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Abstract
Quantum computing offers a potentially powerful new method for performing machine learning. However, several quantum
machine learning techniques have been shown to exhibit poor generalisation as the number of qubits increases. We address
this issue by demonstrating a permutation invariant quantum encoding method, which exhibits superior generalisation per-
formance, and apply it to point cloud data (three-dimensional images composed of points). Point clouds naturally contain
permutation symmetry with respect to the ordering of their points, making them a natural candidate for this technique. Our
method captures this symmetry in a quantum encoding that contains an equal quantum superposition of all permutations
and is therefore invariant under point order permutation. We test this encoding method in numerical simulations using a
quantum support vector machine to classify point clouds drawn from either spherical or toroidal geometries. We show that a
permutation invariant encoding improves in accuracy as the number of points contained in the point cloud increases, while
non-invariant quantum encodings decrease in accuracy. This demonstrates that by implementing permutation invariance into
the encoding, the model exhibits improved generalisation.

Keywords Quantum machine learning · Quantum computing · Geometric quantum machine learning · Quantum encoding
methods · 3D computer vision · Point cloud data

1 Introduction

Quantum machine learning (QML) is a promising can-
didate for real-world applications of quantum technology
(Biamonte et al. 2017). In recent years, a multitude of
different techniques have been developed with the aim of
using quantum computers to performmachine learning tasks
(Zeguendry et al. 2023; Sajjan et al. 2022) and QML tech-
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niques have been applied to a wide range of fields, including
particle physics (Heredge et al. 2021; Tüysüz et al. 2021),
medical data (Pregnolato and Zizzi 2023; Azevedo et al.
2022), aerodynamics (Yuan et al. 2022) and natural language
processing (Meichanetzidis et al. 2023). In many QML tech-
niques, classical data is encoded into an exponentially larger
quantum spacewhere there is the possibility that the datamay
be separated more easily (Havlíček et al. 2019). This is a pro-
posed source of quantum advantage over classical routines
in the case that the quantum circuit performing the encoding
cannot be efficiently simulated classically (Liu et al. 2021).
When trying to find suitable QML techniques for real-world
data, it is important to use an advantageous encoding method
for that data. A current active area of research is the search
for methods to encode or represent different types of data
in quantum devices, for example, finding techniques to rep-
resent two-dimensional images (Lisnichenko and Protasov
2022; Anand et al. 2022; West et al. 2022).

Many QML techniques, such as the quantum support vec-
tormachine (QSVM) (Havlíček et al. 2019), aremotivated by
the idea that encoding classical data into a higher dimensional
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quantum Hilbert space can simplify data classification. The
circuit architecture used to encode classical data into a quan-
tum state influences the class of functions that a QML
algorithm can learn (Schuld et al. 2021). Therefore, it is
critical to find an optimal quantum encoding for the data
in any QML method. However, some QML techniques do
not generalise well as the number of qubits, and hence, the
dimensionality of the Hilbert space increases (Huang et al.
2021). To improve generalisation, attempts have been made
to reduce the expressivity of QML methods by introducing
some form of inductive bias into the method. These attempts
include projected kernels, where only a limited number of
qubits are measured, thus projecting to a lower-dimensional
space (Kübler et al. 2021), introducing inductive bias through
the tuning of quantum kernel hyperparameters (Shaydulin
and Wild 2022), and variational state-based approaches that
are capable of encoding inductive biases directly into quan-
tum states, which have been shown to improve generalisation
in the context of learning zero-sum games (Bowles et al.
2023). In this work, we present a method of introducing
an inductive bias into a quantum encoding when the under-
lying data exhibits a permutation symmetry. By projecting
our quantum-encoded state onto a symmetric subspace, this
method exponentially reduces the encoding’s dimensional-
ity, leading to improved generalisation in our experiments.

In this study, we consider point cloud data types, which
are three-dimensional images that consist of a set of three-
dimensional points. The point cloud may represent various
objects (e.g. piano, car, tree) that need to be classified. This
could be in the context of identifying pedestrians in self-
driving vehicles (Chen et al. 2021) or classifying different
particle decay events in a high-energy physics experiment
(Mikuni and Canelli 2021). Point clouds are a natural data
type to study when investigating the effects of permutation
invariant machine learning methods. While they may also
occasionally exhibit internal data-specific symmetries such
as rotation or translation symmetry, we focus here on their
point order permutation symmetry when they are input into
a model and present a method of encoding this symmetry
into a quantum state. Permutation symmetry is a property
point cloud data possesses that is not normally captured in
a classical input vector. There is no inherent ordering to the
points in a point cloud. Therefore, if an order is assigned to
the points in a point cloud, then it should be invariant under
any permutation of these point labels. Classical computers
are generally forced to assign an order to the points pi when
they are input, since the data must be stored in an array in
memory that has an intrinsic ordering to the points. Consider
the input array [p1,p2]; exchanging two points in this array
will produce a different array [p2,p1] which may give a dif-
ferent result when input into a given algorithm. In general, a
machine learning model classifier model f ([p1,p2]), with-

out purposeful construction, will return a different answer if
given a different permutation of the same points in the input,
f ([p1,p2]) �= f ([p2,p1]), while in reality the point cloud
would be physically unchanged by this reordering. By creat-
ing an encoding that is invariant to the permutation of point
ordering, we can exponentially reduce the effective dimen-
sionality of the encoded states in a manner that respects an
underlying symmetry of the data. An example point cloud is
shown in Fig. 1 demonstrating the permutation invariance of
points in the input.

