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Abstract
A substantial portion of global quantum computing research has been conducted using quantum mechanics, which recently 
has been applied to quantum computers. However, the design of a quantum algorithm requires a comprehensive understanding 
of quantum mechanics and physical procedures. This work presents a quantum procedure for estimating information gain. 
It is aimed at making quantum computing accessible to those without preliminary knowledge of quantum mechanics. The 
procedure can be a basis for building data mining processes according to measures from information theory using quantum 
computers. The main advantage of this procedure is the use of amplitude encoding and the inner product of two quantum 
states to calculate the conditional entropy between two vectors. The method was implemented using the IBM simulator and 
tested over a dataset of six features and a Boolean target variable. The results showed a correlation of 0.942 between the 
ranks achieved by the classical and quantum computations with a significance of p < 0.005.

Keywords Information gain · Entropy · Decision trees · Information theory

1  Introduction and related work

Quantum computing (QC) stands out as a highly promis-
ing domain within computation, commanding a significant 
presence in global research efforts (Ying 2010). At its core, 
QC relies on the foundational principle of quantum physics, 
positing that electrons can simultaneously exhibit wave-like 
and particle-like properties (Robertson 1943). However, 
the development and maintenance of quantum computers 
include formidable challenges due to their vulnerability to 
noise and anomalies (Bennett et al. 1997; De Wolf 2019). 
Many technological firms have been involved in quantum 
computing and invested heavily in developing this industry 
(Zeng et al. 2017). Over the years, a broader view of the pros 
and cons of QC has emerged, and this discussion remains 
relevant in modern times (Boyer et al. 1998; De Wolf 2019).

Compared to classical computing, QC demonstrates the 
potential to reduce computational complexity, enabling exten-
sive simultaneous processing, a concept well supported by 
research (Biamonte et al. 2017; Wiebe 2020). However, algo-
rithms are not limited to classical or quantum computers; they 
can work together to achieve better results (Buffoni and Caruso 
2021). Consequently, combining QC and classical computing 
has given rise to a growing discipline called Quantum Machine 
Learning (QML). The transformation of classical machine learn-
ing algorithms into quantum equivalents requires translating 
classical algorithmic logic into circuits composed of quantum 
gates (Benedetti et al. 2019; Alchieri et al. 2021). Recent studies 
have published various quantum algorithm applications, includ-
ing learning the behavior of random variables (González et al. 
2022; Pirhooshyaran and Terlaky 2021), the development of 
quantum convolutional networks for image learning (Hur et al. 
2022; Tüysüz et al. 2021), the creation of generative adversarial 
networks (GANs) and transfer learning (Assouel et al. 2022; 
Azevedo et al. 2022; Zoufal et al. 2021), as well as the imple-
mentation of reinforcement learning (Dalla Pozza et al. 2022).

In physics, entropy plays a vital role in characterizing 
the uncertainty in the state of matter (Bein 2006). Due 
to the rapid development of information technology, 
entropy has gained importance in information theory in 
recent years. Consequently, considering the amount of 

 * Michal Koren 
 michal.koren@shenkar.ac.il

 Or Peretz 
 or.perets@shenkar.ac.il

1 School of Industrial Engineering and Management, 
Shenkar—Engineering. Design. Art, Anne Frank 12, 
5252317 Ramat Gan, Israel

http://crossmark.crossref.org/dialog/?doi=10.1007/s42484-024-00151-6&domain=pdf


 Quantum Machine Intelligence            (2024) 6:16    16  Page 2 of 8

data in events, random variables and probability, con-
siderable information can be identified through distribu-
tions of data (Wehrl 1978). These information measures 
have significant applications in artificial intelligence and 
machine learning, such as constructing decision trees and 
optimizing classifier models (Kapur and Kesavan 1992). 
Additionally, entropy is an essential metric in data mining 
and machine learning that indicates model inconclusive-
ness or inaccuracy. Generally, low entropy indicates that 
valuable information can be easily extracted from the data, 
while high entropy indicates a more significant challenge 
to generate meaningful insights (Kaufmann et al. 2020; 
Kaufmann and Vecchio 2020; Liu et al. 2022).

