 pp behind the ideal
noiseless execution (54.21% Gini)! This remarkable result
underscores the NISQ-friendliness of the orthogonal layer
and highlights the importance of error suppression and mit-
igation techniques in the NISQ era.

It is important to note that circuit optimization, error sup-
pression, and mitigation techniques typically result in some
classical/quantum pre/post-processing overhead to the over-
all circuit runtime. Some of these techniques are based on
heuristics and/or do not have efficient scaling at larger circuit

123

 27 Page 18 of 19 Quantum Machine Intelligence (2024) 6:27

sizes. It is important to balance the desired levels of opti-
mization and resilience with the required time for the full
execution, especially as the circuit sizes increase.

8 Conclusion

In this work, we have explored the potential of quan-
tum machine learning methods in improving forecasting in
finance, with a focus on two specific use cases within the
Itaú business: churn prediction and credit risk assessment.
Our results demonstrate that the proposed algorithms, which
leverage quantum ideas, can effectively enhance the per-
formance of Random Forest and neural network models,
achievingbetter accuracy and trainingwith fewer parameters.

In the present day, quantum hardware is not power-
ful enough to provide real improvements or conclusive
large-scale benchmarks. Performance enhancements can be
achieved today by turning these quantum ideas into classi-
cal ML solutions run on GPUs. However, with the advent
of better quantum hardware, we expect these methods to run
faster and produce even better results when run on quantum
computers.

The general nature of the proposed methods makes them
applicable to other use cases in finance and beyond, although
theymust be tuned to specific datasets and tasks.Wehope this
work inspires confidence that QML research holds promise
both for today as well as for the coming era of scaled, fault-
tolerant quantum hardware.

Author contribution S.T., N.M., S.K., and A.F. wrote the main
manuscript text. N.M., S.K., and A.F. performed the quantum hardware
experiments. All authors reviewed the manuscript.

Availability of data andmaterials The primary datasets andmodel used
in this study are proprietary to Itau and QC Ware and are not publicly
available. Additional benchmark datasets are available via openML.

Declarations

Ethics approval Not applicable as this study did not involve any human
or animal subjects.

Conflict of interest S.T., S.K., N.M., and I.K. are employed by QC
Ware, while A.F. and S.B. are employed by Itaú, both of which may
stand to benefit from the results of this research. The authors declare no
other competing interests.

Disclaimer This paper is a research collaboration between Itaú Uni-
banco and QC Ware. Any opinions, findings, conclusions or recom-
mendations expressed in this material are those of the authors and do
not necessarily reflect the views of Itaú Unibanco. This paper is not
and does not constitute or intend to constitute investment advice or any
investment service. It is not and should not be deemed to be an offer
to purchase or sell, or a solicitation of an offer to purchase or sell, or
a recommendation to purchase or sell any securities or other financial
instruments. Moreover, all data used in this study is compliant with the
Brazilian General Data Protection Law.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Herman D, Googin C, Liu X, Galda A, Safro I, Sun Y, Pistoia M, Alex-
eev Y (2022) A survey of quantum computing for finance. Papers
2201.02773, arXiv.org. https://ideas.repec.org/p/arx/papers/2201.
02773.html

Egger DJ, Gambella C, Marecek J, McFaddin S, Mevissen M, Ray-
mond R, Simonetto A, Woerner S, Yndurain E (2020) Quantum
computing for finance: State-of-the-art and future prospects. IEEE
Transactions on Quantum Engineering 1:1–24. https://doi.org/10.
1109/TQE.2020.3030314

McKinsey & Company (2021) Quantum computing: an emerging
ecosystem and industry use cases. Accessed 16 Feb 2023

Bouland A, DamW, Joorati H, Kerenidis I, Prakash A (2020) Prospects
and challenges of quantum finance. arXiv. https://doi.org/10.
48550/ARXIV.2011.06492

