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Abstract
Quantummachine learning with variational quantum algorithms (VQA) has been actively investigated as a practical algorithm
in the noisy intermediate-scale quantum (NISQ) era. Recent researches reveal that the data reuploading, which repeatedly
encode classical data into quantum circuit, is necessary for obtaining the expressive quantum machine learning model in the
conventional quantum computing architecture. However, the data reuploading tends to require a large amount of quantum
resources, which motivates us to find an alternative strategy for realizing the expressive quantummachine learning efficiently.
In this paper, we propose quantummachine learning with Kerr-nonlinear parametric oscillators (KPOs), as another promising
quantum computing device. We use not only the ground state and first excited state but also higher excited states, which allows
us to use a large Hilbert space even if we have a single KPO. Our numerical simulations show that the expressibility of our
method with only one mode of the KPO is much higher than that of the conventional method with six qubits. Our results pave
the way towards resource-efficient quantum machine learning, which is essential for the practical applications in the NISQ
era.

Keywords Machine learning · KPO · Expressibility · NISQ · Variational quantum algorithms

1 Introduction

The quantum computers have attracted much attention due
to its potential impact on quantum chemistry (Aspuru-Guzik
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et al. 2005;Cao et al. 2019;McArdle et al. 2020;Armaos et al.
2020), machine learning (Schuld et al. 2015; Biamonte et al.
2017; Schuld and Killoran 2022), cryptography (Shor 1994,
1997; Lenstra 2000), search problems (Grover 1996), and
so on. With advancements in quantum technology, commer-
cially available quantum computers have become a reality.
In principle, we could realize a fault-tolerant quantum com-
puter, if the number of qubits is more than 10 million with a
fidelity around 0.999 (Jones et al. 2012; Devitt et al. 2013;
Gidney and Ekerå 2021). However, in the current device, the
available number of qubits is an order of 500 or less, which is
much smaller than that required for the fault-tolerant quan-
tum computation. A more feasible scenario to be realized in
the near future is the so-called NISQ regime (Preskill 2018;
Bharti et al. 2022).

Numerous quantum algorithms have been designed for
execution on NISQ devices. Among these, VQAs are con-
sidered some of the most promising applications for NISQ
devices (Bharti et al. 2022; Endo et al. 2021). Specifically,
quantum machine learning has emerged as an appealing use
case for VQAs. As a NISQ algorithm, quantum machine
learning has been predominantly investigated in the context
of qubit-based systems. Recent studies have shown that data
reuploading, the process of repeatedly encoding classical
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data into quantum circuits, is essential for achieving expres-
sive quantum machine learning models within traditional
quantum computing frameworks (Pérez-Salinas et al. 2020;
Gil Vidal and Theis 2020; Schuld et al. 2021). However,
data reuploading often demands much quantum resources.
This encourages us to seek alternative approaches to achieve
expressive quantummachine learning.We could adopt a pho-
tonic device where fock states can be used and the necessary
quantum resources for the data embedding with this device
could be different from that with the conventional approach
using qubits (Killoran et al. 2019; Steinbrecher et al. 2019;
Volkoff 2021; Gan et al. 2020; Liu et al. 2023).

On the other hand, the KPO is one of the candidates to
realize quantum computation (Milburn and Holmes 1991;
Wielinga andMilburn 1993; Cochrane et al. 1999). The KPO
is a parametric oscillator with large Kerr nonlinearity. This
Kerr nonlinearity can be used to generate cat states. We
can realize the KPO by using superconducting resonators
with Josephson junctions (Bourassa et al. 2012; Meaney
et al. 2014). The KPO is one of the candidates to perform
gate-type quantum computation (Cochrane et al. 1999; Goto
2016a; Puri et al. 2017) and quantum annealing (Goto 2016b;
Puri et al. 2017), and the KPO qubit is realized experimen-
tally (Grimm et al. 2020). It is known that the KPO qubit
is highly tolerant to bit-flip errors, and we can exploit this
property to reduce the overhead for fault-tolerant quantum
computation (Puri et al. 2017; Masuda et al. 2022).

In this paper, we propose to use the KPO for the super-
vised machine learning with a variational algorithm. KPO is
a bosonic system, and we can in principle use the infinitely
large Hilbert space with the single KPO. Also, unlike the
conventional approach to use parametrized gates, we use a
natural Hamiltonian dynamics where we change the Hamil-
tonian parameter to implement the variational algorithm.We
numerically study the performance of our method to use the
KPO with that of the conventional method with qubits.

