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Abstract
Quantum neural networks are expected to be a promising application in near-term quantum computing, but face challenges
such as vanishing gradients during optimization and limited expressibility by a limited number of qubits and shallow circuits.
To mitigate these challenges, an approach using distributed quantum neural networks has been proposed to make a prediction
by approximating outputs of a large circuit using multiple small circuits. However, the approximation of a large circuit
requires an exponential number of small circuit evaluations. Here, we instead propose to distribute partitioned features over
multiple small quantum neural networks and use the ensemble of their expectation values to generate predictions. To verify
our distributed approach, we demonstrate ten class classification of the Semeion and MNIST handwritten digit datasets. The
results of the Semeion dataset imply that while our distributed approach may outperform a single quantum neural network in
classification performance, excessive partitioning reduces performance. Nevertheless, for the MNIST dataset, we succeeded
in ten class classification with exceeding 96% accuracy. Our proposed method not only achieved highly accurate predictions
for a large dataset but also reduced the hardware requirements for each quantum neural network compared to a large single
quantum neural network. Our results highlight distributed quantum neural networks as a promising direction for practical
quantum machine learning algorithms compatible with near-term quantum devices. We hope that our approach is useful for
exploring quantum machine learning applications.

Keywords Quantum machine learning · Quantum neural networks · Variational quantum algorithms ·
Distributed quantum neural networks · Distributed quantum machine learning

1 Introduction

Quantum machine learning has emerged as a promising
application for near-term quantum computers. Popular quan-
tum machine learning algorithms like quantum kernel meth-
ods (Havlíček et al. 2019; Schuld and Killoran 2019; Haug
et al. 2023) and quantum neural networks (QNNs) (Cerezo
et al. 2021; Mitarai et al. 2018; Farhi and Neven 2018;
Schuld et al. 2014) have been studied. QNNs, particularly
deep QNNs, exhibit remarkable expressibility (Abbas et al.
2021; Sim et al. 2019; Schuld et al. 2021), but the limitations
of current quantum devices, such as restricted qubit counts
and constrained circuit depths, reduce the model complexity.
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In addition, QNNs suffer from optimization problems of van-
ishing gradients during optimization (McClean et al. 2018;
Cerezo et al. 2021; Wang et al. 2021).

To mitigate these problems, a promising direction in
QNNs research is the development of distributed algorithms
across multiple quantum devices (Pira and Ferrie 2023). An
advantage of distributed QNNs is reported that a kind of
distributed QNNs offers an exponential reduction in com-
munication for inference and training compared to classical
neural networks using gradient descent optimization (Gilboa
and McClean 2023). Additionally, a distributed approach
allows us to accelerate simulation by directly partition-
ing a given problem for parallel computation, for example,
by distributing data to multiple quantum circuits for digit
recognition or distributing the calculation of partitioned
Hamiltonians for variational quantum eigensolvers (Du et al.
2021). Another approach enables us to approximate the eval-
uation of outputs of a large quantum circuit by reconstructing
it from the results of small quantum circuits (Marshall et al.
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2023). This is achieved by a circuit cutting technique, i.e.,
expressing two-qubit gates as a sum of the tensor products
of single-qubit unitaries (Bravyi et al. 2016). This approach,
however, requires an exponential number of small quantum
circuit evaluations. Further research into distributed QNNs
frameworks that fully utilize multiple quantum computers
while overcoming hardware limitations is required.

In this paper, we introduce a novel approach utilizing dis-
tributed QNNs for processing separately partitioned features
overmultipleQNNs to avoid using circuit cutting techniques.
Specifically, we partition the input features and separately
encode them into distinct QNNs. We then sum the expec-
tation values from the QNNs to make predictions. Unlike
the recent study in Ref. Wu et al. (2022) that used distributed
QNNsvia encoding significantly downscaled partitioned fea-
tures for feature extraction and another QNN to perform
binary classification of the MNIST dataset via encoding the
extracted features, our approach requires fewer qubits and
can handle the entire MNIST dataset of 28 × 28 features
and 60000 training data. So, our approach is more efficient
for large features and multi-class classification. We numeri-
cally investigate the performance of our proposed distributed
QNNs approach.

