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Abstract
We propose a model for data classification using isolated quantum d-level systems or else qudits. The procedure consists of
an encoding phase where classical data are mapped on the surface of the qudit’s Bloch hyper-sphere via rotation encoding,
followed by a rotation of the sphere and a projective measurement. The rotation is adjustable in order to control the operator
to be measured, while additional weights are introduced in the encoding phase adjusting the mapping on the Bloch’s hyper-
surface. During the training phase, a cost function based on the average expectation value of the observable is minimized
using gradient descent thereby adjusting the weights. Using examples and performing a numerical estimation of lossless
memory dimension, we demonstrate that this geometrically inspired qudit model for classification is able to solve nonlinear
classification problems using a small number of parameters only and without requiring entangling operations.

Keywords Quantum machine learning · Quantum enhanced-feature space · Quantum neural networks

1 Introduction

With low-depth quantum circuits coming to pass, the interest
for devising applications for these physical units has much
increased. One fast-developing direction that already forms
a sub-discipline of QuantumMachine Learning (Dunjko and
Briegel 2018; Biamonte et al. 2017) is devising methods for
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addressing problems of classicalmachine learning (ML)with
variational quantum circuits (VQCs) (Cerezo et al. 2021).
These types of quantum circuits have adjustable angles in
gates which can be trained in a fashion analogous to neu-
ral networks (Schuld et al. 2020; Farhi and Neven 2018;
Pérez-Salinas et al. 2020; Havlíček et al. 2019). On formal
level though the mathematical analogy of VQCs with neu-
ral networks is far from straightforward, mainly due to the
reversibility of VQCs, and the problem of quantum neuron is
usually approachedwithmore intriguedmodels (Schuld et al.
2014; Tacchino et al. 2019; Wan et al. 2017; Cao et al. 2017;
Verdon et al. 2017; Torrontegui and García-Ripoll 2019).
In addition to neural networks, VQCs show similarities with
classical kernel machines (Schuld and Killoran 2019; Schuld
2021; Havlíček et al. 2019) by generating a feature map of
classical data in the Hilbert space. In general, the interpreta-
tion andmost profitable use of VQCs inML tasks remains an
open topic of discussion, including the accurate evaluation
of their capacity and their potential or advantages compared
to classical models.

This work aims to contribute to the question whether
quantum circuits are suitable for solving ML tasks and
how increasing the dimension of the Hilbert space can be
exploited for this purpose. There are two paths to follow:
One is to employ n entangled qubits achieving an exponential
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increase of space, the other, less investigated path, is to
employqudits. For a single qudit, the dimensionof theHilbert
space is increasing linearly with d and without requiring
entangling operations which remain demanding on practi-
cal level. Our quantum toy model consists of a single qudit
operated by a low-depth quantum circuit (which we call sin-
gle layer). With these limited resources, we are able to show
that with a proper encoding and adjustment of d with respect
to the dimension of the input one may achieve double loss-
less memory (LM) dimension (Friedland and Krell 2018)
as compared to habitual single-layer neural networks (NN)
possessing the same number of trainable parameters. This
effect cannot be achieved in the absence of parameters in
the encoding phase controlling the feature map on the Bloch
hyper-sphere.

Going one step further, while keeping the input dimension
fixed, the capacity of the quantum system (in the sense of LM
dimension) can be further increased by either re-uploading
the data (Pérez-Salinas et al. 2020; Wach et al. 2023), this
way introducing more depth into the quantum circuit, or,
alternatively, aswe propose in thiswork, to use higher dimen-
sional quantum systems by increasing d. We get preliminary
evidence that the two methods give comparable results and
therefore the selection should be done in dependence of the
available resources.

The structure of the manuscript is as follows. We start by
introducing qudits first as physical entities in the lab and then
as mathematical objects, i.e., as vectors on the Bloch hyper-
sphere. Based on this representation, we develop a general
scheme formapping the data on its surface and rotating them.
We then evaluate different encoding-rotation models accord-
ing to LM dimension and we draw conclusions on optimal
methodology. We illustrate the efficiency of qubit and qutrit
models by applying them to standard classification problems
including both synthetic and real-world data.

2 Qudits

A qudit stands for the state of a d-level quantum system just
as a qubit describes a quantum 2-level system. The quantum
degrees of freedom and systems habitually used as qubits,
with appropriate modifications, are suitable to accommodate
qudits in most of the cases. The theoretical interest in qudits
(Wang et al. 2020) has driven a considerable number of exper-
imental results on generation and manipulation of single and
entangled qudits. While neutral multilevel Rydberg atoms
(Deller et al. 2023; Weggemans et al. 2022) or molecular
magnets seem the most natural candidates for qudit’s real-
ization, the majority of qudit’s demonstrations in the context

of quantum information have been achieved with photons
(Lapkiewicz et al. 2011; Erhard et al. 2018; Luo et al. 2019;
Kues et al. 2017; Imany et al. 2019). There the qudit’s state is
realized by a single photon superposed over d modes which
can be spatial, time, frequency or orbital angular momentum
ones. With integrated photonics, on-chip generation of two
entangled qudits has been reported for d = 10 (Kues et al.
2017) and d = 32 (Imany et al. 2019) giving good promises
for scalability of photonic platformswith d. Superconducting
circuits are yet another platform accommodating transmonic
qutrits (Fedorov et al. 2012; Kunzhe et al. 2018; Blok et al.
2021) and recently a circuit of five qutrits has been demon-
strated (Blok et al. 2021) able to perform teleportation. As
the authors state in this work (Blok et al. 2021) these circuits
could be possibly extended from qutrits to qudits by leverag-
ing the intrinsic anharmonicity of transmons. Finally, trapped
chains of 40Ca+ ions with their natural multilevel structure
have been tested (Ringbauer et al. 2022) as a platform of
qudits with d up to 7.