In our method, we start from a coherent state with an
amplitude of α. Importantly, we numerically find that, by
changing the amplitude, we can tune the expressibility. Since
we encode the input classical data by using the detuning of
the KPO, we can include a higher frequency as we increase
the amplitude of the coherent state. We expect that the high-
frequency terms will improve the expressibility, and we
confirm this point by using numerical simulations. As the
expressivity increases, on the other hand, more often, over-
fitting occurs, and so our method allows us to optimize the
expressibility by tuning the amplitude of the coherent state.

This paper is organized as follows. In Section 2, we review
the physics of single and multiple KPO systems. The latter
is called KPO network. In Section 3, we explain a standard
supervised machine learning algorithm as a NISQ algorithm,
and a supervised machine learning algorithm for KPO is
proposed based on the ideas in Section 4. We performed

numerical simulations to validate our proposed method. In
Section 5, we explain the simulations and the results pre-
cisely. Finally, we conclude with some final thoughts in
Section 6.

2 KPO

KPO is a bosonic system with a nonlinear effect called Kerr
nonlinearity. Here, we first describe a single KPO and next
explain a network ofKPOs that have been used for a gate-type
quantum computer or quantum annealing.

First, in a frame rotating at half the pump frequency of the
parametric drive and in the rotating wave approximation, the
Hamiltonian of the single KPO is written as Goto (2016b,
2019)

Ĥ = χ â†2â2 + �â†â

− p(â2 + â†2) + r(â + â†), (1)

where χ , �, p, and r are the Kerr nonlinearity, the detuning,
the pump amplitude of the parametric drive, and the strength
of the coherent drive, respectively.

We can easily tune �, p, and r during the experiment
by changing the parameters of the external driving fields.
Although we can tune χ by changing magnetic flux pene-
trating the superconducting loop of the KPO, the dynamic
range is typically small, and therefore, we assume that χ is
fixed at a specific value.

The coherent state is defined by

|α〉 = e− |α|2
2

∑

k

αk

√
k! |k〉, (2)

where |k〉 are the fock states. The system is initially prepared
in the coherent state in our method. For a linear resonator, we
can prepare the coherent state by adding the coherent driving
term r(â+ â†). However, due to the term χ â†2â2 in Eq. 1, we
cannot prepare the coherent state just by adding the coherent
drive. Instead, we can prepare the coherent state by using the
KPO as follows. By setting p = r = 0, the Hamiltonian
Eq.1 becomes

Ĥ = χ â†2â2 + �â†â. (3)

If � > χ is satisfied, the ground state of this Hamiltonian
becomes the vacuum state |0〉. On the other hand, when �

and r are zero, Eq. 1 can be rewritten as

Ĥ = χ

(
â†2 − p

χ

) (
â2 − p

χ

)
− p2

χ
, (4)
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and the ground state is in the eigenspace that is spanned
by two coherent states |√p/χ〉 and |−√

p/χ〉. By adding a
coherent drive as a perturbation,we can solve the degeneracy,
and the ground state becomes approximately |√p/χ〉 with
a negative value of r . If we prepare a vacuum state with the
Hamiltonian of Eq. 3, the system is in the ground state. By
adiabatically changing the Hamiltonian from Eq. 3 to Eq. 4,
we obtain the coherent state |√p/χ〉 due to the adiabatic the-
orem. This operation is frequently used in quantumannealing
with KPOs (Goto 2016a, b, 2019; Puri et al. 2017).

Next, the Hamiltonian of multiple KPOs, which is called
a KPO network, is written as

Ĥ =
K∑

j=1

χ j â
†2
j â2j + � j â

†
j â j

− p j (â
2
j + â†2j ) + r j (â j + â†j )

+
K∑

j> j ′

(
J j j ′ â

†
j â j ′ + J ∗

j j ′ â
†
j ′ â j

)
. (5)

where K denotes the number of KPOs and J j j ′ denotes the
coupling strength between KPOs. Here, we assume that we
fix the values of χ j and J j j ′ during the experiment, while we
can control the values of � j , p j , and r j .

If J j j ′ is zero, we can independently perform the adiabatic
state preparation described above and prepare the following
state:

K⊗

j=1

|α j 〉. (6)

Here, each α j is the eigenvalue of |α j 〉 with the annihilation
operator on the j-th KPO â j .

