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Abstract
In this paper, we investigate the application of quantum and quantum-inspired machine learning algorithms to stock return
predictions. Specifically, we evaluate the performance of quantum neural network, an algorithm suited for noisy intermediate-
scale quantum computers, and tensor network, a quantum-inspired machine learning algorithm, against classical models
such as linear regression and neural networks. To evaluate their abilities, we construct portfolios based on their predictions
and measure investment performances. The empirical study on the Japanese stock market shows the tensor network model
achieves superior performance compared to classical benchmarkmodels, including linear and neural networkmodels. Though
the quantum neural network model attains the lowered risk-adjusted excess return than the classical neural network models
over the whole period, both the quantum neural network and tensor network models have superior performances in the latest
market environment, which suggests capability of model’s capturing non-linearity between input features.

Keywords Quantum machine learning · Tensor network · Finance · Stock return prediction

1 Introduction

The arrival of real quantum computers and experiments that
show the quantum supremacy (Arute et al. 2019; Madsen
et al. 2022) make it more realistic that the new computa-
tional paradigm will come by virtue of quantum computing.
It is true that we are currently at the era of NISQ (noisy
intermidiate-scale quantum computer) (Preskill 2018) and
must implement the quantum error correction for a full pic-
ture of such a new paradigm, but rapid progress of quantum
technologies already open a new window to the research
in various fields, such as quantum chemistry, optimization,
machine learning, and finance. It is therefore worth looking
for a practical application of quantum computers even in the
NISQ era. The framework of variational quantum algorithms
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(VQAs) (Cerezo et al. 2021) is thought to be an effective
approach towards the goal. It has been applied, for instance, to
solvemachine learning problems (Mitarai et al. 2018; Schuld
et al. 2019).

Machine learning techniques developed within the frame-
work of VQAs are essentially equivalent to the ones
using tensor networks (Huggins et al. 2019; Stoudenmire
and Schwab 2016; Stoudenmire 2018, which is originally
invented as a tool to simulate quantum physics in classical
computers (Fannes et al. 1992; White 1992). Its ability to
utilize an exponentially large tensor into a factorized series
of smaller tensors has also allowed the machine learning
community to successfully solve various machine learning
problems (Novikov et al. 2016; Stoudenmire and Schwab
2016; Stoudenmire 2018). It can consequently be considered
a quantum-inspired machine learning algorithm.

Given these growing interests of quantum and quantum-
inspiredmachine learning algorithms, it is important to study
their applicability on the real-world problems, which are,
however, less known so far partly due to the current limitation
of computational resource for quantum computers and their
simulators. In this work, to address the above issue, we con-
sider a real-world financial problem, namely the prediction
of stock returns, employing quantum and quantum-inspired
machine learning algorithms.
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Stock return prediction has been a principal problem in
finance. Ever since the work by Fama and French (Eugene
and French 1992), who have provided the empirical evi-
dence that the notion of so-called factors is effective in return
explainability, significant efforts have been made to find
unseen factors that have predictable powers for stock returns.
Among practical investors, multi-factor models, which is a
linear regression of stock returns by a set of factors, are com-
monly used thanks to their simplicity and interpretability,
though they lack expressibility due to the absence of inter-
action terms between factors. As it is, machine learning has
been becoming an alternative to them. Various studies, Abe
and Nakayama (2018); Chinco et al. (2019); Dixon and Pol-
son (2020); Gu et al. (2020, 2021) to name but a few, are
conducted on stock return predictions with machine learn-
ing methods, which can capture non-linearity in contrast to
multi-factor models.

Our interest here is to test whether the quantum or
quantum-inspired techniques can be applied to predict stock
returns and also have a competitive advantage over classi-
cal machine learning algorithms in that task. To this end,
using a set of stocks in the Japanese stock market, we con-
duct portfolio backtesting over 10 years based on stock return
predictions by quantumneural network, tensor network, stan-
dard linear regression, and neural network and compare their
performances. As a result, we find that the tensor network
model outperforms the othermodels, while the quantum neu-
ral network model is inferior to the neural network model in
the whole backtesting period. We also observe that in the lat-
est market environment, the quantum neural network model
has the better performance than the neural network model,
whichmight be related to the overfitting problem. This exper-
iment provides the implication that quantum neural network
and tensor network may be able to learn non-linear and inter-
action effects among features, and they have potential to use
in return predictions beyond the conventional models.