Leclerc L, Ortiz-Guitierrez L, Grijalva S, Albrecht B, Cline JRK, Elfv-
ing VE, Signoles A, Henriet L, Del Bimbo G, Sheikh UA, Shah
M, Andrea L, Ishtiaq F, Duarte A, Mugel S, Caceres I, Kurek
M, Orus R, Seddik A, Hammammi O, Isselnane H, M’tamon D
(2022) Financial Risk Management on a Neutral Atom Quantum
Processor. arXiv. https://doi.org/10.48550/ARXIV.2212.03223

Rebentrost P, Lloyd S (2018) Quantum computational finance: quantum
algorithm for portfolio optimization. arXiv:1811.03975

Kerenidis I, PrakashA, Szilágyi D (2019) Quantum algorithms for port-
folio optimization. In: Proceedings of the 1st ACM conference on
advances in financial technologies. AFT ’19, pp. 147–155. Asso-
ciation for Computing Machinery, New York, NY, USA. https://
doi.org/10.1145/3318041.3355465

Rebentrost P, Luongo A, Bosch S, Lloyd S (2022) Quantum compu-
tational finance: martingale asset pricing for incomplete markets.
arXiv. https://doi.org/10.48550/ARXIV.2209.08867

Doriguello JaF, Luongo A, Bao J, Rebentrost P, Santha M (2022)
Quantum algorithm for stochastic optimal stopping problems with
applications in Finance. In: Le Gall F, Morimae T (eds) 17th con-
ference on the theory of quantum computation, Communication
and Cryptography (TQC 2022). Leibniz International Proceedings
in Informatics (LIPIcs), vol 232, pp 2–1224. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, Dagstuhl, Germany. https://doi.
org/10.4230/LIPIcs.TQC.2022.2. https://drops.dagstuhl.de/opus/
volltexte/2022/16509

Suzuki Y, Uno S, Raymond R, Tanaka T, Onodera T, Yamamoto N
(2020) Amplitude estimation without phase estimation. Quantum
Inf Process 19(2):75. https://doi.org/10.1007/s11128-019-2565-2

Giurgica-Tiron T, Kerenidis I, Labib F, Prakash A, Zeng W (2022)
Lowdepth algorithms for quantumamplitude estimation.Quantum
6:745. https://doi.org/10.22331/q-2022-06-27-745

Pistoia M, Ahmad SF, Ajagekar A, Buts A, Chakrabarti S, Herman D,
Hu S, Jena A, Minssen P, Niroula P, Rattew A, Sun Y, Yalovetzky
R (2021) Quantum Machine Learning for Finance. arXiv. https://
doi.org/10.48550/ARXIV.2109.04298

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/org
https://ideas.repec.org/p/arx/papers/2201.02773.html
https://ideas.repec.org/p/arx/papers/2201.02773.html
https://doi.org/10.1109/TQE.2020.3030314
https://doi.org/10.1109/TQE.2020.3030314
https://doi.org/10.48550/ARXIV.2011.06492
https://doi.org/10.48550/ARXIV.2011.06492
https://doi.org/10.48550/ARXIV.2212.03223
http://arxiv.org/abs/1811.03975
https://doi.org/10.1145/3318041.3355465
https://doi.org/10.1145/3318041.3355465
https://doi.org/10.48550/ARXIV.2209.08867
https://doi.org/10.4230/LIPIcs.TQC.2022.2
https://doi.org/10.4230/LIPIcs.TQC.2022.2
https://drops.dagstuhl.de/opus/volltexte/2022/16509
https://drops.dagstuhl.de/opus/volltexte/2022/16509
https://doi.org/10.1007/s11128-019-2565-2
https://doi.org/10.22331/q-2022-06-27-745
https://doi.org/10.48550/ARXIV.2109.04298
https://doi.org/10.48550/ARXIV.2109.04298

Quantum Machine Intelligence (2024) 6:27 Page 19 of 19 27

Emmanoulopoulos D, Dimoska S (2022) Quantummachine learning in
finance: time series forecasting. arXiv e-prints, 2202