Fig. 1 (a) Example point cloud generated using the Point-E demo by
OpenAI using the prompt “Grand Piano” (Nichol et al. 2022). Distin-
guishing between different objects could be a possible classification
task that uses point cloud data. (b) Demonstration of point permuta-
tion symmetry in the input for a point cloud. Changing the order of
points in a point cloud does not have an effect on the point cloud itself.
However, when stored as a classical input array in computer memory,
exchanging point order produces a different array. Unless it has been
purposely constructed otherwise, as is the case for PointNet (Qi et al.
2016), a general machine learning classifier function, denoted by f ,
may produce a different classification output given a different order
permutation of the point order in its input f (x1, y1, z1, x2, y2, z2) �=
f (x2, y2, z2, x1, y1, z1)
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There are other machine learning methods that aim to
respect this permutation symmetry by building symmetric
functions into themodel, such as themax pool function in the
classical PointNet (Qi et al. 2016) and the proposed quantum
extension of PointNet (Shi et al. 2020). Similarly, techniques
in geometric quantum machine learning have shown it is
possible to construct a variational circuit that respects qubit
permutation (and hence point permutation if one were to
encode a single point per qubit) (Meyer et al. 2023; Nguyen
et al. 2022; Schatzki et al. 2022; Kazi et al. 2023). The
technique we discuss in this work differs in that we focus
on implementing these symmetries into the encoding cir-
cuit, meaning that the classification part of the algorithm
is free to take any form. Recent work suggests that permu-
tation invariant operators, such as permutation equivariant
variational circuits, may be classically tractable to simulate
under certain conditions (Anschuetz et al. 2023). In our case,
the classification part does not necessarily need to be per-
mutation equivariant, as permutation invariance is captured
in the encoding step. More broadly, the recent advance-
ments in identifying the prerequisites for the emergence of
barren plateaus (Fontana et al. 2023; Ragone et al. 2023)
have prompted inquiries into the classical simulatability of
variational quantum circuits devoid of such barren plateaus
(Cerezo et al. 2023). In this work, we introduce techniques to
include symmetry in the encoding step of the circuit, mean-
ing the variational trainability/simulatability issue does not
need to be considered here as we can avoid using a quantum
variational classifier with this technique.

2 Permutation invariant encoding

In this section,we theoretically outline the structure andprop-
erties of a permutation invariant quantum state within the
context of point cloud data. Point cloudswere chosen as a nat-
ural use case of this encoding; however, this could be applica-
ble to any data that exhibits permutation symmetry. We con-
sider a point cloud data input, denoted as X , to be an array of
values in the form X = [x1, y1, z1, x2, y2, z2, ..., xn, yn, zn].
Each point cloud therefore consists of n points,where a single
point in the point cloud can be denoted as pi = [xi , yi , zi ].
Each point is first encoded into a quantum state |pi 〉 using a
quantum circuit U , consisting of k qubits, that maps three-
dimensional classical data pi to a 2k dimensional quantum

state, U : R3 −→ R2k . We implement this gate on an ini-
tial |0〉⊗k state such that |pi 〉 = U (pi )|0〉⊗k . While in our
experiments U was implemented using angle encoding, this
general technique could be used for any encoding strategy. To
enforce the point-exchange invariance, we construct a state
that is in a symmetric superposition of all |pi 〉 permutation

states. For a point cloud X with only two points, n = 2, this
can be represented as

|Xs〉 = N (|p1〉|p2〉 + |p2〉|p1〉), (1)

which is invariant under permutation of the order of the two
points. Regarding the normalisation constantN , it should be
noted that depending on the data and the encoding method
U , that the initial states |p1〉 and |p2〉 may or may not be
orthogonal. Hence, the normalisation constant N for the 2
qubit case, in general, is

N = 1
√
2(1+|〈p1|p2〉|2)

. (2)

The point order invariant encoded state |Xs〉 can then be
evaluated using techniques such asQSVMor passed to a vari-
ational method. As the input quantum state is now in a per-
mutation invariant state, the quantumclassification algorithm
g(|Xs〉) is free to have any design and we are guaranteed to
have permutation invariance under point order permutation

as g
(
N (|p1〉|p2〉+|p2〉|p1〉)

)
= g

(
N (|p2〉|p1〉+|p1〉|p2〉)

)

regardless of the structure of the quantum classification func-
tion g. This contrasts to a general machine learning classifier
f ([p1,p2]), accepting its input as a classical array, that may
give different results depending on the order of points in the
input such that f ([p1,p2]) �= f ([p2,p1]). In the case of n
points, we wish to construct the symmetric state defined by

|Xs〉 = Nn

∑

σ∈Sn
|pσ1

〉|pσ2
〉...|pσn

〉, (3)

where we sum over all permutations in the symmetric group
Sn . This symmetric state will be identical under any permu-
tation of points.

By combining the quantum states into a symmetric super-
position state, we utilise the inherent quantum property of
state superposition to implement an underlying symmetry of
the data structure into the encoding. This symmetry exploita-
tion allows for a reduction in the expressivity of the encoding,
by exponentially reducing the effective dimensionality of the
state. This can be demonstrated by considering a three-qubit
state. In general, a three-qubit state is 23 = 8 dimensional
and can be written as

|ψ〉 = α0|0〉|0〉|0〉
+ α1|1〉|0〉|0〉 + α2|0〉|1〉|0〉 + α3|0〉|0〉|1〉
+ α4|1〉|1〉|0〉 + α5|1〉|0〉|1〉 + α6|0〉|1〉|1〉
+ α7|1〉|1〉|1〉.

(4)

If we now insist that the state |ψ〉 is fully symmetric with
respect to its qubits, then by exchanging qubits in Eq. 4 and
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ensuring that the state remains unchanged under this action,
it can be seen thatα1 = α2 = α3 andα4 = α5 = α6 (Barenco
et al. 1996). Hence, a three-qubit symmetric quantum state
is effectively 4 dimensional with the following basis states

|ψ〉 =β0|0〉|0〉|0〉
+ β1(|1〉|0〉|0〉 + |0〉|1〉|0〉 + |0〉|0〉|1〉)
+ β2(|1〉|1〉|0〉 + |1〉|0〉|1〉 + |0〉|1〉|1〉)
+ β3|1〉|1〉|1〉.