It is worth mentioning that even when J j j ′ is nonzero, we
can prepare the product of the coherent state as follows. Let
us assume that � j , r j , and Ji j are much smaller than p j and
χ j . In this case, the last terms of the Hamiltonian Eq. 5 can
be interpreted as the longitudinal-field Ising Hamiltonian in
a coherent state basis. If Ji j is negative, we have a ferro-
magnetic Hamiltonian. Moreover, by setting Ji j to be much
smaller than r j , the state in Eq. 6 can be a ground state,
and so we can prepare this state in an adiabatic way. Also,
a coupling scheme of KPOs with high fidelity has already
been proposed theoretically (Goto 2019; Masuda et al. 2022;
Aoki et al. 2024).

3 Quantum supervisedmachine learning
as a NISQ algorithm

In this section, let us review a quantum supervised machine
learning as a preparation for introducing our model. In a

supervised learning task, a number of training set {(xm,

ym)}Nm=1 are given. Here, all input data xm (output data ym)
are dx (dy) dimensional arrays. Suppose that there is a hidden
relationship between an input data x and the output data y as
y = f̃ (x) with a function f̃ . The objective of the task is to
find the hidden relationship f̃ from the training data. More
specifically, we define the model function f and optimize it
so that it becomes close to f̃ by using the training data.

In most of the quantum machine learning with near-term
devices, we use a parameterized quantum circuit to construct
a model function. More precisely, by tuning a parameter, we
try to minimize a cost function. In usual cases, we choose the
mean squared error

L(θ) = 1

N

N∑

m=1

∣∣ f (xm; θ) − ym
∣∣2 , (7)

for the cost function. Here, N is the number of data sets,
f (x; θ) is an array as an output of the parameterized quan-
tum circuit, and θ is the corresponding parameter. Let us
summarize such a quantum machine learning as follows.

1. Prepare an initial state |ψ〉, and apply an input gate Û (x)

to encode the input data {xi }.
2. Apply a parameterized unitary V̂ (θ) to the state.
3. Measure the expectation values of an observable M̂ , and

we define the function as f (x; θ) = 〈M̂〉.
4. By repeating the above three steps, minimize the cost

function L by tuning the parameter θ iteratively.

The function f (x) is represented as

f (x; θ) = 〈ψ |Û †(x)V̂ †(θ)M̂ V̂ (θ)Û (x)|ψ〉. (8)

According to a previous study (Schuld et al. 2021),wemay
not expect high expressibility with a parametrized quantum
circuit using single-qubit rotations in the NISQ era. In fact,
the study shows that only a sinusoidal curve can be obtained
as Eq. 8 with using a qubit and single-qubit rotations, and if
we want different functions as an output, we need to prepare
more qubits or obtain other outputs than Eq. 8 with adding
another operation called data reuploading. However, neither
increasing the number of qubits nor increasing the number
of gate operations that cause noise is desirable for the NISQ
algorithm.

4 Quantum supervisedmachine learning
with KPO

Weintroduceourmethod to use theKPOfor supervisedquan-
tum machine learning. We begin by describing a simplified
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scenariowithdx = dy = 1byusing the singleKPO.Next,we
explain how to use the KPO network for supervised quantum
machine learning with dx = dy = 1. Finally, we describe a
scenario to implement supervised quantummachine learning
with dx > 1 and/or dy > 1 by using the KPO network.

4.1 dx = dy = 1 case

4.1.1 Single KPO

In our paper, the initial state is set to be a coherent state.
Also, to upload the classical data, we could adopt Û (x) =
e−iπxn̂ , where n̂ is the number operator defined by n̂ = â†â.
However, if we use the KPO, it is difficult to realize in situ
tunability of the nonlinearity χ . Assuming that we fix the
value ofχ during the experiment, wewill adopt the following
operator to upload the classical data

Û (x) = e−i χ̃ n̂2−iπxn̂, (9)

where we have,

χ̃ = tdχ, (10)

πx = td(� − χ). (11)

In the actual experiment, we can easily tune the time duration
td and detuning �. Throughout this paper, we fix the value
of χ̃ .