When dealing with a wide variety of data types, calcu-
lating entropy using a quantum computer can be challeng-
ing. First, it is necessary to ensure that the input is encoded 
in such a way that it fits the constraints of quantum states. 
Second, a series of quantum gates must be constructed to 
approximate the input data's entropy. As quantum simula-
tors are now becoming more widely available, methods 
have been developed to calculate the entropy of a random 
variable using quantum circuits. An example of such a 
method is the entropy “black box” that uses variable dis-
tribution to determine its amplitude encoding and estimate 
its entropy (Koren et al. 2023).

Decision trees are fundamental elements in machine 
learning, offering a flexible and easily comprehensible 
approach to decision-making and predictive tasks (Navada 
et al. 2011). Their hierarchical structure breaks down com-
plex decision-making processes into simple, often binary, 
questions accessible to non-specialized individuals. Their 
ability to understand complex data relationships makes 
decision trees valuable and reliable for building predictive 
models (Ahmed and Kim 2017). Furthermore, understand-
ing that a decision tree is not homogeneous is essential, as a 
series of internal nodes can generate different decision trees. 
The maximum number of trees that can be generated from 
given data is exponential (Charbuty and Abdulazeez 2021).

The Iterative Dichotomiser 3 (ID3) algorithm is a tradi-
tional method for constructing decision trees (Hssina et al. 
2014; Jin et al. 2009). This method follows a divide-and-
conquer strategy and uses information gain (IG) to assess 
the accuracy of the classification (Kent 1983). The value of 
the IG indicates the rate of entropy reduction and is calcu-
lated by the entropy of the distribution of the subtraction in 
the primary data structure. Consequently, higher IG values 
indicate a higher percentage of removed entropy (Batra and 
Agrawal 2018; Guleria et al. 2014). Thus, for each recursive 
iteration, the algorithm selects the highest IG feature and 
uses it to build the next step of the tree.

This work presents a quantum procedure for estimating 
IG in datasets with Boolean target variables. It is a generic 
procedure that can be applied to data mining processes. 

Section 2 describes the procedure's correctness and gen-
eral implementation using quantum logic circuits. The 
motivation to carry out this research is expressed in two 
main aspects. The first refers to the accessibility of quan-
tum computation for the data mining process without the 
need for prior physical knowledge. The second is the cal-
culation of IG in QC as a basis for building decision tree 
models and other measures according to information theory. 
The proposed method's main advantage is the amplitude of 
its encoding and the inner product of two quantum states 
used to calculate the conditional entropy between two vec-
tors. Section 3 presents a case study of a simple dataset that 
compares the proposed method with the classical computer 
method’s results. The results of the proposed method will 
then be compared using a dataset with six features, which 
will be presented in Section 4. Last, Section 5 will discuss 
the main conclusions and suggestions for future directions.

2  Quantum information gain

This section presents a new method for calculating quantum 
information gain for discrete value features and a Boolean tar-
get variable. The proposed method uses the Quantum Entropy 
“Black Box” (QEBB), which inputs a vector of occurrences 
and calculates the entropy using amplitude encoding and 
parameterized vectors (Koren et al. 2023). First, the proce-
dure and its quantum logic will be described. Then, the imple-
mentation and correctness of the method will be presented. 
Table 1 presents the notations used in this study.