Circuits made of qubits require entangling operations in
order to exploit the exponentially large space. Two-qubits
operations define the complexity of a circuit and experi-
mentally form the most challenging part demanding either
controllable interaction between qubits or in the case of quan-
tum optical circuits nonlinearities which have weak effect.
On the contrary, in this work we build our model on single
qudits which only require coherent manipulation achievable
in its full range in most of the aforementioned qudit plat-
forms. For transmonic qutrits, single-qutrit gates forming a
universal set have beendemonstrated (Blok et al. 2021) show-
ing high fidelity and in addition the readout of the states can
be performed with high accuracy. Similarly for ion qudits
(Ringbauer et al. 2022) full single-qudit control for d = 3
and 5 has been achieved. Concerning Rydberg atoms, there
is an extensive experimental knowledge on the manipulating
of their state via laser fields and one may see for instance
(Weggemans et al. 2022) for specific prescriptions leading
to full control of a fermionic strontium 87Sr qudit, d = 10.
Even though the highest d at the moment is achieved in inte-
grated photonics platforms, there the full set of operations
that our model demands for is less obvious. However, recent
results (Kues et al. 2017) demonstrating gates on frequency
modes, achieved using programmable filters and an electro-
optic phase modulator, are highly promising, and open new
pathways for the applications of qudits.

2.1 The Bloch hyper-sphere of a qudit

As a mathematical entity a qudit state “lives” in the d-
dimensional Hilbert space which is spanned by the eigen-
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states of the Hamiltonian of the system. Let us denote by
{|k〉}d−1

k=0 such a set of normalized eigenstates. Then one can
express a generic qudit state

|ψ〉 =
d−1∑

k=0

ck |k〉 (1)

by d complex amplitudes c over this basis, being constrained
by the normalization condition

∑d−1
k=0 |ck |2 = 1.

We claim a full su(d) algebra for the system, spanned by
d2 − 1 generators

{
ĝi

}
that can be chosen to be orthogonal

with respect to the Hilbert-Schmidt product such that and

Tr
(
ĝ†i ĝ j

)
= Gδi, j with G a positive constant. For d = 2

these generators can be identified with the Pauli operators
(G = 2) while for k = 3 and G = 2 with the Gell-Mann
operators (see the Appendix). Extending the set

{
ĝi

}
by an

element g0 =
√

G
d 1̂, the generators of the algebra form a

basis in Hilbert-Schmidt space of Hermitian operators so that
any observable Ĥ of the qudit can be written as

Ĥ =
d2−1∑

m=0

hm ĝm = h0 ĝ0 + φ

d2−1∑

m=1

nm ĝm

= h0 ĝ0 + φ �n.�̂g (2)

with hm = Tr
(
ĝ†m Ĥ

)
/G ∈ �, �n = {

n1, n2, . . . , nd2
}
a

normalized real vector and φ an angle.
The density operator ρ̂ of a pure state |ψ〉, ρ̂ = |ψ〉 〈ψ |,

being a positively defined Hermitian matrix with Tr(ρ̂) = 1,
can also be decomposed on the basis of the generators as

ρ̂ = 1

G
ĝ0 +

d2−1∑

m=1

rm ĝm (3)

with rm = Tr
(
ĝ†m ρ̂

)
/G and �r = {

r1, r2, . . . , rd2−1
}
pro-

portional by 1/G factor to the unit-length Bloch vector,
living on the (d2 − 2)-dimensional surface of the so-called
Bloch hyper-sphere. For completeness we note here that pure
states occupy only a sub-manifold of this surface of dimen-
sion d2 − d while the rest of the surface corresponds to
non-positive Hermitian matrices. Mixed states correspond
to vectors inside the Bloch hyper-sphere.

Furthermore, since any unitary operation Û is generated

by a Hermitian matrix Ĥ as Û = ei Ĥ , in view of the decom-

position (2), one can re-write Û = eiφ �n.�̂g up to a phase
factor. The latter expression leads (with some extra work) to
the interpretation of a unitary operation acting on a pure state

Û |ψ〉 (or Û ρ̂Û †) as a rotation of Bloch vector around the
�n-axis for an angle proportional to φ. One can also see that
the most general unitary operation U�n (φ) is parameterized
by d2 − 1 real parameters.

Measurable quantities on a qudit are described by Her-
mitian operators which, again in view of the decomposition
presented in Eq. (2), define a direction on the Bloch hyper-
sphere. In addition, the d eigenvectors of the observables,
corresponding to d real different measurement outcomes,
i.e., eigenvalues, are mutually orthogonal to each other and
offer a separation of the Bloch hyper-surface into d adjacent
segments of equal area, in absence of degeneracies.

3 Employing qudits for supervised
classification tasks

Let us consider classical data consisting of n k-dimensional
feature vectors {�x}, i.e., �x = {x1, x2, . . . xk}. Every data point
belongs to one od M classes. A random subset of the data
composed of l-elements (l < n), {�x}l , is picked as the training
set.