Let us define a set of unitary operators V̂i (�i , pi , ri )

V̂i (�i , pi , ri ) = e−iτ Ĥ . (12)

where Ĥ denotes the Hamiltonian of the KPO Eq.1 and τ

denotes an evolution time by the Hamiltonian. By turning on
and off the parameters of the Hamiltonian, we can construct
a unitary operator

V̂ (θ) =
D∏

i

V̂i (�i , pi , ri ), (13)

where D is the number of combinations of (�i , pi , ri ). Here,
θ corresponds to a set of parameters {� j , p j , r j }Dj=1. For
simplicity, we define

θk :=

⎧
⎪⎨

⎪⎩

�i k = 3i − 2,

pi k = 3i − 1,

ri k = 3i,

(14)

with i = 1, . . . , d. We choose â + â† = M̂ as the observ-
able to be measured. Since a bosonic system has an infinite
dimensional Fock space, even a single KPO may have the

ability to approximate the target function, while the previ-
ous approach required multiple qubits to represent the target
function.

To minimize the cost function, we need to tune the param-
eter θ . For this purpose, we should adopt a classical algorithm
to show how we should update the parameters based on the
expectation value of M̂ .

Several types of classical algorithms are used to update θ .
One of them is the gradient descentmethod to use the gradient
of the cost function. If we construct the unitary operator V̂ (θ)

by using a sequence of parameterized gates, we can use the
so-called parameter shift rule (Mitarai et al. 2018; Wierichs
et al. 2022) to determine the gradient. On the other hand,
since we use the Hamiltonian dynamics to realize the unitary
operator V̂ (θ), it is not straightforward to use the parameter
shift rule.We could use a numerical differentiation where we
measure small changes in f (x; θ) when we incrementally
increase θ by changing θ in small increments and detecting
the resulting small changes in the output f (x; θ). However, to
detect the small changes, thismethod requires a large number
of measurements.

If we cannot use a sufficient number of shots, we
could adopt an optimization using the Nelder-Mead or
Powell method, which does not use the information of gra-
dients. Throughout this paper, we use the Nelder-Mead
method (Nelder and Mead 1965) for our simulation.

Our method to use the single KPO needs to access higher
excited states in the Fock space, which may cause experi-
mental difficulties. This problem may be circumvented by
using the KPO network.

4.1.2 KPO network

Next, we consider a case using a KPO network. We prepare
the product state of the coherent state (6) as the initial state.
To upload the classical data, we apply the following operator
on the j-th KPO,

Û j (x) = e−i χ̃ n̂2j−iπxn̂ j , (15)

where we have χ̃ j = tdχ j and πx = td� j . We define a
unitary operator with 3K parameters,

V̂ ( ��, �p, �r) = e−i td Ĥ , (16)

where Ĥ is given by Eq. 5. Here, �� = (�1,�2, · · · ,�K ),
�p = (p1, p2, · · · , pK ) and �r = (r1, r2, · · · , rK ) are K
dimensional arrays.

If we need more than 3K adjustable parameters, we could
consider a different combination of ��, �p, and �r . Let us define
a set of such a combination as { ��i , �pi , �ri }Di=1 where D is
the number of the combination. Thus, we can generate D
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different unitary operators based onEq. 16.Whenwe sequen-
tially implement these, the unitary operator is given as

V̂ (θ) =
D∏

i

V̂i ( ��i , �pi , �ri ). (17)

Here, θ corresponds to a set of parameters as described below.

( ��1, �p1, �r1, ..., ��D, �pD, �rD)

= (�11,�12, ...,�1K , p11, p12, ..., p1K , ..., rDK ).

After applying V̂ (θ) given by Eq. 17, we measure an observ-
able M̂ . For this M̂ , we can choose an observable of â1 + â†1 ,
for example.

4.2 dx > 1 and/or dy > 1 case

We describe our method to implement supervised quantum
machine learning with dx > 1 and/or dy > 1 by using the
KPO network. Let us assume K ≥ dx . For j = 1, 2, · · · , dx ,
we define

Û j (x j ) = e−i χ̃ n̂2j−iπx j n̂ j . (18)

To upload the classical data, we use a unitary operator of∏dx
j=1 Û j (x j ).

Subsequently, we apply V̂ (θ) in Eq. 17 and measure a set

of observable {M̂k}dyk=1. The expectation value of M̂k corre-
sponds to the k-th component of y. By repeating these steps,
we update the parameter θ to minimize the cost function. In
principle, we could use the single KPO with dx > 1 and
dy > 1, and we discuss such an example in Appendix C.

4.3 Potential advantage to use KPOs

Even if we can use only a single KPO, the function obtained
as Eq. 8 is expected to exhibit a large expressibility. Similar
to the previous study (Schuld et al. 2021), we construct the
Fourier spectrum of Eq. 8 in the case of a single KPO as
dx = dy = 1.