This paper is organized as follows. In Sect. 2, we explain
the definition of our problem, the stock return predictions,
and then describe both classical and quantummachine learn-
ing algorithms we use in our analysis. Section3 presents
the methodology to conduct our backtesting experiment and
then shows its results, using quantitative metrics that are
often used to evaluate an investment performance. Finally,
in Sect. 4, we conclude our analysis and discuss some future
directions for further research.

2 Methodology

This section collects all the ingredients we use in our anal-
ysis. First, we set up the definition of our objective as stock
return prediction by cross-sectional analysis, which is based
on comparing each stock to others at a point in time, and

describe general methodology to tackle the problem. Then,
we explain classical models for return predictions, namely
the linear regression and the neural network models. Both
models are used as benchmark models against quantum ones
in our experiment, according to the following reasons. The
linear regression model is one of the most traditional mod-
els as well as widely employed both by academicians and
practitioners in finance. The neural network model serves as
a classical counterpart of quantum models, not to mention
that it shows superior investing performance over the lin-
ear model thanks to its flexibility and expressibility. After
that, we introduce quantum circuit learning, which is one
realization of quantum neural network, and tensor network
algorithms in our framework. Finally, we describe the opti-
mization procedure for these machine learning models.

2.1 Problem definition

The objective of this work is to predict stock returns over
cross-section. Before formulating our problem, let us clarify
some notations.

Suppose there are trading dates indexed as 0 ≤ t ≤ T ,
and at each trading date t , we have Nt stocks available to
invest. We call such a whole set of stocks as stock universe
and denoteUt . Remark that the frequency of trading periods
depends on our purpose and data availability, by which we
adjust the frequency for monthly, weekly, daily, and so on.
We describe most generic situation that stock universe varies
over time. Stocks are indexed as i = 1, · · · , Nt , and price of
i-th stock at time t is denoted as pi,t . The return of i-th stock
from t to t + 1 is then calculated as

ri,t+1 = pi,t+1 − pi,t
pi,t

, (1)

which is what we wish to predict. For financial practitioners,
it is essential to predict stock returns, since they usually build
trading strategies based on predicted future returns. In aca-
demic literature, it has been a central problem to investigate
the predictability of stock returns and to construct predic-
tion models which satisfies empirical characteristics, with
the hope to reveal market structures.

There are mainly two distinct approaches to predict stock
returns: one is that by focusing on a specific stock, we use
time series analysis to predict its return, and the other is
that we predict cross-sectional relative stock performance
for whole stock universe at each time, employing each firm’s
features.

In this work, we adopt the latter cross-sectional approach,
in which we leverage information of firms. Suppose we have
n features for i-th stock at time t . Such features are compiled
to n-dimensional vector Xi,t , by means of which we describe
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the general formula of our prediction model as follows:

ri,t+1 = F(Xi,t ) + εi,t , (2)

where the form of F is not specified here and will be deter-
mined by our choice of models. εi,t represents an error term.

As for a choice of features, what should explain stock
returns is a long-standing subject to study in financial litera-
ture and has industriously been investigated. The celebrated
work by Fama and French Eugene and French (1992) pro-
poses and empirically shows that returns of individual firms
can be explained by the following three factors: market (how
the whole market moves), size (how large the market cap-
italization of stocks is), and value (how the stock price is
overvaluedor undervalued). Ever since their publication, suc-
cessive studies have followed in order to find other unknown
factors to explain returns, with the result that the number
of proposed factors has surpassed a hundred. Other than the
famous three factors mentioned above, typical factors con-
sidered so far include momentum (how big the past return of
stocks is) and quality (how stable earnings stocks have).