3.1 Quantum resources

For this problem, the required resource is a single quditwhere
d2 −1 ≥ k and d2 −1− k increasing with the complexity of
the task. One should be able to perform the full SU (d) group
of operations on the qudit and in addition to measure a single
observable Ô . For simplicity, we assume the spectrum to be
non-degenerate, yielding d distinct measurement outcomes.
Since the classification is based on mean values of measure-
ment outcomes, one should be able to perform experiments
in identical conditions multiple times.

3.2 Encoding classical data

Let us now introduce P = S + W adjustable weights that
we separate into two groups: �s = {s1, . . . sS} and �w =
{w1, . . . wW }, with S,W ≤ d2 − 1.

In the first part, there is the encoding phase where the
classical data, i.e., the elements of the vector �xi , together
with the adjustable weights �s, are “uploaded” on the qudit
that is initially in its ground state:

∣∣ψ�x,�s
〉 = exp

⎡

⎣i x1
∑

j∈A1

s j ĝ j + . . . i xk
∑

j∈Ak

s j ĝ j

⎤

⎦ |0〉 . (4)

where A j implies different grouping of the generators with
A j ∩ Ak = 0 being a suggestive condition. With |0〉 we
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denote the ground state of the qudit. Overall, the angles and
axis of rotation of the initial vector |0〉 are related to both
classical data and adjustable weights �s in an intrigued way,
and the result of such encoding is a map from the Cartesian
space,where the inputs are initially described (k-dimensional
real vector �x), onto the surface of the d2 − 1 dimensional
hyper-Bloch sphere. Given the requirement k ≤ d2 − 1, we
actuallymap the data onto a higher dimensional feature space
characterized by the kernel

∣∣〈ψ�x2,�s
∣∣ψ�x1,�s

〉∣∣2 . (5)

In theAppendix,weprovide an explicit expressionof the sim-
plest kernel employed in this work, namely the qubit model
A (see Table 1). Contrary to the usual rotation encoding con-
sisting of successive rotations around orthogonal directions
of the Bloch sphere, resulting in cosine kernels, the “com-
bined” encoding of Eq. (4) results in more intrigued kernels.
Naturally, the complexity of these kernels is increasing with
d and k.

3.3 Rotating andmeasuring

After mapping the data onto the hyper-sphere, it is separated
into M groups. A projective measurement of Ô observ-
able, provides, with some probability which depends on the
state Eq. (4), an outcome from the d values of its spectrum
{o1, . . . , od} (arranged in increasing order).

We take the habitual assumption that the whole procedure
can be repeated many times in an identical way and use the

meanvalue of
〈
Ô

〉
that lies in the interval [o1, od ] to divide the

interval (equally or unequally) into M segments, classifying
the data, i.e., [o1, y1] , [y1, y2] . . .

[
yM−1, od

]
. To get opti-

mum results though one should be able to rotate Ô in order
to “match” its orientation with the one of the mapped data on
the hyper-surface. Alternatively, one can keep Ô intact and
rotate

∣∣ψ�xl ,�s
〉
. So, in this stage, one applies arbitrary rotations

to the state vector carrying the classical information, yielding

∣∣ψ�xl ,�s, �w
〉 = exp

⎡

⎣i
d2−1∑

j=1

w j ĝ j

⎤

⎦ ∣∣ψ�xl ,�s
〉
, (6)

and measures Ô . Let us note that it is not always profitable
in terms of capacity to keep all the weights w j in Eq. (6) and
some should be ignored or set zero so that W ≈ S.

The whole “encode-rotate-measure” scheme is repeated
many times in identical conditions until mean value for the
measurement
〈
Ô

〉

�xl ,�s, �w = 〈
ψ�xl ,�s, �w

∣∣ Ô
∣∣ψ�xl ,�s, �w

〉
(7)

is obtained that classifies the data point �xl according to the
choice of segmentation {yi } of the interval [o1, od ] of mean
values. The values yi can be also adjustable in the same way
the threshold values of perceptrons in neural networks can
be variable and optimizable.

One may summarize the total scheme in the following
diagram:

Table 1 Qubit models
Model Encoding-Rotation k P=S+W D̃LM

A exp
[
is1

(
x1 ĝ1 + i x2 ĝ2

)]
exp

[
iw1 ĝ1

]
2 2 4

B exp
[
is1

(
x1 ĝ1 + i x2 ĝ2

)]
exp

[
iw1 ĝ1 + iw2 ĝ2 + iw3 ĝ3

]
2 4 7

C exp
[
i
(
x1 ĝ1 + i x2 ĝ2

)]
exp

[
iw1 ĝ1 + iw2 ĝ2 + iw3 ĝ3

]
2 3 3

D exp
[
is1x1 ĝ1 + is2x2 ĝ2

]
exp

[
iw1 ĝ1 + iw2 ĝ2 + iw3 ĝ3

]
2 5 6

E exp
[
is1

(
x1 ĝ1 + i x2 ĝ2

)]
exp

[
iw1 ĝ1

]

exp
[
is2

(
x1 ĝ2 + i x2 ĝ3

)]
exp

[
iw2 ĝ2

]
2 4 8

F exp
[
is1

(
x1 ĝ1 + i x2 ĝ2

)]
exp

[
iw1 ĝ1

]