When χ is negligibly small, we obtain

f (x; θ) = 〈α|eiπxn̂ V̂ †(θ)M̂ V̂ (θ)e−iπxn̂ |α〉

= e−|α|2
∞∑

k,l=0

〈k|V̂ †(θ)M̂ V̂ (θ)|l〉α
lα∗k

√
k!l! e

iπx(k−l),

(19)

which is the Fourier series. Importantly, there are high-
frequency terms in this form, and the number of terms is
infinite. This would improve expressibility. A similar dis-
cussion has been made by Gan et al. in the context of a

multi-mode photonic device, which supports our claim (Gan
et al. 2020).

If we can provide an appropriate V̂ (θ) and M̂ , we could
represent any function that can be represented by the Fourier
series. Moreover, previous research shows that the Kerr non-
linearity could enhance the performance of a specific scheme
of quantum machine learning (Liu et al. 2023), and so our
method to utilize the Kerr nonlinearity might improve the
expressibility.

On the other hand, if we use ordinary qubits, the num-
ber of high-frequency terms is limited by the finite number
of qubits. This could limit the expressibility, as suggested
in Schuld et al. (2021). To improve the expressibility, we
could increase the number of qubits (Schuld et al. 2021) or
circuit depth. However, it is difficult to increase the number
of qubits or circuit depth in the NISQ device.

5 Simulations and results

To evaluate the performance of our proposed method, we
perform numerical simulations for dx = dy = 1 and com-
pare the results of our method with that of the conventional
one (Mitarai et al. 2018). Specifically, we perform the fit-
ting of f̃ (x) = e−36x2 (Gaussian), |x |, and 0.4 sin(4πx) +
0.5 sin(6πx). Also, we perform the fitting of the square wave
defined as

f̃ (x) =
{
1 (|x | < 0.4)

0 (|x | ≥ 0.4).
(20)

We create the training set as follows. We set N = 100.
First, we randomly choose a value between −1 and 1 and
adopt these values as xm . Next, for each xm , we calculate
f̃ (xm) by using the given function f̃ and assign this value as
ym .

For our method to use a single KPO, we choose χ = 0.1,
td = τ = 0.7, M̂ = â + â†, and D = 12. Also, we set the
cutoff of the Hilbert space dimension as 25.

For the conventional method (Mitarai et al. 2018), we set
depth D = 2, the number of qubit K = 6, time step τ = 10,
and M̂ = 2Z (1). Precise setups of the conventional method
are given in Appendix B. Here, for a fair comparison, we set
the number of parameter θ as 36, which is equal to that of
our method.

We show the results of the fitting in Fig. 1. Our method
approximates all functions better than the conventional
method. In order to compare the expressibility more clearly,
we define a Fourier transform as

F̂(ν) = 1√
2π

∫ 1

−1
dxF(x)e−2π iνx , (21)
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Fig. 1 Demonstration of quantum machine learning to represent functions. Blue dots indicate the teacher data. KPO (conventional) indicates the
output by our (conventional) method after the optimization. We fit a e−36x2 , b |x |, c square wave, and d 0.4 sin(4πx) + 0.5 sin(6πx), respectively

for any function F(x), and we plot the absolute value of f̂ (ν)

in Fig. 2. As can be easily seen in (b) and (d), the results by
our method contain more Fourier components than that by
the conventional method.

Also, we plot the value of the cost function after the
optimization by our method and compare this with the con-
ventional method in Table 1.

Next, let us discuss the case of the KPO network for dx =
dy = 1. Here, we use χ1 = χ2 = 1, J12 = −0.1, K = 2,
and td = τ = 1. Also, by choosing D = 6, we set the total
number of parameters as 36, which is equal to that of the
single KPO.

We could choose M̂ = (â1 + â†1) ⊗ (â2 + â†2) for
our numerical simulations. However, it is not straightfor-
ward to measure such a non-local observable with the KPO.
So, instead, we consider two observables M̂1 = â1 + â†1
and M̂2 = â2 + â†2 . Also, we represent the function as
f (x; θ) = 〈M̂1〉〈M̂2〉. We perform the fitting of the Gaus-
sian and square wave, which we used in the case of the single
KPO. Finally, we set the Hilbert space cutoff dimension of
each KPO as 10.