2.1  Quantum logic and gates

Let D be a dataset consisting of m features and n records, 
denoted as F =

{
F1,… ,Fm

}
 , and a target variable, denoted 

as YD . The method inputs D and a feature denoted as A , 
such that A ∈ F . At the beginning, the method uses the 
QEBB to calculate the entropy of YD , the initial entropy 
of the dataset, denoted as QH(D) . The method consists of 
three sub-procedures, as follows:

Table 1  The notation used in this study

Symbol Remarks

D Dataset
m Number of features
F =

{
F1,… ,Fm

}
Set of features in D

YD The Boolean target variable of D
DE(A) =

{
a1,… , ap

}
Set of distinct elements in feature A

QH(D) The quantum entropy of YD
QHA(D) The quantum conditional entropy of feature A
IGA(D) Information gain of dataset D by feature A
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1. Classical computer preprocessing – Given A ∈ F , 
the method iterates over distinct values in A , denoted as 
DE(A) =

{
a1,… , ap

}
 , for p ≤ n . For each ai ∈ DE(A) , 

the method stores Yi , the target variable of records such 
that A = ai . Let W = {w1,… ,wp } be a set of propor-
tional parameters, such that each wi equals |Yi| and rep-
resents the weight of ai in the dataset.

2. Initialization of amplitude vectors – At this point, the 
method creates Qh , a set of all QEBB(Yi ). The algorithm 
transforms both W,Qh to an amplitude encoding by concat-
enating all items into a single amplitude vector. Let W̃, Q̃ be 
the amplitude vectors, such that |||W̃

|||
2

=
|||Q̃

|||
2

= 1 , satisfies:

(1a)W̃ =
1�∑p

i=1
wi

⋅

p�

i=1

√
wi

(2a)Q̃ =
1�∑p

i=1
qi

⋅

p�

i=1

√
qi

  Thus, each wi ∈ W  is converted to 
√
wi√∑p

i=1
wi

 and each 

qi ∈ Qh to 
√
qi√∑p

i=1
qi

.

3. Quantum operations and output – The proposed 
method creates two quantum circuits: first for W with 
⌊log2�W�⌋ + 1 qubit and second for Qh with ⌊log2�Qh�⌋ + 1 
qubit. (1a), (2a)  are set as the initial states, denoted as, 
��w⟩ and ��q⟩ , respectively. Next, the method applies the 
U gate with the parameters � =

�

2
,� = 0, � = � for both 

circuits to move the states into superposition, which is 
equivalent to applying the Hadamard gate. The inner 
product of the states, denoted as ⟨�w��q⟩ , can be used to 
measure the overlap between the state vectors �w,�q . The 
probability of observing the system in the state �w , given 
that it is in state �q , can be calculated by ���⟨�w��q⟩

���
2

 . 
Thus, the inner product of both states describes the 
amount of conditional entropy achieved in the sub-dataset 
of feature A . Subtracting ���⟨�w��q⟩

���
2

 from the original 
entropy of the dataset, QH(D) yields the information gain 
achieved in dataset D by feature A.
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Table 2 provides the legend and description of the flow 
presented in Fig. 1

2.2  Correctness

Let D be a dataset consisting of m features and n records, 
denoted as F =

{
F1,… ,Fm

}
 , and a target variable, denoted 

as YD . Given A ∈ F , let DE(A) =
{
a1,… , ap

}
 be a set of 

distinct elements in feature A , for p ≤ n . For each value 
ai ∈ DE(A) , the method calculates wi . The proportional 
parameter of ai equals |Yi| . Let W  be a set of all wi . Clearly,

The algorithm transforms W  to an amplitude encoding 
by concatenating all items into a single amplitude vector. 
Let (1a) be the amplitude vector, such that |||W̃

|||
2

= 1 . The 
normalization constant, denoted as W̃c , satisfies:

∑

wi∈W

wi =

p∑

i=1

|Yi| = |D| = n

W̃c =
1�∑p

i=1
wi

Each wi ∈ W  is converted to 
√
wi√∑p

i=1
wi

 . Therefore, it satis-

fies the following:

Note that the same correctness holds for (2a).

The Eq. (1a) is equivalent to (1b) as well as (2a) to (2b). 
The input vectors can be represented in the computational 
basis as (1b)�i⟩ and (2b)�i⟩ . Since a quantum system of n 
qubits provide 2n amplitudes, encoding (1b), (2b) requires 
the use of ⌊log2�W�⌋ + 1 qubit each, i.e., ⌊log2p⌋ + 1 . It is 
important to note that in cases where the length of (1b) or 
(2b) is not to the power of two, zeros are added as their 
values do not change the IG calculation.