Alcazar J, Leyton-Ortega V, Perdomo-Ortiz A (2020) Classical ver-
sus quantum models in machine learning: insights from a finance
application. Mach Learn Sci Technol 1(3):035003. https://doi.org/
10.1088/2632-2153/ab9009

NguyenN, ChenK-C (2022) Bayesian quantumneural networks. IEEE.
Access 10:54110–54122. https://doi.org/10.1109/ACCESS.2022.
3168675

Kerenidis I, PrakashA (2022)Quantummachine learningwith subspace
states. arXiv:2202.00054

Landman J, Mathur N, Li YY, Strahm M, Kazdaghli S, Prakash
A, Kerenidis I (2022) Quantum methods for neural networks
and application to medical image classification. Quantum 6:881.
https://doi.org/10.22331/q-2022-12-22-881

Arjovsky M, Shah A, Bengio Y (2016) Unitary evolution recurrent
neural networks. In: International conference onmachine learning,
PMLR, pp 1120–1128

Breiman L (2001) Random forests. Mach Learn 45(1):5–32. https://doi.
org/10.1023/A:1010933404324

Kulesza A, Taskar B (2012) Determinantal point processes for machine
learning. FoundTrends®MachLearn 5(2–3):123–286. https://doi.
org/10.1561/2200000044

Macchi O (1975) The coincidence approach to stochastic point pro-
cesses. Adv Appl Probab 7(1):83–122. https://doi.org/10.2307/
1425855

Derezinski M, Mahoney MW (2021) Determinantal point processes in
randomized numerical linear algebra. Not AmMath Soc 68(1):34–
45

Bardenet R, Hardy A (2020) Monte carlo with determinantal point pro-
cesses. Ann Appl Probab 30(1):368–417

Elfeki M, Couprie C, Riviere M, Elhoseiny M (2019) Gdpp: learning
diverse generations using determinantal point processes. In: Inter-
national conference on machine learning, PMLR, pp 1774–1783

Derezinski M (2018) Volume sampling for linear regression. UC Santa
Cruz Electronic Theses and Dissertations 36

Dereziński M, Warmuth MK, Hsu D (2018) Leveraged volume sam-
pling for linear regression. In: Proceedings of the 32nd inter-
national conference on neural information processing systems.
NIPS’18, pp 2510–2519. Curran Associates Inc., Red Hook, NY,
USA

Kulesza A, Taskar B (2011) K-dpps: fixed-size determinantal point
processes. In: Proceedings of the 28th international conference
on international conference on machine learning. ICML’11, pp
1193–1200. Omnipress, Madison, WI, USA

Hough JB, Krishnapur M, Peres Y, Virág B (2006) Determinantal Pro-
cesses and Independence. Probab Surv 3(none), 206–229 https://
doi.org/10.1214/154957806000000078

Anari N, Oveis Gharan S, Rezaei A (2016) Monte carlo markov chain
algorithms for sampling strongly rayleigh distributions and deter-
minantal point processes. In: Feldman V, Rakhlin A, Shamir O
(eds) 29th Annual conference on learning theory. proceedings of
machine learning research, vol 49, pp 103–115. PMLR, Columbia
University, New York, New York, USA. https://proceedings.mlr.
press/v49/anari16.html

Li C, Sra S, Jegelka S (2016) Fast mixing markov chains
for strongly rayleigh measures, dpps, and constrained sam-
pling. In: Lee DD, Sugiyama M, Luxburg U, Guyon I, Gar-
nett R (eds) Advances in neural information processing sys-
tems 29: annual conference on neural information process-
ing systems 2016, December 5-10, 2016, Barcelona, Spain,
pp 4188–4196. https://proceedings.neurips.cc/paper/2016/hash/
850af92f8d9903e7a4e0559a98ecc857-Abstract.html