We plot the results in Fig. 3 and compare the performance
of our method to use the KPO network with that to use the
single KPO. The cost functions after the optimization for
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Fig. 2 Plot of the absolute value of the Fourier transform of the func-
tion against the frequency. The blue dotted line denotes the function to
be fitted. The orange (green) line denotes the output by our (conven-

tional) method after the optimization. The functions are a e−36x2 , b |x |,
c square wave, and d 0.4 sin(4πx) + 0.5 sin(6πx), respectively

1KPO (2KPO) are 1.016 × 10−4 (9.711 × 10−5) for the
Gaussian (e−36x2 ) and 1.344× 10−2 (2.119× 10−2) for the

Table 1 Finally obtained values of the cost function

f̃ (x) KPO Conventional

e−36x2 1.016 × 10−4 2.220 × 10−2

|x | 3.388 × 10−4 7.923 × 10−3

Square wave 1.344 × 10−2 4.661 × 10−2

0.4 sin(4πx) + 0.5 sin(6πx) 1.693 × 10−2 1.562 × 10−1

square wave. The performance of our method using the KPO
network is similar to that using the single KPO. However,
we need to access higher excited states for the case of the
single KPO than that of the KPO network, and therefore, we
could avoid the experimental difficulties by using the KPO
network.

Let us explain the runtimeof our scheme.Duringour simu-
lations, we employed amaximum iteration count of 7200, the
default setting provided by Scipy.optimize.minimize (Vir-
tanen et al. 2020), when dealing with 36 variables. The
optimization process terminateswhen the cost function either
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Fig. 3 Demonstration results of our quantum machine learning for e−36x2 (a) and square wave (b) for the 1KPO and 2KPO cases. Left: the teacher
data and the training results. Right: the average photon number (since we evaluated 〈a†a〉, the result depends on the variable x)

meets the predefined tolerance level (default value, 10−4) or
when the maximum allowed number of iterations is reached.
In either case, both the parameter set to minimize the cost
function and the iteration number are outputted in Table 2.

In the KPO cases, the number of iterations is equal
to or less than that in the conventional cases. The most
time-consuming part of the practical runtime of the super-
conducting circuit is the execution time of two-qubit gates.
Importantly, coupling strength between KPOs, as demon-
strated in previous work (Yamaji et al. 2022), is approxi-
mately 10MHz, which is similar to that of superconducting

transmon qubits (Stehlik et al. 2021). Consequently, these
findings highlight that the runtime of ourmethod usingKPOs

Table 2 Numbers of iterations

f̃ (x) KPO Conventional

e−36x2 5982 6062

|x | 5981 6129

Square wave 6015 6083

0.4 sin(4πx) + 0.5 sin(6πx) 6041 6115
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Fig. 4 Results of our quantum machine learning for Gaussian described as e−36x2 with N = 10, 30, 300, 1000 training data. When N is small,
overfitting occurs

Table 3 Variation of the
number of iterations with the
number of training data

N KPO(e−36x2 ) Conventional
(e−36x2 )

KPO (square
wave)

Conventional
(square wave)

10 4741 6050 1821 6084

30 6009 6051 5977 6106

100 5982 6062 6015 6083

300 6000 6042 6009 6080

1000 6008 6062 6080 6058
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is comparable with that of the conventional approach using
transmon qubits.

We show how our fitting results depend on the number
of training data N in Figs. 4 and 5 and the variation of the
number of iterations in Table 3. For small N , our method
seems to be susceptible to overfitting due to its inherent high
expressiveness. Fortunately, to reduce the impact of over-
fitting, we can regulate this expressiveness by adjusting the
photon number of the initial coherent state, as we will show
in Section 5.1.

5.1 ˛ and expressive power

From Eq. 19, we find a tendency that, as we increase
(decrease) α, more (less) high-frequency terms are added.
Therefore, it is expected that we can control the expressibil-
ity by tuning the size of the coherent state prepared as the
initial state.

We confirmed this point by numerical simulations. In
Fig. 6, we perform numerical simulations for α = 1, 3, and
5 with the use of supervised data generated from two func-

Fig. 5 Results of our quantum machine learning for a square wave function with N = 10, 30, 300, 1000 training data. When N is small, overfitting
occurs
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Fig. 6 Demonstration results of our quantum machine learning for e−36x2 (a) and the square wave (b) for the different α = 1, 3, 5 cases. Left: the
teacher data and the training results. Right: the Fourier spectrum of the training results

tions, a Gaussian and a square wave. Only for α = 5, we
change the cutoff dimension of the Hilbert space from 25 to
100 because the average photon number is 25.