exp
[
is2

(
x1 ĝ2 + i x2 ĝ3

)]
exp

[
iw2 ĝ2

]

exp
[
is3

(
x1 ĝ1 + i x2 ĝ2

)]
exp

[
iw3 ĝ1

]
2 6 9

G exp
[
is1

(
x1 ĝ1 + i x2 ĝ2

)]
exp

[
iw1 ĝ1

]

exp
[
is2

(
x1 ĝ2 + i x2 ĝ3

)]
exp

[
iw2 ĝ2

]

exp
[
is3

(
x1 ĝ1 + i x2 ĝ2

)]
exp

[
iw3 ĝ1

]

exp
[
is4

(
x1 ĝ2 + i x2 ĝ3

)]
exp

[
iw4 ĝ2

]
2 8 11

H exp
[
is1

(
x1 ĝ1 + i x2 ĝ2 + i x3 ĝ3

)]
exp

[
iw1 ĝ1 + iw2 ĝ2

]
3 3 6
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|ψ�x,�s〉 |ψ�x,�s, �w〉|0〉 Encoding Rotation Measurement of Ô

Finally, while the full scheme could be written as

∣∣ψ�x,�s, �w
〉 = exp

[
i Ĥ

]
|0〉 , (8)

it is important to note that Ĥ is highly nonlinear in the input
�x due to BCH formula. Our scheme, in contrast, relies on a
simple linear encoding of Eq. (4).

3.4 Training

To perform the training, we define a loss function that penal-
izes misclassified data of the training set

E =
∑

i∈T

(〈
Ô

〉

i
− Yi

)2
, (9)

while correctly classified data do not contribute to its value.
Here, T is the set of misclassified data of the training set, and
Yi is the upper or lower value of the spectral segment that
characterizes correct class for the i th point. In Sect. 6.3 we
use for convenience the cross entropy loss function.

The optimization of parameters implies a minimization of
E , which is achieved (in all analysis apart from the exam-
ples in Sect. 6.3) by gradient descent. The landscape of E
though contains a number of local minima, and, when start-
ing from a random initial point in the space of parameters
�s ∨ �w, the procedure might get trapped in one of those. To
improve minimization, we use a sample of l = 50 initial
points and we pick the best result among all runs of gradient
descent. When dealing with real-world data using a qutrit
(in Sect. 6.3) and comparing its outcome the one obtained
with classical models, a more advanced stochastic gradient
descent is applied.

4 Lossless memory dimension of different
encoding-rotationmodels

In this section, we compare different models of encoding
using a measure of capacity with clear theoretical meaning
that is also suitable for numerical evaluation.Our aim is not to
accurately compare with the capacity of classical neural net-
works (Wright andMcMahon 2020), but to identify optimum
way for introducing the trainable parameters in encoding and
rotating stages, Eqs. (4) and (6), of the proposed scheme. Due
to limited computational capacity our numerical tests are not
“exhaustive” but indicative.

We are employing a recently suggested measure
(Friedland and Krell 2018), which has been constructed
for evaluating the informational/memory capacity of multi-
layered classical neural networks, the so-called LM dimen-
sion. This is a generalization of the Vapnik-Chervonenkis
(VC) dimension (Vapnik and Chervonenkis 1971) that is
based on thework ofMacKey (Mackay2003), embedding the
memory capacity into the Shannon communication model.
The definition of LM dimension (Friedland and Krell 2018)
is the following:

• The LM dimension DLM is the maximum integer number
DLM such that for any dataset with cardinality n ≤ DLM

and points in random position, all possible labelings of
this dataset can be represented with a function in the
hypothesis space.

• A set of points {xn} in K -dimensional space is in random
position, if and only if from any subset of size < n it is
not possible to infer anything about the positions of the
remaining points.

For this measure, the authors showed analytically that the
upper limit of LM dimension scales linearly with the num-
ber of parameters in a classical neural networkwith a factor of
proportionality that is the unity. In practice, a trainingmethod
cannot be perfect, therefore this linear dependence persists
with a lower factor of proportionality, For more details and
the informational meaning of this measure we refer the inter-
ested reader to the original work of Friedland and Krell
(2018).

For quantummodels where analytical calculations are not
available, we proceed with the numerical evaluation of LM
dimension, which we denote as D̃LM . Naturally D̃LM lower
bounds DLM and this can be understood from the procedure
that we follow for each encoding-rotation model under test:

• We set the k-dimension of the inputs of the model.
According to our general model for a qudit, we have
k ≤ d2 − 1. We generate a set of {xn} points in random
position,whichwe call randompattern, by selecting each
of k coordinates from a uniform distribution in the inter-
val [−0.5, 0.5].We start with a n ≤ P where P = S+W
the total number of parameters.

• According to the definition of LM dimension, we treat
only binary classification tasks, and we attribute labels
randomly to the vectors of the random pattern to two
groups. For a given random pattern, one should test all
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2n different labelings, but not having the computational
capacity for this, when n > 6 we perform our estimate
by taking a sample of 50 different random labelings.

• If the training of parameters via gradient descent, with 50
different starting points, does not lead to classification of
the vectors of the random pattern into two groups with
100% success ratio, we repeat for other random patterns
{xn} until we find a pattern that is successfully classified
for all possible labelings. However, we do not exceed the
number of 10 different random patterns under test.

• The number n is step-wised increased up to the point
where the classification is no longer successful for any
tested random pattern. The empirical LM dimension,
D̃LM is the highest n where the classification is achieved
for at least one random pattern (all possible labelings).