Regarding the prediction model F , linear regression has
been traditionally used both for academicians and practition-
ers, because of its simplicity and interpretability. In this case,
Eq. 2 becomes

ri,t+1 =
n∑

k=1

Xi,t,k · θk + εi,t , (3)

where θ is an n-dimensional vector of model parameters.
Note that the index k represents k-th element of an n-
dimensional vector. In our analysis, we employ this linear
regression model as a benchmark. The parameter θ is deter-
mined by the usual ordinary least square regression.

Traditional linear regression models neglect interaction
terms between features and non-linear terms. Machine learn-
ingmodels shed light on these issues, as is widely reported in,
e.g., Abe and Nakayama (2018); Chinco et al. (2019); Dixon
and Polson (2020); Gu et al. (2020, 2021). In our analysis, we
use the neural network models as classical machine learning
ones. As quantum and quantum-inspired machine learning
models, we propose to employ quantum circuit learning and
tensor network in return predictions. The following subsec-
tions are devoted to describing these methods and how they
can be applied for stock return predictions.

2.2 Neural network

We consider a feed-forward neural network, which consists
of L layers of affine maps and activation functions. It is for-

mally written as

FNN = WL ◦ σL−1 ◦ · · · σ1 ◦ W1 , (4)

The affine mapWl acts on nl -dimensional input vector Zl as
follows:

Wl(Zl) = Wl Zl + bl , (5)

where Wl ∈ R
nl+1×nl denotes a weight matrix and bl ∈ R

nl

a bias vector. The activation function σl is a key to generate
a non-linear effect on the model. Though there are plenty
of possibilities for what activation function to use, in our
analysis, we use the same function ReLU for all l = 1, · · · L
defined as follows:

σl(x) = ReLU(x) ≡ max{x, 0} . (6)

Having these in our hands, we construct return prediction
such that

ri,t+1 = FNN(Xi,t ) + εi,t . (7)

2.3 Quantum circuit learning

Among various quantum machine learning algorithms that
havebeendeveloped recently (Cerezo et al. 2021),we employ
the framework called quantum circuit learning (Mitarai et al.
2018) in this work. It is one of the variational quantum algo-
rithms, aiming at application for supervisedmachine learning
problems. Quantum circuit learning can be regarded as a
quantum counterpart of the neural network, since both algo-
rithms try to optimize parameters variationally so that an
objective function is minimized. For this reason, quantum
circuit learning and similar approaches are also sometimes
referred to as quantum neural network (Cerezo et al. 2021).

Quantum circuit learning consists of the following pro-
cedures. Suppose we have a dataset consisting of input data
{xi }Ni=1, and corresponding teacher data {yi }Ni=1. First, we
construct a quantum circuit V (x) from x .We apply it to some
initial state |ψ0〉 in order to encode the information of input
variables into the quantum state: |ψin〉 = V (x)|ψ0〉. Then,
we prepare a parameterized quantum circuitU (θ) and apply
it to the above state: |ψout 〉 = U (θ)|ψin〉. Finally, we mea-
sure the expectation value 〈ψout |O|ψout 〉 of some observable
O . In this work, we take the Pauli Z operator acting on the
first qubit, Z1, as the observable O . It is taken as an output of
the algorithm FQCL(x, θ). The objective function built from
yi and FQCL(x, θ) = 〈ψout |Z1|ψout 〉 is minimized by vary-
ing the parameter θ . With the optimized parameter θ = θ∗,
the trained model is given as FQCL(x, θ∗). Figure 1 shows
the general circuit of the quantum circuit learning algorithm.