In machine learning, there is a trade-off between increas-
ing expressive power and overfitting. This means that, as
we increase the expressibility, the problem of the overfit-
ting becomes more severe. In our method, we could tune the
parameter α to choose the best point for the fitting.

To illustrate our concept, we performed numerical simula-
tions in which we varied the number of photons in the initial
coherent state. As we mentioned before, in Fig. 4, overfitting
occurs for a smaller number of the training data N . We apply
our method to tune the expressibility to this case. In Fig. 7,
we present the results, highlighting that reducing the photon
number of the initial coherent state effectively mitigates the
impact of overfitting.
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Fig. 7 Results of our quantum machine learning for Gaussian (left side) and the square wave function (right) for N = 10 where we change the
photon number of the initial coherent state. We successfully mitigate the impact of the overfitting by reducing the photon number of the coherent
state

6 Conclusions and discussion

In conclusion, we propose to use the KPO for the quantum
supervised machine learning with variational quantum cir-
cuits. We numerically show that, although we use a single
KPO, the expressibility of our method is higher than the
conventional method with six qubits. In our method, we can
tune an amplitude of the initial coherent state, and we numer-
ically show that the expressibility increases as we increase
the amplitude.

In this paper, we provide proof of concept using a
regression problem as an example. Our method also offers
advantages due to its expressive nature for other machine
learning problems, including classification, generation, rein-
forcement learning, and sequential learning. Furthermore,
we acknowledge that the quantum kernel method (Havlíček
et al. 2019) could be another promising application of our
approach, as our data encoding methodology into quantum
states introduces new types of quantum kernels. Exploring
these applications is a promisingdirection for future research.

In the NISQ era, it is crucial to implement the algorithm
with a fewer resource, and our results to use the KPO will
contribute to reduce resource. KPO network may be used
as a variant of continuous variable neural network (Killoran
et al. 2019). There are many potential applications to use the
continuous degrees of freedom of the KPO.We hope that our
research will help to expand the range of applications of the
KPO.

Appendix A: A derivation of a Hamiltonian
of a KPO

We explain a derivation of the effective Hamiltonian of the
KPO composed of an array of superconducting quantum
interference devices (SQUIDs) (Wang et al. 2019; Gao et al.
2021; Masuda et al. 2022). Let us denote the overall phase
across the junction array by ϕ̂. Also, we denote n̂C by a dif-
ference in the number of charges on the two plates of the
capacitor in units 2e, which corresponds to the charge of a
Cooper pair.

Fig. 8 Circuit model of a KPO with N SQUIDs and a shunt capacitor
C
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These will obey the following canonical commutation
relation.

[ϕ̂, n̂C ] = i . (A1)

The Hamiltonian of the system is given as

Ĥ = 4ECn̂
2
C − NSEJ [�(t)] cos ϕ̂

NS
, (A2)

where NS , EJ , and EC are the number of SQUIDs, the
Josephson energy of a SQUID, and the charging energy of
the resonator.

By using a time-dependentmagnetic flux�(t) penetrating
the SQUID loops, we can modulate the Josephson energy as
EJ (t) = EJ + δEJ cosωpt . For simplicity, we set the phase
of the pump field to be zero, θ = 0.

By performing a Taylor expansion and taking into account
up to the fourth order of ϕ/NS , we approximate Hamiltonian
as

Ĥ = 4ECn̂
2
C + EJ

2NS
ϕ̂2 − EJ

24N 3
S

ϕ4

− NSδEJ cosωpt

(
1 − 1

2

ϕ̂2

N 2
S

+ 1

24

ϕ̂4

N 4
S

)
. (A3)

Here, we assume |〈ϕ/NS〉| � 1.
We can define the creation and annihilation operator as

follows.

â = 1

2

(
EJ

2NSEC

) 1
4

ϕ̂ + i

(
2NSEC

EJ

) 1
4

n̂C , (A4)

â† = 1

2

(
EJ

2NSEC

) 1
4

ϕ̂ − i

(
2NSEC

EJ

) 1
4

n̂C . (A5)

Then, the Hamiltonian Eq.A3 becomes

Ĥ = ω

(
â†â + 1

2

)
− K

12
(â + â†)4

+
[
−NSδEJ + p(a + a†)2 − Kp

3ω
(a + a†)4

]

× cosωpt, (A6)

where ω = √
8EC EJ /NS , K = EC/N 2

S , and p =
2ωδEJ /8EJ .