(5)

It follows that an n qubit system that is permutation invari-
ant with respect to its qubits has dimension n + 1, which is
exponentially smaller than 2n (Barenco et al. 1996). In the
general case, where each initial state pi has k qubits, it has
been shown that the dimension of this symmetric state is

n+2k−1C2k−1 = 1

(2k − 1)!n
2k−1 + O(n2

k−2), (6)

which exhibits polynomial scaling in n, in contrast to the
general case where the dimension is (2k)n and the dimension
scales exponentially (Barenco et al. 1996). Note that if the
data requires, such as in cases of underfitting the training data,
we retain the ability to reintroduce some expressivity through
breaking of the symmetry or by increasing the number of
qubits k used per point.

For the theoretical results in this work, we used Qiskit
statevector_simulator (Abraham et al. 2019) along with an
analytical symmetrisation process as described in Algorithm 1
that mathematically constructs the permutation invariant
quantum states. A discussion around possible implementa-
tions of this procedure on a real quantummachine is the focus
of Sect. 4.

3 Methodology

We compare the performance of various quantum and clas-
sical machine learning techniques when applied to the
classification of two different point cloud data distributions:
a sphere and a torus. Numerical results were found using
Qiskit statevector_simulator (Abraham et al. 2019) for the
initial point encodings, followed by standard operations to
construct the symmetrised states and kernel entry matrices,
as will be further detailed in this section.

3.1 Dataset specifications

To generate the data, we randomly sample n points from the
surface of each shape to form a point cloud for each dis-
tribution. This sampling process is repeated until there are
N point cloud samples in total, dividing the resulting data
into training and testing sets with 80% and 20% of the data,

Algorithm1Encode point cloud datawith point permutation
invariance using Qiskit statevector_simulator and analytical
symmetrisation. This algorithm demonstrates the mathemat-
ical structure of the encoding intuitively at the cost of being
computationally inefficient by containing O(n!) classical
computations.
Input: Array X of n points pi where 0 < i ≤ n
1: for i in (0, n] do
2: U (pi )|0〉⊗k = |pi 〉 on separate registers
3: Evaluate |pi 〉 using statevector_simulator
4: end for
5: Initialise empty symmetric statevector |Xs〉
6: for all permutations σ in symmetric group Sn do
7: |Xσ 〉 ⇐ |pσ1

〉
8: j ⇐ 2
9: while j ≤ n do
10: |Xσ 〉 ⇐ |Xσ 〉 ⊗ |pσ j

〉
11: j ⇐ j + 1
12: end while
13: |Xs〉 ⇐ |Xs〉 + |Xσ 〉
14: end for
15: Normalise |Xs〉 ⇐ |Xs 〉√〈Xs |Xs 〉
16: Return |Xs〉
Output: Permutation invariant statevector |Xs〉

respectively. The performance of variousmodels is then eval-
uated on the testing set. The entire process is then repeated
with new randomly generated datasets and we record the
average test accuracy for 10 repeated experiments.

The sphere and torus distributions were both centred at
the origin. To ensure that the sphere and torus distributions
are as similar as possible, the torus was scaled such that the
average magnitude of the points that lie on the torus distribu-
tion surface matches the radius of the sphere. An illustration
of the two distributions and an example point cloud sample
is shown in Fig. 2. All data was normalised to be in the range
π
2 to −π

2 to allow it to be encoded as rotation angles.

3.2 Encoding process for individual points

We tested a variety of quantumand classical techniques, sum-
marised in Table 1, where some of the algorithms contain
permutation invariance and others do not. In order to focus
entirely on the encoding method, without having to consider
the structure of a variational component, we used a QSVM
to classify the data with various choices of encoding cir-
cuits. For the order permutation invariant encoding, we tested
several different point encoding circuits U for encoding the
individual points, showing results for the best-performing
circuit denoted Uα alongside a more generic point encoding
circuit that uses the instantaneous quantumpolynomial (IQP)
encoding (Havlíček et al. 2019), denoted byUβ . We provide
a brief description of the different methods reported:
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Fig. 2 (Left) Sphere distribution and (right) torus distribution surfaces
from which points are sampled to form point clouds. The red points
in each figure represent an example point cloud with n = 5 points
drawn from the corresponding distribution. Each dataset is generated
by randomly sampling these distributions to create a set of N different
point clouds

• Permutation Invariant QSVM(Best)—aQSVMwith the
permutation invariant encoding method using the point
encoding circuit Uα that provided the highest accuracy,
as shown in Fig. 3.

Table 1 Summary of the various algorithms tested indicating whether
they contain permutation invariance in their design and whether they
are quantum or classical approaches

Quantum Classical

Permutation
invariant

Permutation Invariant
QSVM (Best)

PointNet

Permutation Invariant IQP
QSVM

Non-invariant IQP Encoding
QSVM

RBF Kernel
SVM

• Permutation Invariant IQP QSVM — a QSVM with the
permutation invariant encoding method where the point
encoding circuit Uβ is an IQP encoding, as shown in
Fig. 4. This is to provide a more fair comparison between
the regular IQP encoding and the invariant encoding.

• IQP Encoding QSVM — a QSVM using the IQP
encoding applied to all variables in the input (without
permutation invariance) as described by Havlíček et al.
(2019).

• PointNet — classical point cloud classifier algorithm
utilising neural networks with a symmetric max pool
function to ensure point order permutation invariance (Qi
et al. 2016). PointNet was run over 100 training epochs.

• RBFKernel SVM—classical SVMusing the radial basis
function (RBF) kernel. Hyperparameters were optimised
using grid search over a cross-validation set.