First, we compared the classification performance between
a single QNN and our distributed approach on the Semeion
handwritten digit dataset (SemeionHandwritten Digit 2008).
Due to the high dimensionality of the original 16 × 16-
dimensional data, which was beyond our simulation capa-
bilities especially when simulating it with a single large
QNN, we reduced the 16 × 16 features to 8 × 8 via aver-
age pooling. This preprocessed data was then classified
using either a single QNN or our distributed QNNs. The
results demonstrated that our distributed approach achieved
higher accuracy and lower loss compared to the single QNN.
Further, we extended our distributed method to handle the
original 16 × 16-dimensional data, employing configura-
tions of four and eight independent QNNs. While both
distributedmodels also showed a nice performance, the result
of eight QNNs achieved higher accuracy but at the expense
of increased loss, compared to the four QNNs. These results
imply that encoding all features into a single QNN may not
be an optimal approach and too many partitions degrade per-
formance.

Furthermore, in order to validate the scalability of our
distributed QNNs approach, we applied our distributed
approach to the MNIST handwritten digit dataset (LeCun
et al. 2010). This dataset consists of 60000 training data and
10000 test data, each of 28×28 size. By employing 14QNNs
with our distributed approach, we achieved exceeding 96%
accuracy in ten class classifications of this large dataset. This

accomplishment is particularly notable considering the com-
putational demand of classically simulating the multi-class
classification task on MNIST with a single QNN.

Our results highlight distributed QNNs as an effective
and scalable architecture for quantummachine learning, with
applicability to real-world problems. We anticipate our pro-
posed method will aid future distributed QNNs research and
investigations into quantum advantage by enabling experi-
ments on large practical datasets.

2 Method

In this section, we present our distributed QNNs approach, as
shown in Fig. 1. Our distributed QNNs model consists of nqc
shallower and narrower quantum circuits {U (xi, j ,φ j )}nqcj=1,
where each circuit processes a unique subset of the input
features. These subsets {xi, j }nqcj=1 represent the j th partition
of the i th input data xi . We employ the expectation values
with a set of observables {O(k)}doutk=1 for the outputs of the
QNNs, where dout denotes the dimension of outputs. Here,
we define the total outputs across all QNNs yi corresponding
to the input xi as the sum of the expectation values:

yi =
( nqc∑

j=1

c〈0|U †(xi, j ,φ j )O
(1)U (xi, j ,φ j )|0〉, . . . ,

nqc∑
j=1

c〈0|U †(xi, j ,φ j )O
(dout)U (xi, j ,φ j )|0〉

)
(1)

where c is a constant value to adjust the outputs. For a classifi-
cation task, we then apply the softmax function to normalize
the outputs. The procedure of our model can be summarized
as follows:

1. Partitioning input feature xi into {xi, j }nqcj=1.

2. Encoding the partitioned features {xi, j }nqcj=1 into nqc
QNNs respectively.

3. Evaluating expectation values for eachQNNwith observ-
ables {O(k)}doutk=1.

4. Calculating yi in Eq. 1 by summing the expectation val-
ues from each QNN and multiplying a constant value c.

5. (For classification task, applying softmax function.)
6. Calculating a loss function using { yi }Ni=1 for regression

task or using {Softmax( yi )}Ni=1 for classification task,
where N is the number of data and Softmax(·) is the
softmax function.

7. Optimizing parameters {φ j }nqcj=1 to minimize the loss.
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Fig. 1 The flow of our distributed approach over nqc QNNs. First, we
equally partition features xi into {xi, j }nqcj=1. We input partitioned fea-

tures {xi, j }nqcj=1 to variational quantum circuits {U (xi, j ,φ j )}nqcj=1. Then,

we evaluate a loss function using the sum of expectation values as out-
puts from the quantum circuits and optimize the parameters {φ j }nqcj=1 in
quantum circuits to minimize the loss function

We used this procedure in our numerical experiments.

3 Results

In this section, we present the validation of our distributed
QNNs approach through the classification of the Semeion
and MNIST handwritten digit datasets. In the following,
we briefly describe the setup of our numerical experiments.
First, we focused on the Semeion dataset (Semeion Hand-
written Digit 2008), containing 1593 of 16×16-dimensional
data representing digits from 0 to 9, with each feature value
assigned an integer from 0 to 255.

For preprocessing the Semeion dataset, we adopted a
normalization strategy for angle encoding. Specifically, we
normalized the data values between 0 and π/8 for encoding
64 features per QNN, and between 0 andπ/4 for encoding 32
features per QNN. Then, we applied 2×2 average pooling to
the normalized data to reduce the dimension 16×16 to 8×8
due to the limitation of our GPUmemory capacity, especially
when simulating the classification task with a single QNN.