We assume Kp � ω, and we drop the last term in Eq. A6.
Then, we obtain

Ĥ = ωa†a − K

12
(a + a†)4 + p(a + a†)2 cosωpt . (A7)

Moving to the rotating frame at the frequency of ωp/2 and
using the rotating wave approximation, we obtain

Ĥ = �a†a − K

12
a†2a2 + p

2
(a2 + a†2), (A8)

where � = ω − K − ωp/2.

Appendix B: A conventional scheme for our
simulation for dx = dy = 1

Let us review a conventional scheme for quantum circuit
learning with qubits (Mitarai et al. 2018). The unitary gate
to encode input data U (x) is chosen as

Û (x) =
M∏

j=1

RZ
j (arccos(x2))RY

j (arcsin(x)), (B1)

where RZ
j (φ) is the rotation of the j-th qubit around the z

axis with an angle of φ, RY
j (φ) is the rotation of the j-th

qubit around the y axis with an angle of φ, respectively, and
M is the number of the qubits.

The parameterized unitary V̂ (θ) is composed of two parts.
Thefirst part is a single-qubit rotation on the j-th qubit Û (θ ij ),
which can be generally decomposed into the following form:

Û (θ ij ) = RX
j (θ ij1)R

Z
j (θ ij2)R

X
j (θ ij3). (B2)

This means that the single-qubit rotation gate contains three
free parameters. The other part is a unitary operation induced
by the following Hamiltonian:

Ĥ =
M∑

j=1

a j X j +
M∑

j=1

j−1∑

k=1

J jk Z j Zk, (B3)

where the coefficients a j and J jk are taken randomly from a
uniform distribution on [−1, 1]. This means that the unitary
operator becomes

V̂ (θ) =
D∏

i=1

e−iτ Ĥ
K∏

j=1

Û (θ ij ). (B4)

We use τ = 10 in our simulation, which is the same as that
used in Mitarai et al. (2018).
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Appendix C: Amethod for supervised
machine learning with dx > 1 by using
a single KPO

We could use the single KPO with dx > 1 and dy > 1. For
dx > 1, we need to encode the variable into the initial state. If
we encode a different data, different outputs should be gen-
erated. So, in this case, |ψ(x1, .....xdx )〉 should be different
from |ψ(x ′

1, .....x
′
dx

)〉 unless x j = x ′
j for j = 1, 2, · · · , dx

is satisfied. For dy > 1, we have to measure independent
observables M̂1, M̂2,..., M̂dy at the step 3.

Let us explain such an example. Firstly, we prepare the

coherent state |α〉 where we set α = r =
√
x21 + x22 . Sec-

ond, we perform a unitary operation e−i χ̃ n̂2−iϕn̂ , where ϕ is
defined by

ϕ =

⎧
⎪⎨

⎪⎩

arccos x1
r , (x2 > 0)

− arccos x1
r , (x2 ≤ 0)

0, (r = 0).

(C1)

It is notable that ϕ is defined on the interval [−π, π). We
obtain

|ψ(x1, x2)〉 = e−i χ̃ n̂2−iϕn̂|r〉. (C2)

The overlap 〈ψ(x ′
1, x

′
2)|ψ(x1, x2)〉 is calculated as fol-

lows:

〈ψ(x ′
1, x

′
2)|ψ(x1, x2)〉

= 〈r ′|ei χ̃ n̂2+iϕ′n̂e−i χ̃ n̂2−iϕn̂|r〉
= 〈r ′|ei(ϕ′−ϕ)n̂|r〉
= 〈r ′|rei(ϕ′−ϕ)〉
= e− 1

2 (|r ′|2+|r |2−2r ′rei(ϕ′−ϕ)). (C3)

If the overlap Eq.C3 is 1, the exponent of the overlap is zero,
and we obtain

r ′2 + r2 − 2r ′rei(ϕ′−ϕ) = 0. (C4)

We obtain the solution as follows.

ϕ′ = ϕ, (C5)

r ′ = r . (C6)

Therefore, the overlap is not unity unless x1 = x ′
1 and x2 =

x ′
2 are satisfied. Also, as the observable, we can adopt M̂1 =

â+ â† and M̂2 = â†â. So we can use this initial state for our
method with dx = 2 and dy = 2.
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