123

Page 3 of 10 46



Quantum Machine Intelligence (2023) 5:46

Fig. 1 The general structure of quantum circuit learning, where we
have two quantum circuit architectures: data encoding circuit V (x) and
parameterized quantum circuit U (θ)

We next explain the construction of quantum circuits for
our analysis. It follows Mitarai et al. (2018). Remark that
we can choose different forms of encoding and parame-
terized circuits, which may result in different predicting
performance. We do not touch upon the effects of employing
different quantum circuits in this paper, leaving it for future
investigation. The initial state |ψin〉 is prepared as |0〉⊗n ,
where we assume the dimension of vectors xi of input data
is n. The encoding circuit V (xi ) is given by

V (xi ) =
n∏

j=1

RZ
j (cos−1 x2i, j )R

Y
j (sin

−1 xi, j ) , (8)

where RZ
j and RY

j represent rotation gates acting on j-th
qubit:

RZ
j (φ) = eiφZ j /2 , RY

j (φ) = eiφY j /2 . (9)

Note that the input vector xi must be normalized in the
range of [−1, 1].

Then, our parameterized quantum circuit is constructed as
follows:

U (θ) =
d∏

i=1

⎛

⎝
n∏

j=1

U (θ
(i)
j )Urand

⎞

⎠ , (10)

which is illustrated in Fig. 2. Here, Urand denotes a time
evolution gate for the following Hamiltonian:

Urand = e−i Hτ , H =
n∑

j=1

a j X j +
n∑

j=1

j−1∑

k=1

J jk Z j Zk ,

(11)

where a j and J j,k are randomly taken from a uniform dis-
tribution on [−1, 1] and τ represents a time length of the
evolution. Both of these parameters are fixed during the algo-
rithm. U (θ

(i)
j ) denotes a sequence of rotation gates on j-th

Fig. 2 Our choice of a parameterized quantum circuit in the quantum
circuit learning algorithm

qubit:

U (θ
(i)
j ) = RX

j

(
θ

(i)
j1

)
RZ
j

(
θ

(i)
j2

)
RX
j

(
θ

(i)
j3

)
. (12)

where RX
j (φ) = eiφX j /2. Urand and U (θ

(i)
j ) are repeatedly

applied to the state for d times, resulting in the whole gate
U (θ) in Eq. 10.

Equipped with these gates, quantum circuit learning can
be used in return prediction such that

ri,t+1 = FQCL(Xi,t , θ) + εi,t . (13)

2.4 Tensor network

Tensor network enables us to obtain effective representations
of quantum wavefunctions that live on exponentially large
dimensional Hilbert space. This is beneficial not only for
quantum physics but also for machine learning problems, as
tensor network enables us to manipulate a high-dimensional
feature space.

The matrix product state (MPS), one of the best-studied
and understood tensor networks among all types of ones, is
employed in our analysis.MPS is defined as follows. Suppose
we have an n-th order tensor T , whose component is given
by Ti1···in . The MPS is a representation of such a tensor T by
a product of smaller tensors:

Ti1···in =
∑

α1···αn
A(1)
i1α1

A(2)
i2α1α2

· · · A(n)
in ,αn

, (14)

where the range of indices αi is called the bond dimension
m.

We follow the approach taken in Novikov et al. (2016);
Efthymiou et al. (2019); Stoudenmire (2018) to apply the
MPS to our purposes. Consider input vector x and a feature
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map 	(x) which maps x to an n-th order tensor defined as

	i1···in (x) = φi1(x1)φi2(x2) · · · φin (xn) , (15)

where

φ(x j ) =
(

1
x j

)
. (16)

We construct a model regression function with an MPS
WMPS which acts as variational parameters to be trained as

y = FMPS(x,W ) =
∑

i1···in
WMPS

i1···in	i1···in (x) . (17)

We use this function FMPS(W , x) in return prediction:

ri,t+1 = FMPS(Xi,t ,W ) + εi,t . (18)

2.5 Optimization procedure

Now that we have introduced both classical and quantum
machine learning models we test in our analysis, let us
briefly describe how the training of models is performed.
In this subsection, we denote all the prediction models as
F(Xi,t , θ) where θ represent parameters for corresponding
model, unless otherwise noted. Given true return data ri,t and
predicted one r̃i,t = F(Xi,t ), our objective function E to be
minimized is the mean squared error:

E = 1

NT

T∑

t=1

N∑

i=1

(r̃i,t − ri,t )
2 . (19)

To archive theminimum,we utilize the stochastic gradient
descent technique for all models, which is a common pre-
scription in learning of neural networks. In this framework,
parameters are subsequently updated such as

θ ← θ − η∇θ E , (20)

where η represents a hyperparameter and the explicit formula
for updating parameters depends on the type of optimizers.
As for the quantum circuit learning model F = FQCL, the
gradient is calculated by the so-called parameter-shift rule
(Mitarai et al. 2018; Schuld et al. 2019).