In Table 1 we present the results on the empirical esti-
mation of LM dimension for a qubit. The generators of the
algebra, ĝi for a qubit system, are identified as the Pauli oper-
ators: ĝ1 = σ̂x , ĝ2 = σ̂y, ĝ3 = σ̂z . For all qubit schemes
under study the classification is performed by measuring
the operator ĝ3 with eigenvalues {−1, 1} and corresponding
eigenvectors {|1〉 , |0〉}. The two groups of data are separated
according to

〈
ĝ3

〉
≷ 0. For comparison with our single-layer

model, we have also included models (E–F Table 1) which
implement re-uploading of input data (Pérez-Salinas et al.
2020; Wach et al. 2023).

We proceed with the estimation of D̃LM for a qutrit with
results presented in Table 2. The generators ĝi of the SU (3)
group can be chosen to be the Gell-Mann operators, λ̂i with
i = 1, . . . , 8, which are provided in matrix form in the
Appendix. According to Sect. 3, during the encoding phase
the classical data are mapped onto the Bloch hyper-sphere
of a qutrit embedded in the 8-dimensional space which can-
not be visualized. To obtain a partial visualization, as, for
example, in Sect. 6.1.1, we use the Bloch ball representation
offered by the su(2) subalgebra of su(3), spanned by the gen-

erators
{
L̂ x = λ̂1 + λ̂6, L̂ y = λ̂2 + λ̂7, L̂ z = λ̂3 + √

3λ̂8
}
.

For all schemes, we choose to measure the operator L̂ z =
λ̂3 + √

3λ̂8 that is diagonal in the computational basis and
with uniform spectrum {−2, 0, 2}. For binary classification
results, as shown in Table 2, we separate the two groups

according to the sign of
〈
L̂ z

〉
.

With regard to efficiency, the single-layer schemes that
achieve D̃LM = 2P can be considered as themost successful
ones, i.e., qubit: A, H , qutrit: D2. From the qubit models
C , D and qutrit model D1 we may conclude that both the
absence and the excessive input of parameters in the encoding
phase are not recommended. We also observe that the most
successful single-layermodels are the oneswhere k ≈ d2−1.

For classical neural networks, for a fixed input dimen-
sion k, one can linearly augment LM dimension with the
number of parameters by adding hidden layers (Friedland
and Krell 2018). For the model presented here, this becomes
possible by using a qudit system where k < d2 − 1. The
scaling D̃LM = 2P is not maintained but one rather achieves
D̃LM ≈ P as it is shown with k = 2 with qutrit model B.
An alternative way to increase LM dimension is to use re-
uploading, see qubit models E − G, but there the scaling
D̃LM = 2P also is not achieved but rather D̃LM = P + L ,
with L being a constant. This analysis confirms the findings
in Wright and McMahon (2020) and underlines the need for
more research in identifying quantum models which exceed
the classical limits.

Finally, for single-layermodels and k ≈ d2−1,we see that
D̃LM is higher than the one for the classical neural network.
It would be interesting to see whether more exotic classical
perceptronmodels such as product-units (Durbin andRumel-
hart 1989; Dellen et al. 2019) or complex-valued perceptron
(Dellen and Jaekel 2021) exhibit similar augmentation of
LM dimension. In addition we underline the fact that the LM
dimension only captures a specific aspect of the model. For
a complete evaluation of the quantum model for supervised
learning task, other aspects (Abbas et al. 2021) would have
to be taken into account, e.g., difficulty in training (barren
plateaus problem) and presence of noise in implementation.

Table 2 Qutrit models
Model Encoding-Rotation k P=S+W D̃LM

A exp
[
i x1s1 ĝ6 + i x2s2 ĝ7

]
exp

[
iw1 ĝ1 + iw2 ĝ4

]
2 4 6

B exp
[
i x1(s1 ĝ1 + s2 ĝ2) + i x2(s3 ĝ3 + s4 ĝ4)

]

exp
[
i
∑4

j=1 w j ĝ j

]
2 8 8

C exp
[
i x1(s1 ĝ5 + s2 ĝ6) + i x2(s3 ĝ7 + s4 ĝ8)

]

exp
[
i
∑4

j=1 w j ĝ j

]
2 8 7

D1 exp
[
is1

∑8
j=1 x j ĝ j

]
exp

[
i
∑7

j=1 w j ĝ j

]
8 8 13

D2 exp
[
i
∑8

j=1 x j s1+ jmod4 ĝ j

]
exp

[
i
∑4

j=1 w j (ĝ j + ĝ j+4)
]

8 8 16

D3 exp
[
i
∑8

j=1 s j x j ĝ j

]
exp

[
iw1 ĝ1

]
8 9 17
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The conclusions of the numerical studies on LM dimen-
sion are illustrated with examples in next sections. Since LM
dimension only concerns capacity of binary classification
tasks, we address classification problemswithM > 2 classes
as well.

5 Classification problems treated with a
qubit

We start the illustration of the suggested method by address-
ing two typical classification problems with a qubit (d = 2).
Even though the power of a qubit has been extensively stud-
ied in the literature, this is the first example showing that
a qubit can be logically complete, i.e., it is able to imple-
ment all binary logical functions. This is achieved with the
model A, Table 1, which contains two real parameters. This
outcome does not come as surprise since model A has LM
dimension D̃LM = 4 for k = 2, or, in other words, can shat-
ter all possible ways four 2-dimensional vectors in random
positions.