Our results were obtained from noiseless simulations
using Qiskit statevector_simulator (Abraham et al. 2019).
This allows us to obtain a quantum state |pi 〉 for each point
in the point cloud. Notably as we only simulate a single point
at a time, and each point uses k qubits, the scaling of this
simulation step is at worst O(n2k) still maintaining a linear
scaling in the number of points n. A fully quantum imple-
mentation would scale O(nk) in the number of qubits used.

3.3 Symmetric state preparation

While a quantum circuit capable of probabilistically prepar-
ing symmetric superposition states is shown in Sect. 4, for

Fig. 3 a Pink boxes represent parameterised Z rotation gates. b Single
layer of the best-performing point encoding circuit Uα found for the
sphere/torus dataset during our investigation, which is used for results
titled Permutation Invariant QSVM (Best)
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Fig. 4 The point encoding circuit Uβ that uses the IQP encoding
(Havlíček et al. 2019), which corresponds to results titled Permuta-
tion Invariant IQP QSVM. The entanglement function was defined as
f (x, y) = 1

π
(π − x)(π − y)

relatively small-scale classical simulations, a brute force
method can be used to calculate all the permutations of the
quantum states |pi 〉, sum them together, and then normalise
the resulting state to find the symmetrised state

|Xs〉 = Nn

∑

σ∈Sn
|pσ1

〉|pσ2
〉...|pσn

〉. (7)

This brute force classical technique scales as O(n!),
which would quickly become infeasible for large n. The
fully quantum implementation discussed in Sect. 4 utilises
kn + 1

2kn(kn − 1) qubits and hence would exhibit scaling
of O(k2n2) which is more feasible for large n than classical
alternatives. An extra consideration in a real quantum device
is that the state is only prepared with a certain success prob-
ability; hence, the true scaling of the quantum model may be
worse than O(k2n2). However, our empirical investigation
in Appendix F suggests the additional scaling would not be
worse than polynomial.

3.4 Quantum support vector machine integration

After preparing a symmetrised quantum state |Xs〉, the point
cloud X has successfully been encoded in a manner which
is invariant to permutations of the point orderings. This is a
key novel proposal of this work, as it subsequently allows
any classification algorithm that utilises this symmetric state
as an input to remain permutation invariant. This is different
to many other approaches in the literature that often rely on
utilising a permutation equivariant encoding followed by a
permutation equivariant variational ansazt to guarantee label
invariance in the overall model (Meyer et al. 2023;West et al.
2024).

As we have implemented permutation invariance into the
quantum encoding step itself, we are able to utilise any
classification technique and retain permutation invariance.
For this study, we chose to use a quantum support vector
machine (QSVM) to perform the classification. A support
vector machine (SVM) works by finding a hyperplane that
maximally separates data x that has been encoded into some
higher dimensional space asφ(x). A crucial feature of a SVM
is that the explicit form of all φ(xi ) need not be known,
only the inner product between them for all data points

Ki, j = φ(xi )Tφ(x j ),with the entries forming amatrix called
the kernel matrix. It has been proposed that QSVMs can per-
form classification by using the overlap of quantum states as
the kernel entries (Havlíček et al. 2019). In this case, the ker-
nel entries are given by Ki, j =|〈ψ(Xi )|ψ(X j )〉|2. Once we
have prepared the symmetric quantum states |Xi 〉 for each
data point Xi , then we can calculate the kernel entries by
using a swap test, or otherwise, to calculate Ki, j =|〈Xi |X j 〉|2
(Havlíček et al. 2019). In the case of classical simulations, we
can directly calculate the inner product between the vector
representation of the quantum states, which in general would
scale as O(2n).

3.5 Results

Figure 5 displays how the various techniques scale as the
number of points in the point cloud increases. Although
more points providemore information, the non-invariant IQP
QSVM’s performance decreases as the number of points
increases. This finding is consistent with previous research
indicating that generic QSVM methods may struggle to
generalise as the number of qubits increases (Huang et al.
2021). In contrast, the permutation invariant IQP encoding
exhibits an improvement in accuracy as the number of points
increases. This result indicates that the symmetrisation tech-
nique may help prevent poor scaling due to the reduced
expressivity in the encoding. Additionally, our tests reveal
that using the best encoding circuit Uα produces a clas-
sifier that can outperform the classical PointNet algorithm
for this dataset. This is further demonstrated in the results
depicted in Table 2 which shows that for small datasets, the
permutation invariant quantum encoding outperforms both

Fig. 5 The average accuracy over 10 repeated experiments as the num-
ber of points in each point cloud increases. Shaded regions indicate the
error bounds on the average accuracy. Each experiment consists of a
random dataset sample of 500 point clouds. Each point cloud is gen-
erated by randomly sampling a number of points from either the torus
or the sphere distribution. The training and testing data contained 80%
and 20% of the total data respectively
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Table 2 The average accuracy over 10 repeated experiments

Algorithm Accuracy

Permutation Invariant (Best) 0.950 ± 0.015

PointNet (Classical) 0.765 ± 0.038

RBF Kernel SVM (Classical) 0.595 ± 0.022

Permutation Invariant IQP QSVM 0.840 ± 0.038

IQP Encoding QSVM 0.505 ± 0.036

Each experiment consists of a random dataset sample of 100
point clouds consisting of 3 points each run using Qiskit statevec-
tor_simulator. The training and testing data contained 80% and 20% of
the total data, respectively

non-invariant quantum/classical methods and the permuta-
tion invariant classical method PointNet.

The effect of increasing the size of the data sample is
shown in Fig. 6. In this case, more data is available, but
the number of points, and thus qubits is fixed. All algo-
rithms tested generally improve with more data samples,
as expected. Comparing again to Fig. 5 shows that the IQP
encoding, while improving with more data samples gener-
ally, is specifically struggling when there is an increase in
qubits. This problem is not apparent with the permutation
invariant encodings.