It is worth mentioning that, in tensor network, gradient
descent technique is not a standard way to optimize param-
eters, since a more physics-oriented optimization algorithm
called densitymatrix renormalization group (DMRG) (White
1992) prevails in many physics applications and is also used
in machine learning one (Stoudenmire and Schwab 2016).
We, however, work with gradient descent in our analysis,

as it is simple to implement on high-level API such as Ten-
sorFlow (Abadi et al. 2015) and allows us to compare with
othermodels on equal footing.Note that theDMRGapproach
is thought to be more sophisticated in updating parameters
than gradient descent; therefore, it would be interesting to
investigate the difference of performances in optimizing ten-
sor network models. See Efthymiou et al. (2019) for more
details.

3 Experiment

In this section, we show our empirical study to evaluate how
our proposed models perform in return prediction. Our crite-
ria for the evaluation is how profitable our models are, which
can be measured by applying models in investment strate-
gies. For this purpose, we adopt an investment strategy based
on models’ predictions and conduct the backtesting experi-
ment on past historical data. In the following, we explain
our dataset and methodology of the investment strategy, then
discuss results of backtesting.

3.1 Dataset

Our dataset, or investment universeUt , is a set of the Japanese
stocks that are constituents of TOPIX500 index. TOPIX500
is a Japanese stock market index, consisting of the 500 most
liquid stocks with the largest values of market capitaliza-
tion among members of stocks listed on the Tokyo Stock
Exchange.

Input features we use are summarized in Table 1. We con-
sider ten features,which is rather a small number compared to
generalmachine learningmodels for stock return predictions,
where we typically employ as many as tens to hundreds of
features to gain expressibility and accuracy. This is due to the
fact that our quantum circuit learning architecture requires
one qubit for each feature; the more qubits we use, the more
computationally intense the simulation of quantum circuits
becomes.We therefore limit the number of features to n = 10
so that our backtesting experiment can be conducted within
reasonable computational time.

As a preprocessing, all features and returns are cross-
sectionally ranked at each time step (Gu et al. 2020; Nak-
agawa et al. 2020): the i th feature of the lth stock at time t ,
xi,t,l , is converted to (ρi,t,l)/(Nt −1), where ρi,t,l is the rank
of xi,t,l among {xi,t,l}i=1,...,Nt in the ascending order.

3.2 Investment strategy

The investment strategy thatwe take in thiswork is as follows.
Our backtesting period goes from June 2008 to May 2021,
during which we make investment decisions on a monthly
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Table 1 The list of features and
their descriptions

Factor Feature Description

Value Book-value to price ratio Net asset/market value

Earning to price ratio Net profit/Market Value

Sales to price ratio Sales/market value

Quality Return on equity Net profit/net asset

Momentum Momentum (1 month) Stock returns in the last month

Momentum (3 months) Stock returns in the past 3 months

Momentum (6 months) Stock returns in the past 6months

Momentum (12 months) Stock returns in the past 12 months

Size Market capitalization log (market value)

Market Beta Regression coefficient of stock returns

and market return (TOPIX) over 60 months

basis and let t denote the end of each month. Subsequently,
our subject to predict is then a 1-month future return.

At the beginning of backtesting, we take 3-year samples
(June 2008–May2011) as training datasets to train themodel,
and the following 1-year ones (June 2011–May 2012) as
test datasets to predict returns. We then roll this procedure
forward until the end of the backtesting period. See Fig. 3
for its design. In short, we repeatedly make a prediction for
forthcoming year from most recent 3-year samples, but only
re-estimate models once a year, not every month, in order
to avoid computationally intensive estimation, which is the
severe problem for quantum circuit learning running on a
simulator.