At this point, the method set the (1b), (2b) amplitude vectors 
as initial states, denoted as, ��w⟩ and ��q⟩ , respectively. Since 
the normalization constant sums up to one, the coefficients 

(1b)

W̃ = W̃
c
⋅

p∑
i=1

√
w
i

�W�2 =
p∑
i=1

�
√
w
i√∑p

i=1
w
i

�2

=

∑p

i=1

w
i∑p

i=1
w
i

=

∑p

i=1
w
i∑p

i=1
w
i

= 1

(2b)Q̃ = Q̃c ⋅

�p

i=1

√
qi

Table 2  Legend and description for Fig. 1

Step Input/output Description

1 Input dataset and an Attribute ( A)
2 Input step (1) and yield the quantum entropy ( Qh ) and 

weight vector ( W)
Execution of the classic computer preprocessing and QEBB (the quantum 

entropy “black box”)
3 Input step (2) and initialize qubits for initial states The method normalizes Qh,W values by amplitude encoding and allocates the 

total of 2
(
log2p + 1

)
 qubits, where p is the number of distinct elements in 

feature A
4 Input step (3) and returns the inner product of the states

Apply 
U
(

�

2
, 0,�

)
 gate on both state vectors, calculate the inner product and 

returns ���⟨�w
��

q
⟩���

2 , which is the probability of overlap between the states

Fig. 1  The quantum procedure flow of conditional entropy calculation
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of ��w⟩ can describe the probability of each state, which is 
equivalent to the proportional parameter. Similarly, the coeffi-
cients of ��q⟩ describe the relative entropy of each proportional 
parameter.

Next, the method creates two quantum circuits with 
2
�
⌊log2p⌋ + 1

�
 as the total number of qubits. By analyzing 

the worst case, all values in feature A are distinct, i.e., p = n , 
and the total number of qubits equals twice the number needed 
for the complete dataset. Once the method allocates all qubits, 
it applies the U gate with the parameters � =

�

2
,� = 0, � = � 

on both circuits independently, which moves the states into 
superposition. The following equations describe the quantum 
circuit over a single qubit, although the generalization to a 
higher dimension can be done with tensor products:

Let ⟨�w��q⟩ be the inner product of the states and let 
���⟨�w��q⟩

���
2

 be the probability of observing the system in the 
state �w , given that it is in state �q . The inner product can be 
understood as measuring the overlap between the state vectors 
�w,�q . Since the value of ���⟨�w��q⟩

���
2

 is a probability, it 
satisfies:

Thus, the inner product of these states:

Last, subtracting ���⟨�w��q⟩
���
2

 from the original entropy of 
the dataset, QH(D) , yields the IG achieved in dataset D by 
feature A.

��w⟩ =
�
w1

w2

�
,�q =

�
q1
q2

�

H��w⟩ =
1√
2

�
1 1

1 −1

��
w1

w2

�
=

1√
2

�
w1 + w2

w1 − w2

�

H��q⟩ =
1√
2

�
1 1

1 −1

��
q1
q2

�
=

1√
2

�
q1 + q2
q1 − q2

�

0 ≤
���⟨�w��q⟩

���
2

≤ 1

⟨�w��q⟩ = �†
w
�q =

=
1

2

�
w1 + w2

��
q1 + q2

�
+

1

2

�
w1 − w2

��
q1 − q2

�
=

=
1

2

�
w1q1 + w2q2 + w1q1 + w2q2

�
=

= w1q1 + w2q2

3  Case study

This section demonstrates a quantum IG calculation com-
pared to classical computer computation. Table 3 presents a 
mockup dataset ( D ) consisting of feature A and a Boolean 
target variable, Y. First, the classic computer computation will 
be described, followed by the quantum procedure.