For larger data samples, PointNet starts to approach the
accuracy of the permutation invariant QSVM encoding. It
is worth noting that PointNet uses deep neural networks
consisting of a total of 3.5 million parameters that can be
better utilised with a large amount of training data. There are
also additional aspects to the PointNet algorithm that tackle

Fig. 6 The average accuracy over 10 repeated experiments as the num-
ber of samples in the training and testing dataset increases. Shaded
regions indicate the error bounds on the average accuracy. Each exper-
iment consists of a random dataset sample of point clouds. Each point
cloud is generated by randomly sampling 3 points from either the torus
or the sphere distribution. The training and testing data contained 80%
and 20% of the total data respectively

geometric symmetries, such as rotational invariance, in point
cloud data that have not been implemented in this quantum
approach. Implementing these geometric symmetries into the
encoding could be a subject of further investigation.

3.6 Quantum errors

If during the encoding step the points are subject to a source
quantum noise, then it is expected that the effectiveness of
the overall classification will decrease. In order to investigate
this effect, we considered point clouds where the individual
points had initially been encoded into a state |p1〉|p2〉...|pn〉.
We then introduced random errors to these initial point states
by generating a random Hermitian matrix Hγ and subse-
quently applying the unitary matrix

Uγ = eiεHγ , (8)

where ε parameterises the magnitude of the error. We gener-
ate n different unitaries in this manner and one to each qubit
in the state |p1〉|p2〉...|pn〉.

Figure 7 shows how the QSVM classifier performs after
errors have been applied to the initial states, either with
or without the symmetrisation process applied to the state
|p1〉|p2〉...|pn〉. It can be seen that the advantage obtained
by the symmetrisation procedure is diminished at a certain
threshold of noise in the initial point states. This suggests a
possible drawback of the symmetrisationmethod in thiswork
is that it may not exhibit an advantage if the initial input states
are accompanied by a certain amount of noise.

Fig. 7 Mean test accuracy of the QSVM classifier as the noise applied
to the initial point states is increased. Blue indicates that the permutation
invariant symmetrisation suggested in this work was performed; green
indicates no symmetrisation procedure was used (the encoding process
simply consisted of the initial point states in one particular order). Mean
test accuracy reported is the mean average of ten repeated experiments,
with the shaded region indicating uncertainty of the mean. The points
were encoded using the IQP encoding as described in Sect. 3. A total
of 200 point cloud samples were used per experiment
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4 Symmetric state projection circuit
implementation

The results in Sect. 3 suggest that permutation invariant
encodings could be useful for point cloud data. These results
were however created using analytical simulations, which
required O(n!) classical operations. We now present a dis-
cussion on the practical aspects of implementing them the
encoding directly onto a real quantum device.

4.1 Symmetric projection for two points

Initially let us consider a point cloud X consisting of only two
points, p1 and p2. As described previously, these points are
sepately encoded into quantum states represented by |p1〉
and |p2〉. It has been shown that the symmetrisation pro-
cess |p1〉|p2〉 ⇒ N (|p1〉|p2〉 + |p2〉|p1〉) cannot be done
perfectly by a unitary transformation (Buzek and Hillery
2000). However, it can be implemented in a probabilis-
tic manner using controlled swap gates and ancilla qubits
(Barenco et al. 1996). For a point cloud data sample that con-
tains only two points, we start with each point having been
encoded in a separate quantum state |p1〉 = U (p1)|0〉⊗k and
|p2〉 = U (p2)|0〉⊗k , using an encoding circuit U . The sym-
metrisation procedure needs to produce the state

|Xs〉 = N (|p1〉|p2〉 + |p2〉|p1〉),

such that exchanging the ordering of the two points in the
input will leave this new quantum state invariant. This can
be achieved in the two-qubit case by preparing an ancilla
qubit using a Hadamard gate in the state 1√

2
(|0〉 + |1〉) and

using it to apply a controlled swap gate to the two input states
|p1〉 and |p2〉, followed by another Hadamard gate applied to
the ancilla qubit. This action leaves the system in the state

1

2
|0〉(|p1〉|p2〉+|p2〉|p1〉)+ 1

2
|1〉((|p1〉|p2〉−|p2〉|p1〉), (9)

which contains both the permutation symmetrised and anti-
symmetrised states. By measuring the ancilla qubit and
discarding any result when the ancilla qubit is in the |1〉 state
(corresponding to the anti-symmetric state), we arrive at the
permutation symmetrised state whenever the ancilla qubit is
measured in the |0〉 state. Inspecting Eq. 9, it can be seen that
the probability of measuring the ancilla qubit in the desired
|0〉 state is 1

2 (1+|〈p1|p2〉|2) (Buzek andHillery 2000), which
means that in the worst-case scenario, when the input states
are orthogonal, the probability is 1

2 . This symmetrisation pro-
cedure for a two-qubit system is illustrated in Fig. 8.

Fig. 8 Permutation symmetrisation circuit for two points. The circuit
consists of a |p1〉 state, a |p2〉 state, and an ancilla qubit that performs
a controlled swap operation. The final state of this circuit is given by
|X〉 = 1

2 |0〉(|p1〉|p2〉+|p2〉|p1〉)+ 1
2 |1〉(|p1〉|p2〉−|p2〉|p1〉). This state

is symmetric when the ancilla qubit is measured in the state |0〉 and anti-
symmetric when it is measured in the state |1〉. Bymeasuring the ancilla
qubit and discarding any measurements in the state |1〉, we are left with
the desired symmetric quantum state |Xs〉 = N (|p1〉|p2〉 + |p2〉|p1〉)

4.2 Generalisation to n points

This procedure can be generalised to n qubits using the tech-
nique outlined by Barenco et al. (1996), which involves the
iterative application of controlled swap symmetrisation oper-
ations using ancilla qubits. In this technique, we group up the
ancilla qubits into n − 1 collections. The collection indexed
by f will contain f ancilla qubits. The unitary operator V f

prepares f ancilla qubits into an equal superposition of all
stateswithHammingweight 0 and 1. This state can bewritten
as

1√
f + 1

(|00...0〉+ |10...0〉+ |01...0〉+ ...+ |00...1〉). (10)

This is carried out for the collections labelled from f = 1 to
f = n − 1; hence, in total, there are c = 1

2n(n − 1) ancilla
qubits. Construction of the gates that can implement V f is
discussed in Appendix E.