Derezinski M, Calandriello D, Valko M (2019) Exact sampling
of determinantal point processes with sublinear time prepro-
cessing. In: Wallach H, Larochelle H, Beygelzimer A, Alché-

Buc F, Fox E, Garnett R (eds) Advances in neural informa-
tion processing systems, vol 32. Curran Associates, Inc., Van-
couver, Canada. https://proceedings.neurips.cc/paper/2019/file/
fa3060edb66e6ff4507886f9912e1ab9-Paper.pdf

Calandriello D, Derezinski M, Valko M (2020) Sampling from a
k-dpp without looking at all items. In: Larochelle H, Ranzato
M, Hadsell R, Balcan MF, Lin H (eds) Advances in Neural
Information Processing Systems, vo 33, pp 6889–6899. Cur-
ran Associates, Inc., Online. https://proceedings.neurips.cc/paper/
2020/file/4d410063822cd9be28f86701c0bc3a31-Paper.pdf

Gautier G, Polito G, Bardenet R, Valko M (2019) Dppy: Dpp sampling
with python. J Mach Learn Res 20(180):1–7

Kazdaghli S, Kerenidis I, Kieckbusch J, Teare P (2023) Improved clini-
cal data imputation via classical and quantum determinantal point
processes. arXiv:2303.17893

Grinsztajn L, Oyallon E, Varoquaux G (2022) Why do tree-based
models still outperform deep learning on typical tabular data?
In: Thirty-sixth conference on neural information processing
systems datasets and benchmarks track. https://openreview.net/
forum?id=Fp7__phQszn

Benedetti M, Lloyd E, Sack S, Fiorentini M (2019) Parameterized
quantum circuits as machine learning models. Quantum Science
and Technology 4(4):043001. https://doi.org/10.1088/2058-9565/
ab4eb5, arXiv:1906.07682 [quant-ph]

Havlíček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow
JM, Gambetta JM (2018) Supervised learning with quantum-
enhanced feature spaces. Nature 567:209–212

Liu Y, Arunachalam S, Temme K (2021) A rigorous and robust
quantum speed-up in supervised machine learning. Nat Phys
17(9):1013–1017. https://doi.org/10.1038/s41567-021-01287-z,
arXiv:2010.02174 [quant-ph]

Jia K, Li S, Wen Y, Liu T, Tao D (2019) Orthogonal deep neural net-
works. IEEE Trans Pattern Anal Mach Intell

Johri S, Debnath S, Mocherla A, Singh A, Prakash A, Kim J,
Kerenidis I (2021) Nearest centroid classification on a trapped
ion quantum computer. npj Quantum Information (to appear),
arXiv:2012.04145

Jozsa R, Miyake A (2008) Matchgates and classical simulation
of quantum circuits. Proc Royal Soc A: Math Phys Eng Sci
464(2100):3089–3106. https://doi.org/10.1098/rspa.2008.0189

Cherrat EA, Kerenidis I, Mathur N, Landman J, Strahm M, Li YY
(2022) Quantum vision transformers. arXiv:2209.08167

Buuren S, Groothuis-Oudshoorn K (2011) mice: multivariate imputa-
tion by chained equations in r. J Stat Softw 45(3):1–67. https://doi.
org/10.18637/jss.v045.i03

contributors Q (2021) Qiskit: an open-source framework for quantum
computing. https://doi.org/10.5281/zenodo.2573505

Li G, Ding Y, Xie Y (2018) Tackling the Qubit Mapping Problem for
NISQ-Era Quantum Devices. arXiv e-prints, 1809–02573. https://
doi.org/10.48550/arXiv.1809.02573 [cs.ET]

Viola L, Lloyd S (1998) Dynamical suppression of decoherence in two
state quantum systems. Phys Rev A 58, 2733. https://doi.org/10.
1103/PhysRevA.58.2733, arXiv:quant-ph/9803057