3.1  Classical computer computation

The IG is defined as the difference between the dataset entropy, 
H(Y) , and the conditional entropy achieved by feature A:

The initial entropy of the dataset can be calculated by:

The calculated conditional entropy is based on the probabil-
ity distribution function of feature A . For the demonstration, 
Table 4 presents the probability function, achieved by a simple 
preprocessing procedure.

The conditional entropy, H(Y|A) , is defined as:

Last, the IG of dataset D , achieved by feature A , is:

3.2  Quantum computer computation

This section presents the case study and experiments of the IG 
calculation using the proposed method. The experiment was 
simulated using Qiskit (Cross 2018) and an IBM simulator 

IGA(D) = H(Y) − H(Y|A) = H(Y) −
∑

ai∈A

P
(
A = ai

)
⋅ H

(
Y|A = ai

)

H(Y) = −
∑

y
i
∈Y

P
(
y
i

)
⋅ log2

(
p
(
y
i

))
= −

[
1

3
log2

(
1

3

)
+

2

3
log2

(
2

3

)]
= 0.918

H(Y�A = 1) =
1

6
⋅

�
−1 ⋅ log2(1)

�
= 0

H(Y�A = 2) =
1

3
⋅

�
−

3

4
log2

�
3

4

�
−

1

4
log2

�
1

4

��
= 0.270

H(Y�A = 3) =
1

6
⋅

�
−

1

2
log2

�
1

2

�
−

1

2
log2

�
1

2

��
= 0.167

H(Y�A = 4) =
1

3
⋅

�
−1 ⋅ log2(1)

�
= 0

H(Y�A) = ∑
a
i
∈A

P
�
A = a

i

�
⋅ H(Y�A = a

i
) = 0.437

IGA(D) = H(Y) − H(Y|A) = 0.918 − 0.437 = 0.481

Table 3  Mockup dataset for 
demonstration A 1 1 2 2 2 2 3 3 4 4 4 4

Y 1 1 0 0 0 1 0 1 1 1 1 1

Table 4  The probability 
distribution function of feature 
A

ai 1 2 3 4

P[A = ai]
1

6

1

3

1

6

1

3
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with 1024 shots. To begin, the method used the QEBB (Koren 
et al. 2023) to obtain the initial entropy of the target variable.

Next, the method created and initialized W, the proportional 
parameter of each distinct value in A , and Qh , the vector of 
quantum entropy achieved by QEBB:

The quantum circuit converted W,Qh into amplitude vec-
tors. Applying the U gate and pushing the vectors into the 
superposition yielded state vectors of:

The inner product of both quantum states was defined as:

QH(Y) = 0.911

W = [6, 3, 6, 3]

Qh = [0, 0.811, 1, 0]

��w⟩ =
√
6

6
�00⟩ +

√
3

3
�01⟩ +

√
6

6
�10⟩ +

√
3

3
�11⟩

��q⟩ = 0�00⟩ + 0.669�01⟩ + 0.743�10⟩ + 0�11⟩

Last, the IG of dataset D achieved by feature A was:

The difference between the result obtained in classical 
computing and the proposed method is 0.045. For further 
analysis, see Section 4.

4  Results

This section compares and analyzes the proposed and classi-
cal computer computation methods for calculating IG. For the 
comparison, the diabetes dataset was used (Kahn 1994), which 
is a dataset of 768 diabetic and non-diabetic women. It consists 
of eight features and a Boolean target variable. Since the pro-
posed method was designed for discrete values, the “BMI” and 
“DiabetesPedigreeFunction” features were removed.

Table 5 presents the six features of the dataset and compares 
the IG obtained in both classical computer calculation and 
quantum computation. The initial entropy was 0.933 for the 
classic calculation and 0.932 for the quantum computation. 
The minimal error obtained in the dataset appears in the glu-
cose feature, with an error of 0.001, while the highest error was 
accrued in the skin thickness feature, with an error of 0.075.