These collections of ancilla qubits are then used to apply
controlled swap gates onto the input states. This is done
in an iterative manner. Unitary V1 will prepare the state
1√
2
(|0〉+ |1〉), which will control a swap gate between states

|p1〉 and |p2〉. This produces 1√
2
(|p1〉|p2〉 + |p2〉|p1〉) as a

final outcome. Considering the group elements of Sn , we
could consider the action of this ancilla as acting on the ini-
tial statewith a combination of I+σ12. Subsequently, unitary
V2 prepares the state 1√

3
(|00〉+ |01〉+ |10〉), which controls

swaps between the the third qubit and the first two in the state
1√
2
(|p1〉|p2〉 + |p2〉|p1〉) ⊗ |p3〉. This resorts in the creation

of the state

1√
6

(|p1〉|p2〉|p3〉 + |p3〉|p2〉|p1〉 + |p1〉|p3〉|p1〉
+|p2〉|p1〉|p3〉 + |p3〉|p1〉|p2〉 + |p2〉|p3〉|p1〉

)
.
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To get a clearer view, one may consider these two steps as
applying the permutations

(I +σ12)(I +σ13+σ23)= I +σ12+σ13+σ23+σ312+σ231.

(11)

As we iteratively multiply by the sum of all two-point per-
mutations for each new point added in the iteration, the end
result is a combination of all possible permutations in Sn ,
providing an equal superpositon of all permutations.

This process is followed by an application of the inverse
of the unitary operations V †

f on the ancilla qubits before
their measurement. This recursively applies every possible
qubit permutation to the input states, resulting in the desired
symmetric superposition state when the ancilla qubits are
measured in the state |0〉⊗c. An example circuit for a four-
qubit scenario is shown in Fig. 9 and an example of the
generalisation to n qubits is shown in Fig. 10. When each
state is composed of multiple qubits, no extra ancilla qubits
are necessary. Instead, additional controlled swap gates are
applied to the extra qubits in the same manner (Buzek and
Hillery 2000). This is demonstrated in Fig. 11, which shows
the symmetrisation of a two-dimensional point cloud con-
sisting of only two points.

In general, one will require 1
2n(n − 1) ancilla qubits and

1
2n(n− 1) controlled swap gates to perform the symmetrisa-

Fig. 9 Generalisation of the permutation symmetrisation process, as
proposed by Barenco et al. (1996), applied to a circuit containing four
input states. The unitary operators V3 perform a transformation on
the ancilla qubits such that they are in the state 1√

4
(|000〉 + |100〉 +

|010〉 + |001〉). Similarly, V2 prepares 1√
3
(|00〉 + |10〉 + |01〉) and V1

prepares 1√
2
(|0〉 + |1〉). Through implementing controlled swap gates,

these ancilla qubits will perform every possible permutation of the input
states. This results in an equal superposition of every permutation of the
input states after the controlled swap gates are applied and the ancilla
qubits, after having V † applied, are measured to be in the |000000〉
state. This process can be extended to any number of input states

Fig. 10 Generalisation of the permutation symmetrisation process, as
proposed by Barenco et al. (1996), applied to a circuit containing n
input states. The unitary operators Vn−1 perform a transformation on the
ancilla qubits such that they are in the state with an equal superposition
of all basis states with hamming weight zero or one. If the ancilla qubits
are measured to be in the zero state, then the input states will have been
initialised into a superpositon of every possible permutation

tion. We are also required to implement unitary gates V f on
the ancilla qubits which can be created out of a single qubit
gate and f −1 two qubit gates. Hence counting the V †

f gates
as well, we would require n(n − 1) two qubit gates to deal
with the ancilla unitaries. Overall the number of gates and
qubits for the quantum algorithm scales O(n2).

One drawback of this probabilistic implementation is the
need to discard any states when the ancilla qubits are not in
the state |0〉⊗c. The probability of this happening depends
on the states themselves, with the probability being 1 if
the input states happen to be all identical, and decreasing
as the overlap between states decreases. The probability of
measuring the ancilla qubit in the state |0〉 for the case of
two qubits can be shown to be 1

2 (1+|〈p1|p2〉|2) (Buzek and
Hillery 2000). In this work, we utilised angle encoding for
the point encoding circuit U to produce the input states |p1〉
and |p2〉. This technique results in a relatively low probability
for two specific data points to be orthogonal. As a result, the
average probability of success remains relatively high even
with an increase in the number of data points n. Additional
details and supporting evidence for this claim are presented
in Appendix F.
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Fig. 11 Permutation symmetrisation of a 2-dimensional point cloud
consisting of two points. On the left side, we first create an entangled
state for each point using an encoding function U . On the right-hand
side, we implement the symmetrisation process for a two-state system.
If we discard any measurements in which the ancilla qubit is in the state
|1〉, we will have prepared a symmetric encoding of this point cloud

Although this method would be viable for small point
clouds, the scaling of the probabilistic ancilla-based sym-
metrisation becomes problematicwhen a point cloud consists
of a large number of points. This is because as the num-
ber of ancilla qubits increases, so does the number of gates
in the circuit, as well as the number of states that need to
be discarded. An alternative approach could be to approx-
imately implement these states by producing states of the
form |Xe〉 ≈ Ne(|p1〉|p2〉+|p2〉|p1〉). This could potentially
be achieved using techniques such as genetic state prepara-
tion algorithms (Creevey et al. 2023) or quantum generative
adversarial networks (Zoufal et al. 2019). Creating approx-
imate symmetric states within some error ε could even be
used to introduce a parameterised symmetry-breaking term
that may help fine-tune the model, as has been shown to be
useful in some variational quantumeigensolvers (Park 2021).
A parameterised method to increase the dimensionality of
the problem through symmetry breakingwould allow control
over the expressibility of the encoding, as well as potentially
making the encoding harder to simulate classically.