5.1 Binary logical functions

Let us consider four datasets on a plane (k = 2), as shown
in Fig. 1(a). The logical functions for these noisy data corre-
spond to different attributions of each dataset to one of two
groups, A and B. For instance, the XOR function requires a
classification of the datasets as in Fig. 1(a).

To implement classification according to the logical func-
tions, we first map the data onto the 2-dimensional surface
of the Bloch sphere. Even if the feature space has the same
dimension as the initial space, the change in topology proves
to be helpful. Numerical tests show that all logical functions
can be implemented this way with 2 real weights (S = 1 and
W = 1). In more details, we use the encoding and rotation
as in model A for a qubit, see Table 1, and the classification
is conducted using the sign of

〈
ĝ3

〉
.

We successfully solved classification problems for all log-
ical functions (AND, OR, XOR); however, we present in
Fig. 1(b) only the results about XOR, which is the most chal-
lenging task, since it is a nonlinearly separable problem. The
total number of data is 2000 and we use 4% of them for the
training.A success ratio of classification of 100%was readily
achieved.

It is important to note here that all binary logical functions
can be solvedwith 2 real parameters also by the complex per-
ceptron model presented in Dellen and Jaekel (2021). We
proceed with an example that it is not solvable with any
single-layer classical perceptron model up to our knowledge.

Fig. 1 (a)Data to be classified according to XOR logical function, into
groups A and B. (b) The classified data mapped on the surface of Bloch
sphere (projection on the x-z plane) after training on the 2 weights has
been performed

5.2 Classification for circular boundaries

We proceed with a more complex classification problem and
show that it can still be tackled with a single qubit. For this
purpose, we employ model B, Table 1, because it achieves a
higher LM dimension than model A.

The problem consists of classifying the data (1000 2-
dimensional vectors) in Fig. 2(a) into two groups. In
Fig. 2(b), we present the classification achieved on the Bloch
sphere after the weights s1, w1, w2, w3 have been optimized.
The classification ratio achieved is 100% using 10% of total
dataset as training dataset.

Following the same encoding-rotation scenario (model
B), we are able to treat elliptical data (not presented here),
but with a lower final classification ratio (≈ 90%).
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Fig. 2 (a) The initial data (1000 points) to be classified into groups
A and B. (b) The data are mapped on the Bloch surface and perfectly
classified

6 Examples solved with a qutrit

Even though we have been able to solve a couple of basic
classification problems with one qubit, it is obvious that one
needs a higher dimensional space d to resolve more com-
plicated problems since one qubit can accommodate at most
5 parameters/weights according to our single-layer model.
As shown in Sect. 4 qutrits may accommodate more parame-
ters and therefore achieve higher LM dimension. In addition,

tests have shown that qutrit models perform better than qubit
models for classification tasks into M > 2 groups. This is
not obvious studying LM dimension alone.

6.1 Noisy XOR

We first investigate the binary classification task presented
in Fig. 3(a) for which all qubit models exhibited low perfor-
mancebutwhere qutrit’smodel B, seeTable 2, gives adequate
results. More specifically, we use 1% of the total data (2000
points) for training and achieve a success classification ratio
of 96%.

6.1.1 Classification into three groups and a geometric
picture

We increase the difficulty of the previous problem by
demanding classification in 3 groups of data and reducing
the margins between sets, as shown in Fig. 4(b). We use a
comparable number of weights (9), but now the encoding-
rotation model is:

• Encoding via

∣∣ψ�x,�s
〉 = exp

[
i x1(s1ĝ3 + s2 ĝ5 + s3ĝ7)

+i x2(s4ĝ4 + s5ĝ6 + s6ĝ8)
] |0〉 . (10)

• Rotation via

∣∣ψ�xl ,�s, �w
〉 = exp

⎡

⎣i
3∑

j=1

w j L̂ j

⎤

⎦ ∣∣ψ�xl ,�s
〉

(11)

where L̂1 = L̂ x , L̂2 = L̂ y, L̂3 = L̂ z .
• Measurement of L̂ z and classification by comparing

the value of
〈
L̂ z

〉
with A : [−2,−2 + 4/3], B :

[−2 + 4/3, 2 − 4/3], C : [2 − 4/3, 2].

Using 4% of the total data (2000 points) for training, a
success ratio of classification 87% is achieved for the rest
of data. In Fig. 4, we depict the mapping (with optimized
parameters) of the data into the SU (2) Bloch ball generated

by
{
L̂ x , L̂ y L̂ z

}
operators. The classification “intervals” for

〈
L̂ z

〉
are also presented in the picture as horizontal lines.

This “local” picture offered by the subgroup is equivalent to
the picture one would obtain by inspecting the local density
matrix of an entangled system.One can thus claimbyborrow-
ing terms by the notion of generalized entanglement (Barnum
et al. 2004) that the self-entanglement of a qutrit has the same
use in the classification procedure as physical entanglement
between subsystems, i.e., this extends the mapping from the
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Fig. 3 Qutrit model: (a) classification into 2 groups employing 8 weights, (b) classification into 3 groups employing 9 weights

surface to the inside area of the Bloch hyper-sphere of a sub-
system. The generation of self-entanglement in a qudit does
require the ability to fully operate the system but in prac-
tice this is less demanding than the entangling interaction
between subsystems.