At each time step t , we sort stocks in descending order
based on predicted returns r̃i,t+1 and define a set of stocks
belonging to the top quintile as Ht . Assuming our models
correctly predict stock returns, Ht should represent most
profitable stocks among the whole universe Ut . On that
account, we go long, or buy, these stocks with equal weight.

Fig. 3 The concept of our backtesting experiment, showing that we
take 3 years as a training period and subsequent 1 year as a test period,
rolling this process until the end of the backtesting period

The portfolio return between t and t + 1 is then given by

rport,t+1 = 1

|Ht |
∑

i∈Ht

ri,t+1 , (21)

where |Ht | denotes the number of stocks in Ht . We repeat
this process and measure the portfolio performance over the
backtesting period.

To test the performance of our investment strategy, the
common approach is to set up a benchmark portfolio and
evaluate excess return between our portfolio and the bench-
mark. In this work, we use the TOPIX500 index as a
benchmark; therefore, the excess return is defined as

αt = rport,t − rTOPIX500,t , (22)

where rTOPIX500,t denotes the return of the TOPIX500 index
at time t . Themetrics of the portfolio performancewe employ
are the following three quantities, all ofwhich are constructed
from the time series of αt :

ER =
T∏

t=1

(1 + αt )
12/T − 1 , (23)

TE =
√√√√ 12

T − 1

T∑

t

(
αt − ᾱt )2

)
, (24)

IR = ER/TE , (25)

with ᾱt = 1/T
∑T

t=1 αt . Here, ER represents an annualized
excess return, TE (tracking error) denotes the correspond-
ing standard deviation, and IR is the so-called information
ratio, which expresses the risk-adjusted excess return of the
portfolio.
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3.3 Model architectures

We summarize the detailed setting of our models. As a tradi-
tional model, we use the linear regression which we denote
Linear. In all models we consider except for the linear regres-
sion, the number of parameters is set to be in the same order
for fair comparison. We use Adam optimizer in the training,
where the number of epochs is also fixed to 20 in all machine
learning models.

Neural network

We prepare two distinct neural network models, which
differ in the number of hidden layers.

• NN1 denotes the neural networkmodel with L = 3 layers
whose nodes are given by (10, 7, 1). This model has 92
parameters to be trained.

• NN2 denotes the neural networkmodel with L = 4 layers
whose nodes are given by (10, 5, 4, 1). This model has
93 parameters to be trained.

As mentioned earlier, we stick to use ReLU function as the
activation function. TensorFlow (Abadi et al. 2015) is used
to implement the model.

Quantum circuit learning

We denote our quantum circuit learning model by QCL.
The number of qubits is 10, which is the same as the number
of input features. The depth of parameterized gates is set
to d = 3. The number of parameters is consequently 90.
We use a quantum circuit simulator Qulacs (Suzuki et al.
2020) to implement and simulate quantum circuits. We have
conducted the numerical experiments in a noiseless setting.

Tensor network

We denote our tensor network model by TN. We set the
bond dimension to m = 2. The number of parameters is
then 76 in this setting. We use TensorNetwork (Roberts et al.
2019) as well as TensorFlow for its implementation.

3.4 Backtesting result

Table 2 summarizes the results of our empirical backtesting.
See also Fig. 4 for cumulative returns of portfolios and Fig. 5

Table 2 The empirical result of backtesting in TOPIX500 universe
(Bold characters show the best numbers in each metrics)

Linear NN1 NN2 QCL TN

ER (%) −0.28 1.27 1.76 1.35 3.71

TE (%) 6.64 3.79 4.28 6.18 5.41

IR −0.04 0.34 0.41 0.22 0.69

Fig. 4 The cumulative returns of portfolios constructed by various
methods and that of TOPIX500

for cumulative excess returns.We observe that the tensor net-
workmodel TN has the best performance in regard to both the
excess return and the information ratio. On the other hand,
the quantum circuit learning modelQCL has competitive per-
formance with the neural network model with respect to the
excess return; however, it has a larger value of TE, which in
turn results in inferior risk-adjusted return IR.