The architectural designs of our single QNN and dis-
tributed QNNs are illustrated in Fig. 2 and described further
in the Appendix. The primary distinction between these
architectures lies in the number of qubits and encoding
layers, which are adjusted according to the size of parti-
tioned features allocated to each QNN in the distributed
setup. In our approach, we distributed the evenly parti-

tioned features across multiple independent QNNs. Then,
we evaluated the expectation values using a set of observ-
ables {X1, . . . , X5, Z1, . . . , Z5} for each QNN, followed by
summing over nqc expectation values, where we denote nqc
as the number of QNNs. We applied the softmax function
to this aggregate multiplied by a constant factor and then
evaluated cross-entropy loss as our loss function. We opti-
mized the parameters {φ j }nqcj=1 in QNNs to minimize the loss
function using Adam optimizer (Kingma and Ba 2014) with
learning rate 0.005. To perform our numerical experiments
efficiently, we utilized “torchquantum” (Wang et al. 2022)
library, known for efficient classical simulation of quantum
machine learning.

3.1 Results for the Semeion dataset

First, we focused on the classification of the 8×8 dimension-
ally reduced Semeion dataset using both a single QNN and
two QNNs model. For the two QNNs model, we partitioned
the features so that eachQNNprocessed four rows of the data.
The results of thosemodels with fivefold cross-validation are
shown in Table 1. The comparative results revealed that the
two QNNs model outperformed the single QNN model in
terms of accuracy and loss. The results underscore the poten-
tial benefits of our distributed QNNs approach over a single
QNN.

Encouraged by this result, we sought to examine the scala-
bility of our approachwith an increased number of partitions,
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Table 1 The ten class classifications accuracy of the Semeion dataset with fivefold cross-validation

Semeion data set (8 × 8)

Model n_qubits n_features/1QNN Accuracy ± stddev Loss ± stddev

QNN 8 64 0.93909 ± 0.01285 1.55759 ± 0.01290

Distributed 2QNNs 8 32 0.94787 ± 0.01499 1.54413 ± 0.01175

Semeion data set (16 × 16)

Model n_qubits n_features/1QNN Accuracy ± stddev Loss ± stddev

Distributed 4QNNs 8 64 0.94788 ± 0.01255 1.54790 ± 0.01256

Distributed 8QNNs 8 32 0.94851 ± 0.00790 1.56486 ± 0.01459

We denote the standard deviation as stddev in the table

analyzing how the performance of distributedQNNs changes
withmore partitions. Therefore, we extended our exploration
to the classification of the original 16× 16 Semeion dataset,
employing with four and eight QNNs. In these setups, each
QNNprocesses four or two rowsof features perQNN, respec-
tively. While both the four QNNs and eight QNNs model
demonstrated effective performance, the result of the eight
QNNs model in loss is inferior to the four QNNs model.
This result implies that distributing excessively partitioned
features across multiple QNNs decreases performance since
we optimize parameters to minimize loss.

In conclusion, our results indicate that encoding all fea-
tures into a single QNN is not always the best approach.
Moreover, our results indicate that the distribution of exces-
sively partitioned features across multiple QNNs leads to a
decline in overall performance.

3.2 Results for theMNIST dataset

We further validated scaling to more partitions by classi-
fying MNIST handwritten digit dataset (LeCun et al. 2010),
containing 60000 training data and 10000 test data represent-
ing digits from 0 to 9. These samples are characterized by a
higher dimensionality of 28×28, with feature values ranging
from 0 to 255. As preprocessing, we normalized the values
between 0 and π/4 for angle encoding on single-qubit rota-
tion gates, maintaining consistency with the preprocessing
methodology used in our Semeion experiments. We dis-
tributed the equally partitioned features across 14 QNNs,
i.e., encoding two rows of features into each QNN. The
same set of observables was employed here as well. From the
result of this numerical experiment, as shown in Table 2, our

distributed approach achieved exceeding 96% accuracy for
the test data, demonstrating the robustness of our distributed
approach against performance degradation. In addition, our
distributed approach operates accurately at this scale, which
is infeasible to simulate classically using a single QNN.
This success highlights the potential of our distributed QNNs
approach to be a highly effective and scalable architecture for
practical quantummachine learning. Our findings imply that
distributed QNNs could play an important role in advancing
the field of quantum machine learning.