6.2 Classifyingmoon sets with a qutrit

Finally, by using qutritmodelC of Table 2,we attempt a com-
mon classification task, the one of moon sets. By optimizing
the 8 parameters of the model, we achieve a classification
ratio of 90% using 10% of 800 total data points. In Fig. 5,

Fig. 4 The classification of data of Fig. 4(b) into 3 groups as perceived
in the SU (2) Bloch sphere representation provided by the operators{
L̂ x , L̂ y, L̂ z

}

we present
〈
L̂ z

〉
for the optimized set of parameters, together

with the datasets.

6.3 Real-world datamulti-class classification

We will now turn to multi-class classification tasks using
real-world data and more advanced methods of training. We
use datasets from the UCI Machine Learning Repository, a
widely used and publicly available repository (Dua andGraff
2017), maintained by the University of California, Irvine.
Our aim is to explore the feasibility of using a single qutrit
to accurately distinguish between three classes in datasets
with more than two dimensions, such as the Iris and Wine

Fig. 5 Classification of moon sets with the qutrit model C using 8

weights. A contour plot of
〈
L̂ z

〉
is depicted together with the moon data

after optimization has been performed
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Table 3 Real-world data treated with a qutrit

Dataset Features Classes Samples Pre-processing

IRIS 4 3 150 none

WINE 13 3 178 PCA

datasets. Our results illustrate that supervised learning in the
context of less structured data is achievable.

The Iris dataset consists of 150 samples of iris flow-
ers, with measurements of four features: sepal length, sepal
width, petal length, and petal width. Each sample is labeled
with one of three possible iris species. The Wine Cultivars
dataset consists of measurements of thirteen chemical con-
stituents found in three differentwine cultivars. The objective
is to classify the cultivar of the wine based on the chemical
composition measurements.

Our aim is to use the same encoding and number of param-
eters for both datasets. Thus for the Wine Cultivars dataset
which possesses 13 different features we employ Principal
Component Analysis (PCA) (Hotelling 1933) in order to
reduce the number of features to four (Table 3).

The encoding and rotating scheme that we follow is

• Encoding via

∣∣ψ�xl ,�s
〉 = exp

⎡

⎣is
4∑

j=1

x j ĝ j

⎤

⎦ |0〉 . (12)

• Rotation via

∣∣ψ�xl ,�s, �w
〉 = exp

⎡

⎣i
8∑

j=5

w j−4 ĝ8

⎤

⎦ ∣∣ψ�xl ,�s
〉

(13)

where the variational weights �w = (s, w1, w2, w3, w4)

are the parameters to be optimized.

We ensured an equal representation of each class. For
reproducibility, we used the same seed to split the data into
train and test sets. To avoid overfitting, early stopping was
employed and different gradient-based methods were trialed
to combat the barren plateaus problem before settling to
stochastic gradient descent (SGD) (Schuld et al. 2019) using
the parameter-shift rule. This method reduces the number of
measurements needed during implementation compared to
the standard method, making it more efficient and practical
for quantum machine learning. SGD is a variant of gradient
descent that randomly selects a subset of data points, called
mini-batch, to calculate the gradient of the cost function at
each iteration. Since these are multi-class problems categor-
ical cross entropy loss was used as a cost function. Using

this approach, we achieved competitive scores with a single
qutrit as can be seen in Table 4.

Since these are multi-class problems categorical cross
entropy was used as cost function, which combines the soft-
max activation and the negative log likelihood loss as follows:

loss = − 1

N

N∑

i=1

C∑

j=1

ti j log(pi j ) . (14)

Here N is the number of samples,C is the number of classes,
ti j represents the true label for sample i and class j , and pi j
represents the predicted probability.

Using this approach, we achieved competitive scores with
a single qutrit as can be seen in Table 4. In these benchmarks,
wepresent the results of the single-qutritmodel against a clas-
sicalmachine learningmodel usingSupportVectorMachines
(SVM) and a Variational Quantum Classifier (VQC) model
with entangled qubits in Qiskit. These tests were conducted
using four qubits and the popular ZZ feature map with
twelve parameters, utilizing the Limited-memory Broyden-
Fletcher-Goldfarb-Shanno Bound (L-BFGS-B) optimizer to
minimize sensitivity to local minima and the barren plateau
issue (Liu and Nocedal 1989).

These results showcase that even a single-qudit classifier
is capable of multi-class classification for multi-dimensional
real-world data. Although on the Iris dataset the four-qubits
model outperformed the single-qutrit model, the single-qutrit
model produced better results evenwith five parameters com-
pared to the twelve used by the ZZ feature map on the Wine
dataset. Increasing the encoding layers could further enhance
the classifier’s performance, but since the aim of our study
was to demonstrate that a single-layer qudit classifier can
accurately distinguish between multiple classes, it is not fur-
ther investigated here.

7 Discussion

Qudits are extensions of qubit units to higher dimensions,
which can enhance the performance in quantum computing
(Gokhale et al. 2019; Pavlidis and Floratos 2021; Gedik et al.