Alternatively, there is also the possibility of not dis-
carding any states and instead using other superposition
states (mixtures of anti-symmetric and symmetric permu-
tation terms with respect to different points). For example,
in the two-point case, one could accept the anti-symmetric
state |Xa〉 = Na(|p1〉|p2〉− |p2〉|p1〉). This state will exhibit
a quasi-symmetry through the fact that permuting points
results in a phase shift in the quantum state, but keeps their
relativemagnitudes intact. The effect that quasi-symmetric or
approximately symmetric encodings would have on a QML
technique, especially in situations where the model may be
able to learn to overcome this peculiarity, is a possible subject
for further research.

5 Conclusion

This study presents a method for encoding point cloud data
into a quantum state that is invariant under point order permu-
tation, using a symmetrisation process to create a quantum
superposition of all order permutations of the points. This
exponentially reduces the dimensionality of the encoding,
leading to an encoding that exhibits better generalisation.
This was demonstrated by noting that the permutation invari-
ant IQP encoding accuracy scaled up as the number of points
increased, whereas a non-invariant IQP encoding performed
worse as the number of points increased. These findings
suggest that this method may be a promising solution to
the problem of QSVM generalisation performance worsen-
ing with increasing qubits (Kübler et al. 2021; Huang et al.
2021), and may have potential applications in future QML
algorithms in various fields such as object recognition and
particle physics.

This work demonstrates an encoding method to improve
generalisation for permutation invariant data; however, it
does not necessarily guarantee a quantum advantage exists.
Recently there have been results showing that qubit permu-
tation invariant operators may be classically tractable under
certain conditions due to their reduction in dimensional-
ity (Anschuetz et al. 2023). A key difference between our
work and methods that utilise equivariant variational mod-
els (Meyer et al. 2023; Nguyen et al. 2022; Schatzki et al.
2022; Kazi et al. 2023) is that the method presented in this
paper implements permutation invariance directly into the
encoding step, without considering the classification model.
Hence, the variational model does not need to be permu-
tation invariant in order to capture the symmetry. Further
investigation into methods of efficient implementation could
help improve the technique by overcoming problems such as
the O(n2) scaling of ancilla qubits in the probabilistic sym-
metrisation circuit (Barenco et al. 1996). Additionally, there
have recently been efficient methods demonstrated for find-
ing expectation values of symmetric states that could be of
use in this technique (Zhang and Tong 2023).

Future work could focus on extending this encoding to
other types of symmetries, such as rotational symmetry or
translation symmetry, which could be relevant for point
clouds and other data types such as images or time series.
There is also the possible challenge of finding an efficient
implementation on real devices and assessing how the encod-
ings will perform in the presence of noise. The technique
suggested here could beused for anydata that exhibits permu-
tation invariance, including cases where the input data itself
is quantum. Real applicationswill be dependent on the rate of
technological advancement of quantum machines; however,
near-term use cases could focus on point clouds with a small
number of points, as is often the case in particle physics data.
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Appendix A: Implementation

The methodology employed in this study utilises the quan-
tum support vector machine (QSVM) approach. The QSVM
technique is based on the encoding of classical data, denoted
by X , into a higher dimensional space to perform classifi-
cation tasks. The encoding circuit U establishes a mapping
U : X −→ |ψ(X)〉〈ψ(X)|, which transforms classical data
X into a quantum state represented by a density matrix
|ψ(X)〉〈ψ(X)|. Importantly, it is not necessary to explicitly
define the higher dimensional encoding |ψ(X)〉〈ψ(X)|, only
the inner product between data points in the higher dimen-
sional space, |〈ψ(Xi )|ψ(X j )〉|2. The inner product between
two points i and j becomes entry Ki, j of the kernel matrix
K . Consequently, the actual device implementation consists
of calculating the overlap between two quantum states to
approximate the kernel matrix, which is determined by mea-
suring the quantity Ki, j =|〈0|U(Xi )U†(X j )|0〉|2. Therefore,
an encoding circuitU is required, involving the proposed per-
mutation symmetrisation step and its conjugate version.

For the simulation implementation, we employed the
Qiskit statevector_simulator to compute the kernel using
mathematical methods for determining the exact symmet-
ric states. A point cloud X contains n points, with the
coordinates of point i given by pi . In our encoding circuit
U , each point pi is initially encoded into a quantum state
using the point encoding circuit U : pi −→ |pi 〉. As the
statevector_simulatorwas utilised in this process, the ampli-
tudes of all |pi 〉 are known. Thus, we can compute a permuta-
tion by finding the tensor product of all point quantum states.
We can subsequently sum over all n! possible permutations
to derive the permutation invariant statevector for the entire
point cloud |Xs〉 = N ∑

σ∈Sn |pσ−1(1)〉|pσ−1(2)〉...|pσ−1(n)〉
and normalising the state. Consequently, it is feasible to
directly compute the quantity |〈ψ(Xi )|ψ(X j )〉|2 for any two-
point clouds. This, in turn, allows for the calculation of the
entire kernel matrix for a dataset in a manner that is simpler
to calculate classically than simulating entire circuits. This
algorithm underpins the theoretical results presented in this
paper. The process of generating the permutation invariant
state is summarised in Algorithm 1.