Ezzell N, Pokharel B, Tewala L, Quiroz G, Lidar DA (2022) Dynami-
cal decoupling for superconducting qubits: a performance survey.
arXiv:2207.03670 [quant-ph]

Nation PD, Kang H, Sundaresan N, Gambetta JM (2021) Scal-
able mitigation of measurement errors on quantum computers.
PRX Quantum 2, 040326 https://doi.org/10.1103/PRXQuantum.
2.040326, arXiv:2108.12518 [quant-ph]

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1088/2632-2153/ab9009
https://doi.org/10.1088/2632-2153/ab9009
https://doi.org/10.1109/ACCESS.2022.3168675
https://doi.org/10.1109/ACCESS.2022.3168675
http://arxiv.org/abs/2202.00054
https://doi.org/10.22331/q-2022-12-22-881
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1561/2200000044
https://doi.org/10.1561/2200000044
https://doi.org/10.2307/1425855
https://doi.org/10.2307/1425855
https://doi.org/10.1214/154957806000000078
https://doi.org/10.1214/154957806000000078
https://proceedings.mlr.press/v49/anari16.html
https://proceedings.mlr.press/v49/anari16.html
https://proceedings.neurips.cc/paper/2016/hash/850af92f8d9903e7a4e0559a98ecc857-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/850af92f8d9903e7a4e0559a98ecc857-Abstract.html
https://proceedings.neurips.cc/paper/2019/file/fa3060edb66e6ff4507886f9912e1ab9-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/fa3060edb66e6ff4507886f9912e1ab9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4d410063822cd9be28f86701c0bc3a31-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4d410063822cd9be28f86701c0bc3a31-Paper.pdf
http://arxiv.org/abs/2303.17893
https://openreview.net/forum?id=Fp7__phQszn
https://openreview.net/forum?id=Fp7__phQszn
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1088/2058-9565/ab4eb5
http://arxiv.org/abs/1906.07682
https://doi.org/10.1038/s41567-021-01287-z
http://arxiv.org/abs/2010.02174
http://arxiv.org/abs/2012.04145
https://doi.org/10.1098/rspa.2008.0189
http://arxiv.org/abs/2209.08167
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.48550/arXiv.1809.02573
https://doi.org/10.48550/arXiv.1809.02573
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevA.58.2733
http://arxiv.org/abs/quant-ph/9803057
http://arxiv.org/abs/2207.03670
https://doi.org/10.1103/PRXQuantum.2.040326
https://doi.org/10.1103/PRXQuantum.2.040326
http://arxiv.org/abs/2108.12518

	Improved financial forecasting via quantum machine learning
	Abstract
	1 Introduction
	2 DPP-enhanced Random Forest models for churn prediction
	2.1 DPP-Random Forest model
	2.2 Determinantal point processes
	2.2.1 Definitions
	2.2.2 Unbiased least squares regression
	2.2.3 Algorithms for sampling

	2.3 DPP-RF algorithm outline

	3 Classical DPP-RF results
	3.1 Use case introduction: churn prediction
	3.2 Precision-recall
	3.3 Training time
	3.4 Bottom line — withdrawals captured
	3.5 Summary of results
	3.6 Further benchmarks

	4 Quantum DPP-RF
	4.1 Quantum circuits for determinantal point processes
	4.2 Hardware experiment results

	5 Quantum neural networks for credit risk assessment
	5.1 Quantum neural networks with orthogonal and compound layers
	5.2 Data loaders
	Unary data loading circuits
	RY-loading circuits
	H-loading circuits

	5.3 Quantum orthogonal and compound layers
	5.4 Expectation-per-subspace compound layer

	6 QNN results with classical simulation
	6.1 Use case introduction: credit risk prediction
	6.2 Neural network architectures for credit risk
	6.3 Methods and training
	6.4 Results
	6.5 Further benchmarks

	7 QNN results on quantum hardware
	7.1 Implementation of quantum circuits
	7.2 Improving the hardware results with error mitigation techniques

	8 Conclusion
	References