Table 4 Comparative numerical studies for classification of Iris and
Wine data

Classical model Entangled qubits Single qutrit

Iris TrSA 97.5% 85% 86.67%

Iris TeSA 100% 86.6% 84.44%

Wine TrSA 97.9% 65.5% 77.42%

Wine TeSA 91.7% 69.4% 85.19%

The train set accuracy (TrSA) and test set accuracy (TeSA) reachedwith
different methods
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2015; Kunzhe et al. 2018; Wang et al. 2020), gate decom-
position (Fedorov et al. 2012), error correction (Rosenblum
2018), communication (Cozzolino et al. 2019; Sheridan and
Scarani 2010; Amblard and Arnault 2015) and variational
algorithms (Deller et al. 2023; Weggemans et al. 2022).
These are experimentally realizable with different physi-
cal models and recent proposals also use them in quantum
machine learning (Wach et al. 2023; Useche et al. 2022).
In this work, we have described a model for data classifica-
tion using a single qudit. The parametrization is introduced
according to geometric intuition, partially for controlling the
mapping on the Bloch hyper-surface and partially for adjust-
ing the projective measurement to the dataset’s orientation
on the Bloch hyper-sphere. Entangling or addingmore layers
can certainly enhance the quantum classifier, similar to how
classical neural networks yield better results with increased
depth. Nonetheless, given the expense and error-prone nature
of entangling in near-term quantum hardware, our results
indicate that even a low-depth single-qudit classifier holds a
promise for quantum machine learning, if it is thoughtfully
employed with a balanced distribution of parameters in the
encoding and rotating steps.

The simple model that we present shares obvious similar-
ities and borrows ideas from previous works (Pérez-Salinas
et al. 2020; Farhi andNeven 2018;Havlíček et al. 2019;Wach
et al. 2023). Being though only in themid-way of exploration
of the potential role of quantum systems for ML tasks, this
geometrically dressed entanglement-free proposal gives its
own contribution, connecting current efforts with the geom-
etry ofHilbert-Schmidt space and underlying the equivalence
of self-entanglement (Barnum et al. 2004) with physical one
in practice. In addition, with the help of empirical estimation
of LMdimension for a qubit and a qutrit, we have been able to
demonstrate that the “capacity” of single-layer quantum sys-
tems can be higher than for classical neural network systems

bearing the same number of training parameters. It remains
an open question for future work to investigate and com-
pare the capacity of the quantum model with more intrigued
single-layer classical perceptron models but also to investi-
gate whether quantum multi-layer structures can exist which
can keep the advantage in LM dimension over classical NN.

Appendix A: Qubit kernel

There is the common belief that the encoding of classical
data via rotation angles results in a simple cosine kernel, that
is easily classically reproducible. However, cosine kernels
only emerge when the rotation encoding is successive as

exp
[
isx1ĝ1

]
exp

[
isx2 ĝ2

]
. . . |0〉 , (15)

or concerns a setting of non-interacting qubits,

exp
[
isx1ĝ1

] |0〉 ⊗ exp
[
isx2 ĝ2

] |0〉 . . . . (16)

In this work we use rotation encoding that looks very sim-
ilar

∣∣ψ�x,s
〉 = exp

[
is(x1ĝ1 + x2 ĝ2)

] |0〉 (17)

staying linear in the input �x but whose corresponding ker-
nel is more intrigued than cosine one due to BCH formula.
Straightforward calculations show that for qubit model A the
kernel writes as

∣∣〈ψ�x,s
∣∣ψ�y,s

〉∣∣2 = 1

8x2y2

(
2x2y2 cos(2sy) + x2y2 cos(2s(x + y))

+
(
x2

(
y2 − y22

)
− x22 y

2 + 2x1xyy1 + (x1y1 + x2y2)
2
)
cos(2s(x − y))

+ 2
(
x2

(
y2 + y22

)
− x22 y

2 − (x1y1 + x2y2)
2
)
cos(2sx) − 2x2y22 cos(2sy) − x2y22 cos(2s(x + y))

+ 2x22 y
2 cos(2sy) − x22 y

2 cos(2s(x + y)) − 2xx1y1y cos(2s(x + y)) − 2x21 y
2
1 cos(2sy)

+ x21 y
2
1 cos(2s(x + y)) − 2x22 y

2
2 cos(2sy) + x22 y

2
2 cos(2s(x + y)) − 4x1x2y1y2 cos(2sy)

+ 2x1x2y1y2 cos(2s(x + y)) + 2x2y2 + 2x2y22 + 2x22 y
2 + 2x21 y

2
1 + 2x22 y

2
2 + 4x1x2y1y2

)
(18)
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where x =
√
x21 + x22 and y =

√
y21 + y22 . Naturally, the

intricacy of kernels emerging in this work is increasing with
the dimension of the input k and dimension d.

Appendix B: Gell-Mann operators

Here we list the generators of su(3) algebra, the so-called
Gell-Mann operators, as matrices in the computational basis
of a qutrit, i.e., {|0〉 , |1〉 , |2〉},

λ̂1=
⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠ , λ̂2=
⎛

⎝
0 −i 0
i 0 0
0 0 0

⎞

⎠ , λ̂3=
⎛

⎝
1 0 0
0 −1 0
0 0 0

⎞

⎠ ,

λ̂4 =
⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ , λ̂5 =
⎛

⎝
0 0 −i
0 0 0
i 0 0

⎞

⎠ , λ̂6 =
⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ ,

λ̂7 =
⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ , λ̂8 = 1√
3

⎛

⎝
1 0 0
0 1 0
0 0 −2

⎞

⎠ .

For the extended set one should add ĝ0 =
√

2
3 1̂.
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