FromFig. 5, before 2016,QCL has the approximately same
performance as Linear. This implies that QCL at least learns
the linear relationship between input features as is expected.
After 2016, on the other hand, QCL continues to outperform
Linear, which might be because QCL is able to learn non-
linear relationships as well. What is more, in these recent
market environments, QCL can successfully predict stock
returns and gain the excess returns, beating classical mod-
els. See Appendix for numerics and graphs. We also find
that during the last 3 years in the backtesting period, neu-
ral network models perform poorly. It suggests that neural

Fig. 5 The cumulative excess returns of portfolio constructed by vari-
ous methods over TOPIX500
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networks used in this analysis tend to overfit to the previous
market environment and fail in adapting to the latest one.

The tensor network model TN has the best performance
over other models in spite of the lowest number of param-
eters. It illustrates that TN can possibly have effective
architectures to learn financial data, to say nothing of pos-
sibility to capture non-linearity among features. It should
be further investigated in the future whether this superiority
holds when we increase the number of features and parame-
ters in models.

4 Conclusion and discussion

In this paper,wepropose to use quantumand its inspired algo-
rithms to predict stock returns. We especially test quantum
circuit learning and tensor network as the proposed model
against the classical models, namely linear regression and
neural network. In order to evaluate their capabilities, we
consider the investment strategy based on predicted returns
by classical and quantummodels. We then conduct backtest-
ing over 10 years in the Japanese stock market.

Our finding is that the tensor network model outperforms
classical models, while the quantum circuit learning model
archives comparable performance with the neural network
models but with higher risk. As is expected, both proposed
models seem to learn non-linear relationships between input
features, implied by their superior performance against linear
regression. Although the performance of the neural network
models is deteriorated in the latest years, our proposed mod-
els successfully continue to gain the excess return. These
differences in the performance can be related to the over-
fitting problem in machine learning and market instability
in these periods. We therefore speculate that quantum tech-
niques can have a good control of the overfitting problem,
which is originally suggested in Mitarai et al. (2018). It
is, however, unclear whether the hypothesis is true; further
examination on this issue should be conducted.

Lastly, we comment on several open problems for future
exploration.

• In this work, we evaluate models’ capabilities in the
Japanese stock market. It should be examined if quantum
models work in other countries, e.g., the USA, or in the
global market. Nakagawa et al. (2020) studies the trans-
fer learning of neural network in the investment problem
between various markets. Whether transfer learning in
the quantum model is also effective or not is another
interesting research direction.

• While we study the predictability of stocks, it would be
interesting whether quantum machine learning is appli-
cable for other assets, such as bonds or currencies. See

Suimon et al. (2020); Poh et al. (2022) for the machine
learning approach in these assets.

• As is explained in Sect. 2, there are two approaches
towards the return prediction, one of which is the cross-
section prediction we employ. The other way, namely the
time series approach, can be applied in quantummachine
learning. In classical neural networks, recurrent neural
network and its variants are developed and widely inves-
tigated in financial literature (Bao et al. 2017; Kim 2019;
Lim et al. 2019; Duan and Kashima 2021). It would
be interesting to apply the quantum counterpart of such
recurrent networks in financial analysis. See Takaki et al.
(2021); Bausch (2020) for the existing literature of quan-
tum recurrent neural networks.

Appendix: Backtesting result from 2016

In this Appendix, we show the backtesting results only from
2016 in Table 3 and Figs. 6 and 7.

Table 3 The empirical result of backtesting in TOPIX500 universe
(bold characters show the best numbers in each metrics)

Linear NN1 NN2 QCL TN

ER (%) −0.12 0.56 0.18 2.63 4.20

TE (%) 7.82 3.48 4.31 5.85 5.14

IR −0.02 0.16 0.04 0.45 0.82

Fig. 6 The cumulative returns of portfolios constructed by various
methods from 2016 and that of TOPIX500
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Fig. 7 The cumulative excess returns of portfolios constructed by var-
ious methods over TOPIX500 from 2016
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