In this study, we employed the QSVM method to con-
centrate solely on the encoding step, without considering
any variational ansatz structure. However, in practice, using
the real circuit implementation discussed in Sect. 4, the
QSVM approach may prove to be rather inefficient due to
the necessity of constructing two permutation invariant states
simultaneously when computing the kernel entries if using
this method. This means that in practice it may be more
efficient to use a variational ansatz circuit, placed after the
encoding circuit.

Appendix B: Distribution specifications

The torus distribution was generated using the following

x =
(
1 + cos(s)

)
cos(t) (B.1)

y =
(
1 + cos(s)

)
sin(t) (B.2)

z = sin(s). (B.3)

The average magnitude of the points in this distribution
was then calculated to be approximately 1.28.We then scaled
down the distribution by this factor so that the average mag-
nitude was 1, matching the radius of the sphere.

Appendix C: Noise generation specification

A random matrix A of complex numbers was generated
where the real and imaginary components for each entry
were drawn from a uniform distribution. This is converted
to a Hermitian matrix H using the process H = A† + A.
This was then normalised to have trace of zero through
H → H − Tr(H)I . This can then be used to find a uni-
tary matrix through exponentiation Uγ = eiγ H .

Appendix D: Probabilistic symmetric encod-
ing

Here we shall discuss the scaling of the worst-case proba-
bility of being able to prepare a symmetric states using the
circuit suggested by Barenco et al. (1996). Looking back at
the two-qubit example shown in Fig. 8, we start with a con-
trol qubit in the state 1√

2
(|0〉 + |1〉). This is the control qubit

for a controlled swap gate that acts on the two initial states
|p1〉 and |p2〉 resulting in the following state

1√
2
(|0〉|p1〉|p2〉 + |1〉|p2〉|p1〉). (D.4)

The procedure then applies a Hadamard gate to the control
qubit prior to measurement in the Z basis. This takes the state
to the following

|ψ〉 = 1

2
|0〉(|p1〉|p2〉 + |p2〉|p1〉)

+1

2
|1〉(|p1〉|p2〉 − |p2〉|p1〉) (D.5)

From here, the probability of measuring the ancilla qubit
in the |0〉 state is given by applying the probability operator
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P(0) = 〈ψ |
(
|0〉〈0| ⊗ I ⊗ I

)
|ψ〉. This can be written as

1

4

(
〈p1|〈p2| + 〈p2|〈p1|

)(
|p1〉|p2〉 + |p2〉|p1〉

)
, (D.6)

which can then be evaluated to

1

2

(
1+|〈p1|p2〉|2

)
. (D.7)

Note that the lowest probability this can reach is 1
2 in the case

where |〈p1|p2〉| = 0.Oncewemeasure |0〉 in the ancilla qubit
we will collapse the state into the symmetric superposition,
which is invariant under qubit permutation.We can write this
state as

|Xs〉 = N (|p1〉|p2〉 + |p2〉|p1〉).

In order to calculate the normalisation constant N , just
note that |〈Xs |Xs〉| = 1 and from this we can calculate

|N |2(2 + 2|〈p1|p2〉|2) = 1, (D.8)

N = 1
√
2(1+|〈p1|p2〉|2)

. (D.9)

Appendix E: Probabilistic symmetric ancilla
preparation

In the method proposed by Barenco et al. (1996), one of the
steps involves applying a unitary V f that prepares f ancilla
qubits into the state

1√
f + 1

(|00...0〉+|10...0〉+|01...0〉+ ...+|00...1〉) (E.10)

In order to create this state, we need to define two unitary
operators

R f = 1√
f + 1

(
1 −√

f√
f 1

)
, (E.11)

T f , j =

⎛

⎜⎜⎜⎜
⎝

1 0 0 0

0 1√
f− j+1

√
f− j√

f − j+1
0

0 −
√

f − j√
f− j+1

1√
f − j+1

0

0 0 0 1

⎞

⎟⎟⎟⎟
⎠

. (E.12)

If we have f control qubits initially in the |0〉⊗ f state.
Then, we can prepare the desired state by applying R f to
the first qubit and T f , j to adjacent qubits starting from j =
1 to j = f − 1. This entire procedure creates the unitary
operation V f . This is repeated for f = 1, 2, .., n − 1 where
we have n qubits in total to symmetrise, resulting in a total
of c = 1

2n(n − 1) ancilla qubits used.

Table 3 The average probability of producing permutation sym-
metrised states when given input states that were randomly initialised
using angle encoding via an X rotation gate (Barenco et al. 1996)

Initial states n Mean probability

2 0.842

3 0.752

4 0.630

5 0.530

This corresponds to the probability of measuring the ancilla qubits in
the state |0〉⊗c. Each circuit was run over 10,000 shots using Qiskit
qasm_simulator and the proportion of |0〉⊗c measured. This was then
repeated over 1000 separate runs, using randomly initialised input states
each time, reporting the average probability found over all runs. Note
that the lower bound for the probabilities ismuch lower, but it is unlikely
to be reached with input states randomly initialised via angle encoding

Appendix F: Success probability for symmet-
ric preparation

We present a small study of the probability of success when
using the probabilistic technique for preparing permutation
symmetric states described by Barenco et al. (1996). We use
angle encoding with random inputs to generate initial states
with the results shown in Table 3.

The lowest values of probability are found when initialis-
ing input states that are maximally orthogonal to each other.
Note that in practice the mean probability was found to be far
higher than this when using random initial states, due to the
fact that random states are unlikely to be maximally mutu-
ally orthogonal. Note that if basis state encoding was used,
instead of angle encoding, then the possibility of orthogonal
states would potentially be much higher, and thus the chance
of successfully symmetrising the states significantly lower.
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