4 Conclusion

In this paper, we have proposed a novel distributed QNNs
approach encoding partitioned features across multiple shal-
lower and narrower QNNs compared to a single large QNN.
By using the sum of the expectation values from these
independent QNNs, our distributed QNNs achieve superior
performance compared to a singleQNN.However, our results
imply that an excessive number of partitions reduces the
performance. Nevertheless, we achieved high accuracy in
classifying a large dataset of MNIST, which is a challeng-
ing task for classical simulations using a single large QNN.
Importantly, our distributed QNNs approach provides prac-
tical advantages that are compatible with current quantum
devices. Specifically, our distributed QNNs approach effec-
tively reduces qubit requirements and circuit depth for each
individualQNN, and the shallower and narrower circuitsmay
help in mitigating the vanishing gradient problems during
optimization compared to a single large QNN.

Table 2 The ten class
classifications performance for
the MNIST dataset: the model
with a star mark (*) uses a
mini-batch to reduce the
required GPU memory while
training

MNIST (28 × 28)
Model n_qubits n_features/1QNN Accuracy Loss

Distributed 14QNNs* 7 56 0.96140 1.51451
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In our futurework,wewill enhance our approach by incor-
porating quantum communication between QNNs to explore
a quantum advantage in distributed quantum machine learn-
ing. We are also interested in ensembling the outputs of
multiple quantum circuits encoding various different parti-
tioned features, which may further improve performance,
and encoding multichannel images, which could broaden
the applicability of distributed QNNs. Overall, our results
highlight the promise of distributed quantum algorithms to
mitigate hardware restrictions and also pave the way for real-
izing the vast possibilities inherent in near-term quantum
machine learning applications.

Appendix: The detailedmodel description
used in numerical experiments

Here, we describe the details of our QNN and distributed
QNNs used in Section 3. As we mentioned in Section 3, the
architecture difference between a single QNN and multiple
QNNs is the number of qubits and encoding layers depending
on the number of features. Below, we provide a comprehen-
sive description of the QNN architectures.

Our QNN architecture (Fig. 2) consists of single-qubit
rotation gates RX and RY, and CZ gates. Our QNN architec-
ture is characterized by alternating layers of a parameterized
unitary transformation Uφ and a data encoding transforma-
tion Ux .

The data encoding transformationUx encodes the features
through the angles of n RX and n RY gates acting on the i th
qubit, where n is the number of qubits. Then, n CZ gates
act on the i th target and (i mod n) + 1th control qubits.
The total number of Ux is �n_features/2�, where n_features
denotes the number of features for a single QNN or parti-
tioned features for each QNN.

The unitary transformationUφ consists of 20 layers of uni-
tary transformation U , consisting of n RX gates and n RY
gates acting on the i th qubit, and n CZgates with the i th qubit
as the control and the (i mod n) + 1th qubit as the target.
The total number of Uφ is �n_features/2� + 1. Note that we
excluded the CZ transformations Uent just before the mea-
surement. In addition, the parameters in Uφ are initialized
with uniform random values between 0 and π .

For example, we describe the quantum circuit we used
for classifying 8×8 sized reduced Semeion dataset with two
QNNs, as shown in Fig. 3. As wementioned above, we apply
unitary transformations Uφ(φ1:320) to |0〉⊗8, Ux (x1:16) for
input first 16 features, Uφ(φ321:640) for transformation and
entanglement,Ux (x17:32) for input the following 16 features,
andUφ(φ641:960) excluding the last CZ transformationsUent

just before the measurements. Then, we measure the expec-
tation values 〈ψ f | X1|ψ f 〉, . . . , 〈ψ f | X5|ψ f 〉, 〈ψ f |Z1〈ψ f |,
. . . , 〈ψ f | Z5|ψ f 〉, where |ψ f 〉 represents the quantum states
just before measurements. Another QNN has the same archi-
tecture with independent parameters and inputs the last 32
features.

Fig. 2 Our QNN architecture. The detail is described in the Appendix
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Fig. 3 The example of our QNN architecture used for classifying the 8× 8 reduced sized Semeion dataset with two QNNs. Note that we excluded
the CZ transformations Uent just before the measurement, as we mentioned in the Appendix
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