Building a decision tree using the ID3 algorithm includes 
searching for the feature with the maximum IG value to be 
the root of the tree. In both methods, the glucose feature was 
chosen as the tree's root. Since the error of this feature was 
the minimal error achieved, it can be concluded that there was 
correspondence between the methods.

This study uses two inner quantum states to estimate the 
conditional entropy. Thus, Fig. 2 compares the conditional 
entropy achieved by the quantum and classical methods. High 

⟨�w��q⟩ = �†
w
�q = 0.689

���⟨�w��q⟩
���
2

= 0.475

IGA(D) = 0.911 − 0.475 = 0.436

Table 5  A comparison of classic and quantum computation of infor-
mation gain

Classic Computa-
tion

Quantum Computa-
tion

Attribute (A) H(A|Y) IGA(D) H(A|Y) IGA(D) Error

Pregnancies 0.871 0.061 0.838 0.094 0.033
Glucose 0.304 0.629 0.302 0.630 0.001
Blood Pressure 0.873 0.059 0.808 0.124 0.065
Skin Thickness 0.851 0.081 0.776 0.156 0.075
Insulin 0.656 0.277 0.711 0.221 0.056
Age 0.792 0.140 0.740 0.192 0.052

Fig. 2  A comparison of the conditional entropy of each feature
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agreement was obtained among the features when, in most 
cases (five out of six), the quantum result scored slightly lower 
than the actual value. This conclusion also helps refine and 
understand the relationship between the conditional entropy 
and the inner product of quantum states.

The IG measure can be interpreted as ranking the features 
in the dataset according to the level of mutual information with 
the target feature. Thus, for further analysis, the Spearman 
correlation coefficient, denoted as rs , was used to examine the 
ranking correlation between the classic and quantum computa-
tion results (Myers and Sirois 2004).

Table 6 presents the ranks and their differences between the 
classical and quantum computation methods. Since all ranks 
were distinct integers, the rs was computed as follows:

Given that rs = 0.942 and p < 0.005 , this indicated that 
there was a very strong positive correlation between the 
ranks with a probability of 0.995 (Ramsey 1989).

5  Conclusions and discussion

This study proposes a quantum procedure for information 
gain calculation. The presented procedure can be applied 
in data mining, information analysis, and machine learn-
ing algorithms. The proposed method involves amplitude 
encoding and uses the inner product of the quantum states 
to estimate the conditional entropy. Its main innovation is 
the use of quantum computers to calculate the IG without 
having to transform the problem from classical to quantum 
computation. Furthermore, it is accessible to those without a 
previous understanding of QC. The following are the current 
study’s main conclusions:

1. The procedure is based on the inner product of the quan-
tum states. The squared value of the inner product is the 

rs = 1 −
6 ⋅

∑n

i=1
d2
i

n ⋅
�
n2 − 1

� = 1 −
6 ⋅

�
12 + 12

�

6 ⋅
�
62 − 1

� = 0.942

probability of observing the system in one state given 
the other state. By using amplitude encoding for the 
input vectors, the probability represents the conditional 
entropy of the target variable given a feature.

2. The minimum error achieved between the value found 
using classical calculation and the proposed quantum 
procedure was 0.001, while the maximum error was 
0.075. It can be concluded that, in the case of a Boolean 
target variable, the conditional entropy can be estimated 
by the inner product of quantum states.

3. To compare the rating of the features according to the 
IG, the Spearman correlation coefficient ( rs ) was calcu-
lated for the ratings obtained by the classical and quan-
tum calculations. The correlation coefficient value was 
0.942 with a p-value < 0.005, indicating a strong level of 
agreement between the ranks with a probability of 0.995.

This study's limitation relates to the use of the inner prod-
uct as the conditional entropy. Due to QC constraints, the 
conditional entropy was bounded between zero and one, 
which holds only for Binary target features. Future work 
should examine two main issues. First, the generalization 
of the proposed method supports multiclass classification 
(i.e., a target value with at least three distinct values) and 
continuous features. Second, the evaluation and analysis 
of additional datasets consisting of mixed types of features 
should be further studied.
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